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Abstract

Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches
usually crop the target face from the input image with respect to a bounding box calculated during pre-processing,
and thus can only parse inner facial Regions of Interest (Rols). Peripheral regions like hair are ignored and nearby
faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained
and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases has been unexplored.
To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing
in the wild, which consists of 21, 866 training images and 1,000 testing images. The training images are obtained
by augmenting an existing dataset with large face poses. The testing images are manually annotated with 11 facial
regions and there are large variations in sizes, poses, expressions and background. Second, we propose Rol Tanh-
polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area
and the context, guided by the target bounding box. The new representation contains all information in the original
image, and allows for rotation equivariance in the convolutional neural networks (CNNs). Third, we propose a hybrid
residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar
space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive
experiments, we show that the proposed method improves the state-of-the-art for face parsing in the wild and does not
require facial landmarks for alignment.
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1. Introduction not parse the entire image but only the target face speci-
fied by a bounding box, whereas image parsing predicts
a label for every pixel in the image. How to prepro-

cess the input with bounding boxes remains an under-

Face parsing is a fundamental facial analysis task: it
predicts per-pixel semantic labels in a target face. It pro-

vides useful features for many downstream applications,
such as face recognition [1} 2], face beautification [3]],
face swapping [4} 5], face synthesis [6} [7, 8} 9} [10], fa-
cial attribute recognition [[L1,[12,[13]], and facial medical
analysis [14]. Recently, methods based on deep Con-
volutional Neural Networks (CNNs), especially Fully
Convolutional Networks (FCNs) [15]], have achieved
impressive results on this task.[16} [17, [18, [19} 20} 21}
22]].

Two unique aspects distinguish face parsing from
generic image parsing. The first is that face parsing does
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explored problem. Most methods [23] [24]] crop the face
with a fixed margin and resize the cropped patch to the
same dimension, which we refer to as crop-and-resize
the face area. Such methods ignore hair because the
margin around the hair area is hard to determine. If the
selected margin is too small, the hair region would be
cut off. If it is too big, too many background pixels
and / or nearby faces could be included in the cropped
patch, causing significant distractions to the model. An-
other pre-processing method is to use facial landmarks
for face alignment [[16] such that the face is appropri-
ately rotated. We refer to this method as align. The
landmarks can be jointly obtained with the face bound-
ing boxes [25]. The main problem is that a good tem-
plate has to be carefully chosen for alignment.

The other challenge is that in-the-wild images are
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underrepresented in existing benchmarks. Four most
widely used face parsing datasets are Helen [26]], LFW-

L [27], CelebAMask-HQ [28]] and LaPa [29]. Fig-
ure [2] shows exemple images from these datasets and
Section [3] compares them in detail. Most images from
Helen and LaPa are portraits, which means that only
one large face in frontal view is present near the cen-
tre. CelebAMask-HQ contains images synthesised from
CelebA [30] using super-resolution. All faces are
aliened using landmarks and resized to the same size.
As such, the resulted images contain very little con-
text information. Similarly, LFW-PL is a subset of
LFW [31]] and the faces are aligned using landmarks.
Hence, how models perform under in-the-wild condi-
tions remains unexplored.

To tackle the first challenge, we propose Rol Tanh-
polar transform (RT-Transform), that transforms the en-
tire image into a fixed-size representation in the Tanh-
polar coordinate system based on the target bounding
box. Figure [0] illustrates the transform process. As
a fully invertible transform, it preserves all contextual
information. Moreover, regardless of the face’s actual
size in the input image, the ratio between the face and
the background remains fixed at 76% : 24% in the
transformed representation. In the Tanh-polar coordi-
nate system, planar convolutions correspond to group-
convolutions [32] in rotation. Thus, Convolutional Neu-
ral Networks (CNNs) applied in the tanh-polar space
would produce a representation that is equivariant to ro-
tations in the original Cartesian space.

We further introduce Hybrid Residual Representation
Learning Block (HybridBlock) that uses RT-Transform
to create hybrid representations in the residual blocks. A
HybridBlock consists of two 3 x 3 convolutional layers,
one in the Tanh-polar coordinate system and the other in
the Tanh-Cartesian coordinate system. They are operat-
ing on different-shaped receptive fields and their outputs
are concatenated in the Tanh-polar system to obtain a
hybrid representation. By stacking HybridBlocks, we
arrive at HybridNet, a backbone network that takes as
input an image transformed by RT-Transform and the
target bounding box, and outputs a hybrid representa-
tion for face parsing. We then add the vanilla FCN de-
coder and inverse RT-Transform. The resulting frame-
work, called Rol Tanh-polar Transformer Network (RT-
Net), is shown in Figure[I]

To tackle the second challenge of lacking suitable
benchmarks, we present iBugMask dataset that con-
tains 22, 866 in-the-wild images. For the training set
of 21, 866 images, we use a face profiling method [33]]
to rotate the faces from images in Helen dataset with
respect to the yaw angle, creating many large-pose and

profile faces. For the 1,000 testing images, per-pixel
manual annotations for 11 regions including hair are
provided. The curated images contain large variations
in pose, expression, size and background clutter (see
Figure[J). Extensive experiments show that iBugMask
dataset is more challenging than other benchmarks and
models trained on iBugMask improves performance un-
der both intra-dataset and cross-dataset evaluation.
In summary, we offer the following contributions:

e We propose Rol Tanh-polar Transform for face
parsing in the wild that transforms the target face
to the Tanh-polar coordinate system based on the
bounding box, preserving the context and allowing
CNN s to learn representations equivariant to rota-
tions.

e We propose Hybrid Residual Representation
Learning Blocks, that extracts a hybrid represen-
tation by applying convolutions in both Tanh-polar
and Tanh-Cartesian coordinates.

o We present iBugMask dataset, a novel in-the-wild
face parsing benchmark that consists of more than
22 thousand images.

e We conduct extensive experiments and show that
the overall framework RTNet improves the state-
of-the-art on all benchmarks.

