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Abstract 

Image dehazing is an important technique aimed at eliminating the 

haze in the atmosphere to enhance the image’s visual quality. There 
are many applications where it has been used as a prepossessing step, 

such as in event detection. In recent years, the dark channel prior 

methodology has been recognised as an effective approach for elimi - 

nating haze from hazy images. However, the main drawback of the 

existing dark channel prior methodology is that it only considers a 

single color channel of the RGB image with pixels having minimum 

intensity values. This non -uniform selection of the dark channel from a 

single channel eradicates the effect of the transmission  across the dif- 

ferent channels of the hazy image. Hence, the haze cannot be removed 

to a great extent using the existing method. So, here we propose an 

approach where the dark channel will be computed from all three 

channels of an image by selecting the minimum intensity. The main 

advantage of using the proposed prior -based methodology for image 

dehazing over deep neural network-based models such as CNN or GANs 

is that training deep models requires a  large amount of training data, 

thus resulting in a longer training time. Experimental outcomes exhibit 

that the proposed technique outperforms state-of-the-art methods on 

synthetic datasets as well as real-world hazy images. The findings 

demonstrate that the proposed technique obtains better accuracy as 

compared to the state -of-the-art methods and recent deep learning- 

based models over the D-HAZY, I-HAZE, and O-HAZE databases. 
 

Keywords: Image dehazing, atmospheric scatterin g model, transmission 

estimate, dark channel prior 
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1 Introduction 

Due to poor climatic environment like fog, smoke, smog, mist, or dust, the 
effects of particles in the atmosphere have a significant impact on the image 
quality. It degrades to a great extent. The light gets dispersed in various direc- 
tions when it strikes these atmospheric particles. This results in images that 
are faded in color and have low contrast. Image luminance also gets scattered. 
Due to this, human vision and some outdoor computer vision systems have 
difficulty identifying an object’s characteristics. The main challenge in the 
dehazing process is due to the different densities of haze across different regions 
of a hazy image. As a result, eliminating haze from an image is a com plex task, 
and in computer vision applications, this is a tremendously desired technology. 
Image dehazing techniques have been advantageous in numerous applications 
in the real world. These include satellite imagery systems where small details 
need to be detected to create accurate maps. It also has a significant con- 
tribution in military systems where the quality of the image deteriorates in 
extremely cold border areas due to the presence of snow. Apart from these, it 
can also be applied to underwater imaging where maintenance of underwater 
structures such as pipelines or cables is required. Other areas of application 
include video-assisted transportation, outdoor video monitoring, remote sens - 
ing photography assessment, fracture detection in medicine, image deraining 
[1] [2] etc. 

Since haze, smog, or smoke cause impediments for computer vision systems, 
a significant and fast expanding group is devoted for eliminating the haze and 
its effects from digital images. Thus, numerous methodologies are available for 
dehazing the hazy images. The most successful methods of image dehazing [3],  
[4], [5], [6] are majorly established on the atmospheric scattering model put 
forward by McCartney [7] according to which a hazy image formed as shown 
in Fig. 1 can be defined as follows: 

 
 

I(x) = J (x)t(x) + A(1 − t(x)) (1) 

 
where x represents the image coordinates, I represents the observed hazy 

image, J represents the haze-free image, A represents the global atmospheric 
light, and t represents the transmission map. The transmission, t(x), estimates 
the proportion of light that enters the camera but is not dispersed by the 
atmosphere. The transmission value for an object far away from the camera 
will be lower, while the transmission value for a nearby object will be closer 
to one. 

The major aim of image dehazing process is to retrieve haze free image, 
J , from a hazy image, I. Once A and t are estimated from I, J can be 
mathematically calculated as: 
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Fig. 1 Formation of the hazy image 

 
 
 

 

J (x) = 
I(x) − A 

 
 

t(x) 

 

+ A (2) 

 

Various remarkable advancements in the field of image dehazing have been 
seen in recent years. These methods are typically based on chromatic, textural,  
and contrast properties. Among conventional algorithms for image dehazing, 
the dark channel prior (DCP) [8] is widely recognized. It is a novel tech- 
nique that has been developed to overcome the limitations of many previous 
approaches. It was inspired by an earlier haze removal method known as the 
dark object subtraction technique [9]. The dark channel prior (DCP) is a com- 
mon pattern in haze-free images. It has been observed that the hazy image’s 
dark pixels, i.e., the pixels that receive immensely low intensity values, provide 
a definite estimation of the transmission of the haze. 

However, in most non-sky patches of the haze-free image, DCP considers 
one color channel of a RGB image that consists of a few pixels having mini- 
mum intensity. This leads to non-uniform selection of the dark channel and, 
thus, leaves some amount of haze in the image. In this paper, we propose 
an improved methodology that extends the existing single-channel DCP tech- 
nique to a multi-channel approach. This proposed method considers all three 
channels of an image to calculate the dark channel. We have also evaluated 
our methodology on the indoor and outdoor hazy image databases. The exper- 
iment results show that our improved model achieves the highest PSNR as 
well as SSIM values as compared to the state-of-the-art algorithms and recent 
deep learning based methods. 

The remaining paper is organised as follows: Section 2 presents the related 
work in the field of image dehazing; Section 3 is devoted to existing image 
dehazing methodology using dark channel prior; Section 4 illustrates proposed 
methodology; Section 5 is devoted to experimental results in terms of the 
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quality measures used, datasets used, comparison with the deep learning based 
method as well as state-of-the-art methods and parameter tuning; and finally, 
the conclusions are drawn in Section 6. 

