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Abstract

While Human-Object Interaction(HOI) Detection has achieved tremendous advances in recent, it still remains challenging
due to complex interactions with multiple humans and objects occurring in images, which would inevitably lead to
ambiguities. Most existing methods either generate all human-object pair candidates and infer their relationships by
cropped local features successively in a two-stage manner, or directly predict interaction points in a one-stage procedure.
However, the lack of spatial configurations or reasoning steps of two- or one- stage methods respectively limits their
performance in such complex scenes. To avoid this ambiguity, we propose a novel actor-centric framework. The main
ideas are that when inferring interactions: 1) the non-local features of the entire image guided by actor position are
obtained to model the relationship between the actor and context, and then 2) we use an object branch to generate
pixel-wise interaction area prediction, where the interaction area denotes the object central area. Moreover, we also use
an actor branch to get interaction prediction of the actor and propose a novel composition strategy based on center-point
indexing to generate the final HOI prediction. Thanks to the usage of the non-local features and the partly-coupled
property of the human-objects composition strategy, our proposed framework can detect HOI more accurately especially
for complex images. Extensive experimental results show that our method achieves the state-of-the-art on the challenging
V-COCO and HICO-DET benchmarks and is more robust especially in multiple persons and/or objects scenes.
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1. Introduction

Human-Object Interaction (HOI) detection [I, 2, [3],
aiming to detect human, object and corresponding inter-
action between them from a given image, is a meaningful
task serving as the fundamental step for many computer
vision applications such as robotics [4 Bl [6] and activ-
ity analysis [7]. It is still a challenging task due to the
inevitable ambiguities that come from the various visual
relationships between multiple persons and objects occur-
ring in the scene.

Given an image, most existing methods [8, 10, 9] [IT]
[12] detect humans and objects first and, for each human-
object pair, recognize the probable interactions with the
local features cropped according to their bounding boxes.
However, though such a pipeline works well for simple
scenes when only appears few people, it may fail on com-
plex scenes with ambiguities caused by multiple persons
and objects, as shown in Fig[ll To tackle this issue, a
few approaches [13, [I4] [15] try to utilize context informa-
tion to complement local appearance to obtain a better
detection result. Some of them [I3] [14, [16] seek to ex-
plore contextual representation as supportive information

Horse 2 Union Box 2
Figure 1: How to differentiate which horse is interacting with the
person in the red box? The horse 1 (in the box) is very close
to the human, resulting in ambiguities between two interaction pairs
with only cropped local features [8][9]. This motivates us to consider
multiple objects in the image simultaneously while predicting one
person’s interactions to avoid this ambiguity.

for the cropped local features, and improve detection re-
sults stably. However, they usually design an additional
branch to extract contextual information by Global Av-
erage Pooling (GAP), which would cause an information
loss, especially spatial configurations due to the pooling
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operation of all pixels. Thus such utilization of contextual
information is limited. Other crop-free approaches [15] [17]
formulate HOI detection as an interaction point detection
problem and use one-stage strategy to exploit contextual
information directly. Although these methods are quite
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effective in many cases, their highly-coupled property and Crop-based HOI detection methods [8] 10 @, 1T, 2]
the lack of reasoning steps [I8] make the model hard to 13] utilize Faster RCNN or Mask RCNN to generate hu-
work well on complex images. man/object bounding box with the corresponding confi-

To overcome these issues, we present a novel partly- dence in the first stage. And in the second stage, the in-
coupled actor-centric HOI detection framework. On the  teraction between human and object is detected by parsing
one hand, we formulate HOI detection task as a pixel-wise the cropped features in the union box. Chao et al. [I0] pro-
prediction problem in a one-stage like procedure, which pose a multi-stream framework including human-stream,
avoids the information loss by GAP operations. On the object-stream and pairwise-stream to obtain verb score,
other hand, non-local features guided by binary masks and then the verb confidence is obtained by adding three
generated from each detected human without the crop-  scores from all streams. Gao et al. [13] [I6] enhance the
ping procedure would be obtained. On the basis of these feature in human/object stream through attention mech-
non-local features, every single human is able to evaluate anism and obtain a significant improvement thanks to ag-
the existence of interaction for all objects in the image. gregating the global information.

