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Abstract In this paper, we introduce a novel semantic

description approach based on Prototype Theory foun-

dations. Inspired by the human approach used for repre-

senting categories, we propose a Computational Proto-

type Model (CPM) that encodes and stores the central

semantic meaning of the object’s category: the semantic

prototype. Also, we introduce a Prototype-based De-

scription Model that encodes the semantic of an ob-

ject while describing its features using our CPM model.

Our description method uses semantic prototypes com-

puted by convolutional neural network (CNN) classifi-

cation models to create discriminative signatures that

describe an object highlighting its most distinctive fea-

tures within the category. Our experiments show that:

i) the proposed CPM model (semantic prototype + dis-

tance metric) successfully describes the internal seman-
tic structure of objects categories; ii) our semantic dis-

tance metric can be understood as object visual typi-

cality score within a category; and iii) our descriptor

encoding is semantically interpretable and significantly

outperforms other image global encodings in clustering

and classification tasks.
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1 Introduction

Memory is one of the most amazing faculties of the hu-

man being. It is generally considered as the brain ability

to code, store, and retrieve information (Atkinson and

Shiffrin 1968). Semantic memory (Tulving 2007), for

instance, refers to general world knowledge that we ac-

cumulate throughout our lives (McRae and Jones 2013).

A relevant aspect of the functional neuroanatomy of the

semantic memory resides in the representation of the

meaning of objects and their properties (Martin 2007).

Several assumptions indicate that human beings are ca-

pable of: i) learning the most distinctive features of a

specific object category (Martin 2007; Thompson-Schill

2003); ii) form categories and object semantic defini-

tions (abstractions) at a very early age (Martin 2007).

Semantic memory involves the semantic definition of

objects (Tulving 2007) and, consequently, the success of

object recognition, classification, and description tasks

are causally related to the success of effectively recov-

ering the learned knowledge (Tulving 2007).

For several years, the fields of Computer Vision and

Machine Learning have tried to build and learning pat-

tern recognition methods with a similar performance of

a human being for visual information processing. Al-

though the state-of-the-art methods have achieved sur-

prising results, there are still many challenges to achieve

the discriminative power and abstraction of semantic

memory to represent the semantic. How to describe

and stand for objects, semantically? How to simulate

the behavior of semantic memory in the representation

of learned knowledge of objects’ features? How to ex-

tract and encode the object features to encapsulate the

representation of the meaning (or semantic represen-

tation) of a specific object? How to learn the semantic

definition of categories objects and use this definition in
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object recognition, classification, and description tasks?

These are just some of the interesting questions that

still occupy the investigation agenda of many research

areas.

In this paper – motivated by the semantic memory

behavior – we propose a mathematical model that at-

tempts to represent the semantic definition of object

categories. Also, we propose a procedure to introduce

this semantic representation of object categories in the

global description of objects features extracted from im-

ages.

The knowledge extraction models (high-level vision

processes) from images are highly influenced by the

methods used for detection, extraction, and represen-

tation of image relevant information. Consequently, the

extraction of image relevant features has been the sub-

ject of Computer Vision research for decades. For sev-

eral years, hand-crafted features (Bay et al. 2008; Lowe

2004; Tola et al. 2008) and machine learning meth-

ods (Simonyan et al. 2014; Strecha et al. 2012) were

the choice for image feature description tasks.

The advent of Convolutional Neural Networks (CNN)

outperformed these traditional methods and enabled

them to achieve a visual recognition model with simi-

lar behavior of semantic memory for classification tasks

(He et al. 2016; Simonyan and Zisserman 2014; Szegedy

et al. 2017), sparking the tendency of images semantic

processing with deep-learning techniques. The CNN-

models success spawned numerous CNN-descriptors pro-

duced with different approaches that learn effective rep-

resentations for describing image features (Han et al.

2015; Kim et al. 2018; Simo-Serra et al. 2015; Zagoruyko

and Komodakis 2015). Consequently, representations
of image features extracted using deep classification

models (He et al. 2016; Simonyan and Zisserman 2014;

Szegedy et al. 2017), or using CNN-descriptors are com-

monly referred as semantic feature or semantic signa-

ture.

Semantic feature term has been extensively studied

in the field of linguistic semantic; it is defined as the rep-

resentation of the basic conceptual components of the

meaning of any lexical item (Fromkin et al. 2018). In

the seminal work of Rosch (1975), the author analyzed

the semantic structure of the meaning of words and in-

troduced the concept of semantic prototype. According

to Rosch (1975); Rosch and Mervis (1975), the repre-

sentation of category semantic meaning is related to

the category prototype, particularly to those categories

naming natural objects.

Image semantic understanding is influenced by how

are semantically represented the features of image ba-

sic components (e.g., objects), and the semantic rela-

tions between these basic components (Guo et al. 2016).

CNN-description models (Han et al. 2015; Lin et al.

2016; Simo-Serra et al. 2015; Zagoruyko and Komodakis

2015) and semantic description models (Han et al. 2017;

Kim et al. 2018; Rocco et al. 2018) stand for the se-

mantic information of image features using a range of

different approaches. Nevertheless, none of these mod-

els codify the representation of the visual information

based on the theoretical foundation of Cognitive Sci-

ence to represent the semantic meaning.

In this paper, we rely on cognitive semantic studies

related to the Prototype Theory for modeling the cen-

tral semantic meaning of objects categories: the pro-

totype. We propose a novel approach to take on the

semantic features descriptions of objects based on pro-

totypes. Our prototype-based description model uses the

category’s prototype to find a global semantic represen-

tation of the basics conceptual components (objects) of

the image meaning.

To achieve this goal, we bring to light the Proto-

type Theory as a theoretical foundation to represent

the semantic meaning of the visual information accu-

rately to represent — semantically — the basics com-

ponents of the image: objects. The Prototype Theory

proposes that human beings think a category in terms

of abstract prototypes, defined by typical members of

the category (Geeraerts 2010; Rosch 1975, 1978). This

theory also exposes that successful execution of object

recognition and description tasks in the human brain

is inherently related to the learned prototype of the

object category (Minda and Smith 2002; Rosch 1975,

1978; Zaki et al. 2003). The observations on the Proto-

type Theory raise the following two questions: i) Can a

model of the perception system be developed in which

objects are described using the same semantic features

that are learned to identify and classify them? ii) How

can the category prototype be included in the object

global semantic description?

We address these two questions motivated by the

human’s approach to describing objects globally. Hu-

man being uses the generalization and discrimination

processes to build object descriptions that highlighting

their most distinctive features within the category. For

example, a typical human description: a dalmatian is a

dog (generalization ability to recognize the central se-

mantic meaning of dog category) that is distinguished

by its unique black, or liver-colored spotted coat (dis-

crimination ability to detect the semantic distinctive-

ness of object within the dog category). Figure 1 il-

lustrates the intuition and principal concepts of our

prototype-based description model. The main idea of

our approach is to use the quality of features extracted

with CNN-classification models both to represent the
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Fig. 1 Motivation and Concepts. Schematic of our prototype-based description model. The human visual system can observe
an object and to build an object semantic description that highlighting their most distinctive features within the object
category. We propose a prototype-based model to simulate this behavior through the processing flow from 1) to 6). 1) features
extraction; 2) object features recognition; 3) categorization; 4) object features; 5) central semantic meaning of a category (the
category prototype); 6) our Global Semantic Description based on Prototypes.

central semantic meaning of a specific category and

learn the object distinctiveness within the category.

More specifically, our main contributions in this pa-

per are as follows:

1. a Computational Prototype Model (CPM) based on

Prototype Theory foundations, to stand for the cen-

tral semantic meaning of object images categories.

Our CPM model allows to interpret possible seman-

tic associations between members within the cate-

gory internal structure.

2. a semantic distance metric in object image CNN

features domain, which can be understood as a mea-

sure of object typicality within the object category.

3. a prototype-based description model for global se-

mantic description of objects images. Our semantic

description model introduces, for the first time, the

use of category prototypes in image global descrip-

tion tasks.

2 Related works

CNN descriptors

Descriptors extracted using CNN techniques have shown

that it is possible, for a learning approach, to outper-

form the best techniques based on carefully hand-crafted

features (Bay et al. 2008; Lowe 2004; Tola et al. 2008).

CNN descriptor models differ among themselves on how

to compute the descriptors in their deep architectures,

similarity functions learning, and its features extrac-

tion methods. Some approaches extract immediate ac-

tivations of the model as a descriptor signature (Si-

monyan and Zisserman 2014; Szegedy et al. 2017; Don-

ahue et al. 2014; Long et al. 2014). Others methods

use similarity convolutional networks (Han et al. 2015;

Simo-Serra et al. 2015; Yi et al. 2016; Zagoruyko and

Komodakis 2015) and Siamese networks (Han et al.

2015; Zagoruyko and Komodakis 2015; Yi et al. 2016)

to learn discriminative representations. LIFT (Yi et al.

2016) learns each task involved in features management:

detection, orientation estimation, and description. Lin

et al. (2016) constructed a compact binary descriptor

for efficient object matching based on features extracted

with VGG16 model (Simonyan and Zisserman 2014).

Those CNN-descriptor models were more oriented to

achieve discriminative features than representing the

image semantic.