 

2 Related Work 

A crucial task in computer vision and image processing systems is to improve 
and enhance the image. Many methods and strategies have emerged to repair 
hazy images. Tarel and Hautiere [10] presented the first single image dehaz- 
ing approach. The method makes use of a filtering technique to eliminate haze 
from the images. Here, the value of transmission is estimated as a  percentage of 
the difference between the local average and the local standard deviation of an 
image. An extended version of the median filter is applied to further improve 
the transmission. The method is suitable for images generated using white bal - 
ancing as a preprocessing step. He et al. [8] introduced a novel methodology 
which is established on dark channel prior. According to this approach, there 
should be at least one dark color channel that contains pixels with very low 
intensities. This analysis is valuable for estimating haze depth and restoring 
a dehazed image of good quality. Meng et al. [11] extended the dark channel 
prior. To prevent image distortion across sharp corners, it constructs an opti- 
mization function which combines the constraints that were present due to 
scene radiance with a weighted L1-norm dependent contextual regularization. 
Sharma et al. [12] proposed a method that uses a type-2 membership function 
based similarity function matrix. This method also estimates the depth map 
of the hazy image along with the global atmospheric light and finally uses (1) 
to remove the haze. Zhang et al. [13] proposed a methodology in which a hazy 
image is segregated into multiple regions having different haze densities. Her e, 
global atmospheric light is replaced by estimating the local atmospheric light 
in each region. This method uses the dark channel prior in order to estimate 
the transmission. In this approach, they implemented an iterative method and 
imposed a termination condition. According to the algorithm, the iteration 
should be suspended whenever a given condition is met. The parameter value 
used in the termination criteria is estimated purely based on the experiments. 
This method requires choosing the parameter value based on the input hazy 
image. This means that the same parameter value cannot be fixed for every 
kind of hazy image, and the main drawback of this methodology is that it 
is highly dependent on choosing an accurate parameter value. Fattal [6] pro- 
posed an algorithm that is established on the concept of estimating the optical 
transmission that eradicates the diffusion of light and restores the contrast of 
an image, resulting in highly visible images. It is based on the analysis that 
the pixels in small image patches usually have a one-dimensional RGB color 
space distribution known as color lines. As haze causes color lines to drift from 
the RGB origin, we can estimate the transmission map by measuring the lines 
offset from the origin. This strategy comes up short in non-homogeneous and 
dense fog regions. Ancuti et al. [14] proposed a technique to estimate local 
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airlight for dehazing hazy images that was used in the multi-scale fusion tech- 
nique. The method was created to address issues related to the scattering effect,  
which is particularly noticeable in hazy nighttime scenes. The method is, how - 
ever, suitable for day-time hazy scene enhancement. Gao et al. [15] proposed 
a dual-fusion technique for dehazing a single image. In this method, the sky 
and non-sky portions are acquired by a segmentation approach that divides 
the image into two halves. For a single image smooth, a multi-region fusion 
approach is proposed in order to adequately optimise the transmission. The 
brightness transform function builds an exposure fusion technique to efficiently 
eliminate haze from the image. 

In recent years, various deep learning approaches have been widely imple- 
mented in major fields of computer vision. Some attempts have also been made 
for haze removal as well. Cai et al. [16] proposed a method using convolutional 
neural networks (CNNs) that uses CNN layers to extract the features that are 
accountable for producing haze in an image. This method uses the Middlebury 
stereo dataset to train the neural network. The approach uses a non-linear 
activation function with a bilateral restraint to optimise convergence. Ren et 
al. [17] uses a multi-scale CNN to specifically determine the transmission map 
from hazy images. The training was done with synthetically produced hazy 
images, which were acquired from the images without any haze, and their 
related depth maps, which were used to implement a generalised light propaga- 
tion model. Dudhane et al.  [18] proposed the LIGHT-Net dehazing model that 
consists of two modules. In this approach, they used one module to eliminate 
the color cast and to maintain the color constancy. Another module is used 
to reduce haze, which is built using an inception-residual block. AOD-Net [19] 
proposed a system for dehazing an image where a convolutional neural net- 
work is used to determine the haze-free image. In this method, estimating the 
transmission map is not required. CycleDehaze [20] is a technique for image 
dehazing that does not require hazy and equivalent images of ground truth for 
training. This method improves on CycleGAN [21], which uses cycle consis- 
tency loss and perceptual loss to produce more visually appealing and realistic 
haze-free images. Chen et al. [22] proposed a model with a super-resolution 
approach and a knowledge transfer method inspired by the Knowledge Trans- 
fer Dehazing Network (KTDN) [23] and Trident Dehazing Network (TDN) 
[24]. This deep neural network is made up of a teacher network, a dehaze net- 
work, and a super-resolution network. This method creates low-level feature 
maps using the teacher network. To gather the data required for image restora - 
tion, the teacher network is trained using ground truth pairs from the dataset. 
While some current CNN-based techniques are quite efficient in eliminating 
homogeneous haze, they are not reliable in non-homogeneous situations. There 
are primarily two factors for this. First, the dehazing method is prone to los- 
ing texture details because of the complex haze distribution. Second, training 
with limited data results in over-fitting as training pairs are difficult to gather. 
Fu et al. [25] proposed a new dehazing network, DW-GAN, that employs the 
2D discrete wavelet transform (DWT). To address these two problems, the 
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authors put forward a two-branch architecture. This strategy maintains more 
high-frequency information in feature maps by employing wavelet transform 
in the DWT branch. In the knowledge adaption branch, ImageNet [26] pre- 
trained Res2Net [27] is used to avoid over-fitting. Finally, the artefacts in the 
dehazed images are reduced using a patch-based discriminator. Liu et al. [28] 
propose the PBGAN model. This model is comprised of two GAN modules. 
One module is used to enhance the contrast, while another module is used to 
enhance the texture of the hazy image. An inversion-adversarial loss and an 
inversion-cycle consistency loss are introduced to train the generator in order 
to enhance the contrast. Two CNNs are used to learn the ambient light coef- 
ficient and the transmission map, respectively, to enhance the texture of the 
hazy image. 

