
Video Prediction by Efficient Transformers
Xi Yea,∗,, Guillaume-Alexandre Bilodeaua,

aLITIV Lab, Polytechnique Montréal, P.O. Box 6079, Station centre-ville, Montreal, H3C3A7, QC, Canada

ART ICLE INFO

Keywords:
Video prediction
Transformers
Video representation learning
Autoregressive generative models
Non-autoregressive generative models

ABSTRACT

Video prediction is a challenging computer vision task that has a wide range of applications. In
this work, we present a new family of Transformer-based models for video prediction. Firstly, an
efficient local spatial-temporal separation attention mechanism is proposed to reduce the complexity
of standard Transformers. Then, a full autoregressive model, a partial autoregressive model and a non-
autoregressive model are developed based on the new efficient Transformer. The partial autoregressive
model has a similar performance with the full autoregressive model but a faster inference speed. The
non-autoregressive model not only achieves a faster inference speed but also mitigates the quality
degradation problem of the autoregressive counterparts, but it requires additional parameters and loss
function for learning. Given the same attention mechanism, we conducted a comprehensive study to
compare the proposed three video prediction variants. Experiments show that the proposed video
prediction models are competitive with more complex state-of-the-art convolutional-LSTM based
models. The source code is available at https://github.com/XiYe20/VPTR.

1. Introduction
Video future frames prediction (VFFP) can be applied to

many application areas, for example, autonomous vehicles
to predict future traffic outcomes [1], anomaly detection [2]
and model-based reinforcement learning [3] to predict users
motion. Besides, VFFP is naturally a good self-supervised
learning task, and it has drawn much attention in recent
years [4, 5]. Indeed, we can train VFFP models to learn
good spatio-temporal representations from a large amount
of unlabeled videos, and then apply it for many downstream
tasks.

In this paper, we focus on the most common video
prediction task, i.e. predicting N future frames given L
past frames, with L and N being greater than 1. From the
perspective of learning a deep neural networks for VFFP, we
can formalize the task to be

argmax
�
p(x̂L+N , ..., x̂L+1|xL, ..., x1; �), (1)

where xt and x̂t denote the input past frames and predicted
future frames respectively, � denotes the parameters of the
neural networks.

Benefiting from the advances in deep learning, the per-
formance of VFFP models is constantly improving. Par-
ticularly, the efficient and powerful Convolutional Long
Short-Term Memory networks (ConvLSTMs) are the core
for almost all the state-of-the-art (SOTA) VFFP models.
Nevertheless, ConvLSTMs suffer from some inherent prob-
lems typical of recurrent neural networks (RNNs), including
slow training and inference speed, error accumulation during
inference, vanishing gradient, and predicted frame quality
degradation. Researchers keep improving the performance

∗Corresponding author
xi.ye@polymtl.ca (X. Ye); gabilodeau@polymtl.ca (G. Bilodeau)
(X. Ye); (G. Bilodeau)

ORCID(s): 0000-0002-1763-6019 (X. Ye); 0000-0003-3227-5060 (G.
Bilodeau)

by developing more and more sophisticated ConvLSTM-
based models. For instance, by integrating custom motion-
aware units into ConvLSTM [6], or building complex mem-
ory modules to store the motion context [7]. Still, VFFP is a
challenging task which is far from being solved.

Meanwhile, the Transformer [8] overcomes most of
the aforementioned drawbacks of RNNs and made break-
throughs for natural language processing (NLP). Inspired
by this, more and more researchers are starting to adapt the
Transformer for various computer vision tasks [9, 10, 11],
including few recent works for VFFP [12, 13, 14]. However,
the Transformer was originally designed for sequence data
processing. Given a sequence of elements with length L
and feature dimensionality dmodel, a dot product attention-
based Transformer has a complexity of (L2dmodel). So
it is computationally expensive to apply a Transformer to
high dimensional visual features. For example, considering
a spatiotemporal feature Z ∈ RT×H×W ×dmodel , where
T ,H,W denote the time duration, spatial height and spatial
width respectively, we need to flatten it to be a sequence
Z ∈ R(T ⋅H ⋅W)×dmodel with length T ⋅ H ⋅ W along the
spatial and temporal dimensions for a standard Transformer.
The complexity is therefore ((THW)2dmodel). We still
need further research about more efficient and compact
visual Transformer, especially for videos. Therefore, we
propose a novel efficient Transformer block with smaller
complexity, named VidHRFormer, and we developed a new
video prediction Transformer (VPTR) based on it.

Among the Transformer-based VFFP models [12, 13,
14] that we mentioned earlier, some of them are autoregres-
sive models while some others are non-autoregressive mod-
els, and they are based on different attention mechanisms,
e.g. a custom convolution multi-head attention (MHA) [12]
and standard dot-product MHA [13, 14]. There is no formal
comparison of the two typical approaches (autoregressive vs
non-autoregressive) in the case of Transformer-based VFFP
models so far. Thus, we developed a non-autoregressive

Ye, Bilodeau: Preprint Page 1 of 12

ar
X

iv
:2

21
2.

06
02

6v
1

 [
cs

.C
V

]
 1

2
D

ec
 2

02
2

Video Prediction by Efficient Transformers

VPTR model (VPTR-NAR), two autoregressive VPTR vari-
ants, i.e., the fully autoregressive VPTR model (VPTR-PAR)
and the partial autoregressive VPTR model (VPTR-FAR).
All VPTR variants share the same attention mechanism and
same number of Transformer block layers, which guarantees
a fair comparison between the two approaches.

Our main contributions are summarized as:
1) We proposed a new efficient Transformer block,

VidHRFormer, for spatio-temporal feature learning by com-
bining spatial local attention and temporal attention in two
steps. The new Transformer block successfully reduces the
complexity of a standard Transformer block with respect
to the same input spatio-temporal feature size, specifically,
from ((THW)2dmodel) to ((H

2W 2

P 2 + T 2)dmodel).
2) Based on this Transformer block, three VPTRmodels,

VPTR-NAR, VPTR-FAR and VPTR-PAR, were developed.
We show that the proposed simple attention-based VPTRs
are capable of reaching and outperforming more complex
SOTA ConvLSTM-based VFFP models.

3) A formal comparison of three VPTR variants was
conducted. The results show that VPTR-NAR has a faster
inference speed and smaller accumulation of errors during
inference, but it is more difficult to train. We solved the
training problem of VPTR-NAR by employing a contrastive
feature loss that maximizes the mutual information of pre-
dicted and ground-truth future frame features.

4) We found that given the same number of Trans-
former block layers, VPTR-FAR and VPTR-PAR have a
worse generalization performance due to the accumulated
inference errors, which are introduced by the discrepancy
between train and test behaviors. Finally, we compared two
different inferencemethods for VPTR-FAR andVPTR-PAR,
the results show that recurrent inference over pixel space in-
troduces less accumulation of errors than recurrent inference
over latent space in the case of VPTR-FAR.

This paper is an extension of the work in [15]. We
present a new VPTR-PAR variant and we fully analyze
auto-regressive vs non-auto-regressive models for our new
VidHRFormer.

2. Related work
2.1. Video future frames prediction

Almost all the deep learning-based VFFP models take
an encoder to extract the representations of past frames, and
then a decoder generates future frame pixels based on those
representations. Here, we propose our own taxonomy for
VFFP models, which is derived from the different encoding
and decoding mechanisms.

Non-decomposing and Decomposing models. Most
VFFPmodels are equipped with an encoder which generates
frame-level features. they are classified as non-decomposing
models since they assume that the encoders implicitly extract
all the necessary information for the prediction of future
frames [16, 17, 18, 19, 20]. However, some other VFFP
models explicitly decompose the frame visual features, e.g.
content and motion, which aims to reduce the difficulty of

prediction by introducing more prior knowledge [21, 22, 23,
24, 25]. There are other decomposing methods, including
object keypoint skeleton and appearance decomposition [26,
27], object-centric decomposition [28, 29, 30].