Semantic descriptors and semantic correspondence

Liu et al. (2011) proposed SIFT Flow method. SIFT

Flow method generated the start of semantic flow fam-

ily methods as a solution to the challenge of semantic

correspondence (Bristow et al. 2015; Liu et al. 2011;

Yang et al. 2014). Several of these methods combine

their approaches with the extraction of hand-crafted

features (Lowe 2004; Tola et al. 2008). Some works (Han

et al. 2017; Kim et al. 2018; Rocco et al. 2018) use the

robustness of CNN-models for training deep learning

architectures and address the problem of semantic cor-

respondence. Kim et al. (2018) tackled the problem of

semantic correspondence by constructing FCSS seman-

tic descriptor. In general, CNN descriptors and seman-

tic descriptors are trained to learn their semantic repre-
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Fig. 2 Category prototypicality organization. Figure shows
the Sessel and Stuhl experiment conducted by Gipper (Figure
adapted from Geeraerts (2010)). That experiment studies the
meaning of German words Stuhl (chair) and Sessel (comfort-
able chair) and shows that within the chair category, category
central semantic meaning can change depending of observed
feature relevance (weights) and object typicality. This phe-
nomenon is described in contemporary semantics as a pro-
totypicality organization (Rosch 1978; Geeraerts 2010) and
constitutes one of the motivations of our proposal.

sentations and use different deep learning architectures.

Most of these features description models do not use the

discriminative power of the features extracted using the

well-known CNN-classification models (He et al. 2016;

Simonyan and Zisserman 2014; Szegedy et al. 2017).

Moreover, none of these CNN-feature description ap-

proaches incorporates the foundation of the Cognitive

Sciences to introduce meaning in the representations of

image features.

Prototype Theory

The Prototype Theory (Rosch and Lloyd 1978; Rosch

and Mervis 1975; Rosch 1988; Geeraerts 2010; Minda
and Smith 2002; Rosch 1975, 1978; Zaki et al. 2003)

analyzes the internal structure of categories and intro-

duces the prototype-based concept of categorization.

It proposes categories representation as heterogeneous

and not discrete, where the features and category mem-

bers do not have the same relevance within the category.

Rosch (Rosch 1975, 1978) obtained evidence that hu-

man beings store first the semantic meaning of category

based on the degrees of representativeness (typicity) of

category members, and then its specificities.

The category prototype was formally defined as the

clear central members of a category (Geeraerts 2010;

Rosch 1975; Rosch and Mervis 1975). The attributes

of these focal members are those that are structurally

the most salient category properties, and conversely, a

member occupies the focal position because it shows

the most salient features of the category (Rosch and

Mervis 1975; Geeraerts 2010). Rosch (Rosch 1975, 1978,

1988) showed that human beings store the category

knowledge as a semantic organization around the cate-

Table 1 Two-dimensional conceptual map of prototypicality
effects (Geeraerts 2010).

extensional intensional

non-equality Difference of typicality Clustering into family
(salience effect, and membership salience resemblances
core/periphery)

non-discreteness Fuzziness at the edges, Absence of necessary and
(demarcation membership uncertainty sufficient definitions
problems, flexibly)

gory prototype (prototypicality organization). Figure 2

shows an example of the prototypicality organization

phenomenon (Rosch 1978; Rosch and Lloyd 1978; Geer-

aerts 2010). Finally, object categorization is obtained

based on the similarity of a new exemplar with the

learned categories prototypes (Rosch 1978, 1988).

Rosch (Rosch 1975, 1978; Rosch and Lloyd 1978;

Rosch 1988) showed the important of making distinc-

tions between various phenomena that may be asso-

ciated with prototypicality. For Geeraerts (2010) the

concept of prototypicality is in itself a prototypically

clustered one for four characteristics in which the con-

cepts of non-discreteness and non-equality (either on

the intensional or on the extensional level) play a ma-

jor distinctive role. Four characteristics are frequently

mentioned as typical of prototypicality in prototypical

categories (Rosch 1975, 1978; Geeraerts 2010): i) cate-

gories exhibit degrees of typicality; not every member is

equally representative in the category (extensional non-

equality); ii) categories are blurred at the edges (ex-

tensional non-discreteness); iii) categories are cluster-

ing into family resemblance structure; that is, the cat-

egory semantic structure takes the form of a radial set

of clustered and overlapping members (intensional non-

equality); and iv) categories cannot be defined by means

of a single set of criteria (necessary and sufficient) at-

tributes (intensional non-discreteness). The prototypi-

cality effects (see Table 1) surmise the importance of

the distinction between central and peripheral meaning

of the object categories (Geeraerts 2010).

3 Computational Prototype Model

Rosch (1975, 1978) showed that human beings learn

the central semantic meaning of categories (the proto-

type) and include it in their cognitive processes. Based

on these assumptions, our object semantic description

approach follows the flow of conceptual processes pre-

sented in Figure 1 as a hypothesis for simulating the

human behavior in object features description. Since

our proposal requires as priori knowledge the proto-

types representation of objects categories, we need a

procedure to represent the prototype of a specific cate-

gory.
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3.1 Semantic Representation

Category semantic structure (i.e., central and periph-

eral meaning) is related with differences of typicality

and membership salience of category members (exten-

sional non-equality). The prototype can be understood

as the “average” of the abstractions of all objects in the

category (Sternberg and Sternberg 2016); it summa-

rizes the most representative members (or features) of

the category. The combination between observed object

features and features relevance for the category enables

the grouping of objects into family resemblance (in-

tensional non-equality). This approach justifies the ob-

ject’s position within the semantic structure of the cat-

egory and allows typical objects to be grouped into the

semantic center of the category (prototypical organiza-

tion).

Let O be an universe of objects; C = {c1, c2, ..., cn}
be the finite set of objects categories labels that par-

tition O; Oci = {o ∈ O : category(o) = ci} is the set

of objects that share the same i -th category ci ∈ C,

∀i = 1, ..., n; and F = {f1, f2, ..., fm} be a finite set of

distinguishing features of an object.

Definition 1 Semantic prototype. We call the central

meaning of the category ci ∈ C, semantic prototype of

ci-category, or simply semantic prototype, to the “av-

erage” and standard deviation of each features of all

typical objects within the ci-category, along with a mea-

sure of the relevance of those features. Formally, our se-

mantic prototype is a 3-tuple Pi = (Mi, Σi, Ωi) where

∀i = 1, ..., n;∀j = 1, ...,m:

i) Mi = [µi1, µi2, ..., µim] is a nonemptym-dimensional

vector, where µij is the mean of j-th feature of

features extracted for only typical objects of ci-

category;

ii) Σi = [σi1, σi2, ..., σim] is a nonemptym-dimensional

vector, where σij is the standard deviation of j-th

feature of features extracted for only typical objects

of ci-category;

iii) Ωi = [ωi1, ωi2, ..., ωim] is a nonemptym-dimensional

vector, where ωij is the relevance value of j-th fea-

ture for the category ci ∈ C.

Definition 2 Abstract prototype. The abstract seman-

tic center of i-th category ci ∈ C, most prototypical ele-

ment of i-th category, ideal element of i-th category, or

simply the abstract prototype of i-th category, is the m-

dimensional vector Mi ∈ Pi = (Mi, Σi, Ωi) composed

of the expected value of each features extracted for only

typical objects of ci-category.

3.2 Semantic Distance

Our description approach (see processes 4 - 5 in Fig-

ure 1) needs a distance measure to compute the dis-

crepancy between object features and category-typical

features (semantic prototype). The distance metrics L1

and L2 could be good options if it did not assume that

all object features have the same relevance.

According to the Prototype Theory: i) each object

feature has a relative relevance in the category and ii)

the relevance (or salience) of each category member is

in accordance with the number and type of features

present in the object. This approach can establish a

degree of prototypicality of a specific element within

the category (extensional non-equality).

Some formal models of Experimental Psychology

such as prototype model (Reed 1972; Homa and Vos-

burgh 1976), Multiplicative Prototype Model (MPM)

(Minda and Smith 2001, 2002) and Generalized Context

Model (GCM) (Medin and Schaffer 1978; Estes 1986;

Nosofsky 1986; Zaki et al. 2003) proposed measures of

semantic distances between stimulus that correspond to

Prototype Theory foundations. Consequently, we gen-

eralized some of these semantics measures to propose

a semantic distance metric (or dissimilarity function)

that measures the discrepancy between two objects im-

ages (or between an object image and its semantic pro-

totype) based on observed features.

Definition 3 Distance between objects. Let o1, o2 ∈ Oci
be a representative objects of i-th category ci ∈ C;

Fo1 ,Fo2 the features of objects o1, o2 respectively. We

defined the objects distance between o1 and o2 as the

semantic distance given by:

δ(o1, o2) =

m∑
j=1

|ωij |
∣∣f1
j − f2

j

∣∣ , (1)

where ωij ∈ Ωi, f1
j ∈ Fo1 and f2

j ∈ Fo2 ,∀i = 1...n; ∀j =

1...m.

It is worth noting that our semantic distance be-

tween objects is a generalization of the psychological

distance between two stimuli proposed in GCM formal

model. Unlike the original formal Context Model (Medin

and Schaffer 1978), we assume that: i) object features

(stimuli) are not binary values (fj ∈ R); ii) relevance (ωij)

(or cost of attention) of each j-th unitary object feature

is forced to be strictly positive, but has no upper limit

(
∑m
j=1 ωij 6= 1). We removed these constraints of GCM

Model in order to model object features and object fea-

tures relevance using the features and weights learned

by classification models.
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Definition 4 Prototypical distance. Let o ∈ Oci a rep-

resentative object of i-th category ci ∈ C, Fo the fea-

tures of object o and Pi = (Mi, Σi, Ωi) the semantic

prototype of ci-category. We defined as prototypical dis-

tance between o and Pi the semantic distance:

δ(o, Pi) =

m∑
j=1

|ωij | |fj − µij | , (2)

where ωij ∈ Ωi, µij ∈Mi, and fj ∈ Fo ; Mi, Ωi ∈ Pi
∀i = 1...n; ∀j = 1...m.

Our prototypical distance is a generalization of se-

mantic distance of MPM formal model (Minda and

Smith 2001, 2002). Different from MPM model assump-

tions, we assumed that prototype features are not fea-

tures of a real member of i-th category, but features of

expected ideal member (our abstract prototype) of i-th

category (Mi ∈ Pi).

Definition 5 Features metric space. Let Fci be a non

empty set of all objects features of category ci ∈ C.