 

3 Image dehazing using dark channel prior 

The dark channel prior based image dehazing method was first proposed by 
He et al. in [8]. This technique for removing haze is established on the key 
observation that within an image patch, there exist a few pixels that have an 
intensity value near zero for at least one color channel. When the intensity 
tends to zero, the color diverges towards dark or black. That’s why this phe- 
nomenon is called “the dark channel.” Based on this, the dark channel, Jdark, 
of a haze free image J is written as: 

 
Jdark(x) = min (  min 

y∈Ω(x) c∈{r,g,b} 
Jc(y)) (3) 

 

where Jc is the color channel c ∈ {r, g, b} of J and Ω(x) is the local patch 
centred at x. 

Based on the concept of a dark channel, J ’s dark channel is low in intensity, 
with the exception of the sky region, and tends to be zero [8]. 

 

JDark → 0 

This phenomenon is referred to as the “dark channel prior.” Pixels whose 
values are distant from zero are generated by the dark channels in hazy images. 
Global atmospheric light is generally vivid, and in the local patch, the 
three color channel’s minimum value is greatly increased by combining airlight 

and direct attenuation. As a result, it’s reasonable to conclude that the dark 
channel’s pixel values can be used to estimate haze intensity [8]. 

In the dark channel prior dehazing technique, the dark channel is initially 
formulated from the hazy input image as shown in (3)[8]. Later, from the 
dark channel, the atmospheric light and the transmission map is computed. 
The refinement of the transmission map is done and the dehazed image is 
constructed as shown in (2)[8]. 

After dividing both sides of (1) by Ac, the minimum intensity in the local 
patch of each color channel is determined mathematically as follows: 
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Ic(y) ˜ Jc(y) ˜ 
min 

y∈Ω(x) 
= t(x) min 

y∈Ω(x) Ac  
+ 1 − t(x) (4) 

The transmission in the local patch Ω(x) is considered to be constant here 

and denoted by t˜(x). The three color channels’ min operator can be applied 
to (4) as below: 

Ic(y) ˜ Jc(y) ˜ 
min (min 

c 
) = t(x) min (min 

c  
) + 1 − t(x) (5) 

y∈Ω(x) c A y∈Ω(x) c A 

As J is haze free image, the dark channel of haze free image is near to zero 
due to dark channel prior. Thus, 

JDark(x) = min (min Jc(y)) = 0 
y∈Ω(x) c 

As Ac always positive, 

JDark (x) = min (min 
Jc(y) 

c  
) = 0 (6) 

y∈Ω(x) c A 

Substituting this in (5), 

t˜(x) = 1 − min (min 
Ic(y) 

c 
) (7) 

y∈Ω(x) c A 

Now, if a ll of the haze is removed from the image, it will not appear natural,  
and the sense of depth will be loosened. Hence, a very minute proportion of 
haze is kept for the far objects by presenting a constant parameter, Ω which 
ranges between [0,1] into (7). 

t˜(x) = 1 − Ω min (min 
Ic(y) 

c 
) (8) 

y∈Ω(x) c A 
 

The atmospheric light, A, must be estimated in order to obtain the trans- 
mission map, t˜(x). Thus, for that, 0.1% of the dark channel’s brightest pixels 
are chosen, and then the color with the maximum intensity of the chosen pix- 
els is taken as the value for atmospheric light. Also, it is further required to 
smoothen the transmission map so that it does not lead to false textures and 
blocking artifacts. Thus, soft matting is applied for this purpose [8]. 

The image can be dehazed and the scene radiance can be revived as given in 
(1) with the help of the atmospheric light and the transmission map. When the 

Ac 



Springer Nature 2021 LATEX template 
 

 

8 Single Image Dehazing using Extended Local Dark Channel Prior 

 
transmission term, t(x), is close to zero, the direct attenuation term, J (x)t(x), 
is almost non-existent. As a result, a lower bound, t0, is applied to the trans- 
mission t(x), allowing some haze to be preserved in densely hazy areas. The 
final haze free image J (x) can be retrieved as follows: 

 
 

J (x) = 
I(x) − A 

 
 

max(t(x), t0) 

 

+ A (9) 

 

Like other dehazing methods, dark channel prior has few drawbacks as 
well. It fails to estimate the transmission when the entities in the image are 
constitutionally like the atmospheric light and are not covered by shadows. It 
fails to recover the image when the sky area is huge or there is a large white 
area in the scene. Since DCP is a physics-based method, it also fails when the 
haze model in (1) is physically invalid. The dark channel prior even fails to 
recover the image under non-homogeneous haze or when the haze is too dense. 

 

4 Proposed Methodology 

The main drawback of the existing dark channel prior methodology is that it 
does not uniformly select the dark channel due to which the effect of trans- 
mission is eliminated across all the color channels of a hazy image. Here, the 
dark channel is computed while considering the single color channel of a RGB 
hazy image that has pixels with minimum intensity. We propose a methodol- 
ogy where the dark channel is computed considering all three channels of an 
image by selecting the minimum intensity. These individual dark channels will 
be used to compute the individual transmission maps of each color channel. 
Thus, using (6), the dark channel of the red color channel is given by 

 
 

Jdark(x) = min (min Jr(y)) 
r 

y∈Ω(x) r (10) 
 

where J r is the red color channel of J . 
Similarly, the dark channel of the green and blue color channels is given by 

 
 

Jdark(x) =  min (min Jg(y)) 
g 

y∈Ω(x) r (11) 

 

 
Jdark(x) =  min (min Jb(y)) 

b 
y∈Ω(x) r (12) 