Sequentially-generated andParallelly-generatedmod-
els. The majority of VFFP models rely on the flexible
RNNs for temporal information modeling, which predict
future frames recursively.We call these models sequentially-
generated models [18, 19, 31, 20, 32]. In contrast, some
models take advantage of standard CNNs or 3D-CNNs
as the backbones, without the use of RNNs, and generate
multiple future frames simultaneously (that is in parallel)
[33, 34, 35, 36].

Pixel-direct generation and Transformation-based
models. Some VFFP models use decoders to directly syn-
thesize the pixels of future frames based on past frame
representations [37, 22, 32, 26, 21], while some othermodels
have no such decoder and generate the future frames by
applying spatial transformation operation on the past frames,
like warping [30, 38, 21].

Deterministic and Stochastic models. The future pre-
diction is by nature multimodal [39], i.e. stochastic, even
though we are given multiple past frames as context. How-
ever, it is difficult to model the stochasticity of the future
and thus most VFFP models ignore it, even though it affects
the predicted image quality [16, 36, 37]. Stochastic models
normally make uncertainty estimation based on VAE or
GAN, such as stochastic variational video prediction (SV2P)
model [19], stochastic video generation with a learned prior
(SVG-LP) [20], and improved conditional variational RNNs
(VRNNs) [31].

Note that the categories described above are notmutually
exclusive as a model can be a combination of arbitrary
different encoders and decoders. For example, our proposed
VPTRbelongs to the deterministic, non-decomposing, pixel-
direct generated model categories. The VPTR-NAR variant
is considered to be a parallelly-generated model, while
VPTR-PAR andVPTR-FARvariants are sequentially-generated
models.

Recently, many work achieve SOTA performance by in-
tegrating attention mechanism or memory augmented mod-
ules in the ConvLSTMmodels for a better long-term motion
information learning [40, 7, 6]. For example, LMC-Memory
model [7] stores the long-term motion context by a novel
memory alignment learning, and the motion information
is recalled during test to facilitate the long-term predic-
tion. Specifically, LMC-Memory takes the difference image
between adjacent frames as motion information, same as
MCnet [21], to learn the long-term motion context embed-
dings as an external memory during training. During test,
the recalled motion context memory feature is concatenated
with spatial feature of current time step to predict the next
frame. VPEG [40] shares a similar idea with LMC-Memory.
VPEG also learns a pool of motion features, which are called
examples, of the whole dataset, but VPEG aims to approxi-
mate the stochastic predictions by those examples and thus

Ye, Bilodeau: Preprint Page 2 of 12

Video Prediction by Efficient Transformers

bypassing the variational inference of other aforementioned
stochastic video prediction models.

Zhang et al. [6] proposed an attention-based motion-
aware unit (MAU) to increase the temporal receptive field
of RNNs. The proposed MAU is composed of an attention
module and a fusion module, where the attention module
considers the correlation between the current step features
and different history states within a temporal receptive field
as an attention score, and the fusion module is responsible
to aggregate those features. In this way, the MAU is able
to capture better motion information and receive a broader
temporal receptive field than the vanilla ConvLSTMs. How-
ever, those attention or memory augmented ConvLSTM
architectures tend to be complex and it is hard to under-
stand and follow the spatio-temporal information flow in
the network. In this paper, we demonstrate that a highly
modulated customTransformer block is capable of capturing
good spatio-temporal information for video prediction with
a simpler network architecture.

2.2. Transformers in computer vision
The architecture of the proposed VPTR-NARmodel fol-

lows the architecture of Detection Transformer (DETR) [41],
which relaxes the dependence on complex region proposal
and non-maximal suppression in object detection by using
Transformers. DETR follows the classical neural machine
translation (NMT) Transformer architecture. The 2D image
features extracted by a CNN are flattened into a sequence
and fed into a standard Transformer encoder. The output
features of the Transformer encoder, normally referred as
memories, together with some learned object queries are fed
into a Transformer decoder. The decoder output features,
corresponding to each object query, are considered as the
representation of each potential object, and finally a small
feed forward neural network is used to do the classification
or bounding box detection based on the extracted potential
object features.

Efficient visual Transformers. The bottleneck of a ba-
sic Transformer comes from the quadratic complexity of the
attention score calculation. There are mainly two types of
models to reduce the computation cost for visual Transform-
ers. The first class of models reduces the flattened sequence
length by different methods. ViT andmany successive works
[9, 42, 11] divide high resolution input into local patches, 2D
or 3D, and then concatenate along the channel dimension to
tokenize the patch. Pooling can be an alternative to sequence
length reduction [43]. The second class of models introduces
sparse attention to reduce the complexity, e.g. restricting the
attention over a local region [44, 45, 46], or decomposing the
global attention into a series of axial-attention [47, 48, 11].
HRFormer [46] is an example of local region attention-based
Transformer, which is designed for image classification and
dense prediction. Essentially, HRFormer replaces the con-
volution layers of HRNet [49] by self-attention. The multi-
resolution parallel architecture is the same as HRNet.

Our VidHRFormer block is inspired by the HRFormer
block. Specifically, a HRFormer block is composed by a

local-window multi-head self attention layer and a depth-
wise convolution feed-forward network. The input feature
maps Z ∈ ℝH×W ×C is firstly evenly divided into P non-
overlapping local patches, each patch is Zp ∈ ℝ

H
P ×W

P ×C .
Then a multi-head self-attention is performed for each patch.
Finally, the depth-wise convolution is used to exchange
information of different local patches. HRFormer is similar
to the Swin Transformer [45]. The Swin Transformer takes
a cyclic shift window partitioning procedure instead of a
depth-wise convolution layer to exchange the information of
local patches.

2.3. Transformers for VFFP
A recent ConvTransformer [12] model follows the archi-

tecture of DETR [50], which also inspired the development
of our VPTR-NAR. Despite the similarities, our VPTR-
NAR is different from ConvTransformer with respect to the
fundamental attention mechanism. Specifically, ConvTrans-
former proposed a custom hybrid multi-head attention mod-
ule that replaces both the linear projection and dot-product
attention operation by a convolution, but our VPTR-NAR
uses the standard multi-head attention module. The Con-
vTransformer attention map calculation has a complexity
of (HW Tk2cd

2
model), where kc is the size of convolu-

tional kernels. Given our experimental configurations, i.e.,
H = 8 , W = 8, P = 4, T = 20, and dmodel =
512, our efficient Transformer block (with a complexity of
((H

2W 2

P 2 + T 2)dmodel)) is more efficient. Another more
recent VideoGPT [13] model is capable of both single image
animation and VFFP. VideoGPT takes a 3D CNN as back-
bone to encode video clips into spatial-temporal features,
which are then flattened to be a sequence to train a standard
Transformer with the GPT manner. VideoGPT shares a
similar architecture and train/test behaviours as our VPTR-
FAR, as both of them fully decompose a joint distribution
into a product of conditional distribution, like GPT. But
VideoGPT performs the attention along spatial and temporal
jointly while our VPTR-FAR performs the attention along
spatial and temporal separately with a smaller computational
complexity. More importantly, VideoGPT takes a 3D CNN
to downsample the time dimension of input videos to fa-
cilitate the temporal information modeling. In our case, we
do not downsample. Our VPTR models solely depend on
attention for a full temporal information modeling, without
downsampling and loss of information. Besides, VideoGPT
is a stochastic model based on VQ-VAE [51], instead of
a deterministic model as our VPTR. Another recent work
NÜWA [14] shares a similar idea as VideoGPT.

3. The proposed VPTR models
3.1. Overall framework of VPTR

Our overall video prediction framework is illustrated in
Fig. 1. It consists of an autoencoder and the VPTR module
itself. Specifically, a CNN encoder shared by all the past
frames extracts the visual features of each frame, then a
VPTR, based on VidHRFormer blocks, is applied to predict

Ye, Bilodeau: Preprint Page 3 of 12

Video Prediction by Efficient Transformers

the visual features of each future frame based on the past
frame features. Finally, we reconstruct the pixels of each
future frame with the CNN decoder. The detail architectures
of the autoencoder and three different VPTR variants are
described in the following subsections.