Since the distance function δ : Fci ×Fci → R+ satisfies

the axioms of non-negativity, identity of indiscernible,

symmetry and triangle inequality ; δ is a metric in the

features domain Fci . Consequently, (Fci , δ) is a metric

space or features metric space.

Proof Let o1, o2, o3 ∈ Oci objects members of i-th cat-

egory (ci ∈ C); F1, F2, F3 the corresponding object fea-

tures with f1
j ∈ F1, f

2
j ∈ F2, f

3
j ∈ F3; ∀i = 1, ..., n;∀j =

1, ...,m.

• δ(o1, o2) ≥ 0 (non-negativity).
Since all terms in Equation 1 are non negative (≥ 0),

δ(o1, o2) ≥ 0 by definition;

• δ(o1, o2) = 0⇔ o1 = o2 (identity of indiscernible).

– δ(o1, o2) = 0→ o1 = o2.

If δ(o1, o2) = 0 then
∑m
j=1 |ωij |

∣∣f1
j − f2

j

∣∣ = 0;

consequently, since all terms in Equation 1 are

non negative, the above expression is true if each

element in the sum is zero. Then, ∀ |ωij | 6= 0,∣∣f1
j − f2

j

∣∣ = 0→ f1
j = f2

j → o1 = o2;

– o1 = o2 → δ(o1, o2) = 0.

If o1 = o2 → f1
j = f2

j →
∣∣f1
j − f2

j

∣∣ = 0,∀j =

1...m; then δ(o1, o2) = 0;

• δ(o1, o2) = δ(o2, o1) (symmetry).

δ(o1, o2)=
∑m
j=1 |ωij |

∣∣f1
j − f2

j

∣∣=
∑m
j=1 |ωij |

∣∣f2
j − f1

j

∣∣
= δ(o2, o1);

• δ(o1, o3) ≤ δ(o1, o2) + δ(o2, o3) (triangle inequality).

δ(o1, o2) + δ(o2, o3) =
∑m
j=1 |ωij |

∣∣f1
j − f2

j

∣∣+ ∑m
j=1

|ωij |
∣∣f2
j − f3

j

∣∣ =
∑m
j=1 |ωij | (

∣∣f1
j − f2

j

∣∣ +
∣∣f2
j − f3

j

∣∣)

and by absolute value property
∣∣f1
j − f2

j

∣∣+∣∣f2
j − f3

j

∣∣
≥
∣∣f1
j − f3

j

∣∣, then δ(o1, o2) + δ(o2, o3) ≥ δ(o1, o3).

Also, note that if E ⊆ Oci is a subset of i-th cat-

egory, δ(E) =
∑
δ(o, Pi), ∀o ∈ E. Consequently, our

prototypical distance satisfies the following properties:

i) null empty set : δ(∅) = 0; ii) countable additivity :

for all countable collections {Ek}∞k=1 of pairwise dis-

joint sets in E, δ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

δ(Ek) (this property

is easy to prove using mathematical induction).

Corollary 1 The prototypical distance function from

Fci to the extended real number line, δ : Fci → R+, is a

measure. Consequently, (Fci , δ) is a measurable space.

Since our statement of (Fci , δ) is a measurable space,

we can use the generalization of Chebyshev’s inequal-

ity (Chebyshev 1867) to define the boundary of our

semantic prototype representation. Chebyshev (1867)

asserted that the probability that a scalar random vari-

able ξ with distribution Pr differs from its mean µ ∈ R
by more than λ ∈ R > 0 standard deviations σ ∈ R > 0

satisfies the relation: Pr(|ξ − µ| ≥ λσ) ≤ min(1, 1
λ2 ).

Saw et al. (1984) and Stellato et al. (2017) approached

the problem of formulating an empirical Chebyshev in-

equality given N i.i.d samples from an unknown dis-

tribution Pr, and their empirical mean µN and empiri-

cal standard deviation σN . Saw et al. (1984) and Stel-

lato et al. (2017) derives a Chebyshev inequality bound

with respect to the (N + 1)-th sample. The Multivari-

ate Chebyshev inequality (Stellato et al. 2017) can de-

fine the boundary for an ellipsoidal set centered at the

mean.

Definition 6 Semantic prototype edges. Let (Fci , δ) be

the metric space of object features of i-th category

ci ∈ C. Let E ⊆ Fci be a set of features extracted

for only typical objects of ci-category, N = |E|, and Fo
the features of a object o ∈ Oci . We weakly defined as

edges of our semantic prototype Pi = (Mi, Σi, Ωi), the

threshold vector
#»

λi = [λi1, λi2, ..., λim] that meets the

expression:

Pr(|fj − µij | ≥ λijσij) ≤ min(1,
1

λ2
ij

), (3)

where fj ∈ Fo, µij ∈Mi and σij ∈ Σi,∀i = 1...n; ∀j =

1...m.. Finally, given a probability bound, it is possible

to compute a threshold vector
#»

λi and construct a confi-

dence ellipsoidal set from the sample mean and covari-

ance of only typical objects samples (a stronger seman-

tic prototype edges definition can be performed using –

completely– the Stellato et al. (2017) statements).
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Fig. 3 Category internal structure. Figure shows our ex-
pected semantic representation of category internal structure.
Also we show the principal definitions of our Computational
Prototype Model.

Figure 3 shows the expected representation of cat-

egory internal structure based on our Computational

Prototype Model (CPM) [Semantic prototype (Defini-

tions 1 and 2) + Semantic distance (Definitions 3 and

4)]. With our CPM model, we try to respect some im-

portant concepts of the Prototype Theory: i) category

prototype edges are defined with our vector Σi ∈ Pi =

(Mi, Σi, Ωi); ii) category edges are blurred (not sharp

defined) because our semantic prototype is not com-

puted with all category elements (only with typical ele-

ments); iii) objects representativeness (typicality) within

the category is simulated with our prototypical dis-

tance.

3.3 Prototype Construction

Our semantic prototype representation can be easily

computed by any model with the ability to extract ob-

ject features of images (Fo) and learn the unitary rel-

evance value (ωij) of each j-th object feature in i-th

category. We have also considered the elements typ-

icality within the category to compute our semantic

prototype. Consequently, we need objects datasets with

annotations of objects typicality scores.

Moreover, our object description approach presented

in Figure 1 attempts — following the human behavior

— to use the same features extracted to classify and de-

scribe objects. First, we need to recognize the category

to which the object belongs and then, find what the

object features that distinguish it from others within

the category are. However, how to model a global ob-

ject description with similar behavior of the Figure 1

diagram?

To address these issues, we rely on the fact that

CNNs provide outstanding performance in image se-

mantic processing and classification tasks. We used CNN

-classification models for features extraction, recogni-

Algorithm 1 Prototype Construction
Input : CNN-model Λ, objects dataset O, category ci
Output : Category Prototype (Pi)
Oci ← {o ∈ O : category(o) = ci}
features block ← {}
for o ∈ Oci do

if o is typical then
Fo ← Λ.features of(o)
features block ← features block ∪ Fo

Ωi, bi ← Λ.sofmax weight learned of(ci)
Mi, Σi ← compute stats(features block)
return (Mi, Σi, Ωi, bi)

tion, and classification of the visual information re-

ceived as input (processes 1 to 4 in Figure 1). CNN-

models, analogous to the human memory (Fuster 1997),

make associations that keep the knowledge in its con-

nection structures. Our method downloads that knowl-

edge of pre-trained CNN-models into a semantic struc-

ture (semantic prototype), which aims is to stand for

the central semantic meaning of learned categories (see

step 5 in Figure 1).

Definition 7 Convolutional semantic prototype. The

convolutional semantic prototype of i-th category ci ∈
C is a 4-tuple Pi = (Mi, Σi, Ωi, bi), where Mi, Σi are

computed using features of ci-category extracted from

the fully convolutional layer of pre-trained CNN - clas-

sification models; and Ωi, bi are the learned parame-

ters (learned features relevance) of i -th category in the

softmax layer. Next, we refer to convolutional semantic

prototype of the category as a semantic prototype.

Algorithm 1 details the computation of a semantic

prototype for a specific category. Given a labeled object
images dataset, for each object category in dataset, we

use Algorithm 1 to compute the correspond semantic

prototype (off-line processing). The resulting semantic

prototypes dataset is used as prior knowledge in our

prototype-based description model (see Figure 1). Fig-

ure 4 shows the main steps and concepts of our proto-

type construction algorithm.

Semantic prototype visualization

Visual representation of semantic prototypes allows pre-

senting a visual summary of category typical features.

Some approaches (Wohlhart et al. 2013; Li et al. 2018)

learn prototypes representations in the image domain;

and consequently, prototype visualization is simply the

image learned. These approaches require a considerable

computational expense to learn its prototypes visual-

ization. Wohlhart et al. (2013) introduced the learn-

ing of image prototypes representations in the back-

propagation process. On the flip side, Li et al. (2018)
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Fig. 4 Off-line construction of the semantic prototypes dataset. Given a labeled images dataset, for each objects category
present in the dataset, we compute our semantic prototype representation using Algorithm 1.

used an encoder-decoder deep architecture to learn pro-

totypes visualization. Since our semantic prototype rep-

resentation is constructed straightforwardly from pre-

trained CNN classification models, the methods men-

tioned above are not appropriate to visualize our pro-

totype representation.

Binder et al. (2016) proposed a circular visualization

of semantic mean attribute vectors for concrete object

noun categories. Consequently, a simple approach for

visualizing our semantic prototype representation is to

visualize the distribution values of each m-dimensional

vector that compose the Pi-tuple of our semantic pro-

totype definition.

Figure 5 shows an illustration of our semantic pro-

totype representation corresponding to i-th category.