More specifically, we present an actor-centric model. In However, their performance is limited because the spa-
this model, we propose RGBM Generator module, which tial and contextual information are often lost during the
generates binary mask (M) according to human bounding cropping procedure, which might cause ambiguous situa-
box and concatenate it with the original image (RGB). The  tions, as shown in Fig. [[] In contrast, our method rec-
generated RGBM data is used as input of feature extrac- ognizes interaction in a crop-free manner. We leverage a
tion backbone. Then, we regress interacting confidence global context extraction network instead of cropped fea-
map explicitly with a square mask supervision which could ture fusion network to make sure every pixel is able to
be inferred by original annotations directly. Finally, we  obtain global information. With the supervision of our
propose an efficient post-processing procedure to generate proposed loss, each pixel is guided to output interaction
HOI predictions for this brand-new framework, in which score of the object/human it belongs to.

a composition strategy based on center-point indexing is Recently, crop-free HOI detection methods[17, [15] have
used. Thanks to the usage of the non-local features and attracted increasing attention because previous works strug-
the partly-coupled property of the human-objects compo- gle with the problem of efficiency. Most crop-free methods
sition strategy, our proposed framework can detect HOI extract global-aware features for better performance and
more accurately especially for complex images. take HOI as a key-point detection task. IP-Net [I7] de-

To summarize, our contributions are four-folded: tects the interactions between human-object pairs through

Hourglass-104 [22], 23] and then associates human and ob-

e We propose a novel actor-centric HOI detection frame-  ject proposal generated by FPN [24] to obtain final HOI

work to explore the relationships between one human  predictions. PPDM [I5] defines the localization for inter-

and multiple objects, addressing the ambiguity issue  action. Human and object points are the center of the

across multiple interactions in the image. detection boxes, and the interaction point is the midpoint

of the human and object points. It utilizes a matching

strategy in the post-processing, and makes the pipeline in
one-stage.

Although the efficiency of one-stage methods is usu-
ally relatively satisfactory, the performance suffered since
there might exist conflicts of interaction key-points when
e We present an RGBM Generator module to provide multiple persons or objects are shown. To avoid such con-

an actor-centric guidance of the network, and design flicts, we innovatively constrain the network to predict the
an efficient composition strategy to obtain the final ~ interaction at the central area of human/object.
scores by a scoremap indexing post-process.

e We formulate the HOI detection task as a pixel-
wise classification problem in a one-stage-like proce-
dure with a proposed Weighted Cross Entropy Loss
(WCEL), which could reduce the overfit of the bound-
ary hop.

e Extensive experimental results and ablation studies 3. METHODOLOGY

demonstrate the superiority of our approach in both
quantitative and qualitative results in challenging

HICO-DET and V-COCO benchmarks, especially for
complex images.

Given an input image I € R"W*H  the goal of HOI
detection is detecting the (human,verb, object) triplets,
such as (human, hold, cup), (human, ride, horse). In this
work, we denote the verb set as ¥ = {1;}X | where K is
the total number of verb categories.

2. RELATED WORK

8.1. Overview
Existing HOI detection methods can be roughly catego-

(0] oposed framework is built on a pre-trained ob-
rized into crop-based and crop-free fashions [I8] 19} 20, 21]. ‘ Pop FATHOWOLT 15 DU Ot & Drevtratiy

ject detector and focuses on inferring the triplets categories
for each human in the image. As illustrated in Fig.
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Figure 2: An overview of our framework for Human-Object Interaction Detection. We formulate the HOI detection task as a pixel-wise
verb score prediction problem in two branches, i.e., Actor Branch and Object Branch. The input of the network is generated by an RGBM
Generator based on the Actor Switch that selects each human in the image sequentially. In order to force the network to predict interaction
location and scores simultaneously, we design a strategy that generates square masks according to original annotations and adopt the masks
as supervision. Guided by actor mask in the RGBM data, our framework could exploit the relationship between the actor and multiple

objects in the image to generate accurate predictions.

we firstly use an object detector to locate humans and
objects, then traverse all detected humans by an Actor
Switch module sequentially. The selected human is de-
fined as actor and utilized to generate an RGBM four-
channel data (described in the following chapter). Then, a
backbone [25, 26] is used to extract features, behind which
the framework separates into two branches, namely Actor
Branch and Object Branch. Actor Branch aims to predict
pixel-wise verb scores of the current actor. When the ac-
tor is performing one interaction, the corresponding verb
scores in the actor’s central area is expected to be high.
Similarly, for Object Branch, we also obtain per-pixel ob-
ject verb predictions. For the expectation of the network
to focus on the center location of these agents, we narrow
the original actor/object box into a smaller binary square
mask, which has been shown by the red area in Fig. [2|
These red areas are generated as the targets of our net-
work, thus we can cooperate the current actor verb score
and the corresponding multiple objects verb scores from
the two branches to predict the interaction triplets.