In contrast to most ConvLSTM-based models, here we
disentangle the visual feature extraction and the prediction
process, similar to VideoGPT [13] and VPEG [40]. The
benefit of the disentanglement is that we are able to derive
the explicit representations of the input past video clips,
and use them for downstream tasks, like action recognition,
early action prediction etc. In other words, because of the
disentanglement, it is easier to extend VPTR to solve self-
supervised learning tasks, in contrast to most ConvLSTM-
based models, especially in the case of the Transformation-
based models, due to the lack of explicit representations. We
naturally introduce a two-stages training strategy because of
the feature extraction and prediction disentanglement, which
increases the flexibility and reduces the learning burden
of VPTR. For simplicity, Fig. 1 only shows the inference
behavior, the two-stages training strategy is described in
detail at the end of this section.

Encoder

Decoder

VPTR

Past frames

Future frames

Past frame features

Future frame features

Figure 1: Overall framework of the proposed VFFP model.
VPTR predicts over latent feature space.

3.2. Encoder and decoder
We adapted the ResNet-based autoencoder from the

Pix2Pix model [52]. In order to match with the VPTR
model feature dimensionality dmodel, the only modification
is that we change the encoder output feature channels and
decoder input feature channels to be of size dmodel. The
reason to use Pix2Pix autoencoder is that there are no skip
connections between the encoder and decoder. Normally,
the encoder-decoder skip connections are good for a higher
reconstruction image quality, like the famous U-Net archi-
tecture [53]. However, it is incompatible with our strategy
of disentangling feature extraction and prediction. We chose
this strategy because we hypothesize that the learned visual
features by the encoder will include all the information of
the input and thus would be better for future self-supervised
learning tasks, while skip connections would enable some
information to bypass the bottleneck encodings. More im-
portantly, we aim to predict future frames instead of simply
reconstructing past frames. The encoder-decoder skip con-
nections from past frame features to future frame features
make the two-stages training impractical because future
image transformations tend to be ignored and predictions

are not learned. Training jointly does not solve this problem.
This was confirmed by preliminary experiments. We failed
to conduct a successful joint training of the Transformer and
the autoencoder.

The loss function to train the encoder and decoder in-
cludes three terms and is given by,

rec = 2(X, X̂) + gdl(X, X̂)
+ �1 argmin

G
max
D

GAN (G,D), (2)

where 2 denotes the MSE loss (Eq. 3), gdl denotes image
gradient difference loss [33] (Eq. 4) and GAN denotes the
GAN loss (Eq. 5). Both gdl and GAN are utilized to
learn the details in the images and thus provide a higher
visual quality. X and X̂ denote the original frames and
reconstructed frames respectively, xi denotes a single frame,
�1 and � are hyperparameters. In Eq. 5,D denotes a discrim-
inator, which is not shown in Fig. 1, and the combination of
the encoder and decoder is considered to be a generator G.
We train GAN with the PatchGAN [52] manner.

2(X, X̂) =
n
∑

i=1
‖xi − x̂i‖22 (3)

gdl(X, X̂) =
n
∑

i=1

∑

i,j

|

|

|

|xi,j −xi−1,j|− |x̂i,j − x̂i−1,j|
|

|

|

�

+ |

|

|

|xi,j−1 − xi,j| − |x̂i,j−1 − x̂i,j|
|

|

|

�
(4)

GAN (G,D) = EX[logD(X)]+EX̂[log(1−D(G(X))] (5)

3.3. VidHRFormer Block
In order to reduce the complexity of a standard Trans-

former and to make it practical for high-dimensional video
representation learning, our solution is to apply attention
only over local spatial patch and separate the spatial and
temporal attention. The proposed new video representa-
tion learning Transformer block is named as VidHRFormer
block, see the blue area of Fig. 3a for the detail architecture.
Essentially, we extend the HRFormer block [46] by integrat-
ing a temporal multi-head attention layer, together with some
other necessary feed-forward and normalization layers.

Local spatial multi-head self-attention (MHSA).Con-
sidering a batch of video featuremapsZ ∈ ℝN×T×H×W ×dmodel ,
the local spatial MHSA is shared by frames at different time
steps. So Z is firstly reshaped and evenly divided into P =
HW
K2 local patches {Z1, Z2, ..., ZP } along theH andW di-
mensions, where each local patch is of sizeK ×K , therefore
Zp ∈ ℝ(NT)×K2×dmodel . The multi-head self-attention is for-
mulated asMHSA(Zp) = Concat[ℎead(Zp)1, ..., ℎead(Zp)ℎ],
where Concat denotes the concatenation operation and
ℎead(Zp)i ∈ ℝK2× dmodel

ℎ is calculated by

ℎead(Zp)i = softmax[
((ZQ

p W
Q
i)(ZK

p W
K
i)

√

dmodel∕ℎ
]ZpW V

i , (6)

Ye, Bilodeau: Preprint Page 4 of 12

Video Prediction by Efficient Transformers

whereW Q
i ,W K

i ,W V
i are linear projection matrices for the

query, key and value of each head i respectively, ZQ
p and

ZK
p denote the key and query for attention. The complexity

of local spatial MHSA is (H
2W 2

P 2 dmodel).
Another critical component for a Transformer is the po-

sitional encoding, which enables the Transformer to output
different representation of the same input element given
different context. Both fixed absolute 2D positional encoding
[41] and relative positional encoding (RPE) [54] are good
candidates for the local patch to get ZQ

p and ZK
p . These two

different positional encodings are compared in the experi-
ments.

Convolutional feed-forward neural network (Conv
FFN). Conv FFN is also shared by frames at different
time step of the video. The outputs of the local spatial
MHSA, {Z1, Z2, ..., ZP } are assembled back to be Z ∈
ℝ(NT)×H×W ×dmodel . The Conv FFN layer includes a 3 × 3
depth-wise convolution and two point-wise MLPs. Different
from the the original HRFormer block, all the normalization
layers in Conv FFN are layer normalization, instead of batch
normalization.

Temporal MHSA. A temporal MHSA is placed on top
of the previously described local spatial MHSA and Conv
FFN to model the temporal dependency between frames.
It is shared by features across different spatial locations. In
other words, the input feature map Z ∈ ℝ(NT)×H×W ×dmodel

is reshaped to be Z ∈ ℝ(NHW)×T×dmodel . The temporal
MHSA uses the same standard multi-head self-attention as
the local spatial MHSA and thus the complexity of temporal
MHSA is (T 2dmodel). However, here, for simplicity, we
selected a fixed absolute 1D positional encoding for the time
steps. Same as the standard Transformer, we place a MLP
feed-forward neural network after the temporal MHSA. Fi-
nally, the output feature map is reshaped back to be Z ∈
ℝN×T×H×W ×dmodel to be used by the next VidHRFormer
layer.

10 20 30 40 50 60
Height/width of input feature

0

2

4

6

GF
LO

Ps

1e6
VidHRFormer
Vanilla Transformer

Figure 2: GFLOPs comparison of a VidHRFormer block and a
vanilla Transformer block.

To sum up, the total complexity of VidHRFormer block
is the combination of spatial local window MHSA com-
plexity and temporal MHSA complexity, i.e., ((H

2W 2

P 2 +
T 2)dmodel). This results in a better efficiency as compared to
a standard Transformer that as a complexity of((THW)2dmodel).
For a better demonstration that the proposed VidHRFormer
block is much more efficient than a vanilla Transformer
block, we plotted the GFLOPs curves w.r.t an increasingH
orW (T is fixed) in Figure 2. As the height or width of the
input feature increases, the GFLOPs of a vanilla Transformer
quickly increase and makes it infeasible for application. We
would observe a similar phenomenon if we fix theH /W and
vary the video feature length T .

In the following sections, we describe three different
VPTR models that are based on the VidHRFormer block.