2. Related Work

Increasing research effort has been devoted to face
parsing due to its potential application in various face
analysis tasks. In this section, we briefly review four
groups of relevant works, i.e. 1) the face parsing bench-
marks, 2) the face parsing methods, 3) works on scene
parsing and 4) representation learning in polar space.

2.1. Face Parsing Benchmarks

Publicly available face parsing benchmarks are com-
paratively scarce, mainly due to the significant amount
of effort required for pixel-level annotations. Currently,
two most widely-used benchmarks are LFW-PL [27]]
and Helen [26].

The Helen dataset [34, 26| includes 2, 330 facial im-
ages with 194 landmark annotations that are obtained
through Amazon Mechanical Truck. In this dataset, the
inner facial components including eyes, eyebrows, nose,
inner mouth and upper/lower lips are manually anno-
tated by human, while the ground-truths for the rest fa-
cial parts, i.e. facial skin and hairs, are generated via
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Figure 1: Left: Rol Tanh-polar Transformer Network (RTNet): a facial image is transformed to Tanh-polar coordinates with RT-Transform. The
encoder consists of a Stem layer, one stage of Residual Blocks and three stages of HybridBlocks. Bounding box is used in RT-transform and
HybridBlocks to warp tensors between Tanh-polar and Tanh-Cartesian coordinates. The decoder consists of a Conv layer and a Bilinear
Upsampling layer. The output mask is transformed back to Cartesian coordinates using inverse RT-Transform. Right: HybridBlock. Yellow
rectangles are layers in Tanh-polar space while blue ones are layers in Tanh-Cartesian space. Tuples (&, w, ¢) are the shape of the output tensor for
each operation. “Split” and “Concatenate” operations are performed along the channel dimension (see Section @

image matting algorithms [26] and may not be fully ac-
curate. Despite such disadvantages, Helen was still the
only publicly-available face parsing dataset with an ac-
ceptable amount of training data for several years, and
thus it has been a popular choice for evaluating face
parsing methods [16, 124} 35]].

The LFW-PL dataset [27]] consists of 2,972 facial im-
ages selected from the Labeled Faces in the Wild (LFW)
dataset [31]. To obtain dense annotations, each facial
image is first automatically segmented into superpixels
and those superpixels are subsequently labelled as one
of the following categories: facial skin, hair and back-
ground.

Recently, two large-scale face parsing datasets
were released, which are CelebAMask-HQ [28] and
LaPa [29]. Although the number of annotated sam-
ples are greatly increased, the facial images included
in those two datasets are not strictly in-the-wild, since
they have already been pre-processed in an unrecover-
able way. In CelebAMask-HQ, the resolutions of fa-
cial images are intentionally enlarged through the super-
resolution technique [36], while most faces are aligned
to be frontal and centralised. Besides, the background
region usually comprises a small portion of the whole
facial image, i.e. most environmental information has
been discarded. Similar situations can be discovered in
the Lapa dataset in which faces are also cropped and
aligned with limited background information preserved.

Compared to those datasets, our proposed iBugMask
dataset is the only face parsing benchmark consisting
of fully in-the-wild images. The facial samples are nei-
ther cropped nor aligned, and we also preserve almost
all the background information. It covers large varia-
tions in poses, illuminations, occlusions and scenes. A
detailed comparison between the iBugMask dataset and
the existing benchmarks is provided in Sec. 3]

2.2. Face Parsing Methods

Face parsing is the task of pixel-wisely labelling
given facial images. Earlier works [37, 26] on face
parsing usually leveraged holistic priors and hand-
crafted features. Warrell et al. [37] modelled the spa-
tial correlations of facial parts with Conditional Ran-
dom Fields (CRFs). Smith et al. [26] applied SIFT fea-
tures to select exemplars in facial parts and propagate
the labels of these exemplars to generate complete seg-
mentation maps. A hybrid method was proposed in [27]
that combined the strength of both CRFs and Restricted
Boltzmann Machine in a single framework to model
global and local facial structures. The idea of utilis-
ing engineering-based features can also been seen in
other works [38],[39,140]]. Those approaches are typically
time-consuming and cannot generalise well to different
scenarios, and thus they have been gradually replaced
by deep-learning-based methods with encouraging per-
formance.
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Figure 2: Examples from benchmarks with colour-coded labels (best viewed in colour). CelebAMask-HQ [28] and LFW-PL [27] contain
well-aligned faces and little context information. Helen contains mostly portrait images where faces are big and near the centre. LaPa
contains face images with some variations in pose and occlusion but the faces are cropped and centred. By contrast, iBugMask contains large
variations in expression, pose and background and all background information is preserved (see SectionEl).

State-of-the-art performance on face parsing is
mostly achieved by deep learning methods. Liu et
al. [18] incorporated CNNs into CRFs and proposed
a multi-objective learning method to model pixel-wise
likelihoods and label dependencies jointly. An inter-
linked CNN was present in [41]] to detect different facial
parts, while this architecture cannot generate seman-
tic labels for large-scale components like facial skin.
Luo et al. [I7] applied multiple Deep Belief Networks
to detect facial parts and accordingly built a hierarchi-
cal face parsing framework. Jackson er al. [21] em-
ployed facial landmarks as a shape constraint to guide
Fully Convolution Networks (FCNs) for face parsing.
Multiple deep methods including CRFs, Recurrent Neu-
ral Networks (RNNs) and Generative Adversarial Net-
works (GAN) were integrated by authors of [42] to
formulate an end-to-end trainable face parsing model,
while the facial landmarks also served as the shape con-
straints for segmentation predictions. The idea of lever-
aging shape priors to regularise segmentation masks can
also be found in the Shape Constrained Network (SCN)
for eye segmentation. In [24], a spatial Recurrent
Neural Networks was used to model the spatial relations
within face segmentation masks. A spatial consensus
learning technique was explored in [19]] to model the re-
lations between output pixels, while graph models was
adopted in [35]] to learn the implicit relationships be-
tween facial components. To better utilise the tempo-
ral information of sequential data, authors of [44] in-
tegrated ConvLSTM [43] with the FCN model to
simultaneously learn the spatial-temporal information
in face videos and to obtain temporally-smoothed face

masks. In [46], a Reinforcement-Learning-based key
scheduler was introduced to select online key frames for
video face segmentation such that the overall efficiency
can be globally optimised.