3.2. RGBM Generation and Feature Extraction

We denote detected human set as H = {h;}£,, where
h; is a detected human and M is the number of detected
humans. Similarly, when N objects is detected, we denote
detected object set as O = {0;}¥,, where o; is a detected
object and N is the number of detected objects.

RGBM Generator
Actor Box Image Size Actor Position Mask (M)
xy;wh) 4= (W H) —> RGBM

RGB l

>
> >
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Figure 3: Illustration of RGBM data generation. We first generate
a Actor Position Mask, i.e., M € RWXHX1 bhased on the image
size of the RGB image and coordinates of the Actor box. Then we
concatenate the mask with the original RGB image to obtain four-
channel RGBM data as the inputs of our framework.

There are many ways to indicate human position. We
choose to use an additional W x H mask map to avoid
damaging the original image structure of the RGB channel.

As is shown in Fig. 3] given a human box and an input
image I, we generate a human position mask map with the
same height and width with I. The area within the human
box is set as 1 and other positions are set as 0. Then we
concatenate the human position mask and origin image.
We denote the generated 4-channel data as RGBM image.

In order to ensure every position on the image could
utilize global context and local appearance to generate



verb prediction, we adopt DLA [25] or HRNet [26] which
are proposed to effectively aggregate global and local in-
formation, as our backbone. After feature extraction, the
feature resolution is down from W x H to W/d x H/d,
where d is the down-sample stride.

3.8. Actor Branch and Object Branch

The Actor Branch and Object Branch are two detec-
tion heads to generate pixel-wise verb prediction for actor
and all objects separately. In Fig. output size of each
branch is W/d x H/d x (K 4+ 1) where K is the number
of annotated verb categories. We use the first K channels
to generate predictions for all verb categories. The last
channel is used to generate prediction for an additional
category which is named w/o-interaction.

For Actor Branch, we request the network to gener-
ate a high score in the area around actor box center when
an interaction happens. In practice, we use a box smaller
than actor box as the central area which is denoted as Z.
Furthermore, we denote the interaction set the actor par-
ticipates in as ¥,. Note that if the actor is not interacting
with any object, we set ¥, = {w/o-interaction}. And we
generate target illustrated in Fig. [2] by

1 (z,y) € Z,9*[c] € T,
0 otherwise

ot = { S

where (z,y) denotes a spatial position and ¢ denotes chan-
nel. ¥* is expanded from origin verb set ¥ by adding the
additional category w/o-interaction. ¥*[c] € U* is the
verb category channel ¢ represents.

For Object Branch, given o; € O, we denote the inter-
action set o; participates in with the actor as ¥,, and we
set U,, = {w/o-interaction} if o; is not interacting with
the actor . We also generate target for each object by
Equ. [T and denote the generated target is f,,. Note that
the w/o-interaction category here means o; is not interact-
ing with the actor. The target for Object Branch denoted
as f, is calculated by

fo:fm@f%"'@fmvv (2)

where & denotes an addition rule that retains the max-
imum for elements in the same position.

3.4. Loss

Instead of simply using Cross Entropy Loss, we pro-
pose a Weighted Cross Entropy Loss (WCEL) based on
following design:

Hanning Weight: Because there is no transition between
box central area and other area, the net work may pay too
much attention on learning a sharp hop at the boundary
of box central area and this could cause overfit. To set-
tle this, we want the position near the center point has a
higher weight and position near the boundary has a lower
weight. In this work, we use Hanning window to generate
weight for the positive positions and negative positions

individually. The two-dimensional Hanning window is de-
fined as:

om0 il i ).

1]7

]

w

where w and h denote width and height of Hanning win-
dow and (zx,y) is a point within Hanning window.