3.4. VPTR-FAR (fully autoregressive)
Together with a well-trained CNN autoencoder, the

VPTR-FAR parameterizes the following distribution:

p(x1, ..., xL, ..., xL+N) =
L+N
∏

t=1
p(xt|xt−1, ...x1) (7)

In other words, VPTR-FAR predicts the next frame
conditioned on all previous frames. This is themost common
paradigm for most SOTA VFFP models. To enforce the
causal relationship between the next frame and previous
frames, an attention mask is applied to the temporal MHSA
module. The fully autoregressive VPTR model is simply
composed of a stack of multiple VidHRFormer blocks, see
Fig. 3a.

For training, we feed the ground-truth frame feature
sequence {z1, ..., zL+N−1} generated by the encoder into
VPTR-FAR, which then predicts the future feature se-
quence {ẑ2, ..., ẑL+N} for the decoder to generate frames
{x̂2, ..., x̂L+N}. We define the training loss of VPTR-FAR
as follows (see Eq. 3 and 4):

FAR =
L+N
∑

t=2
2(xt, x̂t) +

L+N
∑

t=2
gdl(xt, x̂t) (8)

For test, given the ground-truth feature sequence {z1, ..., zL}
of all past frames, there are two different options for the
recurrent prediction of the future frames. The first one is
only taking the VPTR module to recurrently predicting all
the future frame features, i.e. ẑt =  (z1, ..., zt−1), t ∈
[L+1, ...L+N], where  denotes the VPTR-FAR module.
Then we get x̂t = Dec(ẑt), t ∈ [L + 1, ...L + N], where
Dec denotes the CNN frame decoder. The second option
includes two additional steps. We firstly decode one future
feature to be frame x̂t, and then encode the frame back
into a latent feature before the prediction of next future
frame feature, i.e., ẑt = Enc(Dec( (z1, ..., zt−1))), t ∈
[L+1, ...L+N], whereEnc denotes the CNN frame encoder.
The second method significantly reduces the accumulated
test error during inference, and we analyze the reasons in
the experiments section.

Ye, Bilodeau: Preprint Page 5 of 12

Video Prediction by Efficient Transformers

Layer Norm

Local spatial
MHSA

Conv FFN

Temporal MHSA

Layer Norm

Layer Norm

Layer Norm
MLP FFN

N×

1D PE

2D PE

…

…

𝑧" 𝑧# 𝑧$%&'# 𝑧$%&'"

𝑧̂# 𝑧̂(𝑧̂$%&'"𝑧̂$%&

(a)

Layer Norm

Conv FFN

Temporal MHSA

Layer Norm

Layer Norm

Layer Norm
MLP FFN

Nx

1D PE

2D PE

…

…

𝑧! 𝑧" 𝑧#$! 𝑧#

𝑒! 𝑒" 𝑒#$! 𝑒#

Layer Norm

Conv FFN

Temporal MHSA

Layer Norm

Layer Norm

Layer Norm
MLP FFN

1D PE

2D PE

…
𝑧# 𝑧#%! 𝑧#%&$" 𝑧#%&$!

Temporal MHA

Layer Norm

𝑄𝐾𝑉

Layer Norm
Conv FFN

…
𝑧̂#%!𝑧̂#%" 𝑧̂#%&$! 𝑧̂#%&

1D PE

Nx

TE

TD

Local spatial
MHSA

Local spatial
MHSA

(b)

Layer Norm

Conv FFN

Temporal MHSA

Layer Norm

Layer Norm

Layer Norm
MLP FFN

Nx

1D PE

2D PE

…

…

!! !" !#$! !#

"! "" "#$! "#

Layer Norm

Conv FFN

Temporal MHSA

Layer Norm

Layer Norm

Layer Norm
MLP FFN

1D PE

2D PE

…

Temporal MHA

Layer Norm

%&'

Layer Norm
Conv FFN

…
!̂#(!!̂#(" !̂#()$! !̂#()

1D PE

Nx

TE

TD

++' & %

+

$#(!$#(" $#()$!$#()

Local spatial
MHSA

Local spatial
MHSA

(c)

Figure 3: (a) VPTR-FAR. The blue area indicates the proposed basic VidHRFormer block. A temporal attention mask is applied
to the Temporal MHSA module for VPTR-FAR. (b) VPTR-PAR. There is an attention mask for the Temporal MHA layer of the
autoregressive Transformer decoder D. (c) VPTR-NAR. The Transformer decoder D is non-autoregressive.

3.5. VPTR-PAR (partially autoregressive)
The partially autoregressive variant is illustrated in Fig.

3b. It consists a Transformer encoder and decoder, where the
encoder E encodes all past frame features zt, t ∈ [1, L] to
be memories et, t ∈ [1, L]. The architecture of E , left part
of Fig. 3b, is the same as the VPTR-FAR, except that there is
no temporal attention mask for the temporal MHSAmodule.
The autoregressive Transformer decoder D of VPTR-PAR,
right part of Fig. 3b, includes two more layers compared
with E , a temporal multi-head attention (MHA) layer and
another output Conv FFN layer. The Temporal MHA layer is
also called the encoder-decoder attention layer, which takes
the memories as value and key, while the query is derived
from the {zL, ...zL+N−1}. A temporal attention mask is
applied to Temporal MHSA layer of D to achieve the
autoregressive modeling. Theoretically, VPTR-PAR models
the following distribution:

p(xL+N , ..., xL+1|xL, ..., x1) =
L+N
∏

t=L+1
p(xt|xt−1, ...xL+1, xL, ..., x1) (9)

Compared with VPTR-FAR, we only decompose the
probability distribution of future frames to be the product of
a series of conditional distributions, so this model is named
as partially autoregressive VPTR. During training, the frame
features {z1, ...zL+N−1} are divided into two parts, as shown
in Fig. 3b, and fed into E and D respectively. Following
the convention of NMT research, the input of E is called

source sequence, and input of D is called target sequence.
The training loss of VPTR-PAR is formulated as

PAR =
L+N
∑

t=L+1
2(xt, x̂t) +

L+N
∑

t=L+1
gdl(xt, x̂t), (10)

where gdl and 2 are defined in Eq. 4 and Eq. 3 respec-
tively.

Same as VPTR-FAR, we can use the same two different
recurrent inference methods for VPTR-PAR.

3.6. VPTR-NAR (non-autoregressive)
In order to reduce the predicted frames accumulated

error and increase the inference speed of the two autore-
gressive counterparts, we propose a non-autoregressive vari-
ant (VPTR-NAR), which is inspired by the achitecture of
DETR [41]. VPTR-NAR is illustrated in Fig. 3c. VPTR-
NAR shares the same E as VPTR-PAR, while the D
of them are slightly different. Firstly, target sequence for
D is substituted with zero [41], instead of {z1, ...zL+N−1}
generated by the CNN encoder, and a future frames query
sequence {qL+1, ..., qL+N} is fed into two different sublayers
of D, where qt ∈ ℝH×W ×C , t ∈ [L + 1, L + N]. The
future frame query sequence is randomly initialized and
updated during training. Secondly, there is no temporal at-
tentionmask for any temporal attention layer of VPTR-NAR,
because we do not need to impose conditional dependency
among each future frame query. Theoretically, VPTR-NAR
directly models the following conditional distribution:

p(xL+N , ..., xL+1|xL, ..., x1) (11)

Ye, Bilodeau: Preprint Page 6 of 12

Video Prediction by Efficient Transformers

Contrastive feature loss for VPTR-NAR. Unfortu-
nately, a combination loss of MSE and GDL, i.e.,  =
∑L+N
t=L+1 2(xt, x̂t) + gdl(xt, x̂t), is not enough to train