Most of those methods assume the target face has al-
ready been cropped out and are well aligned. More-
over, they often ignore the hair class due to the un-
predictable margins for cropping the hair region. The
most related work to our paper is the Rol Tanh Warp-
ing [[16] which proposed to warp the entire image using
the Tanh function. However, there are several limita-
tions in this work. The warping operation requires not
only the facial bounding boxes but also the facial land-
marks, which can be overly redundant. Additionally,
the warped image is still in Cartesian space and cannot
benefit from the rotation-equivariant property in polar
space. Moreover, multiple sub-networks are employed
to learned the shapes of inner facial parts and hair sep-
arately, and these sub-networks need to be trained with
different loss functions, making the pipeline trivial.

2.3. Scene Parsing

Scene parsing is to segment an image into differ-
ent image regions associated with semantic scene la-
bels such as roads, pedestrians, cars, etc. Fully Con-
volutional Networks (FCNs) [13]] is the first critical
milestone of applying deep learning techniques in this
field. Via replacing fully connected layers with convo-
Iutional ones, FCNs successfully adapt classical CNN
classification models like VGG-16 [47] or ResNet [48]]
to solve scene parsing tasks. Following FCNs [13], a



wide variety of scene parsing methods have been de-
veloped, including the application of dilated (atrous)
convolutions [49] |50} |51} |52]], the encoder and decoder
structures [53}154,155], the spatial pyramid architectures
156, 154, 157] the involvement of attention mechanisms
[581159, 1601, utilising Neural Architecture Search (NAS)
techniques [61} [62]], etc. PSPNet [56] proposed a spa-
tial pyramid pooling module that adopts a set of spa-
tial pooling operations of different sizes to increase the
variety of receptive fields of the network. SPNet [57]
extended the pooling module by introducing the strip
pooling module to capture long-range banded context.
Deeplab family [51}154]] devised an Atrous Spatial Pyra-
mid Pooling (ASPP) module that consists of three par-
allel dilated convolutional layers to capture multi-scale
context. UNet [63]] introduced skip connections be-
tween the encoder and the decoder sub-networks to pre-
serve low-level details, while the details of high resolu-
tion features were maintained in HRNet [64] by branch-
ing the backbone network. BiSeNet [65] proposed a
bilateral network consisting of a context branch and
a spatial branch. Such a two-branch architecture al-
lows BiSeNet to operate with satisfying efficiency while
achieving the state-of-the-art performance. Readers are
referred to [[66]] for a more detailed review of scene pars-
ing techniques.

2.4. Polar Representation Learning

Compared with Cartesian coordinate system, polar or
log-polar space are not sensitive to certain transforma-
tions such as rotations and scaling, and therefore po-
lar representations have been widely studied in image
processing and computer vision. Early applications of
polar transformations included face detection [67]], face
tracking [68]], face recognition [69]], the aggregation of
hand-crafted descriptors [[70, [71]], etc.

Recently, how to integrate polar representations with
deep CNN models have been increasingly explored.
The traditional CNN architectures can be insensitive to
translations, i.e. translation equivalence, yet it is not
the case for other transformations such as rotations and
scaling. Representation learning in polar space, on the
other hand, can effectively overcome such limitations
through its equivariances to rotations and scales. Po-
lar Transformer Networks (PTN) [[72] is one of the first
attempts to construct a CNN model that maps Cartesian-
based images into polar coordinates for better tolerances
to transformations like rotations and dilation. In PTN,
a shallow network consisting of several 1 X 1 convo-
lutional layers first scans the whole image to predict a
polar origin. This predicted origin together with the in-
put image are then fed into a differentiable polar trans-

former module to generate image representations in log-
polar systems. The obtained polar representation is
invariant with respect to the original object locations
while rotations and dilations are now shifts, which are
handled equivariantly by a conventional classifier CNN.
Ebel et al. [[73]] utilises PTN to extract polar-based local
descriptors for key-point matching, leading to more ro-
bust performance. Different from those works, our Rol
Tanh-polar Transformer network warps the whole im-
age into a Tanh-polar representation that can emphasise
the Region of Interests (Rol) through oversampling in
Rol areas and undersampling in the rest.

3. Dataset

In this section, we introduce a new in-the-wild face
parsing benchmark, iBugMask, that consists of a pose-
augmented training set and a manully-annotated test-
ing set. We compare their characteristics with exist-
ing face parsing datasets. The main motivation for the
new benchmark is that existing benchmarks only con-
tain faces with limited variations in expression, pose
and context information, which makes them less suit-
able for capturing characteristics of real-world face im-
ages. Moreover, large scale training data is key to the
success of CNN-based models, but existing face pars-
ing datasets do not provide sufficient training data for
such challenging cases.

3.1. Overview of Existing Benchmarks

Figure 2] shows exemplar images from different face
parsing benchmarks with their colour-coded labels over-
laid.

CelebAMask-HQ [28]] contains 30,000 synthesised
faces from the CelebA dataset [30]. All images are
scaled to 512 x 512 and faces are well-aligned at the
centre using facial landmarks. Background information
is either removed or blurred. 19 facial classes are la-
belled: background, skin, left/right brow, left/right eye,
upper/lower lip, left/right ear, nose, inner mouth, hair,
hat, eyeglass, earring, necklace, neck, and cloth. The
dataset is divided into 24, 183 images for the training,
2,993 images for the validation, and 2, 824 images for
the testing.

LFW-PL [27] contains 2,927 images of resolution
250 x 250 with faces aligned in the centre. Face and
hair regions are annotated using superpixel-based meth-
ods, thus resulting in inaccurate labels. The dataset is
divided into 1,500 images for the training, 500 images
for the validation, and 927 images for the testing.

Helen [26] is the most popular face parsing bench-
mark and it contains 2, 330 real-world images with rich



context information. 11 semantic labels are annotated:
background, skin, left/right brow, left/right eye, up-
pet/lower lip, inner mouth, nose and hair. There are sig-
nificant annotation errors for facial skin and hair classes
in the training set, as discussed in [16], because these
labels were automatically generated using image mat-
ting. The authors of Helen only cleaned the testing set to
guarantee fair comparison in the test set. Helen dataset
is divided into 2,000 images for the training, 230 im-
ages for the validation and 100 images for the testing.