Given a box B whose width, height and center point
are w, h and (zg,yo) separately, the proposed Hanning
Weight wp,q, for positions within B is calculated by

fz,y,c)

H(I—I07y—y0,’w,h) =1
fx,y,¢)=0

Whan (2, Y, €)= { 1-H(z—z0,y—yo,w, h)

(4)
And we set whan(x,y,c) =1 if (x,y) is not within B.
Scale Weight: Because the size of the central area is rel-
evant to box size, if we simply use classification loss for
every spatial position, bigger box will have bigger area to
generate loss and smaller ones has smaller area to gen-
erate loss. Such imbalance of supervision area will cause
smaller object/actor to become hard to optimize. To solve
this problem, we give different area corresponding wights
according to box position and size. We define this kind
of weight as Scale Weight and express it as wgeqre. Take
the above box B for example, the Scale Weight of position
within B is calculated by:

Wseale (T, Y, ¢) = min(10, \smax(W, H) /maz(w, h)), (5)

where A\, is a super parameter and we set it as 0.5 in
our work. Besides, we set the upper limit of wgeqie as 10
to prevent the weight of small box greater than that of
background too much. Similar to Hanning Weight, we set
Wseale (T, y,c) = 1 if (x,y) is not within B.
Weighted Cross Entropy Loss: Assume the output of
network is f e RWXHx(K+1) and corresponding target,
Hanning Weight and Scaled Weight is y, whan, Wscale SEP-
arately. The loss for f , denoted as L, is calculated by

L= Z whan(gjv Y, C)wscale(xy Y, C) [f(zv Y, C)lOg(f(I’, Y, C))

z,Y,C

+ (1 - f(xa y,C))lOg(l - f(xaya C))}
) ) (6)
Assume f, and f, are outputs of Actor Branch and
Object Branch respectively. We denote the loss of Actor
Branch and Object Branch as £, and £,, and they can be
calculated by Equ. [0}
Total loss of our framework is denoted as

L=XLso+ Lo, (1)

where )\, and ), are two super parameters to balance the
losses of Object Branch and Human Branch. In our work,
we set A\, = A\, = 1.
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Figure 4: Tllustration of final score predictions. We first calculate
verb scores of the actor and objects by indexing on two branches
output based on the center point coordinates of their bounding boxes.
Then the final HOI prediction can be obtained by multiplying the
verb scores and the detection scores.

3.5. Inference

During inference, we use the pipeline in Fig. [2]to gener-
ate pixel-wise verb predictions first. Then, we use a simple
post-process strategy illustrated in Fig. [4] to generate fi-
nal HOI scores. Given the selected actor and object set
0= {oi}ij\;l provided by detector, we obtain object center
point set C, = {c,,}¥; and actor center point c,. Then,
we use ¢, to index actor verb score S;. Simultaneously,
we use ¢,, to index object verb scores Sy, for each o; € O.
Next we calculate verb score S, for an actor-o; pair by

S, =Sy S (®)

And the HOI score ngzf of actor-o; pair is denoted as

SZ,‘Z,; = S:,oi *Sa " So;s (9)
where s,, is the object confidence score provided by ob-
ject detector. s, is the confidence score of the actor (i.e.,
selected human) and is also provided by object detector.

4. Experiments

4.1. Datasets and Metrics

Datasets We verify the performance of our method on
HICO-DET [10], V-COCO [27] and HOI-A [I5]. HICO-
DET contains 38118 images for training and 9658 images
for testing. There are 80 object categories as same as MS-
COCO [28] and 117 verb categories. The object and verb
categories composite 600 HOI categories for HOI detec-
tion. V-COCO is a smaller dataset which is derived from
MS-COCO dataset. It contains 5400 images in the trainval
dataset and 4946 images in the test dataset. Each person
has annotations for 29 action categories which contains 25
HOI categories and 4 body motions. HOI-A is a recently

Methods AP, gent APSY APS2
InteractNet [g] 69.2 40.0 -
GPNN [29] ] 44.5 42.8
iCAN [13] - 45.3 52.4
RPNN [30] . 475 -
VCL [9] . 48.3 -
TIN* [31] - 48.7 54.2
Zhou et al. [32] - 48.9

TIK [33] ; 48.7 -
PastaNet* [34] - 51.0 57.5
DRG* [35] : 51.0

Wei et al. [36] 70.3 42.0 -
ACP* [37] - 53.2

IDN [38] _ 53.3 60.3
Ours 73.47 51.67 61.75

Table 1: Result on V-COCO. Character * indicates that external
knowledge is used.

proposed dataset containing 11 kinds of objects and 10
action categories in general scenes.