 

where Jg and Jb is the green and blue color channel of J respectively. 
Hence, from (10), (11) and (12), it can be seen that in the proposed method- 

ology we are computing the individual dark channels for each color channel of 
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a hazy image, as compared to (6) where the dark channel is calculated consid- 
ering a single color channel of an image with pixels having minimum intensity 
values. This is the principal novelty of the proposed methodology. After com- 
puting the individual dark channels of an image, the individual transmission 
maps are calculated. Thus, using (10), (11), (12) and (8), we calculate the 
transmission maps for each color channel. Therefore, the transmission for the 
red color channel is given by 

t˜r(x) = 1 − Ω min (min 
Ir(y) 

c  
) (13) 

y∈Ω(x) r A 

Similarly, transmission for green and blue color channel is calculated as 

t˜g (x) = 1 − Ω min (min 
Ig(y) 

c  
) (14) 

y∈Ω(x) g A 

t˜b(x) = 1 − Ω min (min 
Ib(y) 

c 
) (15) 

y∈Ω(x) b A 

In (13), (14) and (15) it can be seen that we are computing the individual 
transmission maps for each color channel, whereas in the existing dark chan- 
nel prior approach, it is computed using the dark channel for a single channel, 
as shown in (8). This uniform selection of the dark channel in the proposed 
methodology considers the effect of the transmission across the different chan - 
nels of the hazy image and helps to eliminate the haze in a better way as 
compared to the existing dark channel prior method. The final transmission 
in the local patch is calculated as the mean transmission of all the three color 
channels using (13), (14), (15) 

t̃ avg (x) = (t̃ r(x) + t̃ g (x) + t̃ b(x))/3 (16) 

We estimate the transmission using the above mathematical formula. This 
means that the average transmission considers each color channel and helps to 
remove the haze from an image to a great extent. Now, this above calculated 
value of transmission can be used to compute the final scene radiance. The 
final scene radiance is written as 

J (x) = 
I(x) − A 

max(tavg(x), t0) 
+ A (17) 
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where tavg(x) is the proposed transmission map and t0 is the lower bound 

applied to this transmission value. 
The overall workflow of the proposed methodology is shown in Fig. 2, which 

illustrates that the proposed model is applied to a hazy image to compute the 
corresponding dark channels across each color channel. Atmospheric light is 
computed by taking 0.1% of the brightest pixels in the dark channel. Using 
the individual dark channels of the hazy image and the atmospheric light, the 
corresponding transmission map of each channel is computed for each color 
channel. A mean transmission map is then computed, and it is refined using 
a guided filter. This mean refined transmission map is then used to generate 
the final haze-free image. 

 

 
Fig. 2 Flow diagram of the proposed methodology. 

 
 

When the value of the transmission is close to 1, it signifies that the 
dehazing is done in an efficient way. In order to compare the values of the 
transmission map, we take a 10x10 block of the transmission map of the image 
dehazed using the dark channel prior as well as the proposed methodology. We 
considered one hazy indoor image from the D-HAZY Middlebury dataset [29] 
and one outdoor image from the O-HAZE [30] dataset. It can be seen from 
Fig. 3 that the pixels of the transmission map are closer to 1 when the image 
is dehazed using the proposed methodology as compared to when it is dehazed 
using the dark channel prior. The final transmission achieved by the prop osed 
methodology is closer to 1 than the transmission obtained by the dark channel 
prior method for indoor as well as outdoor images. This indicates that the pro - 
posed method enhances the transmission’s accuracy and thus results in better 
dehazed images. 

In order to prove the effectiveness of the proposed methodology, we per- 
formed a pixel level comparison using two hazy images from the D-HAZY 



 

 
 
 
 
 
 

 

 
 

Fig . 3 Tran smission  Map Co mparison  :(a) an d (g): Hazy Image, (b ) an d (h ): Groun d Tru th  Image, (c ) an d (i): Tran smiss ion  map using Da rk Ch ann el 

Prior, (d ) an d (j): Tran smission  map usin g proposed meth odology, (e ) an d (k): 10x10 block of tran smiss ion  map usin g dark chan nel prior, (f) an d (l): 

10x10 block of transmiss ion map using proposed methodology 
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Middlebury dataset [29]. A 10x10 block of each image is taken and we com- 
pare the pixels of all the three color channels of the RGB image using the dark 
channel prior method and the proposed methodology. It can be seen in Fig. 4 
that the pixels of the dehazed image using the proposed methodology are sig- 
nificantly more closer to the pixels of the ground truth image as compared to 
the dark channel prior method. This can be observed across all the three color 
channels of the dehazed image. We also highlighted some pixels in each color 
channel that are highly close to the ground truth image while dehazing the 
image using the proposed method. It can be seen that the proposed method is 
more effective at eliminating the haze from a hazy image as compared to the 
dark channel prior method. 

We also plot the absolute pixel difference (APD) between the ground truth 
image and the image dehazed using the dark channel prior as well as the pro- 
posed methodology for each color channel. This absolute pixel difference plot 
is less sensitive to subtle shifts and is an excellent metric for image similarity 
detection. It acts as a robust image correlation metric by identifying changes 
in the image pixels between the ground truth image and the dehazed image. 
For this analysis, we considered three indoor images from the D-HAZY Mid- 
dlebury dataset [29] and two outdoor images from the O-HAZE [30] dataset. 
We have also resized the images in order to better visualise the graphs. The 
red plot in Fig. 5 shows the absolute pixel difference between the ground truth 
and the dark channel prior method, while the green plot shows the absolute 
pixel difference between the ground truth image and the proposed method. It 
can be seen that the peaks of the red plot are notably higher as compared 
to the green plot for each color channel. This can be observed in both indoor 
and outdoor images. Fig. 5 also shows the sum of the absolute pixel difference 
(APD) of the dark channel prior and the proposed methodology. In Fig. 5(c), 
the sum of APD between the ground truth image and the image dehazed using 
the dark channel prior for red color channel is 15604. When the same hazy 
image is dehazed using the proposed methodology, the sum of APD is reduced 
to 13960. In other images also, for each color channel, the sum of APD of the 
dark channel prior is significantly higher than the sum of APD of the proposed 
methodology. Hence, it can be inferred that the proposed methodology per- 
forms the dehazing task exceptionally well as compared to the existing dark 
channel prior method for both indoor and outdoor images. 

