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Abstract—Speaker-independent visual speech recognition
(VSR) is a complex task that involves identifying spoken words or
phrases from video recordings of a speaker’s facial movements.
Decoding the intricate visual dynamics of a speaker’s mouth in
a high-dimensional space is a significant challenge in this field.
To address this challenge, researchers have employed advanced
techniques that enable machines to recognize human speech
through visual cues automatically. Over the years, there has been
a considerable amount of research in the field of VSR involving
different algorithms and datasets to evaluate system performance.
These efforts have resulted in significant progress in developing
effective VSR models, creating new opportunities for further
research in this area. This survey provides a detailed examination
of the progression of VSR over the past three decades, with a
particular emphasis on the transition from speaker-dependent to
speaker-independent systems. We also provide a comprehensive
overview of the various datasets used in VSR research and the
preprocessing techniques employed to achieve speaker indepen-
dence. The survey covers the works published from 1990 to
2023, thoroughly analyzing each work and comparing them on
various parameters. This survey provides an in-depth analysis
of speaker-independent VSR systems evolution from 1990 to
2023. It outlines the development of VSR systems over time and
highlights the need to develop end-to-end pipelines for speaker-
independent VSR. The pictorial representation offers a clear and
concise overview of the techniques used in speaker-independent
VSR, thereby aiding in the comprehension and analysis of the
various methodologies. The survey also highlights the strengths
and limitations of each technique and provides insights into
developing novel approaches for analyzing visual speech cues.
Overall, This comprehensive review provides insights into the
current state-of-the-art speaker-independent VSR and highlights
potential areas for future research.

Index Terms—VSR, Speaker-Independence, Lip-Reading, Fea-
ture Extraction, Spatio-Temporal

I. INTRODUCTION

Speech recognition is a process of converting spoken
language into written text, which can be used in various appli-
cations such as voice commands, transcription, and translation
[1], [2]. It involves the analysis of the acoustic features of
speech, which can be either audio signals or visual cues like lip
movements. Audio Analysis and Visual Speech Recognition
(VSR) are two main approaches to speech recognition that
share some commonalities. Audio analysis involves the anal-
ysis of audio signals to extract speech information. In speech
recognition systems, audio analysis is performed by converting
the analog audio signal to a digital representation and then
applying various signal processing techniques to extract the
relevant features of the speech signal. These features are then
used to recognize the speech content and convert it to text
or some other form of output. Automated VSR is a form of

speech recognition technology that relies on the analysis of
lip movements and utterances captured on videotape to rec-
ognize spoken words or sentences. Unlike audio-based speech
recognition, VSR works by analyzing visual information to
classify what is being said or spoken. The process of reading
lip movements and articulations alone is quite challenging
for a novice, as it is inherently ambiguous at different word
levels due to homophones - different characters that produce
exactly similar lip sequences, such as ’p’ and ’b’. However,
these ambiguities have been addressed to some extent by using
the context of neighboring words in a sentence or a language
model to help disambiguate the spoken words.

VSR has a rich history, dating back to the 16th century
when Ponce de León used lip movements to teach the deaf.
Today, VSR has become an important tool in several appli-
cations, including smartphone-based systems and models that
convert silent lip movements into the text to help individuals
with hearing impairments communicate in noisy environments.
However, despite the significant advancements made in VSR
technology over the years, there are still instances where
audio analysis outperforms VSR. Audio analysis has proven
to be more reliable in situations where visual cues for speech
recognition are limited or ambiguous, such as in low-light
conditions or when the speaker’s face is partially or fully
obscured. Similarly, audio analysis is more effective when the
speaker’s lip movements are not easily distinguishable or when
the speaker is not speaking in the viewer’s native language. In
such cases, relying solely on VSR technology would be less
effective. Furthermore, VSR may be more susceptible to errors
caused by variations in the speaker’s speech patterns and visual
cues, such as changes in facial expression or head movement.
Such variations can make it challenging for the VSR system to
recognize spoken words accurately. On the other hand, audio
analysis may be less affected by such variations, making it
more reliable for speech recognition in certain contexts.