Metrics Following previous works, we adopt the mean av-
erage precision (mAP) to evaluate our method. For HICO-
DET, AP is computed on per HOI class and two setting are
adopted, i.e., “Known Object” and “Default”. In “Known
Object” setting, we evaluate only on the images contain-
ing the annotated object category for each HOI category,
and in “Default” setting, we evaluate on full test images.
In each setting, we report the mAP over three types, i.e.,
Rare, Non-Rare and Full, which are defined according to
number of training instances. For V-COCQO, three settings
are adopted. In APggent, the true positive only focus on
the pair (subject,verb). While AP} and APS2, requires
object should be also correctly located. For the cases when
there is no object, in APT“’:}le a prediction is correct if the
corresponding bounding box for the object is empty and
in APS2 the bounding box of the object is not considered.

For HOI-A, AP is computed on per verb class.

4.2. Implementation Details

Object Detector.

We use Faster R-CNN [39] as the object detector. In
experiments, we adopt the pre-trained model released by
MMDetection [40] to localize persons and objects. The
NMS threshold is set as 0.05 and top-100 predictions are
used for later processing. We also test our method on
HICO-DET by utilizing the detection results released by
DRGI35] with the model that finetuned on HICO-DET.
When using the detection results of DRG, we set the thresh-
old of both human and object score to 0.2.

Annotation Arrangement. For the convenience of train-
ing interaction classification network, we rewrite the train-
ing annotation: for each annotated person p, we record
box of p, all objects interacting with p and corresponding
verbs. For a detected person pg, if there exists an an-
notated person that has IoU over 0.5 with p, we assign



Default Known Object
Methods External Knowledge | Full Rare Non-Rare| Full Rare Non-Rare
iCAN [13] 14.84 10.45 16.15 16.26  11.33 17.73
Wang et al. [16] 16.24 11.16 17.75 17.73  12.78 19.21
PMFNet [41] P 17.46 15.65 18.00 20.34 17.47 21.20
No-Frills [42] L 1718 12.17 18.68 - - -
TIN [31] P 1722 13.51 18.32 19.38 15.38 20.57
CHG [43] 17.57 16.85 17.78 21.00 20.74 21.08
UnionDet [44] 17.58 11.52 19.33 19.76  14.68 21.27
Peyre et al. [45] L 19.40 14.63  20.87 - - -
VSGNet [14] 19.80 16.05 20.91 - - -
FCMNet [46] P+L 2041 1734 21.56 22.04 18.97 23.12
ACP [37] P+L 20.59 15.92 21.98 - - -
Bansal et al. [47] L 21.96 16.43  23.62 - - -
DRG [35] L 24.53 19.47 26.04 2798 23.11 29.43
IDN [38] 26.29 22.61  27.39 28.24 24.47  29.37
ConsNet-F [12] L 24.39 17.10 26.56 - - -
IPNet [17] 19.56 12.79 21.58 22.05 15.77 23.92
PPDM ([I5] 21.73 13.78 24.10 24.58 16.65 26.84
HOTR [45] 2510 17.34  27.42 - - -
Zou et al. [49) 26.61 19.15 28.84 29.13 20.98 31.57
Ours 27.39 21.34 29.20 |30.87 24.20 32.87

Table 2: Results on HICO-DET. For External Knowledge, “P” indicates human pose and “L” indicates linguistic knowledge.

object and verb annotation of the person to pg, otherwise
we define pg as a negative example. Usually, the negative
examples are several times of the positive ones. To tackle
the imbalance of examples, we set the ratio between pos-
itives and negatives as 1 : 1 by randomly dropping some
negative examples.

Feature Extractor. We use HRNet-W32 [16] and DLA-
34[25] as our backbones for interaction classification and
evaluating the effectiveness of our proposed idea. HRNet
was initially proposed for human pose estimation which
requires the network to extract local and global features
for effective keypoint detection. The HRNet-W32 used in
this work is a relatively lightweight edition compared to
HRNet-W48 and HRNet-W64. DLA is a more lightweight
network, which is proposed to fuse information across lay-
ers of network, and it can also make sure every position in
the output layer obtain information across scales. In our
experiments, we initialize HRNet-W32 and DLA-34 with
weights pre-trained on ImageNet [50].

Other Parameters. The bounding box of the supervised
area illustrated in Fig. [2]is scaled from human/object box
with a ratio of 0.3. During training, we use ADAM [51]
as the optimizer and train the model for 12 epochs with
learning rate 1.5x10~°. Our experiments are all conducted
on two Nvidia GeForce RTX 2080Ti GPUs.