VPTR-NAR. Specifically, we observe that all the predicted
future frames of one video clip are somewhat similar to each
other when VPR-NAR is trained with the same loss function
as VPTR-FAR andVPTR-NAR, which indicates that VPTR-
NAR cannot learn good motion information in this case.
In NLP, a similar phenomenon is also observed for some
non-autoregressive NMT models, where the Transformer
decoder frequently generates repeated tokens [55]. This
is because autoregressive models make the estimation of
joint distribution to be tractable and thus they are easier
to train, even though slower. To deal with this problem, we
maximize the mutual information between predicted future
frame feature ẑt and the future frame feature zt (ground-
truth) generated by the CNN encoder by adapting another
contrastive feature loss c [56], where t ∈ [L + 1, L +N].
c is defined by

c(zt, ẑt) =
1
2

Sl
∑

s=1
lc(v̂s, vs, sg(v̄s))+lc(vs, v̂s, sg(̂̄vs)), (12)

where vs ∈ ℝdmodel denotes a feature vector at spatial
location s of zt, v̄s ∈ ℝ(Sl−1)×dmodel denotes the collection of
feature vectors at all other spatial locations of zt. v̂s and ̂̄vs
of ẑt are defined in the same way. The total number of spatial
locations in a feature map is Sl = H ×W , and sg is the stop
gradient operation. lc is the infoNCE-based contrastive loss
formulated as follows,

lc(v, v+, v−) =

− log
exp(s(v, v+))

exp(s(v, v+)) +
∑M
m=1 exp(s(v, v−))

. (13)

Similar to other contrastive learning objectives, (v, v+)
denotes a positive pair of examples and (v, v−) denotes
a negative pair of examples. In detail, v+ ∈ ℝdmodel is
the spatially-corresponding ground-truth feature vector of a
feature vector v ∈ ℝdmodel , while v− ∈ ℝM×dmodel denotes
theM other ground-truth feature vectors at different spatial
location. s(v1, v2) is the feature dot-product similarity op-
eration between feature vectors v1 and v2. We can finally
compose the loss function of VPTR-NAR as

NAR =
L+N
∑

t=L+1
2(xt, x̂t)+gdl(xt, x̂t)+�2c(zt, ẑt). (14)

Different from VPTR-FAR and VPTR-PAR, VPTR-
NAR predicts N future frames simultaneously instead of
recurrently. Besides, the testing behavior and training be-
havior of VPTR-NAR are the same. For the case that we
need to predict more than N future frames during test, we
can use VPTR-NAR as a block-wise autoregressive model,

i.e., taking theN predicted future frames as past frames and
feeding them back into the encoder for predicting the next
N future frames.

3.7. Training strategy
We divide the VFFP model training process into two

stages. In stage one, the VPTR module is ignored and we
only train the encoder and decoder as a normal autoencoder
with the loss function of Eq. 2, which aims to reconstruct
all the frames of the whole training set perfectly. In stage
two, we freeze the well-trained encoder and decoder and
only optimize the parameters of the VPTR module. VPTR-
FAR, VPTR-PAR and VPTR-NAR are trained with the loss
functions defined in Eq. 8, Eq. 10 and Eq. 14 respectively.
As we mentioned before, a two-stage training strategy is
naturally compatible with the disentanglement of feature
extraction and prediction process. Moreover, an end-to-end
training of Transformers and the CNN autoencoder is much
more difficult and it requires a much bigger memory for
computations. Besides, we observe that a final joint fine-
tuning of autoencoder and VPTR after two-stage training is
not beneficial. Furthermore, the two-stage training strategy
gives us a more flexible framework since we are allowed to
test different VPTR variants without repetitive training of the
encoder and decoder.

4. Experiments
4.1. Datasets and Metrics

The proposed VPTR models are evaluated over three
datasets: BAIR [57], KTH [58], and MovingMNIST [59].

BAIR showcases video clips of a randomlymoving robot
arm that pushes different objects on a table. The training and
testing sets of BAIR are predefined by the dataset authors.
The frame size of BAIR is 64 × 64. We normalize it for
training, but without any data augmentation.

KTH includes grayscale video clips of different human
actions. Following the experiments setup of previous work
[21, 16], the frames are center cropped to be square and
then resize to 64 × 64. Besides, frames without human are
removed based on the results of a person detector. Video
clips of persons 1-16 are used for training, and persons 17-25
are used for testing. The dataset pixels are normalized before
training. Random horizontal and vertical flips of each video
clip are utilized as data augmentation.

MovingMNIST is a synthetic dataset where twoMNIST
characters randomly move in a square. We utilize the same
MovingMNIST dataset as E3D-LSTM [60] instead of ran-
domly generating frames on the fly. The frame size of Mov-
ingMNIST is 64× 64. The training set contains 10000 clips,
test set contains 3000 clips and valid set contains 2000 clips.
The same data augmentation method as KTH is applied to
MovingMNIST dataset.

Following the experimental protocols of previous work,
our VPTR models are trained to predict 10 future frames
given 2 past frames for the BAIR dataset, and predict 10
future frames given 10 past frames for KTH and Moving
MNIST.

Ye, Bilodeau: Preprint Page 7 of 12

Video Prediction by Efficient Transformers

Metrics. Learned Perceptual Image Patch Similarity
(LPIPS) and Structural Similarity Index Measure (SSIM)
are used to evaluate all the three datasets. Peak Signal-
to-Noise Ratio (PSNR) is used to evaluate the KTH and
BAIR dataset, and Mean Square Error (MSE) is used to
evaluate the MovingMNIST dataset. All the LPIPS values
are presented in 10−3 scale. Smaller values are better for
LPIPS and MSE, while larger values are better for PSNR
and SSIM.

4.2. Implementation
Training stage one. For KTH and BAIR, the output

layer of the decoder is Tanh. For MovingMNIST, the output
layer of decoder is Sigmoid. We set �1 = 0.01 for KTH and
MovingMNIST, �1 = 0 for BAIR dataset. The optimizer is
Adam, with betas of (0.5, 0.999) and a learning rate of 2e−4.

Training stage two. We define the visual features di-
mension of each frame as H = 8,W = 8, dmodel = 528.
For local spatial MHSA, the local patch size is K = 4.
VPTR-FAR includes 12 layers of VidHRFormer blocks. For
VPTR-NAR and VPTR-PAR, the number of layers of E is
4, and the number of layers of D is 8. All Transformers are
optimized by AdamWwith a learning rate of 1e−4. Gradient
clipping is employed to stabilize the training. �2 = 0.1 for
the loss function of VPTR-NAR (Eq. 14).

4.3. Results and discussion
Results on KTH.We present the best results of all three

VPTR variants in Table 1. The reported average metrics are
calculated over 20 predicted frames, which follows the same
evaluation protocol of previous works. Compared with some
SOTA models, all three VPTR variants outperform them in
terms of LPIPS by a large margin. For PSNR and SSIM, our
proposed VPTR models reach competitive performances.

Fig. 4 shows some prediction examples for a qualitative
comparison. Comparing LMC-Memory with VPTR-NAR
and VPTR-FAR, we observe that VPTR-NAR is better than
VPTR-FAR and that both our VPTR models generate pre-
dictions that are more aligned with the ground-truth. It in-
dicates that the VPTR-NAR and VPTR-FAR learns a better
cyclic hand waving movements that is only condition on the
past frames. We suspect that LMC-Memory retrieves some
plausible but inaccurate motion from the learned memory
bank and thus the prediction deviates from the ground-
truth. Besides, due to a bigger accumulation of errors during
inference, the last few predicted frames of both VPTR-PAR
and VPTR-FAR are worse than VPTR-NAR. We analyzed
the reasons in detail at section 4.5 and 4.6.

Results on MovingMNIST. The results on the Mov-
ingMNIST dataset are shown in the right part of Table 1.
In terms of SSIM, the performance of our VPTR models
is close to the SOTA, but there are large gaps in terms
of MSE and LPIPS, especially for VPTR-FAR and VPTR-
PAR. After inspection of some prediction examples, we find
that our VPTRs make poor predictions for the overlapping
characters.

Results on BAIR. Because the robot arm motion in
BAIR dataset is random and we only condition on two past

Table 1
Results on KTH and MovingMNIST. ↑: higher is better, ↓:
lower is better. Boldface: best results.