We showed each tuple-member (m-dimensional vector)

that composes the proposed semantic prototype of i-

Fig. 5 Visualization of our semantic prototype representa-
tion Pi = (Mi, Σi, Ωi, bi) of i-th category. We showed the
m-dimensional vector Mi (mean of typical members features)
and m-dimensional vector Ωi (measure of features relevance
within i-th category) in green and blue colors, respectively.
The m-dimensional vector Σi (standard deviation of typi-
cal objects features of i-th category) is represented as feature
boundary (in red lines) for each j-th unitary feature. Learned
bias value bi is represented as a m-dimensional vector.

th category, Pi = (Mi, Σi, Ωi, bi). We represented the

learned bias value bi as the bias m-dimensional vector
#»

bi ∈ Rm, #»

bi =
bi
m
· #»

1 such that bi =
∑
m

#»

bi .

It is noteworthy that our semantic prototype has

a values distribution that is characteristic of i-th cate-

gory it represents. I.e., our semantic prototype can be

understood as a DNA chain that stands for the cat-

egory members’ typical features. The semantic proto-

type representation uniqueness is guaranteed by the

relevance vector (Ωi), which was learned specifically for

that i-th category when the CNN-classification model

was trained.

4 Global Semantic Descriptor

In the previous section, we presented a framework to

encapsulate the central meaning (semantic prototype)

of an object category. In this section, we present how

to introduce that semantic prototype representation to

simulate the object semantic description work-flow de-

picted in Figure 1.

4.1 Semantic Meaning

Some cognitive neuroscience researches have studied

the effect of semantic meaning in object recognition

task (Tulving 2007; Martin 2007; Collins and Curby

2013). When an object has been previously associated

with some type of semantic meaning in the brain, peo-

ple are more prone to identify the object (Tulving 2007;

Martin 2007) correctly. Studies (Tulving 2007; Martin

2007; Collins and Curby 2013) have shown that seman-

tic associations allow a much faster recognition of an

object, even when the task of object recognition be-

comes increasingly difficult (varying points of view, oc-
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Fig. 6 Overview of our prototype-based description model. Set of steps to transform the visual information received as
input into a Global Semantic Descriptor signature. a) input image; b) features extraction and classification using a CNN-
classification model; c) prototypes dataset; d) category prototype selection; e) global semantic description of object using
category prototype; f) graphic representation of our Global Semantic Descriptor signature resulting from the dimensionality
reduction function (f(x)); and g) Global Semantic Descriptor signature.

clusion) (Collins and Curby 2013). Therefore, semantic

associations based on object semantic meaning allow

for faster object recognition.

Moreover, the fact that some CNN models (e.g.,

ResNet (He et al. 2016)) outperform the human-reported

performance (5.1%(Russakovsky et al. 2015)) on large-

scale visual object classification tasks, generated some

cognitive studies (Yamins et al. 2014; Cadieu et al.

2014; Khaligh-Razavi and Kriegeskorte 2014; Cichy et al.

2017) to research the possible links between CNN mod-

els and visual system in the human brain. Cichy et al.

(2017) suggested that deep neural networks perform

spatial arrangement representations like those performed

by a human being. Khaligh-Razavi and Kriegeskorte

(2014) concluded that the weighted combination of fea-

tures in the last fully connected layer of CNN models

could thoroughly explain the inferior temporal cortex in

the human brain. We lay hold of these theoretical foun-

dations to model our representation of objects semantic

meaning.

Definition 8 Semantic value. Let be Fo observed fea-

tures of an object o ∈ O (Fo = {f1, f2, ..., fm}). The

semantic meaning of object features Fo for category

ci ∈ C, summary value of features Fo, or simply seman-

tic value of Fo in ci-category is an abstract value: z =∑
m ωijfj + bi, where ωij ∈ Ωi, fj ∈ Fo. Consequently,

the semantic value of ideal member of ci-category, cen-

tral semantic meaning of ci-category or summary value

of the semantic prototype Pi = (Mi, Σi, Ωi, bi) is the

semantic value ẑi =
∑
m ωijµj + bi, where ωij ∈ Ωi,

and µij ∈ Mi are the abstract prototype features, ∀i =

1, ..., n; ∀j = 1, ...,m.

Note that our object semantic value is exactly the

same value used to object categorization in softmax

layer of CNN-classification models. Hence, our approach

of object semantic description based on prototypes as-

sumes as object semantic meaning vector, the seman-

tic vector ( #»z = Ωi � Fo +
#»

bi) constructed with the

element-wise operations to compute the object seman-

tic value (Definition 8). Our semantic meaning rep-

resentation uses a bias vector (
#»

bi) to uniformly dis-

solve the bias value in each semantic vector compo-

nent (bi =
∑
m

#»

bi). With this approach it is enough

a sum of each semantic meaning vector component to

recover the object semantic value (z =
∑
m

#»z ). Accord-

ingly, our semantic meaning vector contains the same

semantic definitions used for CNN models to categorize

an object within a specific category.

4.2 Semantic Difference

We stand for the semantic distinctiveness of an object

for specific ci-category as the semantic discrepancy be-

tween object features and features of the most prototyp-

ical (ideal) element of ci-category (abstract prototype

of ci-category). Since object features (Fo) and abstract

prototype of ci-category (Mi ∈ Pi) belong to the same

features domain (features metric space), we apply our

prototypical distance as measure of the objects distinc-

tiveness within a category.

Consequently, our approach assumes as object se-

mantic distinctiveness vector, the semantic difference

vector (
#»

δ = Ωi�|Fo −Mi|) constructed with the element-

wise operations to compute the object prototypical dis-

tance (Definition 4). Our semantic difference vector is

the weighted (Ωi) residual vector ( #»r = |Fo −Mi|) com-

posed of absolute values of the difference between each

object feature and each feature of ci-category abstract

prototype.

Note that our object semantic difference (or our pro-

totypical distance) can be understood as the sum of
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Algorithm 2 Global Semantic Descriptor ψ
1: Input : Image of an object o
2: Output : Object semantic signature (ψo)
3: Prior Data : Trained CNN-model Λ, prototypes dataset
4: Fo, ci ← Λ.features and prediction(o)
5: Mi, Σi, Ωi, bi ← prototypes dataset(ci)
6: meaning← f (Fo, Ωi, bi,meaning)
7: difference← f (|Fo −Mi| , Ωi, bi, distinctiveness)
8: return meaning⊕ difference

absolute difference between the object semantic mean-

ing vector ( #»z ) and the central semantic meaning vec-

tor (
#»

ẑi) of ci-category. Thus, Equation 2 is equivalent

to
∑m
j=1

∣∣∣ #»zj −
#  »

ẑij

∣∣∣ =
∑m
j=1 |ωijfj − ωijµij | = δ(o, Pi)

when ∀ωij ∈ Ωi, ωij ≥ 0 (we introduced this ωij con-

straint in the semantic distance of MPM model). There-

fore, our object semantic difference representation has

the advantage that elements vector sum is enough to

retrieve the object prototypical distance (δ =
∑
m

#»

δ ).

Figure 6 depicts an overview of our prototype-based

description model. Our Global Semantic Descriptor based

on Prototypes (GSDP) uses as a requirement the prior

knowledge of each category prototype (prototypes are

precomputed off-line using Algorithm 1). After feature

extraction and categorization processes (Figure 6b), we

use the corresponding category prototype for semantic

description of object features. We show in Figure 6e)

the steps to introduce the category prototype into the

global semantic description of object’s features. A draw-

back of our object semantic representation (Figure 6e)

is having high dimensionality, since it is based on se-

mantic meaning vector ( #»z ) and semantic difference vec-

tor (
#»

δ = Ωi � #»r ). The large dimensionality of our fea-

ture vectors might make its use unfeasible in common

computer vision tasks (Han et al. 2017; Kim et al. 2018).

Figure 6 and Algorithm 2 detail the main steps of our

approach; note that steps follow the same work-flow of

human description hypotheses depicted in Figure 1.

4.3 Dimensionality Reduction

Several dimensionality reduction algorithms such as PCA

(Abdi and Williams 2010) and NMF (Lee and Seung

2001) are based on discarding features that do not gen-

erate a meaningful variation. Although these approaches

work on some tasks, after applying these algorithms,

we lost the ability of data interpretation (Abdi and

Williams 2010). From the Prototypes Theory perspec-

tive, discarding features is no suitable when it is applied

to the semantic space due to the absence of necessary

and sufficient definitions to categorize an object (inten-

sional non-discreteness). Occasionally when discarding

features might lead in discarding elements of the cate-

gory (Geeraerts 2010). For instance, there may be some

objects within the category that do not have some cat-

egory typical features (flying is a typical feature of bird

category; however, a penguin is a bird that does not

fly).

We proposed a simple transformation function f(x)

to compress our global semantic representation of the

object’s features (Figure 6e) in a low dimensional global

semantic signature (Figure 6g). Our transformation func-

tion aims to reduce our semantic representation dimen-

sionality while keeping the property of easy retrieve the

object semantic meaning and object semantic difference

from the final descriptor signature. Our final descriptor

signature (ψ) is computed by concatenating the corre-

sponding signatures of semantic meaning vector ( #»z )

and semantic difference vector (
#»

δ ) compressed with

our f(x) transformation (see Algorithm 2).

Figure 7 shows the main steps of our f(x) trans-

formation. We use a square auxiliary matrix (χr×r) as

a parameter to control the descriptor signature dimen-

sionality. The auxiliary matrix dimensions is a param-

eter that allows us to control the final GSDP-signature

size, i.e.; larger auxiliary matrix dimensionality leads

to smaller GSDP signature; and vice versa.