LaPa [29] is a face parsing dataset containing more
than 22,176 facial images with relatively more varia-
tions in expression, pose and occlusion. The same 11
semantic classes are annotated as in Helen and the an-
notation process was guided by 106-point facial land-
marks. The dataset is divided into 18, 176 images for
the training, 2, 000 images for the validation, and 2, 000
images for the testing. The faces contain some varia-
tions in pose and occlusion but the background and hair
region are largely removed since the faces are cropped
with a hand-picked margin.

3.2. iBugMask: An In-the-wild Face Parsing Bench-
mark

The proposed iBugMask consists of two parts: a
training set obtained by pose augmentation and a manu-
ally curated testing set. The training set contains 21, 866
images while the testing set contains 1,000 images. We
describe these two parts in detail below.

3.2.1. A Large-Pose Augmented Training Set

For machine learning models to learn to parse faces
with large variations in head poses, the training set
needs to contain a balanced distribution over poses.
However, existing datasets contain faces mostly with
absolute yaw angles less than 45 degrees. This means
that models trained on these datasets cannot handle
faces with extreme poses.

We propose to solve this problem by synthesising
training faces with large poses. First, we examined the
training set Helen, and manually corrected the labelling
errors as in [16]. Next, we augmented the data with a
face profiling method [33] that has been applied to aug-
ment face alignment datasets. One major advantage of
this method is that it creates 3D meshes for both inter-
nal face and external face regions, which preserve the
unpredictable hair regions as well as important context
information for face parsing. Through face profiling, we
augment the training set of Helen to a large scale one
with many faces having large variation in head poses.

Figure 3: Examples of face data augmentation using 3DDFA [33]].
The first column shows the original images and the other three
columns show synthesised images with different Ayaw until
yaw = 90°.

With the fitted 3D model, we gradually enlarge the
yaw angle of image at the step of 5° until 90°. Consid-
ering that the fidelity of a synthesised face is negatively
related with the Ayaw, we resample the augmented im-
ages of each face with probabilities 0.82"/>°. In Ta-
ble 1} we compare our training set with other training
sets and show that ours contains much more variations
in pose, facial expression, and background. We conduct

Benchmark Number | In-the Non-neutral lyawl|

of images | wild | &non-smile | >30° | >60°
Helen [26] 2,000 v 40.1% 120 4
CelebAMask-HQ [28] | 27,176 X 44.6% 1,565 60
LFW-PL [27] 2,000 X 74.7% 125 0
LaPa [29 18,176 X 39.7% 3,961 194
iBugMask (ours) 21,866 v 34.6% 14,692 | 6,880

Table 1: Comparison of training sets. Ours has large variations in
pose, expression and background.

extensive experiments in Sec.[5] The results show that
all models trained on our augmented training set im-
prove over their counterparts trained on other datasets
for in-the-wild face parsing.

3.2.2. A Manually Curated Testing Set

In in-the-wild images, faces can appear at any loca-
tion in an image, with various distracting contextual in-
formation around it. In existing benchmarks, the tar-
get faces are cropped and centred by the data providers,
largely removing background, part of hair and other
faces. This introduces bias and evaluating methods on
pre-processed images does not honestly reveal their ro-
bustness to the distracting context noise.

To fairly evaluate face parsing models under in-the-
wild conditions, we present iBugMask dataset that con-
tains 1,000 challenging face images and manually-
annotated labels for 11 semantic classes: background,
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Figure 4: Distributions for facial parts in iBugMask. Left: pixel
distribution for facial parts. We compare different facial parts in the
first subplot. We merge the inner parts to compare with skin and hair
in the second subplot. Right: region distribution for facial parts.
Inner mouth the least seen region in the dataset.

facial skin, left/right brow, left/right eye, nose, up-
per/lower lip, inner mouth and hair. The images are
curated from challenging in-the-wild face alignment
datasets, including 300W [74] and Menpo [75]. Com-
pared to the existing face parsing datasets, iBugMask
contains in-the-wild scenarios such as “party” and “con-
ference”, which include more challenging appearance
variations or multiple faces. There is a larger num-
ber of profile faces. More expressions other than “’neu-
tral” and “’smile” are also included (e.g. “’surprise” and
”scream”). Examples can be found in the rightmost
column of Figure 2] Table [2] compares characteristics
of different benchmarks. We use 3DDFA [33] to esti-
mate the yaw angles with facial landmarks obtained by
FAN [76]. We use the facial expression classifier pro-
posed by Want et al. [77] to estimate the facial expres-
sions. Figure [5|shows the absolute yaw angle distribu-
tions of benchmarks. Finally, Figure 4] shows the pixel
and region distributions in the testing set.

= BugMask (1000 images)
CelebAaMask (2824 images)

m— | aPa (2643 images)

=== Helen' (100 images)
LFW-PL (927 images)

10.0%

Data Percentage

10 20 30 40 50 60 70 80 90
Absolute Yaw Angle (Degree)

Figure 5: Absolute yaw angle distributions of different testing sets.
Yaw is estimated with 3DDFA [33]].

4. Methodology

We introduce the Rol Tanh-polar Transformer Net-
work for face parsing in the wild. Figure [T] shows the
overall framework: given an in-the-wild image in Carte-
sian coordinates and a bounding box of the target face,

Benchmark Number | In-the- | Non-neutral |yaw|

of images | wild | & non-happy | >30° | > 60°
Helen [26] 100 v 40.0% 4 0
CelebAMask-HQ [28] 2,824 X 42.4% 180 6
LFW-PL [27] 927 X 73.3% 53 7
LaPa [29] 927 X 40.8% 525 48
iBugMask (ours) 1,000 v 56.1% 413 241

Table 2: Comparison of existing benchmark datasets. iBugMask has
large variations in pose, expression and background.

the whole image is first projected into the Tanh-polar
space through the proposed Rol Tanh-Polar Transform
in Section 1] We further introduce a deep CNN en-
coder named HybridNet to extract semantic features of
the Tanh-Polar-warped image. Consisting of several
Hybrid Residual Representation Learning blocks (Sec-
tion [£.2), the proposed HybridNet takes advantages
of both Tanh-Cartesian and Tanh-Polar coordinate sys-
tems and thus can generate more robust spatial features.
Those features are fed into a FCN decoder [15] to obtain
Tanh-polar-based segmentation masks which are then
mapped back into the Cartesian coordinate as the final
output.