The following are the major contributions of this method: 

• We propose an approach for image dehazing using an extended local dark 
channel prior where we considered all the three color channels of a hazy 
image to compute the individual dark channel. 

• Using the individual dark channels for each of the color channels, we 
computed the corresponding transmission maps and then used the mean 
transmission map to calculate the final haze free image. 
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Fig. 4 Pixel level comparison of dark channel prior and the proposed methodology: 

(a), (d), (g): r, g, b channels of 10x10 block of dehazed image -1 using dark channel prior 
(b), (e), (h): r, g, b channels of 10x10 block of dehazed image -1 using proposed methodology 

(c), (f), (i): r, g, b channels of 10x10 block of ground truth image -1 

(j), (m), (p): r, g, b channels of 10x10 block of dehazed image -2 using dark channel prior 

(k), (n), (q): r, g, b channels of 10x10 block of dehazed image -2 using proposed methodology 
(l), (o), (r): r, g, b channels of 10x10 block of ground truth image -2 

 

• The existing dark channel prior method tries to remove the transmission 
effect across all the channels using a common dark channel. As the trans- 
mission will be different across different channels, individual dark channels 
need to be considered. 

• As we are uniformly selecting the dark channel from all three color channels, 
this will take into account the effect of transmission across different channels 
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Fig. 5 Absolute pixel difference (APD) plot for ground truth and dehazed image using 
DCP and proposed methodology 

(a)  , (f), (k), (p), (u): Hazy images 

(b)  , (g), (l), (q), (v): Ground truth images 

(c)  , (h), (m), (r), (w): Absolute pixel difference between ground truth and dehazed image 

using DCP and proposed method for red channel 
(d)  , (i), (n), (s), (x): Absolute pixel difference between ground truth and dehazed image 

using DCP and proposed method for green channel 

(e)  , (j), (o), (t), (y): Absolute pixel difference between ground truth and dehazed image 

using DCP and proposed method for blue channel 
 

of a hazy image, and thus, haze can be removed in a better way as compared 
to the existing dark channel prior method. 

• We compare the transmission map of the dehazed image using the dark 
channel prior method and the proposed method. It can be seen that the 
transmission map of the image dehazed using the proposed methodology is 
closer to 1 as compared to that of the dark channel prior. This shows that 
the transmission accuracy has increased with the proposed methodology, 
thus increasing the overall image quality. 

• We perform the pixel level analysis by taking a small block of the hazy image. 
We compare the pixel values of all the three color channels using the dark 
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channel prior method and the proposed methodology. It is observed that 
the pixels of the dehazed image using the proposed methodology are much 
closer to the ground truth image pixels as compared to the dark channel 
prior method. 

• We also plot the absolute pixel difference in order to compare the proposed 
methodology with the dark channel prior. It can be seen that the absolute 
pixel difference (APD) between the ground truth image and the dehazed 
image using dark channel prior is remarkably higher than the proposed 
methodology. 

 

5 Experimental Results 

In order to assess the performance of the proposed methodology, we present 
the quantitative as well as qualitative evaluation results by demonstrating our 
dehazing results on several groups of hazy images. We analyse the performance 
of the proposed dehazing technique and compared it with the existing method 
of image dehazing using dark channel prior and other state-of-the-art methods, 
including some standard deep learning models. 

 

5.1 Quality Measures 

An extensive quantitative assessment is performed on the existing state-of-the- 
art dark channel prior single image dehazing method and the proposed method. 
We use two metrics to evaluate these dehazing methods: PSNR (Peak-Signal- 
to-Noise Ratio) and SSIM (Structural Similarity Index Measure) [31]. PSNR 
provides a pixel-wise evaluation and is capable of indicating the effectiveness 
of haze removal. The high PSNR value indicates that there is less noise in 
the image and the image has been restored well. It is the ratio of a signal’s 
maximum possible value to the power of distorting noise that has an impact 
on the quality of its representation. It can be calculated as [32] 

 
 

PSNR = 10 × log10 
L2 

MSE 

 

(18) 

 

where  
m−1 n−1 

MSE =  
1  

[y(i, j) − x(i, j)]2 
mn 

i=0 j=0 

Here, x represents the generated image, y represents the really clear image, 
and the image size is m × n. MSE represents the mean square error between 
x and y and L is the dynamic range of the pixel values. 

SSIM is an image quality measure that is implemented to gauge the resem- 
blance of two images where the mean is used to calculate the brightness, the 
standard deviation is used to calculate the contrast, and the covariance is used 
to calculate the structure similarity. It can be calculated as [33] 

( ) 
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  (2µxµy + c1)(2σxy + c2)  SSIM = 
(µ2 + µ2 + c )(σ2 + σ2 + c ) 

 

(19) 
x y x y 

 

where µx and µy are the averages of x and y, σ2 and σ2 are the variances 
x y 

of x and y, σxy is the covariance of x and y. The constants c1 = (k1L)2 and 
c2 = (k2L)2 are used to maintain stability, and the default values are k1 = 0.01 
and k2 = 0.03. The larger values of PSNR and SSIM indicate better dehazing 
and perceptual quality. 

 

5.2 Datasets Used 

In our experiment, we use the following datasets as hazy images and the 
original images as ground truth images. 

• D-HAZY: A dataset to evaluate quantitatively dehazing algorithms. [34] 
- The main challenge presented by this dataset is that the images in it 
correspond to the indoor environment. Since these are indoor images, the 
color of the images appears to be dull with poor contrast. 