The main steps showed in Figure 7 can be summa-

rized as: 1) Resize the input vectors in the best 2D

dimensional configuration of matrices (p× q) whose di-

mensions are multiples of r (auxiliary matrix dimen-

sion). 2-3) Compute the angles matrix (Θr×r) with an-

gles formed by the position of each feature with respect

to auxiliary matrix χr×r center; to achieve uniqueness

the diagonal angles were evenly distributed between the

magnitudes of angles α and β. 4) - 5) Create unitary

semantic gradient for each auxiliary matrix mapped

within p × q matrices; each semantic gradient is con-

structed using the angle matrix (Θr×r), and magnitude

and sign of semantic vectors computed using Defini-

tion 2 and 8. 6) Reduce the semantic gradient to 8-

vectors similarly to SIFT approach (Lowe 2004); 7)

Concatenate, for each auxiliary matrix χr×r mapped,

the corresponding unitary 8D-signatures resulted of flow

4-6. Algorithm 3 details all steps.

Hence, our final descriptor signature preserves the

object semantic meaning (Property 1) and the object

semantic difference (Property 2) presented in our first

global semantic representation of object features (Fig-

ure 6e). Additionally, depending of the input vector, our

descriptor can uses f(x) transformation to construct

global semantic representations (signatures) with dif-

ferent meanings within i-th category (Property 3). In

other words, our descriptor can construct semantic rep-

resentations (see Figure 6e) for: i) an object, ii) ideal

category member (abstract prototype), and iii) cate-
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Fig. 7 Dimensionality reduction function. Figure shows our transformation f(x) to convert the high dimensionality of our
object semantic representation into the corresponding semantic descriptor signature. Final signature is constructed by concate-
nating each 8D-vector computed from each unitary semantic gradient. We showed the trivial case when the input m-dimensional
vectors have 2 times auxiliary matrix dimension (m = p · q and p = r; q = 2r); consequently, output signature has 2 times
(16D) the 8D-vector dimension.

Algorithm 3 Dimensionality Reduction f(x)

1: Input : m-dimensional vector α, Ωi, bi, type
2: Output : Semantic signature
3: Parameter : Auxiliary matrix χr×r
4: b̄i ← bi

m
// m-dimensional vector b̄i (bi =∑

m b̄i)
5: χr×r ← shape(r, r) // setting auxiliary matrix dimen-

sion
6: Computing angles matrix: Θr×r = angles from(χr×r)

Find new shape p,q from k
7: Finding the optimal configuration p, q where p ≡

0 (mod r), q ≡ 0 (mod r) and m = p · q
8: α,Ωi, b̄i = reshape to matrixp×q(α,Ωi, b̄i)
9: signature← []

10: for j = 1, ..., p
r

; k = 1, ..., q
r
do

11: Mapping χjkr×r in α,Ωi, b̄i
12: Computing #»zijk using Hadamard product �.

13: #»zijk =

{
Ωjki � αjk + b̄i

jk, if type = meaning∣∣∣Ωjki ∣∣∣� αjk, otherwise

14: g jk ← vectors(Θr×r,
∣∣ #»zijk

∣∣ , sign( #»zijk)).

15: signature jk(l) =
∑
gjk(θ), ∀θ ∈ Θr×r : θl − 45 <

θ ≤ θl with θl = l · π
4
, ∀l = 1, ..., 8

16: signature← signature⊕ signature jk

17: return signature

gory semantic meaning encapsulated with semantic pro-

totype boundaries.

4.4 Descriptor Properties

Property 1 Semantic meaning preservation. The seman-

tic descriptor signature preserves the object semantic

value:
∑|ψ|/2
l=0 ψ[l] = ẑ.

Proof To prove this, it suffices to follow backward through

steps 6 and [9, 17] of Algorithm 2 and 3, respectively.∑|ψ|/2
l=0 ψ =

∑
f (α,Ωi, bi,meaning) =

∑∑
j

∑
k g

jk =∑
Ωi � α+ b̄i=

∑
#»z = ẑ; α ∈ {Mi, Fo} .

Property 2 Prototypical distance preservation. If o ∈ Oci
is a object of i-th category, the object signature ψo pre-

serves the object prototypical distance:
∑|ψo|
l=|ψo|/2 ψo[l] =

δ(o, Pi).

Proof Similar to the previous proof, but using distinc-

tiveness vector (|Ωi| � |Fo −Mi|) through steps 7 and

[9, 17] of Algorithm 2 and 3, respectively.∑|ψ|
l=|ψ|/2 =

∑
f(|Fo −Mi| , Ωi, bi, distinctiveness) =∑∑

j

∑
k g

jk =
∑
|Ωi| � |Fo −Mi| =

∑ #»

δ = δ(o, Pi).

Property 3 Structural polymorphism. Our global seman-

tic descriptor GSDP has the polymorphic property of

describing, with the same structural representation, dis-

tinctly different semantic meanings within the ci-category.

Thus, our descriptor uses the category prototype Pi =

(Mi, Σi, Ωi, bi) to construct different semantic signature

taxonomies:

i) an object o ∈ Oci , ψo = ψ(Fo, |Fo −Mi| , Ωi, bi) =

f (Fo, Ωi, bi,meaning) ⊕
f(|Fo −Mi| , Ωi, bi, distinctiveness);

ii) central semantic meaning of i-th category (abstract

prototype), ψPi = ψ(Mi, |Mi −Mi| , Ωi, bi)
= ψ(Mi,

#»
0 , Ωi, bi);

iii) semantic meaning of i-th category (semantic pro-

totype), ψi = ψ(Mi, Σi, Ωi, bi).
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5 Experimental Evaluation

5.1 Experimental Setup

Aside from performing experiments using benchmark

image datasets with fixed-size, size-normalized and cen-

tered images like MNIST (Lecun et al. 1998) and CI-

FAR (Krizhevsky and Hinton 2010), we also evaluated

our approach on ImageNet (Russakovsky et al. 2015)

as real images dataset. For each image dataset, we used

a CNN-classification model for feature extraction and

classification (see Figure 6b). Thus, we used a CNN-

MNIST and CNN-CIFAR models based on LeNet (Le-

cun et al. 1998) and Deep Belief Network (Krizhevsky

and Hinton 2010) architectures for image classification

in MNIST and CIFAR datasets, respectively. Also, we

conducted experiments in ImageNet using VGG16 (Si-

monyan and Zisserman 2014) and ResNet50 (He et al.

2016) models as background of our global semantic de-

scription model. Note that our prototype-based descrip-

tion model depicted in Figure 6, is scalable and can eas-

ily be adapted to any other CNN-classification model.

Prototypes Dataset Construction

Our prototype-based description model requires proto-

types dataset as category prior knowledge (see Figure

6c) to build object semantic representations (see Figure

6e) that stand for the object distinctiveness within the

category. In the experiments, we computed prototypes

datasets with CNN-MNIST, CNN-CIFAR, VGG16, and

ResNet50 models in MNIST, CIFAR, and ImageNet

datasets, respectively.

For feature extraction, we assumed as object fea-

tures those extracted from the last dense layer (before

the softmax layer) of the CNN-model. Our approach

needs typical objects of categories or any information

about typicality score (or typicality degree) of objects

belonging a specific category to build the proposed se-

mantic prototype properly. However, none of the images

datasets used have this annotation. Lake et al. (2015)

showed that the output of the last layer of CNN models

could be used as a signal for how typical is an input im-

age. Consequently, we used as typicality score of objects

the strength of classification response to the category of

interest. Specifically, we assumed as typical members of

a category those elements that are — unequivocally —

classified as category members (typicality score > 0.99)

by CNN models (see Figure 4). Finally, for each cate-

gory in datasets, we extracted features of typical mem-

bers and computed the correspond semantic prototype

(see Definition 1) using Algorithm 1.

5.2 The Semantics behind our Computational

Prototype Model

Achieving the member’s prototypical behavior within a

category is one of the motivations and theoretical ba-

sis of our approach. Nevertheless, there is no defined

metric to quantify whether our representation correctly

captures the category semantic meaning. This lack of

a metric is a consequence of the fact that there is no

defined metric to evaluate the object typicality level

within a category robustly; this skill is still reserved

only for human beings.

In this section, we analyzed the semantics captured

by our CPM Model (semantic prototype + prototypi-

cal distance). The CPM model pursues two main goals:

i) capture, with the semantic prototype, the central se-

mantic meaning of a specific object category; ii) simu-

late, in a comparable way to human beings, that visu-

ally typical elements of category are organized close (based

on our prototypical distance metric) to category proto-

type. Since we do not have annotated images with the

object typicality score to robustly evaluate the seman-

tic captured by our representation, we used another

approach to analyze the semantics behind our CPM

model.

5.2.1 Central and Peripheral meaning

In this section, we analyzed the central and peripheral

meaning captured by our CPM model. Since we de-

fined abstract prototype as the abstract semantic cen-

ter of category, we observed how relevant (or visually

representative) – for the category – are those elements
allocated by our CPM model in center and periphery

of category. Expressly, this experiment aims to know

what is the visual representativeness of category mem-

bers closest and furthest from the category semantic

center (our abstract prototype).

To achieve such a goal, we extracted object image

features using a CNN model and computed our pro-

totypical distance for all members of i-th category. Fi-

nally, the objects images are sorted in ascending order

based on the prototypical distance value of each ele-

ment. Figures 8 and 9 present some examples of central

and peripheral meaning captured by our CPM model

for images categories of ImageNet and MNIST datasets

using VGG16 and CNN-MNIST models – respectively

– as image feature extractors.

Notice that our proposal for object image semantic

interpretation – using our CPM model in CNN image

feature domain – attempts to assign a visual represen-

tativeness value (or typicality) to object image within

the category to which it belongs.
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Fig. 8 (from left to right) Top-5 most relevant members identified by our CPM model for a categories sample of ImageNet
dataset. (left) Top-5 elements closest to semantic prototype of corresponding category; index value represents the element
position within the category dataset. (right) Top-5 elements furthest from the semantic prototype of the category. Object
image features was extracted with VGG16 model.

Fig. 9 (from left to right) Top-5 most relevant members
identified by our CPM model for all MNIST dataset cate-
gories. (left) Top-5 elements closest to category abstract pro-
totype of corresponding category; (right) Top-5 elements fur-
thest from the category semantic prototype. Image features
was extracted with CNN-MNIST model.