4.1. Rol Tanh-Polar Transform

4.1.1. To Crop or Not To Crop?

In in-the-wild face parsing, the target face is specified
by a bounding box and is often not centralised. A com-
mon pre-processing step is to extend the facial bounding
box with a certain margin and then to crop out the facial
images, which are further resized into a certain resolu-
tion depending on the employed deep models. We re-
fer to this pre-processing technique as crop-and-resize.
In this pre-processing approach, however, the cropping
margin needs to be carefully selected. An overly loose
margin may introduce irrelevant and distracting infor-
mation, e.g. other faces, while a margin that are too
narrow can lead to the ignorance of useful image re-
gions like hairs, both of which are undesirable in the
face parsing task. Another pre-processing method is to
use facial landmarks for face alignment [30, [16] such
that the face is appropriately rotated. We refer to this
method as align. The landmarks can be jointly obtained
with the face bounding boxes [235]].

To overcome the limitations in the crop-and-resize
method and eliminate the need for facial landmarks, we
propose the Rol Tanh-polar transform that warps the
whole image to a canonical representation in the Tanh-
polar space. Compared with the classical crop-and-
resize and align, the only prerequisite of our method is
the detected bounding box. Besides, our mapping can
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also introduce rotation equivariance to CNN models be-
cause of the polar-based representations.

The RT-Transform is illustrated in Figure @ Let vV =
(x,y) represent the Cartesian coordinate of a point in
the original image, and let w and & represent the width
and height of the bounding box, respectively. We select
the centre of the bounding box as the polar origin. We
first fit an ellipse e to the target bounding box to the
bounding rectangle, described by

2 2
Xyt
; + ﬁ = 1, (1)
where a = 0.5%, b= 0.5%, and w and h are the width
and height of the bounding box. We then define the

Tanh-polar coordinate system by an injective map f:

£@ = (anh(2), tanh (L) @)
x [IVell

where V, = (x,, y.) is the vector on the broader of the tar-
get face ellipse e and V, and V are parallel. A new repre-
sentation is constructed by resampling the input image
over a rectangular grid in the Tanh-polar coordinate sys-
tem. Following typical transformer networks [[78 [79],
we use bilinear interpolation for points that do not co-
incide with the pixel locations in the input image. We
name this as Rol Tanh-polar transform (RT-transform).
It can be observed that: 1) compared to representations
obtained by crop-and-resize, all information in the in-
put image is preserved in the new representation; 2) the
normalisation with v, ensures that the target face always

occupies around 76% (since tanh(1) = 0.76). It is worth
noting that the proposed RT-Transform is invertible and
differentiable. Therefore, not only can the input RGB
images be transformed but also the intermediate feature
maps in CNNs.

Rotation Equivariance. To handle rotation of the tar-
get face, previous face parsing works [33] rely on
transforming facial landmarks to canonical locations
correct the rotation of the target face. We show that
using the Tanh-polar representation can eliminate such
pre-processing step.

The Tanh-polar coordinate system by definition is a
canonical coordinate system [80] for the rotation group
SO(2) with angle 6 € [—r, ). This is because for the
rotation transformation Ty = (xcos @ — ysin 6, xsin @ +
y cos 6), the Tanh-polar coordinate system satisfies [79]

f(TeV) = () + ey, 3

where e = (6,0). Thus, a rotation transformation
Ty appears as a translation by (#,0) under the Tanh-
polar coordinate system f. As a result, the planar con-
volution that is self-consistent with respect to trans-
lation [79] in f is now equivalent to SO(2) group-
convolution [32}[72] in the Cartesian space.

Scale Invariance. Equation [2] shows that the warped
image would always have a fixed ratio between the face
area and the background area regardless of the face’s
original size in the input images as long as the pro-
vided bounding box has the correct size. This means
a model trained in the ROI Tanh-polar space would per-



form equally well on small faces as well as on large
faces in the input image.

Figure 7: Rotation equivariance. Rotation is reduced to translation in
the Tanh-polar coordinate system.

4.2. Hybrid Residual Representation Learning Block

Using the Tanh-polar representation as input to
CNNeE, rotation equivariance is achieved but translation
equivariance may be lost. To overcome this, we pro-
pose Hybrid Residual Representation Learning Block,
dubbed as HybridBlock, a CNN building block similar
to the Residual Block [48]].

The incentive of designing HybridBlock is to have
two branches of convolutions learn representations that
are complementary. One branch (Tanh-polar branch)
learns the rotation equivariant representations while the
other branch (Tanh-Cartesian branch) learns translation
equivariant representations. The detailed components
of a HybridBlock is depicted on the right in Figure[T]

We define Tanh-Cartesian coordinate system by

x
—), tanh( f
[[Vell [[Vell

Jre(¥) = (tanh(

DE “4)

The input to HybridBlock is a Tanh-polar represen-
tation X7p of shape (h,w,c). The residual path uses a
stack of 1 X 1, 3 x 3 and 1 X 1 convolutions following
the bottleneck design [48]. The first 1 X 1 conv layer is
used to reduce the channel dimension and its output fea-
ture maps are transformed to the Tanh-Cartesian space.
In each coordinate system a 3 X 3 conv layer is used to
compute feature maps, which are then concatenated in
the Tanh-polar space. The last 1 x 1 conv layer restores
the channel dimension so the residual representation can
be added to the input Xzp.