A. Exploring the roots of VSR: Traditional Methods

Traditional methods of automatic VSR refer to the use of
different techniques and architectures for extracting features
and classifying visual speech data. The feature extraction
process is mainly based on pixel or shape-based methods
or a combination of both. These extracted features are then
transformed into the desired format by using mathematical
functions like DCT [3], PCA [4], and DWT [5]. Once the
features have been extracted and transformed, classification
is performed using architectures such as HMM and SVMs.
However, traditional methods of VSR have certain limitations
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that can affect their accuracy and effectiveness. One major
limitation is their reliance on the quality of the input video
data, which can be affected by factors such as lighting,
facial expressions, and head movements. These factors can
cause variations in the visual speech data, making it difficult
for traditional VSR methods to recognize speech accurately.
Additionally, traditional methods may not be able to handle
variations in pronunciation and dialects, as they are trained
on a limited set of data, making them less effective for
recognizing speech from diverse speakers. Another limitation
of traditional VSR methods is their computational complexity,
which can make them slow and resource-intensive. The fea-
ture extraction process and classification algorithms require
significant processing power, which can limit their use in
real-time applications, such as in noisy environments where
rapid speech recognition is required. In conclusion, traditional
methods of VSR have limitations that can affect their accu-
racy and effectiveness. The reliance on the quality of input
video data, the inability to handle variations in pronunciation
and dialects, and computational complexity are some of the
significant limitations of traditional VSR methods. Therefore,
newer approaches, such as deep learning-based VSR, have
been developed to address these limitations and provide more
accurate and efficient speech recognition.

B. Revolutionizing VSR with Deep Learning
In recent years, VSR systems have benefited from the use

of Deep Learning (DL) networks for feature extraction and
classification. Various types of networks, such as Convolu-
tional Neural Networks (CNNs), Feed-forward Networks, and
Autoencoders, have been employed in the front end of lip-
reading systems to extract significant features and learn spatial
and temporal information. In addition, sequence-processing
networks like Recurrent Neural Networks (RNNs) have been
commonly used in the backend to classify sequential speech
such as words or sentences. Recently, attention-based trans-
formers and temporal convolutional networks have also been
adopted as alternatives to RNNs for classification. However,
training deep learning models for VSR can be computationally
complex and require large amounts of data. To address this
issue, transfer learning has been applied to improve the per-
formance of VSR systems. Transfer learning involves using a
pre-trained model to improve predictions on a new but similar
problem. This approach can reduce training time and data
requirements while improving neural network performance.
Transfer learning is particularly useful when there is insuf-
ficient data to train a model from scratch, and a pre-trained
model is available on a related problem with a large volume
of data.

Traditional VSR approaches rely on hand-crafted feature
extraction techniques that require prior knowledge and exper-
tise, resulting in limited accuracy and susceptibility to lighting,
background, and pose variations. For instance, if the selected
features are not appropriate for a particular speech signal, the
performance of the system may suffer. Moreover, traditional
methods often fail to capture the underlying patterns in the
data due to the limited representation power of the hand-
crafted features. In contrast, DL-based VSR methodologies

are more robust to these variations and have shown significant
improvements in accuracy. Although traditional VSR methods
are computationally less intensive and require less training
data than DL-based VSR methods, their ability to handle
complex and noisy data is limited, and their performance
heavily depends on the quality of the hand-crafted features.
On the other hand, DL-based VSR methods require a large
amount of data and computational resources for training, but
they can handle complex and noisy data, learn more abstract
features, and achieve higher accuracy. Thus, the choice of
VSR methodology depends on the specific application and
the available resources. In conclusion, traditional and DL-
based VSR methods have advantages and limitations. The
choice of the VSR method depends on the specific application
requirements and available resources. Fig. 1 depicts the outline
of both traditional and DL methodologies for VSR.

Classification 
architectures like 

HMMs and SVMs

Transformation 
Methods like DCT, 

PCA, DWT  

Pixel-based or 
Shape-based feature 
extraction methods

Front end 
Architectures like the 
combination of CNNs

Backed Architectures 
like RNNs, LSTMs 

and GRUs

(a)

(b)

Fig. 1: (a) Outline of Traditional VSR Architectures, (b) DL
Architectures

C. Speaker Independent VSR

Speaker-independent VSR is a type of VSR system that
is trained to recognize speech patterns and lip movements
from various speakers without requiring prior training on the
specific speaker. This means that the system is not tailored to
any particular speaker’s speech patterns or lip movements, but
instead, it is designed to recognize a wide range of speakers.
In contrast, general DL-based VSR methodologies are often
trained on a specific speaker or a limited set of speakers,
making them less effective in recognizing speech from other
speakers. Speaker-independent DL-based VSR systems are
advantageous because they can be used for a variety of applica-
tions that involve recognizing speech from multiple speakers,
such as in large group meetings or noisy environments. They
are also useful for applications that require quick and accurate
recognition of spoken words or phrases, such as in secu-
rity systems or voice-controlled devices. Moreover, speaker-
independent DL-based VSR systems can utilize transfer learn-
ing, which uses a pre-trained model to improve predictions
on a new but similar problem. This can reduce the required
training data and improve the system’s performance, making
it more efficient than traditional DL-based methodologies that
require a large amount of data for training.
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D. Futuristic Applications of Speaker Independent VSR