Figure 9 shows the Top-5 closest and Top-5 furthest

elements from category center (abstract prototype) de-

tected by our CPM model in MNIST categories. For

instance, our proposal finds as typical elements (Top-5

closest) of number three category the handwritten digits

with features that are, undoubtedly, distinctive of c3-

category. Our CPM model also can find the peripheral

meaning of the category. Members with fewer charac-

teristic features of number three, or little readable, are

placed in the periphery (Top-5 farthest) away from the

central semantic meaning, but keeping the category fea-

tures (it still belongs to the category). Similar to a hu-

man being, our CPM model can find the Top-5 farthest

members of number three category that are a number

3, but not a typical number 3.

Figure 8 presents the semantic interpretation of vi-

sual image information performed by our CPM model

in real object images of ImageNet dataset. Note that

category members recognized by our CPM model as

Top-5 closest members (left column) to category se-

mantic center are easy recognized by human beings,

as it exhibits the typical features of an object cate-

gory. Also, we observed that Top-5 furthest elements

(right column) from the semantic prototype (or less

representative members of i-th category) detected by



14 Omar Vidal Pino et al.

Fig. 10 Prototypical organization within categories. Figure shows the internal structure of number three and Persian cat
categories of MNIST and ImageNet datasets, respectively. We represented each category member using image features ex-
tracted with CNN-MNIST and VGG16 models. We represented with color degrees the category internal disposition respect
its prototype. In button and top, from left to right, the mapped Top-5 elements closest (in blue) and furthest (in red) to the
mapped semantic prototype (in black) of each category. Image dataset index of the first Top-5 element is annotated inside the
black box.

CPM model although retaining some category features

are not easily recognized by human beings. That is, our

CPM model can identify the most/least visually rep-

resentative category members, and — correctly — rec-
ognizes as category periphery members those elements,

where not all typical category features are identified:

category typical colors, size, shape, etc. are not easily

distinguishable; or object pose in the image does not

exhibit these representative features of i-th category.

The experiments performed allow to assume that our

CPM model can capture the central/peripheral seman-

tic meaning of images categories. But, we still need to

answer to the question: Can our CPM model organize

all category elements prototypically?

5.2.2 Prototypical Organization

The experiments in this section aim to visualize the

internal semantic structure of the category using the

semantic meaning encapsulated by our CPM model for

each category member. Based on features extracted from

objects images, we analyzed the object prototypical be-

havior observing where it is positioned within the cat-

egory by our CPM model (using our prototypical dis-

tance). Visualizing the semantic position of each cate-

gory member with respect to category abstract proto-

type constitutes a simple approach to see the internal

semantic structure of the entire category structure. We

need to corroborate that our CPM model can correctly

interpret the object image features and position it se-

mantically within the category, keeping a prototypical

organization of the category.

Note that our CPM model uses m-dimensional ob-

ject features from CNN image-features domain. Accord-

ingly, visualizing the category’s internal structure is

infeasible in m-dimensional features space since most

techniques of data visualization are based on features

discarding. From the perspective of the Prototype The-

ory foundations, features discarding approach can be

problematic (intensional non-discreteness). For this rea-

son, we used topology techniques to make object image

interpretation based on all observed features. We con-

structed a map function to show that our CPM model

can simulate the prototypical organization of members

within a category.

Let (Fci , δ) and (R2, L1) be metric spaces (see Defi-

nition 5), and ρ a function that maps image object fea-

tures to (R2, l1) metric space using its semantic value
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and its prototypical distance. I.e., ρ : Fci → R2 | ρ(o ∈
Oci) = ρ(Fo) = p(zo, δ(o, Pi)), where Fo are the object

features, zo is the object semantic value, δ(o, Pi) is the

object prototypical distance; the point p(x, y) ∈ R2 and

L1 is L1-norm condition.

Let be the objects o1, o2 ∈ Oci , and p1 = ρ(o1), p2 =

ρ(o2) be the corresponding mapped points in (R2, L1)

metric space. Then, the Sum of Absolute Difference

(SAD) between p1 and p2 is L1(p1, p2) = L1(ρ(o1), ρ(o2))

= L1(p(z1, δ(o1, Pi)), p(z2, δ(o2, Pi))) = |z1−z2| + |δ1−
δ2|; using Definitions 3, 4, and 8 we have: δ(o1, o2) ≤
L1(p1, p2) ≤ 2δ(o1, o2). Consequently, for every Fo1 , Fo2
∈ Fci and ε > 0, exists a ϕ = ε+1

2 > 0 such that:

δ(o1, o2) < ϕ ⇒ L1(ρ(o1), ρ(o2)) < ε, i.e., ρ is contin-

uous. This means that every element of ρ(o1) neigh-

borhood in (R2, L1) metric space, also belongs into o1

neighborhood in (Fci , δ) metric space (if ρ(o1) = p1,

∀p ∈ {p1 neighborhood}, ρ−(p) ∈ {o1 neighborhood}).
Consequently, the observed behavior of i-th category

internal structure – in terms of distance metrics– in

(R2, L1) metric space is equivalent to the behavior in

feature metric space (Fci , δ).

Figure 10 shows an example of the internal seman-

tic structure of MNIST and ImageNet images categories

mapped using ρ. Note how Top-5 closest members (based

on our prototypical distance) are mapped (in blue) and

positioned near (based on L1 distance) to the mapped

abstract prototype (in black). The Top-5 most visually

representative members of each category in (Fci , δ) met-

ric space are the same Top-5 most representative (clos-

est to mapped abstract prototype) in (R2, L1) metric

space. Likewise, the Top-5 fewer representative mem-

bers (in red) continue to be positioned in the category

peripheries, far away from the category abstract pro-

totype (our central semantic meaning representation).

The experiments show a prototypical organization of

mapped members within the category in (R2, L1) met-

ric space. Consequently, based on ρ properties, a similar

grouping of objects based on family resemblance is pre-

served in CNN-features metric space.

Our approach to visualize the category internal struc-

ture also allows observing other semantic phenomena

related to the object image visual representativeness.

The experiments showed that object semantic value and

object prototypical distance place the object image in

a unique semantic position within the category inter-

nal structure. This result shows that our approach of

constructing a semantic object representation (see Fig-

ure 6e) based on vector versions of semantic value and

prototypical distance can be able to describe the object

image semantically.

5.2.3 Image Typicality Score

We observed that the shape of category internal struc-

ture – in (R2, L1) metric space using our visualization

approach – strongly depends on semantic values dis-

tribution and prototypical distance distribution. Con-

sequently, in this section we analyzed the relationship

between semantic value and prototypical distance vari-

ables. Also, we examined how the variations of these

variables can influence on object image visual represen-

tativeness (typicality) within the category.

Our prototypical distance can be understood as the

semantic difference between the object semantic mean-

ing and the semantic meaning of category abstract-

prototype (see Subsection 4.2). Specifically, if features

relevance (Ωi) of i-th category is strictly positive (ωij ≥
0, ∀ωij ∈ Ωi) then, the variables prototypical distance

and semantic value are – by construction – strongly

correlated. However, experiments in MNIST, CIFAR

and ImageNet datasets with each corresponding CNN-

model showed that there is a small strength of a lin-

ear association between those two variables (Pearson

coefficient values between −0.3 and 0.3), but it does

not conclude that we can generalize a behavioral pat-

tern between object semantic value and prototypical dis-

tance. This Pearson correlation result is consequence

of the fact that the weights learned in softmax layer

(our feature relevance Ωi) of CNN models used for fea-

ture extraction (CNN-MNIST, CNN-CIFAR, VGG16

and ResNet50) are not strictly positive. Consequently,

the semantic value is not a strong measure because the

addends in the equation can cancel each other out (see

Definition 8), and elements with same semantic value

does not imply that elements are equal (zo1 = zo1 6=⇒
o1 = o2).

Lake et al. (2015) showed that semantic value can

be used as a signal for how typical an input image looks

like. In contrast to Lake et al. results, our experiments

with VGG16 and ResNet50 models in ImageNet dataset

showed that using the semantic value as object typical-

ity score can be problematic because objects with same

semantic value do not imply same image visual typical-

ity. Figure 10 shows an example of this phenomenon.

In Persian cat ImageNet category, the 5th element of

Top-5 closest to category prototype (in blue) has a se-

mantic value like 2nd position element of Top-5 furthest

(in red) (both images semantic values are ≈ 2), but ob-

jects images are visually different. That is, the semantic

value could be a necessary condition to image typical-

ity representation, but it is not enough. On the other

hand, note how our prototypical distance can capture

the visual typicality difference between those two ob-

jects images.
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Fig. 11 Typicality score analysis. Objects images with same prototypical distance and different semantic values (in red)
have similar visual representativeness within the category, and category members with different prototypical distance and
same semantic value (in blue) are visually different. Also, we observe that object image visual representativeness (typicality)
decreases as prototypical distance increases. Object image features were extracted with VGG16 model.

We observed what is the image visual information

behavior when one of those semantic variables (seman-

tic value and prototypical distance) change. We kept

constant the value of one variable, and then, we ana-

lyzed the visual representativeness of the correspond-

ing object images when the value of another variable

increase. Figure 11 shows an example of this experi-

ment within the Persian-cat ImageNet category. Note

how for a fixed prototypical distance (elements in red),

the semantic value variation does not generate signifi-

cant changes in image visual representativeness (typi-

cality) within the category. In contrast, for a fixed se-

mantic value (elements in blue), the prototypical dis-

tance variation generates typicality ordered changes in

the image’s visual information. We observed that when

prototypical distance increases, object image visual typ-

icality decreases. In contrast, the experiments did not

allow to generalize a behavior pattern between semantic

value and image typicality.