4.3. BEvaluation

We conduct the quantitative experiments on V-COCO,
HICO-DET and HOI-A to demonstrate the effectiveness of
our method. The results are shown in Tab. [T} Tab. [2] and
Tab. [3] in comparison with other classical methods.

Methods mAP (%)
C-HOI [32] 66.04
iCAN [13] 44.93
TIN [31] 48.64
PPDM [15] 71.23
Ours 74.56

Table 3: Result on HOI-A test set.

For V-COCO, we report our result in terms of APygent,
AP and AP%2 . Our method outperforms state-of-the-

role role”

art method by 3.04% and 1.45% on APygen: and AP,
respectively. This shows that our method could not only
achieve excellent HOI detection performance, but also pro-
mote human action analysis.

For HICO-DET, we report result on Default and Known
Object settings. And for each setting, the results on Full,
Rare and Non-Rare subset are shown in Tab.[2] Although
some methods [4T], [42] [3T], 45| [46], 37, [35], [12] adopt exter-
nal human pose or linguistic knowledge or both to help
HOTI detection, our method outperforms them by a large
margin especially on Full and Non-Rare set. In addition,
compared to recently proposed global-context-aware meth-
ods [13], 16, 17, 15, 49], our method outperforms them on
all subsets.

However, we only achieve competitive performance on
APrsolle of V-COCO and Rare set of HICO-DET compaerd
to IDN. Considering V-COCO is a smaller dataset than
HICO-DET and Rare set of HICO-DET only has a few
samples for each category, it means that our method needs
relatively more samples to train a powerful model.



To show the adaptability of different datasets, we also
test our method on HOI-A dataset. As is shown in Tab.
we achieve 3.33 mAP improvement compared to state-of-
the-art PPDM. The result shows that our method can be
applied to a variety of scenarios with Human-Object In-
teractions.

Following InteractNet [8], we also report Role AP for
each interaction category and Average Role AP of all cat-
egories on V-COCO [27]. The result is shown in Tab.
Our result outperforms result reported in [§] by a large
margin. Besides, through column 2-3 and column 4-5 we
find that our method get 8.14% and 7.09% Average Role
AP improvement on scenario_l and scenario_2 when us-
ing ground truth (GT) human/object boxes instead of hu-
man/object boxes detected by Faster R-CNN. Thus, HOI
detection with our framework could be further promoted
once a better detector is adopted.

scenario_1 scenario_2

action Detector GT |Detector GT

hold-obj 36.52 41.83| 55.20 62.21
sit-instr 29.25 40.25| 55.58 63.93
ride-instr 71.86 79.41| 77.68 83.42
look-obj 38.82  40.23| 51.59 53.64
hit-instr 77.11  83.80| 83.37 91.07
hit-obj 49.24 55.27| 56.31 60.49
eat-obj 43.80 50.49| 70.35 70.26
eat-instr 6.68 13.22| 29.31 32.50
jump-instr 56.97 60.85| 60.08 61.33
lay-instr 32.44 50.59| 40.07 55.64
talk_on_phone-instr 58.77 7820 66.05 90.66
carry-obj 39.24  41.72| 43.58 45.75
throw-obj 49.60 51.13| 53.82 55.60
catch-obj 46.74 46.22| 57.19 57.21
cut-instr 47.70 66.52| 55.39 75.36
cut-obj 39.96 43.83| 54.21 59.43
work_on_computer-instr| 63.75 73.79| 70.51 79.67
ski-instr 52.76 68.56| 65.57 80.27
surf-instr 81.31 89.90| 84.90 93.44
skateboard-instr 89.27 93.65| 92.89 96.71
drink-instr 34.91 43.19| 37.10 43.19
kick-obj 75.98 76.14] 85.39 85.30
read-obj 37.64 57.31| 49.69 62.10
snowboard-instr 79.84 89.32| 86.11 93.02
Average Role AP 51.67 59.81| 61.75 68.84

Table 4: Results of each verb category on V-COCO test set. We
report the result on scenario_1, and scenario_2. “Detector” means
using detected human/object boxes. GT means using ground truth
human/object boxes.

4.4. Ablation Study

RGBM Generator In Tab. we conduct an abla-
tion study to show the effectiveness of RGBM genera-
tor. “RGB” represents not indicating actor position at
all. “RGB +255” represents indicating actor position by

Input Full Rare Non-Rare
RGB 21.88 16.84 23.39
RGB+255 24.51 18.77 26.23
RGBM 26.18 19.88 29.06

(a) Effectiveness of RGBM Generator. We try different inputs of
verb prediction network (Fig. ) “RGB” means using the orig-
inal image as input. “RGB+255” means add 255 to the intensity
of pixels that lie inside actor bounding box. “RGBM” means
using proposed RGBM data as input.