• I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images. 
[35] - Here also, the images are from the indoor domestic environment. The 
images are dull in color with low contrast, so eliminating haze is a challenging 
task for these types of images. 

• O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor 
images. [30] - The main challenge presented by this dataset is that the images 
are comprised of outdoor scenes which are affected by cloudy weather, 
sunset/sunrise haze, wind speed, etc. 

 

5.3 Comparison with DCP and other state-of-the-art 
image dehazing methods 

To recover the hazy images, different types of images from the above datasets 
are used. Each of the images taken is dehazed using the state-of-the-art method 
as well as the proposed method. Each dehazed image is then compared with  its 
ground truth image, and then PSNR and SSIM values are computed. Extensive 
experiments resulted in the conclusion that our method performed best on 
synthetic indoor and outdoor hazy images. 

 

5.3.1 Comparison using D-HAZY Dataset 

The D-HAZY dataset is based on the Middlebury [29] and NYU Depth [36] 
datasets that contain over 1400 complex scene images and their related depth 
maps. It includes high-resolution real-world images, with the depth maps from 
each scene being used to create synthetic hazy images. Fig. 6 shows four images 
from the D-HAZY dataset [34] which have been restored using the dark channel 
prior based method and the proposed method. According to the study results 
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of the experiments, the existing dark channel prior based dehazing method 
does not provide satisfactory results for removing the haze, while the proposed 
methodology achieves more satisfactory results. Besides, the proposed method 
obtains the highest PSNR and SSIM for the restored images compared to the 
DCP method, so the restored images using this method are even closer to the 
ground truth. Therefore, since the PNSR and SSIM values are high, it can be 
concluded that there is less noise in the dehazed image. It can be observed 
from Fig. 6 (c) that there is an increase of 2.041 dB in the PSNR and 0.048 in 
the SSIM, which indicates that the proposed methodology is more proficient 
at eliminating the haze and reconstructing the image to its original quality. 

 

 

Fig. 6 Comparison of the restored images using DCP and proposed methodology 
 
 

We also compare the image quality measures by considering three image 
resolutions, i.e. 128×96, 640×480, and 1024×768 for each dataset. 

In Fig. 7 we compare the PSNR and SSIM of Dark Channel Prior with the 
proposed methodology for the D-HAZY Middlebury dataset. It can be seen 
that, for low resolution images (128×96), there is a slight increase in the PSNR 
value, but for higher resolution images (640×480 and 1024×768), there is a 
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significant increase in the PSNR and SSIM values. The highest SSIM of 0.88 
is obtained for 1024×768 resolution images. 

 

 

Fig. 7 PSNR and SSIM comparison of Dark Channel Prior and proposed methodology of 

D-HAZY Middlebury Dataset 

 
 

A similar analysis is done on the D-HAZY NYU dataset. The default res- 
olution of the D-HAZY NYU dataset is 640×480, so the PSNR for this image 
resolution is high as compared to other image resolutions. It can be seen from 
Fig. 8 that the proposed method has performed well. There is an increase in 
the PSNR and SSIM values for all the image resolutions. 

 

 

Fig. 8 PSNR and SSIM comparison of Dark Channel Prior and proposed methodology of 

D-HAZY NYU Dataset 

 
 

 

5.3.2 Comparison using I-HAZE Dataset 

The I-HAZE dataset [35] comprises of 35 indoor images that are hazy and 
their corresponding ground truth images. Real haze from a professional haze 
machine was used to generate the hazy images. Each image consists of a Mac- 
Beth color checker that can be used to check the image’s color response to a 
known state and to enhance the evaluation of the dehazing technique. Further - 
more, since they are taken under restrained setting, both the hazy as well as 
ground truth images are shot in a similar lighting ambience. This is a significant 
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advantage of the I-HAZE database, as it allows to objectively evaluate exist- 
ing dehazing practises with conventional image quality measures like PSNR 
and SSIM. 

 

Fig. 9 PSNR and SSIM comparison of Dark Channel Prior and proposed methodology of 

I-HAZE Dataset 

 
 

From Fig. 9 it can be perceived that for the highest resolution images, there 
is an increment of 2.056 dB of PSNR value by using the proposed framework. 
Also, it produces an increase of 0.021 in SSIM for 128×96 resolution images. 
which clearly shows that the proposed framework is performing well for indoor 
hazy images. 

 

5.3.3 Comparison using O-HAZE Dataset 

O-HAZE [30] is a haze-free outdoor scene database made up of sets of real 
hazy and haze-free ground truth images. Hazy images are taken in the pres- 
ence of actual haze produced by the haze machines. The O-HAZE database 
comprises 45 distinct outdoor images portraying the identical perceptible ele- 
ments captured in haze-free and hazy environments, under similar lighting 
constraints. 

 

Fig . 10 PS NR an d S S IM comparison of Da rk Chan nel Prior an d proposed meth odology of 

O-HAZE Dataset 
 

 

We found that while the dark channel prior-based image dehazing restores 
the image structure very well, but, due to inadequate airlight estimation, it 



Springer Nature 2021 LATEX template 
 

20 Single Image Dehazing using Extended Local Dark Channel Prior 

 
produces unattractive color shifting in the hazy areas. As expected, these dis- 
ruptions seem to be more prevalent in the whiter or lighter areas, where the 

dark channel prior generally fails. However, the proposed framework slightly 
improves the image quality, which results in better PSNR and SSIM (Fig. 10). 

Tables 1 shows the results of applying the proposed method to the I-HAZE, 
O-HAZE, and D-HAZY datasets. The SSIM values obtained from He et al. 
(DCP) [8], Meng et al.[11], Fattal [6] and Ancuti et al. [14] for each dataset 
are available in [34], [35] and [30]. It can be seen that the highest SSIM for 
the I-HAZE dataset is obtained for Ancuti et al. which is very close to the 
proposed methodology. Although, the proposed methodology outshines the 
existing dark channel prior dehazing method. For the rest of the datasets, i.e., 
O-HAZE and D-HAZY (Middlebury and NYU), the proposed methodology is 
working well, resulting in the highest SSIM as compared to the other state- 
of-the-art methods. Thus, it can be inferred that the proposed methodology 
outperforms the competing procedures on indoor as well as outdoor images. 