Based on the results of our experiments, we as-

sumed that our semantic prototype representation cor-

rectly captures the central semantic meaning of im-

ages categories. Even with different CNN models and

images datasets, our CPM model organizes the inter-

nal category structure following a prototypical organi-

zation of category members. Besides, we showed that
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our prototypical distance influences elements arrange-

ment around the category semantic prototype. Since

our prototypical distance is a metric in CNN-feature

domain, our semantic distance can be used as object

image typicality score within the category (typicality

score (o) = 1/δ(o, Pi)).

5.3 Global Semantic Descriptor based on Prototypes

5.3.1 Descriptor Configuration

By construction, the dimensionality of our GSDP de-

scriptor signature depends of the object image CNN-

features dimensionality (image features extracted with

CNN classification model used in background), and di-

mensions of auxiliary matrix (χr×r) used as parame-

ter in our f(x) transformation (see Figure 7 and Algo-

rithms 2, 3). With higher auxiliary matrix dimensional-

ity, smaller is our GSDP signature size; and vice versa.

Consequently, since we needed the size variation of

image CNN-features to evaluate our prototype-based

description model, we used different CNN models as

images features extractors. CNN models selection cri-

teria were based on trying to evaluate our semantic de-

scription approach in different contexts: image CNN-

features with different sizes, CNN models with var-

ied architecture and depth, and image datasets of di-

verse nature (image resolution, image type, etc.). Also,

for each CNN model used, we configured (using the

auxiliary-matrix parameter) our semantic descriptor to

return GSDP-signatures with noticeably different di-

mensionality.

Table 2 presents details of GSDP descriptor set-

tings used to construct each semantic GSDP signa-

ture evaluated in our experiments. For each CNN-model

used, we exhibit the CNN-feature status at each step

of the workflow of our dimensionality reduction func-

tion (f(x)) (see Figure 7). Table 2 shows the CNN clas-

sification models used as feature extractor; image CNN-

feature length (|F |); new CNN-feature shape (Fp×q)

after apply Step 1 of our f(x) transformation; auxil-

iary matrix dimension (χr×r) used as parameter (we

used two different configurations for each CNN model);

number of matrices that make up our semantic gradi-

ent (gjk); dimensionality of intermediary feature con-

structed with our f(x) transformation (|f(x)|); and fi-

nal length of GSDP signature (|ψ|) for each descriptor

setting.

Note that our global semantic descriptor executes

twice the f(x) transformation to reduce the dimension-

ality of semantic meaning and semantic difference rep-

resentations (see Algorithm 2). Consequently, GSDP

Table 2 Available GSDP descriptor signature dimensions for
each CNN classification model used as features extractor.

CNN Model |F | Fp×q χr×r gjk |f(x)| |ψ|

CNN-MNIST 128 16× 8
8× 8 2× 1 16 32
4× 4 4× 2 64 128

CNN-CIFAR 512 32× 16
8× 8 4× 2 64 128
4× 4 8× 4 256 512

VGG16 4096 64× 64
16× 16 4× 4 128 256
8× 8 8× 8 512 1024

ResNet50 2048 64× 32
16× 16 4× 2 64 128
8× 8 8× 4 256 512

signatures dimensionality is two times the dimensional-

ity of f(x) transformation features.

5.3.2 Signature Semantic Information

The experiments in the image CNN-features domain

showed that object semantic value and prototypical dis-

tance organize all category members prototypically in

a specific (and unique) position within the category se-

mantic structure. The key idea behind our GSDP se-

mantic descriptor is to encapsulate, in a vector repre-

sentation, the same semantic interpretation –of image

object features– captured by our CPM model. In this

section, we show that our GSDP descriptor encodes and

preserves the semantic information contained in an ob-

ject features (semantic value and prototypical distance)

used by our CPM model for semantic interpretation

of object image. Also, we show how retrieving from

GSDP descriptor signatures that semantic information

and reconstructing the prototypical organization of ob-

ject category achieved in the image CNN-features do-

main.

Let be (ψci , L1) the metric space of object descrip-

tor signatures. Descriptor properties 1 and 2 allow to

easily recover the object semantic value and prototypical

distance from GSDP descriptor signatures. Property 3

enables us to build descriptor signatures for abstract

prototypes of categories. Similarly to ρ map, we can

construct and show that map γ : (ψci , L1) → (R2, L1) |
γ(ψo ∈ ψci) = p(

∑|ψ|/2
0 ψo,

∑|ψ|
|ψ|/2 ψo) = p(zo, δ(o, Pi))

is continuous. Hence, we can map all category descrip-

tor signatures to (R2, L1) metric space using γ function.

With γ map approach, we can reproduce the same

semantic analysis performed in CNN-feature space. Ex-

periments showed that the category prototypical orga-

nization achieved in (R2, L1) metric space is identical

regardless of which γ map (to descriptor signature do-

main) or ρ map (to CNN-feature domain) function is

used (e.g. Figure 10 and 11). Consequently, the behav-

ior observed in (R2, L1) metric space is equivalent to the

behavior in feature metric space (Fci , δ) and descriptor

signatures metric space (ψci , L1). This means that our
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GSDP descriptor signature preserves, in its taxonomy,

the same semantic information used by our CPM model

to interpret object image CNN-features (semantic value

and prototypical distance).

5.3.3 Signature Taxonomies

By definition, our GSDP descriptor uses category se-

mantic prototypes as semantic distinctiveness generator

of category members signatures. Elements with simi-

lar semantic meanings and that sharing similar seman-

tic differences with the abstract prototype, will have

similar GSDP semantic signatures. That is, since ab-

stract prototype can be understood as a DNA chain

that stands for the typical CNN-features of category

members, the abstract prototype signature can be un-

derstood as a number distribution (or smaller DNA

chain signature) that stands for category members sig-

natures.

Figure 12 shows an example of the signatures tax-

onomies constructed with our GSDP semantic descrip-

tor. We showed GSDP signatures constructed using CNN

- MNIST model as features extractor of MNIST dataset

images (signatures size = 32 since we used the GSDP

minimal setting (see Table 2)). Also, we showed the

structural polymorphism property (Property 3) of our

GSDP descriptor to construct signatures for the cen-

tral semantic meaning (abstract prototype) and cate-

gory members. With our approach, category members

will have semantic signatures with a similar represen-

tation of category abstract prototype signature. Notice

that very typical category elements will have descriptor

signatures similar to the abstract prototype signature,

and elements that do not belong to the category will

have a quite different GSDP signature.
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Fig. 12 Semantic signature taxonomies. Figure shows an ex-
ample of semantic signatures constructed with our GSDP de-
scriptor for c9-category in MNIST dataset. We show the ab-
stract prototype signature, descriptor signatures examples of
two c9-category members and a member that does not belong
to c9-category.
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(b)

(c)

(d)

Fig. 13 t-SNE visualization. a) t-SNE visualization of
features constructed with CNN-MNIST model in MNIST
dataset; b) t-SNE visualizations of features constructed with
CNN-CIFAR model in CIFAR10 dataset; c,d) t-SNE visual-
izations of first 10 categories of ImageNet dataset using fea-
tures constructed with VGG16 and ResNet50 models, respec-
tively. Each feature length was placed in the corresponding
caption.

Our GSDP descriptor attempts to build – using our

semantic prototype representation – a specific signature

distribution for each object image category. Figure 10

and 11 show that category elements can be grouped,

based on the meaning captured by our CPM model,

by their family resemblance within the object category.

However, this does not mean that in m-dimensional im-

age features space, there are no elements of other cate-

gories in the neighborhood of a specific element. Since

t-SNE algorithm (Maaten and Hinton 2008) can pre-

serve the local structure, we used t-SNE to analyze the

element neighborhood in m-dimensional space. Maaten

and Hinton (2008) exposed that points which are close

to one another in the high-dimensional dataset will tend

to be close to one another in the t-SNE low-dimensional

map.

We analyzed the discriminative power and t-SNE

visualization performance of our GSDP semantic im-

age representation versus features extracted using CNN

classification models. For each CNN-model used as back-

ground by our GSDP descriptor, we compared the t-

SNE performance of features family built with each
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CNN model. We performed the t-SNE visualization ex-

periment for features-family constituted by CNN fea-

tures, corresponding GSDP semantic signatures, and

reduced PCA versions of CNN-features (we reduced

CNN-features to same GSDP feature dimensions).

Figure 13 shows the performance of t-SNE algo-

rithm with each features-family in several image datasets

using Euclidean distance as similarity measure and 50

as perplexity value. Note how GSDP representations

achieved the best performance on each features-family.

We observed that our GSDP object image represen-

tations are compactly grouped and have greater sepa-

ration between categories than those t-SNE clustering

built with high dimensionality features of CNN models

(and its correspond PCA-reduced versions). Therefore,

we can assume that our global semantic descriptor can

construct object category representations distribution

with the ability to maximize inter-class elements differ-

ences and minimize the intra-class differences. That is,

with our approach, elements in each category must be

as similar as possible, and elements in different groups

must be as different as possible.

5.3.4 Performance Evaluation

Clustering

Yang et al. (2016) showed that when the image features

representations achieve good metrics in image cluster-

ing task, it can generalize well when transferred to other

tasks. Based on these assumptions, we evaluated our

semantic GSDP encoding to verify its usefulness and

suitability in image clustering task. We evaluated our

GSDP descriptor (version based in VGG16 and ResNet50

classification models) performance in clustering task

with ImageNet dataset image. We compared our GSDP

representation performance against the following im-

age global descriptors: GIST Oliva and Torralba (2001),

LBP Ojala et al. (2002), HOG Dalal and Triggs (2005),

Color64 Li (2007), Color Hist Song et al. (2004), Hu H

CH Haralick et al. (1973); Hu (1962); Song et al. (2004),

VGG16 features and ResNet50 features (and its corre-

spond PCA-reduced versions).