Direct Transformation from Tanh-polar to Tanh-
Cartesian. To obtain Tanh-Cartesian representations, a
naive approach is to inverse-transform from f to Carte-
sian and then resample with Equ. ] However, iter-
ated resampling will degrade image quality and amplify
the influence of interpolation artefacts. To circumvent

Figure 8: Direct transform between Tanh-polar and Tanh-Cartesian
coordinates. We do not sample on the original image but directly
transform between two coordinates. Translation equivariance is
recovered in Tanh-Cartesian coordinates.

this issue, we find the correspondence between the sam-
pling grids in both coordinates and directly resample the
Tanh-polar representation.

Hybrid Receptive Field. The receptive field (RF) is
the region in the input space that a particular neuron is
looking at. The two 3 X 3 convolution layers in different
coordinate systems have RFs of different shapes. The
Tanh-polar one has the arc-shaped RF while the other
has the rectangle-shaped RF.

50-layer HybridNet. @ We follow the design of
ResNets [48] and stack HybridBlocks to create a new
backbone network HybridNet50. Thanks to the grouped
convlxl and the conv3x3 with halved channels, the
overall number of parameters are less than the ResNet50
backbone (23.5 M versus 17.8M).

4.3. RTNet: the Overall Framework

With the previously introduced components, we now
describe the overall framework of Rol Tanh-polar trans-
former network (RTNet) for face parsing in the wild. As
in Figurem RTNet is based on the FCN framework [[15].
An input image I of arbitrary resolution with the tar-
get bounding box is transformed to /;, in the Tanh-polar
space. By default, the size of I, is set to be 512 x 512.
Next, HybridNet-50 is used to extract features from I,
followed by a naive FCN decoder head to predict the
segmentation mask in the Tanh-polar space. Finally, the
segmentation mask is inverse-transformed to Cartesian
as the final output that has the same resolution with the
input image /.
FCN Decoder. We use the FCN-8s [15] decoder
to predict the masks. More advanced decoders like
ASPP [54] require dedicated hyperparameter-tuning
that may largely affect the performance. The adopted
decoder consists of two conv3x3 layers and a bilinear
upsampling layer to map the feature maps to pixel-wise
prediction logits.
Loss function. We use Cross-Entropy loss losscg and
Dice loss lossgic. [81]. Two losses are jointly optimised
with a factor of A and the overall loss / is

= Aosscg + (1 — Dlossgice. (®)]



The losses are computed on the Tanh-polar coordinates
since the outputs are of the same size and the computa-
tion can be batched and accelerated.

Mixed padding. Zero-padding is used in most CNNs
to keep feature map size.This is not for the Tanh-polar
representation, as it is periodic about the angular axis.
We use wrap-around padding on the vertical dimension
and replication padding on the horizontal dimension.
Bounding box augmentation. To improve robustness
of RTNet, we augment the input bounding box during
training time by adding a random shift and a random
scaling. The augmentation can also be conducted dur-
ing test time to the input image multiple times, and the
inverse-transformed prediction masks can be averaged
for smoother results.

5. Experiments

5.1. Experiment Setup

5.1.1. Baseline Methods

We adopt the following criteria to select baseline
methods. First, the model should be able to parse inner
facial components as well as hair. Second, it is open-
sourced and we are able to re-produce the reported per-
formance by re-training the model from scratch. Third,
the number of hyper-parameters has to be relatively
small so that the performance does not rely on advanced
training techniques. This allows that the same training
setup can be applied and training can finish with reason-
able computing resources and time. The selected mod-
els include the classic models like FCN [15]], as well as
the advanced ones, such as Deeplabv3+ [54] and SP-
Net [57]. We collected their open-sourced codes and
built an unified benchmarking codebase such that the
same training and evaluation procedures are ensured.

5.1.2. Training and Evaluation

Data. Each model is trained with four datasets,
i.e. Helen [26], CelebAMask-HQ [28]], LaPa [29] and
ours, among which Helen, LaPa and ours have the
same set of labelling classes so the models trained on
them can be evaluated directly. CelebAMask-HQ has
more labelling classes and we assigned those additional
classes to the background during training and evalua-
tion. The target bounding box in each image is gen-
erated from the groundtruth mask to eliminate the bias
from face detection.
Evaluation. We adopt two popular metrics, intersec-
tion over union (IoU), and F1 score (F1) for evalua-
tion. We report the metrics for all foreground classes
and their mean. The predicted masks are evaluated on
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the original image scale. For methods with crop-and-
resize pre-processing, we resize the predicted masks to
the size of the cropped image and then zero-pad it to
match the original image resolution. For our RTNet,
we apply inverse RT-Transform to the predicted masks.
We did not employ other common evaluation techniques
such as multi-scale, flipping or multi-cropping.

5.1.3. Implementation Details

We use PyTorch [[82] to implement all baselines and
our methods. The backbone networks are pre-trained
on ImageNet [83]. We use Stochastic Gradient De-
scent (SGD) to optimise the losses. The initial learning
rates are set to 0.01 and the poly learning rate annealing
schedule is adopted with power = 0.9. All methods are
trained for 50 epochs and early stopping is adopted if
the mean IoU on the validation set stops growing for 15
epochs. For all methods, we apply random scaling in
the range of [0.5,2.0], random horizontal flip and ran-
dom brightness as data augmentation methods during
training. For our methods, we transform the entire im-
age to 512 x 512 with our RT-Transform. Batch size is
set to 4 in all experiments. All training and evaluation
are conducted on two RTX 2080 Ti GPUs.

5.2. Results on iBugMask

We compare our model with different baselines that
use align as the input pre-processing method. The align-
ment templates are adopted from open-sourced Arc-
Face [84] libraryﬂ These templates have been shown
successful in face recognition tasks. We report results
for all facial parts. Eyebrows, eyes, lips and inner mouth
are merged to Inner Parts.

Table [3] shows the benchmarking results. Our first
observation is that iBugMask is challenging and cannot
be readily solved. Compared with existing benchmarks,
the models’ performance on iBugMask is not saturated.
For example, the mean F1 score on Helen has reached
over 90% but our best results on iBugMask are around
86%. We believe iBugMask can serve as a challenging
benchmark for face parsing in the wild.