 
Table 1 Quantitative assessment of all the datasets . This table shows the average SSIM 

over the entire dataset. 
 

Published 
D-HAZY

 
D-HAZY 

I-HAZE O-HAZE 
Method 

Year 
Middleburry 

NYU 
[35] [30] 

  [29] [36]   

He et al. [8] 2011 0.865 0.811 0.711 0.735 

Meng et al. [11] 2013 0.831 0.773 0.750 0.753 

Fattal [6] 2008 0.796 0.747 0.574 0.707 

Ancuti et al.  [14] 2013 0.829 0.771 0.770 0.747 

Proposed - 0.881 0.842 0.767 0.781 

 
 

 

5.4 Comparison with deep learning based models 

Various deep learning approaches such as CNNs and GANs are also applied 
in the field of image dehazing. Convolutional neural networks (CNNs) were 
already known to be successful in image recognition and classification applica - 
tions, and thus they’d been used for image dehazing as well. For experimental 
purpose, we train three CNN models using indoor images dataset (I-HAZE, 
D-HAZY Middlebury and D-HAZY NYU) and use the outdoor images (O- 
HAZE dataset) for testing the accuracy. We also trained a CNN model using 
outdoor image dataset (O-HAZE) and tested it on indoor images (I-HAZE). 
The CNN model that we have used has 10 fully connected layers. Adam opti- 
mizer have been used to ensure the convergence of the model. The MSE loss 
function is used to train the model. 

To compare the results, we also perform the dehazing task on all the indoor 
and outdoor datasets using two variations of Generative Adversarial Networks 
(GANs): Pix2Pix [37] and CycleGAN [21]. Across all the image dehazing tasks, 
the very same model architecture mentioned in the respective GAN papers has 
been used. Table 2 shows the results of applying deep learning based dehazing 
frameworks on the I-HAZE, O-HAZE, and D-HAZY datasets. 
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Table 2 Quantita tive assessmen t of deep learning based methods. This table shows the 

average SSIM over the entire dataset for each model. 
 

Model 
Training Dataset SSIM 

D-HAZE Middleburry 0.551 

CNN 
D-HAZE NYU 0.503 

I-HAZE 0.538 

O-HAZE 0.499 

D-HAZE Middleburry 0.478 

Pix2Pix GAN [37] 
D-HAZE NYU

 0.461 

I-HAZE 0.501 
O-HAZE 0.481 

D-HAZE Middleburry 0.450 

Cycle GAN [21] 
D-HAZE NYU

 0.442 

I-HAZE 0.470 
O-HAZE 0.458 

D-HAZE Middleburry 0.881 

Proposed D-HAZE NYU 0.842 
methodology I-HAZE 0.767 

O-HAZE 0.781 

 
It can be concluded that if the model is trained on the indoor dataset and 

tested on the outdoor dataset, the model’s accuracy is very low as compared 
to the proposed image dehazing method. Here, the accuracy is majorly depen - 
dent on the category of the dataset that we are using for training and testing 
purposes. If a model is trained on a particular type of image with specific envi - 
ronmental conditions and tested on another type of image having a different 
set of environmental conditions, we may expect a model with low accuracy. 
Here, we should also have an ample amount of training dataset of the same 
category to build a good deep learning based image dehazing model of high 
accuracy. Also, training a deep neural network based model like CNN or GAN 
takes a longer time as compared to the proposed single image dehazing tech- 
nique. As it can be seen from Table 2, the highest SSIM of 0.551 is obtained 
for the deep learning models for the D-HAZY Middleburry dataset, which is 
very low as compared to the proposed single image dehazing methodology. 

We also compare the SSIM of the proposed methodology with some other 
recent state-of-the-art deep learning based methods as well. Table 3 shows the 
SSIM values for various deep-learning-based dehazing methods. The methods 
with the greatest SSIM value are highlighted. It can be seen that the proposed 
methodology performs significantly better than these deep learning-based 
methods, which require large amounts of training data and high computing 
power. 

 

5.5 Comparison with other state-of-the-art methods 

To further prove the efficiency of the proposed methodology, we compare the 
SSIM for each image of the D-HAZY Middleburry dataset [29] with some recent 
state-of-the-art methods. Table 4 shows the SSIM values for various image 
dehazing methods. The methods that have attained the highest SSIM value 



Springer Nature 2021 LATEX template 
 

22 Single Image Dehazing using Extended Local Dark Channel Prior 
 

Table 3 Comparison of SSIM of state-of-th e-a rt deep learning based methods with the 

proposed methodology. 
 

Published 
D-HAZY

 
D-HAZY 

I-HAZE O-HAZE 

Method 
Year 

Middleburry 
NYU 

[35] [30] 
  [29] [36]   

DehazeNet [38] 2016 0.422 0.544 0.773 0.688 

AOD-NET [19] 2017 0.412 0.567 0.773 0.63 

DCPDN  [39] 2018 0.484 0.733 0.805 0.732 

GCANet  [40] 2019 0.361 0.583 0.759 0.730 

FFA - Net [41] 2019 0.452 0.691 0.794 0.733 

GridNet [42] 2019 0.369 0.783 0.768 0.766 

MSBDN [43] 2020 0.751 0.676 0.765 0.659 

Trident [44] 2020 0.478 0.461 0.501 0.481 

IDRLP [45] 2021 0.727 0.742 0.789 0.699 

Proposed - 0.881 0.842 0.767 0.781 

 

are highlighted for every image. It can be seen that for most of the images 
in the D-HAZY Middleburry dataset, the proposed methodology has obtained 
the highest SSIM value. We also calculate the average SSIM over the entire 
dataset. It can be seen that the average SSIM obtained by CNN based image 
dehazing approaches such as Ren et al. [17] and Santra et al. [46] is 0.819 and 
0.842, respectively. The average SSIM attained by the proposed methodology 
is 0.881, which is the highest as compared to other state-of-the-art methods. 