We used K-Means algorithm for clustering 50, 000

images (500×category) of first 100 ImageNet dataset

categories. The selection criteria of the K-Means al-

gorithm is based on some similarities of the K-Means

method with our image semantic representation ap-

proach. K-Means method minimizes the sum of squared

errors between data points and their nearest cluster

centers. This approach has similarities with our GSDP

representation since GSDP signatures were constructed

Table 3 K-Means cluster metrics for each evaluated global
image representation. Screenshot of K-Means measures for
first 20 ImageNet categories (20 clusters). We show Homo-
geneity (H), Completeness (C), V-measure (V), Adjusted
Rand Index (ARI) and Adjusted Mutual Information (AMI)
clustering measures. We show in bold the best performance.

Descriptor Size FPS
Metrics Scores

H C V ARI AMI

GIST 960 0.82 0.05 0.05 0.05 0.01 0.05
LBP 512 0.72 0.02 0.03 0.03 0.01 0.02
HOG 1960 33 0.04 0.04 0.04 0.01 0.03
Color64 64 8 0.12 0.12 0.12 0.04 0.11
Color Hist 512 26 0.08 0.08 0.08 0.03 0.07
Hu H CH 532 6.9 0.04 0.04 0.04 0.01 0.02
VGG16 4096 15 0,87 0,88 0,88 0,78 0,87
VGG PCA 256 256 12.5 0,89 0,90 0,89 0,82 0,89
GSDP VGG 256 256 12.8 0,97 0,99 0,98 0,93 0,97
VGG PCA 1024 1024 12.5 0,89 0,89 0,89 0,81 0,89
GSDP VGG 1024 1024 11.6 0,94 0,98 0,96 0,84 0,94
ResNet50 2048 10.6 0,88 0,90 0,89 0,78 0,88
RNet PCA 128 128 12.5 0,88 0,88 0,88 0,81 0,88
GSDP RNet 128 128 9.6 0,97 0,98 0,98 0,93 0,97
RNet PCA 512 512 12.5 0,89 0,90 0,90 0,82 0,89
GSDP RNet 512 512 9 0,91 0,97 0,94 0,73 0,91

to organize features categories using as category orga-

nization center the abstract prototype signature.

We evaluated each image representations performance

in image clustering task comparing its K-Means cluster-

ing metrics (Homogeneity, Completeness, V-measure,

Adjusted Rand Index, Adjusted Mutual Information).

For each global image representation, the experiment

was conducted incrementally, starting with 3 cluster

(for 3 categories) and incrementing a category for each

K-Means algorithm iteration. At the end of each K-

Means execution, the clustering metrics were saved.

The idea behind our clustering experiment was to evalu-

ate each image representation performance as the amount

and diversity of objects images increased.

Table 3 shows a screenshot of K-Means clustering

metrics achieved by each global image descriptor for the

first 20 ImageNet categories. Also, Table 3 shows fea-

tures dimension and feature extraction velocity (frame

per second - FPS) for each image representation ap-

proach. All experiments were performed on a standard

computer, without the use of GPUs to be fair with

handcraft features approaches.

Note that our object image semantic representation

achieved the best performance among the image repre-

sentations evaluated with the ImageNet images sample.

Also, be mindful of our GSDP descriptor representation

keeps the same semantic information used by our CPM

model for VGG16 and ResNet50 features interpretation

(See Section 5.3.2 and Figure 10), but with more dis-

criminatory image representation and even lower fea-

ture dimension. Experiments showed that lowest di-

mensional GSDP representations obtained the best cost-

benefit performance.
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Fig. 14 History of K-Means metrics reached by each image feature representation in first 100 categories (98 K-Means itera-
tions) of ImageNet dataset. We compared the performance of VGG16 and ResNet50 features (left) versus our GSDP descriptor
signature (right) in clustering task.

Figure 14 shows K-Means metrics history for VGG16

and ResNet50 features representation against the corre-

spond GSDP signatures. We showed K-Means metrics

behavior for each image representation when the num-

ber of clusters increases (until 100 categories) in each K-

Means algorithm execution. Experiments showed that

as object images variety increased, K-Means cluster-

ing metrics related to CNN-features deteriorated signif-

icantly, while K-Means clustering metrics achieved by

our image semantic encoding remain above 0.9. Results

showed that our semantic descriptor encoding signif-

icantly outperforms others image global encodings in

terms of cluster metrics.

Classification

To evaluate our image semantic encoding performance

with supervised and unsupervised learning techniques,

we also evaluated the performance of our GSDP repre-

sentation in an image classification task.

Our GSDP descriptor, by construction, builds ob-

jects image representations based on object category

predictions made by CNN model used as background

(See step depicted in Figure 6b and Algorithm 2 line 4).

Consequently, a prediction error of CNN-classification

models generates that our descriptor constructs an ob-

ject’s image semantic representation using a wrong se-

mantic prototype. This behavior is not problematic if

we take into account that human beings will erroneously

describe an object if it was previously wrong recognized.

In this experiment, we evaluated the performance

of two GSDP semantic representations. Each GSDP se-

mantic representation was constructed considering two

different scenarios: i) images GSDP-signatures are made

based on the prediction of CNN model used in the back-

ground (normal behavior of our GSDP descriptor); ii)

images GSDP-signatures are made based on the pre-

diction of an ideal classification model (100% accuracy)

(a hypothetical behavior of our GSDP descriptor). We

used as a prediction of an ideal classification model, the

image category label annotated in ImageNet dataset.

We conducted the experiment to analyze the possible

performance of our GSDP representation if the proto-

type selection error is zero (prediction error of CNN-

model used in background).
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(a)

(b)

Fig. 15 KNN error rate reached by each image representation in the first 100 categories of ImageNet dataset. We variated the
K-value of KNN algorithm to compare the performance of VGG16 and ResNet50 features versus our GSDP descriptor signature
in image classification task using as feature similarity: a) Manhattan distance; b) Euclidean distance. Each feature-length was
placed in the corresponding caption.

We performed our classification experiments using

the KNN algorithm since, similar to t-SNE algorithm;

elements are classified based on their local neighbor-

hood. We analyzed the GSDP representation perfor-

mance increasing the KNN algorithm parameter value

(K neighbor) and using Euclidean and Manhattan dis-

tances as feature similarity measures.

Figure 15 shows KNN algorithm performance us-

ing VGG16 and ResNet50 representations against cor-

responding GSDP signatures constructed in those two

scenarios. In the experiment, we used the same Ima-

geNet images sample used for clustering task evalua-

tion. Also, we variated the K-value to show that our

GSDP encoding significantly outperforms VGG16 and

ResNet50 encodings in the KNN classification task.

Experiments showed that our GSDP representation

using the ResNet50 model reached a better performance

than those constructed using the VGG16 model. Also,

we observed that GSDP representations constructed us-

ing category labels (notated with uL in Figure 15)

are highly discriminative (mean error close to 0). Con-

sequently, we can conclude that our semantic encod-

ing of objects substantially improves its performance

– in classification task – as the accuracy of the CNN-

classification model used in background increases.

Our experiments showed that our image global se-

mantic representation based on category prototypes could

outperform other image global representations in some

computer vision tasks. Also, note that our GSDP en-

coding can describe objects images while encapsulates

in its image signature the object semantic information

(object semantic value and object typicality score). Ex-

periments showed that lowest dimensional GSDP rep-

resentations (for each CNN model) were the ones that

achieved the best size-performance trade-off.

6 Limitations and Future works

The proposed prototype-based description model was

constructed strictly to describe objects images, not to

describe scenes images. Note that even when our seman-
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tic descriptor was evaluated in images that represent-

ing scenes, our GSDP descriptor can outperform other

image global representations. The results achieved en-

courage us to evaluate the generalization ability of our

object semantic representation in other computer vision

tasks as image retrieval and scene understanding.

As future work, the interpretative criteria of human

beings is necessary to construct images dataset with

typicality annotations and conclude if our model can

interpret objects images similar to human beings.

7 Conclusion

Motivated by how human beings represent and relate

the meanings attributed to objects, this research was

based on the Prototype Theory to propose semantic

representations of object categories and object images.

Specifically, in this paper we introduced and evaluated

two models based on Prototype Theory foundations:

i) a Computational Prototype Model (CPM) and ii) a

Prototype-based Description Model.

We proposed the CPM model to represent the in-

ternal semantic structure of object categories. Experi-

ments showed that our CPM model was able to encap-

sulate relevant features of objects category in our se-

mantic prototype representation. Also, we showed that

our semantic distance metric could simulate semantic

relationships in terms of visual typicality, between cate-

gory members. Our experiments showed that a relation-

ship could be established between our semantic distance

metric and object image visual representativeness. Ex-

pressly, our prototypical distance can be understood as

the object image typicality score. That is, our CPM

model can capture the object’s visual typicality and the

central and peripheral meaning of objects categories.

Based on the CPM model results, we proposed a

prototype-based description model that uses the CPM

model main components (semantic prototype + seman-

tic distance metric) to construct a semantic representa-

tion of object’s image. Our prototype-based description

model uses semantic prototypes of the CPM model to

build a discriminatory signature that semantically de-

scribes object images highlighting its most distinctive

features within the category.

Our novel Global Semantic Descriptor based on Pro-

totypes (GSDP)1 introduces a new approach to the se-

mantic description of object images. GSDP descriptor

does not need to be trained, and it is easily adapt-

able to be used with any CNN-classification model. As

1 All source code, prototypes datasets, and GSDP tool
tutorials are publicly available in our lab’s Github:
https://github.com/verlab/gsdp.

shown in the experiments in the ImageNet dataset with

VGG16 and ResNet50 models, our global semantic de-

scriptor is discriminative, small dimensioned, and en-

codes the semantic information of category members.

We further showed that our GSDP object representa-

tion preserves in its taxonomy the object’s semantic

meaning and the object typicality score.

Our Prototype-based Description Model proposes a

starting point to introduce the theoretical foundation

related to the representation of semantic meaning and

the learning of visual concepts of the Prototype Theory

in the CNN semantic descriptors family.
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