Our second observation is that when using face align-
ment for pre-processing, the baseline models perform
comparably on inner parts. However, the performance
on hair is largely degraded because the templates cannot
handle different hairstyles. In contrast, RT-transform al-
lows our model to capture complete hair and face re-
gions without being cut out.

'https://git.io/J0rvm
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Lastly, without landmarks and alignment, our RTNet
perform better than other methods in eyes, eyebrows,
skin and hair regions, and comparably in nose, lips and
mouth. When compared to the baseline FCN, we ob-
serve a large improvement in eyebrows and eyes. This
could be attributed to the fact that the hybrid represen-
tation can better capture elongated regions.

5.3. Qualitative Results

Figure [9] visualises the prediction results of different
methods, and our RTNet can better capture the varying
hair styles, profile poses, occlusions, efc., which again
verifies the superior performance of our method under
in-the-wild scenarios.

5.4. Ablation Study

We conduct extensive ablation studies to better under-
stand the working mechanisms in RTNet. All variants in
this section were trained on pose-augmented images and
evaluated on iBugMask.

5.4.1. Effectiveness of RT-Transform

We compare the performance of 4 pre-processing
techniques:

1) Resize: resizing all the input images to 512x512 with
zero-padding to preserve the aspect ratios;

2) Crop-and-resize: cropping the face out with 40%
margin and then resizing the cropped face to 512 x 512;
3) Align: we use 5 landmarks returned by Reti-
naFace [25] to align the target faces using the open-
source library and warp to 512 x 512;

4) RT-Transform: warping the whole image to a repre-
sentation of size 512 X 512 in the Tanh-polar space with
the proposed RT-Transform.

Table [ shows the F1 scores of different pre-
processing methods on iBugMask. It can be seen that
resizing the input images to the same size gives the low-
est accuracy. This is in line with our expectation, as
faces vary largely in size and uniformly resizing them
will cause confusions. As for the crop-and-resize ap-
proach, only a small amount of improvement is ob-
served, especially for the Hair class. This is potentially
because the pre-defined cropping margin cannot guaran-
tee a full coverage of the hair region, which will cause
accuracy loss on such regions. The alignment method
gives competitive results on inner parts and facial skin.
However, the performance on hair has degraded by a
large amount because the warping template cannot ac-
count for different hair styles. In contrast, our RT-
Transform achieves the best performance on all three
categories, and this can be attributed to the proposed
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Tanh-Polar transform that can emphasise the facial re-
gion while preserving all the contextual background in-
formation.

5.4.2. Design of HybridBlock

We also conduct ablation studies to verify the design
of HybridBlocks. We started with the Resnet50 back-
bone and gradually replace the residual blocks with Hy-
bridBlocks at different places of the network. In particu-
lar, the backbone comprises a stem layer and 4 stages of
residual blocks, and we followed common practice [85]]
to replace blocks in the last three stages with the pro-
posed HybridBlock which has fewer parameters. Re-
sults of different replacing stages are reported in Table[3]
and we can observe that HybridBlocks can always intro-
duce performance improvement with fewer parameters.
Besides, the highest accuracy is achieved when using
HybridBlocks in all the three stages, which demonstrate
the effectiveness and the generality of the proposed Hy-
birdBlocks.

5.4.3. Bounding box augmentation and mix-padding

Table [ quantifies the performance gains of the
bounding box augmentation and mix-padding described
in Sec.[4.3] The box augmentation can make the model
more robust to the bounding box noise. And mix-
padding is necessary as the Tanh-polar representation
is periodic about the angular axis.

5.5. Effectiveness of Pose-augmented Training Set

To show the effectiveness of the pose augmentation,
we train 6 on 4 different training sets. For simplicity
and faster training, we use crop-and-resize with 40%
margin to pre-process the input image to obtain a 512 X
512 facial image for the baseline models. We make the
following observations:

Training on pose-augmented images improves all meth-
ods. We can also observe that training on pose-
augmented images improved all methods, especially on
the inner facial parts. This can be reasonably be at-
tributed to that pose-augmented images is constructed
in a way that the numbers of faces are balanced across
different poses and that in-the-wild information is also
preserved. In contrast, CelebAMask-HQ is a synthe-
sised dataset with limited variations in pose and back-
ground. Although CelebAMask-HQ contains a larger
number of facial images, models trained on this dataset
achieve less competitive performance than trained on
others.



L-brow R-brow L-eye R-eye Nose U-lip I-mouth L-lip | Inner Parts | Skin | Hair

Deeplabv3 [51] 70.6 69.5 786 784 902 757 82.2 78.6 85.8 91.0 | 58.1
Deeplabv3+ [54] 71.8 72.1 71.8 789 900 752 82.4 78.4 85.8 91.1 | 57.7

PSPNet [56] 70.2 70.0 78.6 791 895 753 82.2 78.1 85.3 90.7 | 58.2
SPNet [57] 73.2 71.9 77.9 78.0  90.0 75.7 81.7 78.5 85.5 90.1 | 57.9

FCN (baseline) 71.0 70.6 782 785 896 756 82.7 78.0 85.4 909 | 57.7
RTNet (ours) 76.0 73.0 796 799 893 755 82.5 77.6 85.8 91.8 | 81.8

Table 3: Results on iBugMask. F1 scores are reported in percentage. Eyebrows, eyes, lips and inner mouth are merged to Inner Parts.

Deeplabv3+

Figure 9: Qualitative results on iBugMask of four methods: FCN [13], Deeplabv3+ [54], SPNet and ours. Our method can handle large
variations in head pose, hair styles, expressions and occlusions.
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. Inner Facial .
Input Pre-processing Parts  Skin Hair
Resize 632 731 639
Crop-and-resize 79.0 813 713
Align 852 90.7 56.7
RT-Transform 858 918 818

Table 4: Performance of our model with different pre-processing
methods. F1 scores are reported in percentage.

BBox . . Inner Facial .
augment Mix-padding Parts  Skin Hair
N Y 83.8 914 80.7
Y N 85.0 914 80.8
Y Y 858 91.8 818

Table 6: Ablation study. Random bounding box augmentation during
training time, and mix-padding all contribute to improve the F1
scores (in percent).