Methods
KTH

Moving
MNIST

10 → 20 10 → 10
PSNR↑SSIM↑LPIPS↓MSE↓SSIM↑LPIPS↓

MCNET [21] 25.95 0.804 - - - -
PredRNN++ [61] 28.47 0.865 228.9 46.5 0.898 59.5
E3D-LSTM [60] 29.31 0.879 - 41.3 0.910 -
STMFANet [16] 29.85 0.893 118.1 - - -

Conv-TT-LSTM [62] 28.36 0.907 133.4 53.0 0.915 40.5
LMC-Memory [7] 28.61 0.894 133.3 41.5 0.924 46.9

VPTR-NAR 26.96 0.879 86.1 63.6 0.882 107.5
VPTR-PAR 25.40 0.836 84.8 93.2 0.859 138.4
VPTR-FAR 26.13 0.859 79.6 107.2 0.844 157.8

LMC-Memory

VPTR-NAR

VPTR-FAR

VPTR-PAR

Figure 4: Qualitative results on KTH dataset. The first row is
ground-truth. For the past frames, t ∈ [1, 10]. For the future
frames, t ∈ [11, 30].

frames to prediction ten future frames, BAIR is a more
challenging dataset than KTH and MovingMNIST. The test
results on BAIR dataset are listed in Table 2. We find that
the performance of VPTR-NAR is close to the reference
models in terms of all three metrics. Particularly, VPTR-
NAR outperforms two MCVD [63] models in terms of both
SSIM and PSNR, it also outperforms SVG-LPwith regard to
PSNR. We note that the predicted robot arm becomes blurry
after the first few frames due to the deterministic nature of
VPTRs, see Fig. 5. Our VPTRs could be extended to be
stochastic models easily, and we expect that the stochastic
version of VPTRs would achieve better performance on
the BAIR dataset. The autoregressive variants have worse
performances compared to the non-autoregressive variant
because of the accumulation of errors, see the ablation study
for more detailed analysis.

VPTR-NAR

Figure 5: Qualitative results on BAIR dataset. The first row
is ground-truth. For the past frames, t ∈ [1, 2]. For the future
frames, t ∈ [3, 12].

Ye, Bilodeau: Preprint Page 8 of 12

Video Prediction by Efficient Transformers

Table 2
Results on BAIR. ↑: higher is better, ↓: lower is better.
Boldface: best results.

Methods 2 → 28
PSNR↑SSIM↑LPIPS↓

SV2P [19] 20.36 0.817 91.4
MCVD-concat [63] 17.70 0.797 -
MCVD-spatin [63] 17.70 0.789 -

SVG-LP [20] 17.72 0.815 60.3
Improved VRNN [31] - 0.822 55.0

STMFANet [16] 21.02 0.844 93.6
VPTR-NAR 17.77 0.813 70.0
VPTR-PAR 15.94 0.745 104.8
VPTR-FAR 15.76 0.724 110.7

4.4. Running time comparison

VPTR-NAR VPTR-FAR VPTR-PAR Conv-TT-LSTM LMC-Memory
0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
fe

re
nc

e
tim

e
(in

 se
co

nd
s)

0

2

4

6

8

10

12
Ep

oc
h

Tr
ai

ni
ng

 ti
m

e
(in

 m
in

ut
es

)

Figure 6: Comparison of inference time and epoch training
time.

In order to show that VPTR is less complex and more ef-
ficient compared with ConvLSTM-based methods, we eval-
uated the inference time and epoch training time on the KTH
dataset of all our VPTR variants and two SOTAConvLSTM-
basedmethods, Conv-TT-LSTM and LMC-Memory. Specif-
ically, we measured the average inference time for predicting
10 future frames given 10 past frames. The results show
that VPTR-NAR is the fastest one because of the non-
autoregressive prediction. VPTR-FAR and VPTR-PAR are
significantly slower than all other models because autore-
gressive prediction by Transformer is expensive. The results
of average epoch training time indicate that all three VPTR
variants have a similar training speed and are almost two
times faster than the ConvLSTM-based models, thanks to
thebenefit from the parallel computation of Transformers.
On the contrary, ConvLSTM-based models need to slowly
backpropagate through each time step during training. All
models are tested on the same NVidia RTX3090 GPU with
the same batch size.

4.5. Ablation Study
We conducted a thorough ablation study to investigate

the influence of positional encodings, separated spatial and
temporal attention and autoregressive inference methods.
The ablation study results are summarized in Table 3. Be-
sides, we report the number of parameters and inference
FLOPs of each different model in 4.

Table 3
Ablation study on KTH and MovingMNIST. ↑: higher is better,
↓: lower is better. Boldface: best results.

Methods
KTH

Moving
MNIST

10 → 20 10 → 10
PSNR↑SSIM↑LPIPS↓MSE↓SSIM↑LPIPS↓

VPTR-NAR-BASE 26.92 0.881 94.6 64.2 0.880 114.2
VPTR-NAR-RPE 26.96 0.879 86.1 63.6 0.882 107.5
VPTR-NAR-FSTA 26.25 0.872 101.1 68.0 0.872 128.7
VPTR-PAR-BASE 25.04 0.832 86.0 93.2 0.859 138.4
VPTR-PAR-RPE 25.40 0.836 84.8 104.2 0.848 139.4
VPTR-PAR-FSTA 24.33 0.814 89.9 81.6 0.873 105.9
VPTR-PAR-RIL 23.14 0.694 193.6 194.1 0.362 516.1
VPTR-FAR-BASE 25.71 0.816 79.5 108.3 0.843 157.3
VPTR-FAR-RPE 26.13 0.859 79.6 107.2 0.844 157.8
VPTR-FAR-RIL 21.61 0.678 192.7 138.2 0.821 445.7

RPE. We take the VPTRs with fixed absolute posi-
tional encodings as the base models, i.e. VPTR-NAR-BASE,
VPTR-PAR-BASE and VPTR-FAR-BASE. To investigate
the influence of relative positional encodings for all VPTR
variants, we substituted the 2D absolute positional encod-
ing of all local spatial MHSA module with a learned 2D
RPE, which give us VPTR-NAR-RPE, VPTR-PAR-RPE and
VPTR-FAR-RPE. Our experiments show that in general,
RPE is beneficial for the performance on both KTH and
MovingMNIST datasets because the RPE models outper-
form the basemodels with regard tomost metrics. Therefore,
we can conclude that RPE is better than absolute positional
encodings for VPTR. However, RPE would also introduce
additional computational cost, see Table 4, which shows that
FLOPs of RPE variants are slightly larger than the base
models.

Spatial-temporal separated attention. We propose to
separate the spatial and temporal attention since we aim to
reduce the complexity of the standard Transformer for video
feature learning. However, this separated attention mecha-
nism means that a feature at one location only attends to
partial locations of the whole spatio-temporal space. In order
to analyze the impact of the separated attention, the encoder-
decoder attention layers of VPTR-NAR and VPTR-FAR are
replaced with a full spatio-temporal attention (FSTA), which
has a complexity of (H

2W 2T 2

P 2 dmodel). As we only replace
the encoder-decoder attention layers, the increased computa-
tion cost is affordable. The FLOPs of FSTA variants shown
in Table 4 validate our arguments. We find that FSTA is not
beneficial by comparing the VPTR-NAR-FSTA and VPTR-
PAR-FSTA with their base counterparts. Consequently, it
is safe to conclude that the alternate stacking of multiple
spatial and temporal attention layers, as proposed with our
VidHRFormer block, is capable of propagating global infor-
mation from past frames to future frames.

Autoregressive inferencemethods. For two autoregres-
sive variants, VPTR-FAR and VPTR-PAR, we can perform
recurrently inference over latent space (RIL) or recurrently
inference over pixel space (RIP) as we have mentioned in

Ye, Bilodeau: Preprint Page 9 of 12

Video Prediction by Efficient Transformers

Table 4
Comparison of FLOPs and number of parameters for different
models in the ablation study.