Actor-Branch
Baseline | Train  Test Full Rare Non-Rare
v 25.60 18.48 27.73
v v 26.44 18.97 28.68
v v v 27.39 21.34 29.20

(b) Impact of Actor Branch. The Baseline only uses Object Branch
for training and testing. Then we add Actor Branch during training
procedure and further fuse prediction of Actor Branch and Object
Branch when testing. The results indicate that just learning with
Actor Branch could promote the performance. Fusing prediction of
both branches could bring further improvement.

Baseline AT Ot Full Rare  Non-Rare
v 26.92 21.18 28.64
v v 27.33 21.33 29.13
v v 27.39 21.34 29.20
v v v 27.07 20.42 29.07

(c) Effectiveness of Additional Category. Baseline uses the original
verb categories as supervision for both branches. AT and Ot means
adding w/o-interaction category as supervision to Actor Branch and
Object Branch respectively. We achieve best improvement when just
adding w/o-interaction category to Object Branch.

Hanning Weight Scale Weight | Full Rare Non-Rare
25.30 18.41  27.36
v 25.61 19.36  27.53
v 25.45 19.10 2741
v v 25.83 19.79  27.60

(d) Effectiveness of Weighted Cross Entropy Loss. Standard binary
cross entropy loss is used by default. We show the results when
using Hanning Weight and Scale Weight alone as well as using both
together. It’s obvious that both loss weights could help to improve
performance and the performance could be further improved when
they are used together.

Methods Backbone Full Rare Non-Rare
VCL [9] Res-50 23.63 17.21 25.55
PastaNet [34] Res-50 22.65 21.17  23.09
Ours Res-50 24.58 17.71 26.63
PPDM [I5] DLA34 20.29 13.06 22.45
Ours DLA34 26.18 19.88 29.06
Ours HRNet-W32 | 27.39 21.34  29.20

(e) Results on different backbones. Our method outperforms existing
methods when using the same backbone. We achieves best results
when using HRNet-W32.

Table 5: Ablation studies on HICO-DET.
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Figure 5: Visualization comparison results of our method and PPDM [I5] and VCL [9] on some complex scenes from HICO-DET and V-COCO
datasets. From top to bottom: The results of PPDM and VCL, our detection result, ground truth, and object scoremap predicted by our
Object Branch. Clearly, in each specific HOI detection, high scores would be regressed for the human and its interacted objects. Thus, our
approach obtains better performance on these complex cases, which validates the effectiveness of our framework to handle ambiguity issues.

changing image structure of “RGB” channels. “RGBM”
represents indicating actor position in the additional chan-
nel as proposed in the section of METHODOLOGY. We
see a successive improvement from Line 1 to Line 3. This
proves that “RGBM?” is an effective way to guide interac-
tion reasoning.

Actor Branch To validate the necessity of our Actor
Branch, we conduct an ablation study shown in Tab.
We start from a baseline without actor branch in the train-
ing and testing process, and obtains 25.60 mAP in full sub-
sets. While we add the actor branch on the training pro-
cedure and testing procedure, the performance obtains an
improvement with 0.84 and 1.79 respectively. This proves
that Actor Branch can guide the Object Branch to learn
better. And directly fusing prediction of Actor Branch and
Object Branch can further improve performance.
Additional Category We further evaluate the effective-
ness of the additional category, i.e., w/o-interaction cate-
gory. This category is considered to add an explicit back-
ground category to split the interaction verb scores and
non-interaction verb scores(though Non-interaction cate-
gory is included in HICO-DET, it means that no interac-
tion appears on the image). We add it to Actor Branch
and Object Branch successively and obtains a slight im-
provement of 0.39 and 0.47. But when both branches are
added simultaneously, the performance achieves a bit lower
due to the difficult joint optimization of both branches.
Weighted Cross Entropy Loss The proposed weighted

cross entropy loss consists of two types of weights, i.e.,
Hanning Weight, and Scale Weight. To validate their
effectiveness, we conduct an ablation study as shown in
Tab. We can see both loss weights could help to im-
prove performance and the performance could be further
improved when they are used together.