# Params (in millions)ily spot that our RTNet consistently exhibits the high-

est performance on all three categories, which further

Hybrid | Inner Facial Hair
Stages Parts  Skin
- 856 90.7 8l1.2 314
Stage_2 858 909 814 31.2
Stage_3 8.6 916 812 29.9
Stage 4 85.8 914 814 29.0
Stage_All | 85.8 91.8 81.8 27.3

demonstrates the generality of our method.

5.7. Model Efficiency

We also examine the running efficiency of different

Table 5: The effectiveness of HybridBlock in different stages of the
backbone. F1 scores in percentage are reported.

RTNet consistently outperforms other methods. The re-
sults on iBugMask show that our approach outperforms
all other methods. Moreover, when trained with our pro-
posed pose-augmented images, RTNet significantly out-
perform all baselines, especially on the hair class, which
indicates that: 1) Compared with other benchmarking
datasets, pose-augmented images can better benefit the
in-the-wild learning of segmentation models, despite
that most of its facial images were generated through the
pose augmentation technique, and 2) Different from the
baselines, our RTNet can learn from the in-the-wild data
more effectively and thus can demonstrate more robust
performance on the unconstrained iBugMask dataset.

5.6. Comparison with the State-of-the-arts

In additional to the self-collected iBugMask dataset,
we also train and evaluate our method on various face
parsing benchmarks.

Results on Helen. Table compares our RTNet
with other state-of-the-art methods on Helen [26, [16]].
Our model achieves slightly better performance on Fa-
cial Skin while significantly outperforms others on the
Inner Parts and Hair classes.

Results on LFW-PL. Table [§] compares our RTNet
with other state-of-the-art methods on LFW-PL [27].
Our model achieves comparable results in Inner Parts,
and outperforms other methods in Facial Skin and Hair.

Results on LaPa. Table |11| compares results from
different methods on LaPa [29]] dataset and we can eas-
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models by evaluating 1) the number of model parame-
ters, 2) Floating Point Operations per Second (FLOPS)
and 3) the actual inference time per sample. All models
are measured on the same machine with a GTX1080Ti
GPU with an (512,512, 3) input size. To ensure a fair
comparison, we repeat the evaluation process 100 runs
for each method and report the average. As shown in
Table[9] our model has the smallest model size and also
operates with the fewest FLOPS when compared with
three representative face parsing approaches. Although
the inference time of our models are slightly longer than
that of FCN and SPNet due to the direct sampling be-
tween two coordinates, we believe the time difference
(16 ms) is tolerable as our method has shown improved
performance over others.

6. Conclusion

In this paper, we have approached in-the-wild face
parsing from three aspects: data, representation and
model. We have proposed a novel benchmark, iBug-
Mask, for training and evaluating face parsing methods
in unconstrained environment. We have created a large-
scale training set using pose augmentation and shown its
effectiveness. We have solved the dilemma of face crop-
ping and eliminated the need for facial landmarks by
proposing a new Tanh-polar representation obtained by
the proposed Rol Tanh-polar transform. Equivareriance
with respect to rotations has also been achieved with
the new representation. HybridBlock is introduced to
extract features in both Tanh-polar and Tanh-Cartesian
coordinates. We have achieved the state-of-the-art per-
formance on iBugMask as well as other existing face
parsing benchmarks. We expect our RT-Transform to be



Training Set Region Deeplabv3 [51] Deeplabv3+ [54] FCN [15] PSPNet [56] SPNet [57] RTNet (ours)
Inner Parts 70.3 71.7 68.1 70.4 69.8 74.3
Helen [26] Hair 72.8 72.8 71.3 72.1 71.5 78.7
Skin 90.7 90.5 88.7 90.2 89.6 91.9
Inner Parts 73.6 73.7 73.9 74.0 74.4 76.1
CelebAMask-HQ [28] Hair 74.3 72.9 74.0 73.1 74.6 77.8
Skin 88.8 88.6 89.1 88.6 89.7 91.8
Inner Parts 74.2 74.1 75.1 74.4 75.9 77.6
LaPa [29] Hair 75.8 75.4 75.6 759 75.8 79.8
Skin 89.8 89.3 90.1 89.7 89.9 92.2
Inner Parts 77.9 78.7 76.8 78.3 78.9 85.8
iBugMask-train (ours) Hair 72.4 72.7 64.6 72.0 72.9 81.8
Skin 91.7 91.7 91.1 91.7 91.5 91.8

Table 7: Effectiveness of the pose-augmented training set iBugMask-train. Baseline models use crop-and-resize for pre-processing. The mean F1
scores are reported (in percentage).

Methods Skin Hair Background | accuracy
Liu et al.[18] 93.93% 80.70% 97.10% 95.12%
Long et al.[15] | 92.91% 82.69% 96.32% 94.13%
Chen et al.[51] | 92.54% 80.14% 95.65% 93.44%
Chen et al.[86] | 91.17% 78.85% 94.95% 92.49%
Zhou et al.[87] | 94.10% 85.16% 96.46% 95.28%
Liu et al.[24] 97.55% 83.43% 94.37% 95.46%
Lin et al.[16] 95.77% 88.31% 98.26% 96.71%
RTNet 95.85%  90.08% 98.55% 97.11%

Table 8: Comparison with state-of-the-art methods on LFW-PL. F1
scores for each region and the overall pixel accuracy are reported.

Measurement FCN  Deeplabv3+ SPNet Ours
Params (M) 32.95 39.64 39.13  27.29
FLOPS (GMac) 26.55 31.39 29.60 21.99
Inference Time (ms) 54 74 63 70

Table 9: Efficiency comparison between four methods: FCN,
Deeplabv3+, SPNet and ours. Input images are of size (512,512, 3).
Models are profiled on the same machine and values are the mean of
100 runs. Lower values indicate better efficiency. Our model is more

efficient in the number of parameters and FLOPS. M stands for
Million, GMac for Giga Multiply—accumulate operations, ms for
milliseconds.

applicable to other face analysis tasks, where the heuris-
tic pre-processing steps, such as cropping with bound-
ing boxes and rotation correction with landmarks, are
unavoidable.
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