Methods

Moving
MNIST
10 → 10

FLOPs #Params
VPTR-NAR-BASE 197.00G 165.83M
VPTR-NAR-RPE 201.13G 162.48M
VPTR-NAR-FSTA 197.81G 165.83M
VPTR-PAR-BASE 664.44G 164.71M
VPTR-PAR-RPE 679.59G 164.87M
VPTR-PAR-FSTA 668.93G 164.71M
VPTR-PAR-RIL 601.71G 164.71M
VPTR-FAR-BASE 1.40T 136.37M
VPTR-FAR-RPE 1.45T 133.02M
VPTR-FAR-RIL 1.34T 136.37M

Section 3.4. VPTR-FAR-BASE and VPTR-PAR-BASE are
evaluated by RIP. The FLOPs presented in Table 4 indicate
that RIL variants require fewer FLOPs than the RIP models,
i.e., it is a little faster than RIP. However, we observe that
VPTR-FAR-RIL and VPTR-PAR-RIL are outperformed by
a large margin due to the severe accumulation of errors of
RIL.

Accumulation of errors exists for any inference process
with autoregressive models that are trained with a teacher-
force manner, and we analyze the detailed reasons in section
4.6. RIL gets a larger accumulated error than RIP because
the VPTR-FAR and VPTR-PAR receive only supervision
from the pixel space during training. According to the loss
functions in Eq. 8 and Eq. 10, it is clear that there is no
direct penalty on the distance between the feature space
generated by the CNN encoder and the feature space pre-
dicted by the Transformer. Furthermore, the pixel space di-
mensionality is smaller than the latent space dimensionality
of the autoencoder, which is a common case for VFFP, as
there are no skip connections from encoder to decoder and
good reconstruction visual quality is expected. Therefore,
we can hypothesize that recurrent inference solely by the
Transformer predictor would make the predicted features
quickly deviate from the ground-truth features (learned by
the autoencoder during stage one). However, decoding the
feature firstly and then encoding it back into latent space by
the CNN encoder restricts the deviation to some degree.

4.6. Comparison of VPTR variants

2 6 10 14 18
Future time step

22

24

26

28

30

32

34

36

38
PSNR

NAR
PAR
FAR

2 6 10 14 18
Future time step

0.75

0.80

0.85

0.90

0.95

SSIM
NAR
PAR
FAR

2 6 10 14 18
Future time step

0.12

0.10

0.08

0.06

0.04

0.02

Negative LPIPS
NAR
PAR
FAR

Figure 7: Results of VPTR variants on KTH for increasing
prediction steps.

For better visualization of the difference between the
three VPTR variants, i.e., VPTR-NAR-BASE, VPTR-FAR-
BASE and VPTR-PAR-BASE, the curves of the metrics
with respect to the predicted future time steps are plotted
in Fig. 7. Recall that for LPIPS, a smaller value is better.
The performance of VPTR-FAR and VPTR-PAR are close
to each other, but VPTR-FAR is slightly better. Comparing
the loss function of VPTR-FAR (Eq. 8) and VPTR-PAR (Eq.
10), the loss function of VPTR-FAR is calculated from t = 2
to t = L +N , while VPTR-PAR is only trained by the loss
that is calculated from t = L + 1 to t = L +N . We believe
the better performance of VPTR-FAR can be attributed to
the larger supervision it receives during training.

Comparing the autoregressive variants with VPTR-
NAR, VPTR-FAR and VPTR-PAR achieve a better PSNR
and SSIM than VPTR-NAR during the first few prediction
steps, but their performance drops quickly due to the ac-
cumulation of errors introduced by the recurrent inference.
The PSNR and SSIM curves demonstrate that VPTR-NAR
has a smaller quality degradation. For the last 10 steps of
the LPIPS curve, VPTR-NAR also has a smaller slope than
VPTR-FAR.

The accumulated inference errors of autoregressiveVPTR
variants are mainly due to the discrepancy between training
and testing behaviors. Specifically, the previously predicted
frames are used during inference instead of the ground-truth
as during training, which leads to a worse generalization
ability for VPTR-FAR or VPTR-PAR given the same num-
ber of VidHRFormer layers as VPTR-NAR. On the contrary,
the training and testing behaviors of VPTR-NAR are the
same. However, it is more difficult for the VPTR-NAR
to directly estimate the joint distribution, so an additional
contrastive feature loss and more parameters (the learnable
future frame queries) are required.

VPTR-NAR has another advantage, i.e., a faster infer-
ence speed. Consider predicting N future frames given L
past frames by the three VPTR variants. Then VPTR-NAR
has a complexity of (N2), but the complexity for VPTR-
FAR and VPTR-PAR is (

∑N
n=1 n

2). Even though VPTR-
PAR has the same complexity as VPTR-FAR in terms of
the predicted future frames length, VPTR-PAR has a faster
inference speed. Indeed, in VPTR-PAR, the past frames
are processed by 4 layers of VidHRFormer block (E),
and each future frame are generated by passing through
another 8 layers of VidHRFormer block (D). However, in
VPTR-FAR, each future frame is generated by passing all
previous frames through 12 layers of VidHRFormer block,
which costs more time. For simplicity, in this assessment, we
ignored the H,W and dmodel of video features, the compu-
tation cost of processing past frames, and we supposed that
the predicted future frames length during test is the same
as of the training. We tested the inference speed of three
models on an NVidia RTX3090, the results in Figure 6 show
that VPTR-NAR is 12.75 times faster than VPTR-FAR, and
VPTR-PAR is 1.2 times faster than VPTR-FAR. The FLOPs
results summarized in Table 4 also validate our analysis.

Ye, Bilodeau: Preprint Page 10 of 12

Video Prediction by Efficient Transformers

5. Conclusion
In this paper, an efficient VidHRFormer block is pro-

posed for spatio-temporal representation learning, and three
different VFFP models are developed based on it. Our pro-
posed VidHRFormer block could be applied to many other
video processing tasks as a backbone. We compared the
performance of the proposed VPTRs with SOTA models on
various datasets, and our proposed methods are competitive
with more complex ConvLSTM-based models. Finally, we
conducted a through ablation study to analyze the influence
of different modules for three VPTR variants, and we ob-
served that VPTR-NAR achieves a better performance than
VPTR-FAR and VPTR-PAR.

References
[1] Jan-Aike Bolte, Andreas Bar, Daniel Lipinski, and Tim Fingscheidt.

Towards Corner Case Detection for Autonomous Driving. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 438–445, June 2019.
ISSN: 2642-7214.

[2] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Future
Frame Prediction for AnomalyDetection –ANewBaseline. InCVPR,
2018.

[3] Felix Leibfried, Nate Kushman, and Katja Hofmann. A Deep
Learning Approach for Joint Video Frame and Reward Prediction in
Atari Games. In ICML Workshop on Principled Approaches to Deep
Learning, 2016.

[4] Y. Bengio, A. Courville, and P. Vincent. Representation Learning:
A Review and New Perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1798–1828, August 2013.

[5] Xiaolong Wang and Abhinav Gupta. Unsupervised Learning of
Visual Representations Using Videos. In ICCV, 2015.

[6] Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye,
Xinguang Xiang, and Wen Gao. MAU: A Motion-Aware Unit for
Video Prediction and Beyond. In NeurIPS, May 2021.

[7] Sangmin Lee, Hak Gu Kim, Dae Hwi Choi, Hyung-Il Kim, and
Yong Man Ro. Video Prediction Recalling Long-Term Motion
Context via Memory Alignment Learning. In CVPR, 2021.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In NIPS, 2017.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2021.

[10] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Trans-
formers for High-Resolution Image Synthesis. In CVPR, 2021.

[11] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
Lučić, and Cordelia Schmid. ViViT: A video vision transformer. In
ICCV, 2021.

[12] Zhouyong Liu, Shun Luo,Wubin Li, Jingben Lu, YufanWu, Chunguo
Li, and Luxi Yang. ConvTransformer: A Convolutional Transformer
Network for Video Frame Synthesis. In arXiv:2011.10185 [cs],
November 2020.

[13] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas.
VideoGPT: Video Generation using VQ-VAE and Transformers. In
arXiv:2104.10157 [cs], September 2021. arXiv: 2104.10157.

[14] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang,
and Nan Duan. N\"UWA: Visual Synthesis Pre-training for Neural
visUal World creation. arXiv:2111.12417 [cs], November 2021.