Backbone To further verify the robustness of the pro-
posed framework, we conduct experiments as shown in
Tab. to compare with existing CNN-Based methods
when using different backbones. We compare with VCL [9],
PastaNet [34] and PPDM. VCL and PastaNet are both
crop-based methods. Besides, PastaNet uses human pose
and linguistic knowledge to guide interaction prediction.
PPDM is one of the first methods that use non-crop fea-
tures to predict interactions.

Results in line 1-3 and line 4-6 show that our method
brings significant improvements when using the same back-
bone (no matter Res50 or DLA34), except for on Rare set
compared to PastaNet (which is with the help of the ex-
ternal knowledge for improving the performance on Rare
set). We further achieve state-of-the-art results when using
HRNet-W32 (line 5). The results show the adaptability of
our framework to different backbones.

4.5. Analysis and Discussion

Results on simple and complex subsets To evaluate
the robustness of our proposed idea for data with differ-
ent complexity, we split the HICO-DET into four subsets



SH-SO MH-SO SH-MO MH-MO
PPDM | 29.03(15%1) 17.17(44%17) 15.94(55%1) 13.06(41%1)
VCL | 24.78(34%1) 17.14(45%7) 15.04(64%1) 11.23(64%1)
OURS 33.27 24.80 24.70 18.47

(a) The results (mAP) on subsets of HICO-DET. (*%7) denotes the increasing percentage

we achieve compared to PPDM and VCL.

percentage of improvement

Ours vs PPDM
Ours vs VCL

60

40 |

20 |

0 SH-SO MH-SO SH-MO MH-MO
subset

(b) The visualization version of results reported in the above Table. From this figure we can
intuitively observe that improvements achieved by our framework of complex subsets (MH-
SO, SH-MO, MH-MO) are higher than the simple one (SH-SO).

Table 6: Results on different subsets. These subsets are generated according to the number of annotated persons and objects in the image,
i.e., single-human & single-object(SH-SO), multi-human & single-object(MH-SO), single-human & multi-object(SH-MO) and multi-human
& multi-object(MH-MO). Our method obtains consistent improvement on all subsets and is especially more robust in complex scenes.

‘Ride’ scoremaps of Object Branch for different actors

Figure 6: The heatmap results of Object Branch for different actors
in the same image. Boxes with different colors mean different de-
tected persons. When different individuals serve as the actor, the
resulting heatmaps are shown where the colored arrows point. It
has been observed that our model has the ability to localize the cor-
responding interacting regions for each actor accurately in complex
scenes with multiple interactions.

according to the number of annotated persons and ob-
jects, i.e., multi-human & multi-object(MH-MO), single-
human & multi-object(SH-MO), multi-human & single-

object(MH-SO) and single-human & single-object(SH-SO).
We compare our proposed framework with PPDM and
VCL on these four subsets in Tab. [6] Results intuitively
show that our method consistently obtains better perfor-
mance on all four subsets. Especially for complex data (SH-
MO, MH-SO, MH-MO), our method achieves more im-
provement. That is, our method is consistent effective and
more suitable for complex scenes.

Qualitative Result Some qualitative results compared
with PPDM and VCL in shown in Fig. We select sev-
eral images in the HICO-DET and V-COCO datasets to
show the ability of our proposed framework of addressing
the multiple interaction occurrence issues. These cases are
quite complex and easy to cause ambiguities for crop-based
method, and highly-coupled approach. As illustrated in
Fig. o] our approach handles the complex crowded scenes,
which are failed by the two other approaches. And the
Object Scoremap shown in the last row further validates
the effectiveness of our model to capture the interactions
between actor and objects.

Moreover, we also illustrate the heatmap results of the
Object Branch for different actors in the same image as
shown in Fig. [} The high consistency between actors and
object regions demonstrates that our approach has a pow-
erful ability to disambiguate multiple complex interactions
in the same image.



5.

Conclusion

In this paper, we have developed an effective actor-

centric approach for human-object interaction detection.
Our approach formulates the task as a pixel-wise predic-
tion problem, and learns non-local features by introducing
binary masks of persons. The relationship between one
person and multiple objects of the entire image has been
explored to promote the interaction reasoning in a uni-
fied framework. For enhancing the learning effect under
the proposed framework, we further introduce a Weighted
Cross Entropy Loss consisting of Hanning weight and Scale

weight.

Experimental results have shown that our ap-

proach achieves state-of-the-art performance in both HICO
DET and V-COCO datasets, especially on complex images
with multiple persons/objects.
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