 

5.6 Parameter Tuning 

There are two parameters in the algorithm that need to be set to some constant 
value - Ω (constant multiplied during transmission estimation) and the patch 
size for dark channel computation. We tried many possible values for these 
parameters with our proposed method and obtained the ones producing the 
best results. 

 

5.6.1 Omega (Ω) 

While estimating the transmission, we introduced a parameter Ω as we don’t 
want to completely remove the haze from our image as it may not seem natural. 
Hence, a small proportion of haze is kept in our method so that we may not 
lose the feeling of depth. The value of Ω ranges between [0,1]. In Fig. 11 
we have shown the average PSNR across all the restored images along with 
their corresponding Ω values. To compare the two results, we used all the 
datasets that provide the hazy as well as ground truth images. For every value 
of a parameter, we run the algorithm on all the images in the dataset and 
computed the average PSNR across all the restored images. A higher PSNR 
value indicates better restoration. We can see that the best value of Ω we could 
get using all four datasets is between 0.90 and 0.95. 



 

Table 4 Comparison of SSIM on D-HAZY Middleburry Dataset. 
 

 Pierre et al. Berman et al. Ren et al. Santra et al. Proposed 

Published Year 2017 [47] 2016 [48] 2016 [17] 2018 [46] - 

Adirondack 0.835 0.891 0.897 0.884 0.895 
Backpack 0.901 0.842 0.879 0.85 0.917 

Bicycle 0.678 0.841 0.938 0.959 0.931 
Cable 0.595 0.751 0.645 0.608 0.852 

Classroom 0.646 0.883 0.74 0.818 0.795 
Couch 0.551 0.785 0.618 0.753 0.821 

Flowers 0.757 0.889 0.783 0.814 0.795 
Jadeplant 0.545 0.716 0.606 0.659 0.82 

Mask 0.842 0.816 0.85 0.845 0.908 

Motorcycle 0.018 0.633 0.819 0.79 0.882 

Piano 0.643 0.814 0.715 0.89 0.886 
Pipes 0.015 0.782 0.688 0.761 0.831 

Playroom 0.703 0.815 0.776 0.863 0.895 

Playtable 0.778 0.9 0.86 0.909 0.89 
Recycle 0.904 0.925 0.952 0.94 0.937 
Shelves 0.874 0.916 0.944 0.924 0.932 
Shopvac 0.602 0.788 0.667 0.735 0.817 

Sticks 0.925 0.953 0.961 0.93 0.948 
Storage 0.769 0.869 0.824 0.855 0.851 
Sword1 0.874 0.853 0.914 0.85 0.917 

Sword2 0.821 0.913 0.885 0.881 0.9 
Umbrella 0.872 0.917 0.909 0.903 0.888 
Vintage 0.926 0.795 0.969 0.939 0.946 
Average 0.699 0.839 0.819 0.842 0.881 
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Fig. 11 Optimizing the value of Omega 
 

5.6.2 Dark Channel Patch Size 

Another critical parameter in the dehazing method is the patch size, or the 
window size for computing the dark channel. Fig. 12  shows resultant dehazed 
images obtained with various patch sizes. The restored scene radiance is seen 
to be over-saturated as the patch size is reduced. The colors appear over- 
saturated when the patch size of 3  × 3 is used. When a larger patch size is used, 
the images look more realistic. It can be inferred that the approach is effective 
when the patch size is reasonably large. Large patch sizes, on the other hand, 
can produce halos around the depth edges. In addition, the images produced 
by using larger patch sizes appear a bit hazier, but the variations are minor. 
Typically, a patch size of 15 × 15 is large enough to achieve acceptable results 
for most of the images. 

In Fig. 13 we have shown the average PSNR across all the restored images 
along with the corresponding dark channel patch sizes. We have used all the 
datasets that provide the hazy as well as ground truth images. For every 
value of patch size, we run the algorithm on all the images in the dataset and 
computed the average PSNR across all the restored images. It can be seen that 
the best estimate of the dark channel patch size we could get using all four 
datasets is around 15 × 15. 
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Fig. 12 Results using different path sizes 

 

 
Fig. 13 Optimizing the value of dark channel path size 
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6 Conclusion 

Natural weather environments, like haze or fog, sometimes obstruct visibility 
as well as the visual appeal of a scene. Thus, dehazing techniques came into 
existence to remove the consequences of the haze from an image. In this paper, 
we have extended the former technique of the existing dark channel prior to 
overcome the challenging issue of dehazing a hazed image. We computed the 
individual dark channel for each color channel of a hazy image. These indi- 
vidual dark channels are used to compute the transmission maps for all three 
color channels. The final transmission is calculated as the mean transmission, 
and thus, in this way, we incorporated the effect of the transmission across 
different channels of a hazy image. As demonstrated by numerous quality 
assessment experiments, the proposed approach outperfo rms the state-of-the- 
art dark channel prior image dehazing technique. The proposed methodology 
effectively reduces haze to a great extent and, as shown by the experiments, 
proves to be robust. Because the current methodology involves fine-tuning the 
dark channel patch size and Omega value, one of the potential future works 
could be to develop a more robust algorithm. The suppression of the visual 
artefacts of the resulting images is another factor that requires further future 
work. We could extend this work to eliminate haze from real-time videos as 
well, which could fulfil practical engineering requirements. 
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