[15] Xi Ye and Guillaume-Alexandre Bilodeau. VPTR: Efficient Trans-
formers for Video Prediction. In 26th International Conference on
Pattern Recognition (ICPR), 2022.

[16] Beibei Jin, Yu Hu, Qiankun Tang, Jingyu Niu, Zhiping Shi, Yinhe
Han, and Xiaowei Li. Exploring Spatial-Temporal Multi-Frequency
Analysis for High-Fidelity and Temporal-Consistency Video Predic-
tion. In CVPR, 2020.

[17] Y. Wang, J. Wu, M. Long, and J. B. Tenenbaum. Probabilistic Video
Prediction From Noisy Data With a Posterior Confidence. In CVPR,
2020.

[18] Dinesh Jayaraman, Frederik Ebert, Alyosha Efros, and Sergey Levine.
Time-agnostic prediction: Predicting predictable video frames. In
ICLR, 2019.

[19] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy Camp-
bell, and Sergey Levine. Stochastic variational video prediction. In
ICLR, 2018.

[20] Emily Denton and Rob Fergus. Stochastic Video Generation with a
Learned Prior. In ICML, 2018.

[21] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and
Honglak Lee. Decomposing motion and content for natural video
sequence prediction. In ICLR, 2017.

[22] Jean-Yves Franceschi, Edouard Delasalles, Mickael Chen, Sylvain
Lamprier, and Patrick Gallinari. Stochastic Latent Residual Video
Prediction. In ICLR, 2020.

[23] Yunseok Jang, Gunhee Kim, and Yale Song. Video Prediction with
Appearance and Motion Conditions. In ICML. PMLR, 2018.

[24] S. Tulyakov, M. Liu, X. Yang, and J. Kautz. MoCoGAN: Decompos-
ing Motion and Content for Video Generation. In CVPR, 2018.

[25] Emily L. Denton and Vighnesh Birodkar. Unsupervised Learning of
Disentangled Representations fromVideo. InNIPS, volume 30, 2017.

[26] Haoye Cai, Chunyan Bai, Yu Wing Tai, and Chi Keung Tang. Deep
video generation, prediction and completion of human action se-
quences. In ECCV, 2018.

[27] Naoya Fushishita, Antonio Tejero-de Pablos, Yusuke Mukuta, and
Tatsuya Harada. Long-Term Human Video Generation of Multiple
Futures Using Poses. In Computer Vision – ECCV 2020 Workshops,
pages 596–612, 2020.

[28] Jun Ting Hsieh, Bingbin Liu, De An Huang, Li Fei-Fei, and Juan Car-
los Niebles. Learning to decompose and disentangle representations
for video prediction. In NIPS, 2018.

[29] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner.
Sequential attend, infer, repeat: Generative modelling of moving
objects. In NIPS, 2018.

[30] Xiongtao Chen, Wenmin Wang, Jinzhuo Wang, and Weimian Li.
Learning object-centric transformation for video prediction. In MM
2017 - Proceedings of the 2017 ACM Multimedia Conference, pages
1503–1512, 2017.

[31] L. Castrejon, N. Ballas, and A. Courville. Improved Conditional
VRNNs for Video Prediction. In ICCV, October 2019.

[32] Y. Kwon and M. Park. Predicting Future Frames Using Retrospective
Cycle GAN. In CVPR, 2019.

[33] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-
scale video prediction beyond mean square error. In ICLR, 2016.

[34] Baoyang Chen, Wenmin Wang, and Jinzhuo Wang. Video Imag-
ination from a Single Image with Transformation Generation. In
Proceedings of the on Thematic Workshops of ACM Multimedia,
2017.

[35] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating
videos with scene dynamics. In NIPS, 2016.

[36] Y. Wu, R. Gao, J. Park, and Q. Chen. Future Video Synthesis With
Object Motion Prediction. In CVPR, 2020.

[37] Xinyuan Chen, Chang Xu, Xiaokang Yang, and Dacheng Tao. Long-
term video prediction via criticization and retrospection. IEEE
Transactions on Image Processing, 29:7090–7103, 2020.

[38] B. Jin, Y. Hu, Y. Zeng, Q. Tang, S. Liu, and J. Ye. VarNet: Exploring
Variations for Unsupervised Video Prediction. In IROS, 2018.

[39] Katerina Fragkiadaki, Jonathan Huang, Alex Alemi, Sudheendra Vi-
jayanarasimhan, Susanna Ricco, and Rahul Sukthankar. Motion Pre-
diction Under Multimodality with Conditional Stochastic Networks.
In arXiv:1705.02082 [cs], 2017.

Ye, Bilodeau: Preprint Page 11 of 12

Video Prediction by Efficient Transformers

[40] Jingwei Xu, Huazhe Xu, Bingbing Ni, Xiaokang Yang, and Trevor
Darrell. Video Prediction via Example Guidance. In ICML, 2020.

[41] Nicolas Carion, FranciscoMassa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-End Object
Detection with Transformers. In ECCV, 2020.

[42] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song,
Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid Vision
Transformer: A Versatile Backbone for Dense Prediction Without
Convolutions. In ICCV, 2021.

[43] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng
Yan, Jitendra Malik, and Christoph Feichtenhofer. Multiscale vision
transformers. In ICCV, 2021.

[44] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei
Zhang, and Jianfeng Gao. Multi-Scale Vision Longformer: A New
Vision Transformer for High-Resolution Image Encoding. In ICCV,
2021.

[45] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, 2021.

[46] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin
Chen, and Jingdong Wang. HRFormer: High-resolution transformer
for dense prediction. In NeurIPS, 2021.

[47] Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yun-
chao Wei, and Wenyu Liu. CCNet: Criss-Cross Attention for Seman-
tic Segmentation. In ICCV, 2019.

[48] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan
Yuille, and Liang-Chieh Chen. Axial-DeepLab: Stand-Alone Axial-
Attention for Panoptic Segmentation. In ECCV, 2020.

[49] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep High-
Resolution Representation Learning for Human Pose Estimation. In
CVPR, 2019.

[50] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph
Feichtenhofer. TrackFormer: Multi-Object Tracking with Transform-
ers. In arXiv:2101.02702 [cs], January 2021. arXiv: 2101.02702.

[51] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural
discrete representation learning. In NIPS, 2017.

[52] Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-
to-image translation with conditional adversarial networks. In CVPR,
2017.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. In MICCAI,
2015.

[54] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with
relative position representations. In NAACL, 2018.

[55] Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-
Yan Liu. Non-autoregressive machine translation with auxiliary reg-
ularization. In AAAI, volume 33, pages 5377–5384, 2019. Number:
01.

[56] Alex Andonian, Taesung Park, Bryan Russell, Phillip Isola, Jun-
Yan Zhu, and Richard Zhang. Contrastive feature loss for image
prediction. In ICCVW, 2021.

[57] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey Levine. Self-
supervised visual planning with temporal skip connections. In CoRL,
2017.

[58] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a
local SVM approach. In ICPR, 2004.

[59] Nitish Srivastava, ElmanMansimov, and Ruslan Salakhudinov. Unsu-
pervised Learning of Video Representations using LSTMs. In ICML,
2015.

[60] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng
Long, and Li Fei-Fei. Eidetic 3D LSTM: A Model for Video
Prediction and Beyond. In ICLR, 2018.

[61] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and
Philip S. Yu. PredRNN++: Towards A Resolution of the Deep-in-
Time Dilemma in Spatiotemporal Predictive Learning. In ICML,
2018.

[62] Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz,
andAnimashree Anandkumar. Convolutional Tensor-Train LSTM for

Spatio-temporal Learning. In NeurIPS, 2020.
[63] Vikram Voleti, Alexia Jolicoeur-Martineau, and Christopher Pal.

Masked Conditional Video Diffusion for Prediction, Generation, and
Interpolation. InAdvances in Neural Information Processing Systems,
2022.

Ye, Bilodeau: Preprint Page 12 of 12