As mentioned in the above section, VSR technology is
particularly useful in situations where traditional audio-based
speech recognition systems may not work as effectively. For
example, in noisy environments or when a user speaks a
language the system may not be familiar with. By using visual
data, such as facial expressions and lip movements, VSR
can accurately recognize speech and enable more efficient
and effective communication between humans and machines.
As the demand for more advanced and sophisticated Human
Machine Interaction (HMI) systems grows, the potential ap-
plications for VSR technology are vast. Some of the futuristic
applications of VSR include biometrics [6]. This technology is
called lip biometrics or visual speech biometrics [7], [8]. Lip
biometrics captures and analyzes a video of a person speaking
to extract the lip movements and facial features. These features
are then used to create a template representing the unique
characteristics of the individual’s lips and face. This template
can be used to compare against other templates in a database to
identify a person. One advantage of lip biometrics is that it can
be combined with other biometric modalities, such as voice
recognition or facial recognition, to create a more accurate and
secure system. It is also useful in situations where audio-based
biometrics may not be effective, such as in noisy environments
or when a person is unable to speak.

Besides biometrics, speaker independent VSR has promis-
ing applications in assistive technologies [9] for individ-
uals with speech impairments. By accurately interpreting
visual speech cues, VSR systems can assist in converting
lip movements into text or synthesized speech. This can
enable individuals with speech difficulties to communicate
more effectively, enhancing their independence and quality of
life. VSR-based assistive technologies can also find applica-
tions in real-time transcription services, aiding individuals in
various professional settings, such as meetings, conferences,
and classrooms. Also, Speaker Independent VSR can play a
crucial role in multimedia content analysis [10], particularly
in video analysis and understanding. By accurately extracting
speech information from visual data, VSR can facilitate tasks
such as automatic speech recognition in videos, content in-
dexing, and semantic analysis. This can have applications in
various domains, including video search and retrieval, video
summarization, video captioning, and content recommendation
systems. VSR technology can enhance the efficiency and
effectiveness of multimedia analysis, enabling more advanced
content understanding and retrieval. These futuristic applica-
tions of Speaker Independent VSR demonstrate its potential
to revolutionize various domains, including security, assistive
technologies, human-computer interfaces, multimedia content
analysis, and virtual/augmented reality. As research and de-
velopment in VSR continue to advance, we can expect further
innovations and applications, contributing to the advancement
of human-machine communication and interaction.

E. Methodology of Speaker Independent VSR Systems

Given the wide range of potential applications for Speaker
Independent VSR systems, it is crucial to clearly under-

stand the underlying processes and concepts involved in the
technology. Due to the fact that many words and syllables
are pronounced similarly, manual Visual Speech Recognition
(VSR) has a low success rate, estimated at only 10% [11]. This
highlights the urgent need for more sophisticated procedures
to improve the accuracy of VSR systems. The process of the
VSR system can be divided into four distinct sub-components:
(1) Sensory Visual Media Capture, (2) Preprocessing, (3)
Feature Extraction and Normalization, and (4) Classifica-
tion. The above methodology can be depicted in Fig. 2.

Preprocessing involving Face Detection, Image 
Normalization and obtaining RoI 

Feature extraction pipeline to extract 
discriminatory features

Classification and deployment pipeline involving 
real-time testing

Phonemes

Visemes 

Visual Medial Input depicting Visemes and 
Phonemes

Fig. 2: Conceptual overview of VSR

1) Visual media input is a crucial aspect of speaker
independent VSR systems. It involves the use of video
recordings of the user speaking a word or sentence,
which can be segmented into words, digits, or phrases.
These video recordings are also called as utterances.
In VSR systems, an utterance refers to a spoken word
or a phrase that a speaker utters. It is a sequence of
acoustic signals that are processed to recognize the
intended speech. These recordings can be classified into
two distinct categories; namely, Visemes [12], [13], and
Phonemes [14], [15]. Visemes are the basic visual units
of speech that are produced by the movements and
positions of the lips, tongue, and other facial features.
Visemes are similar to phonemes, the basic units of
sound in speech but represent the visual aspects of
speech. Visemes are groups of phonemes that are vi-
sually indistinguishable from one another, meaning that
they look the same when spoken. In layman’s terms,
visemes simply are lip movements, while phonemes are
the sounds from those movements. Typically, several
different visemes correspond to each phoneme since
different phonemes can be produced with similar visual
movements and positions. The exact number and defi-
nition of visemes may vary depending on the specific
VSR system or application. To develop VSR systems,
researchers need to analyze the specific characteristics
of lip movements, such as the shape and position of the
lips, tongue, and other facial features [16], [17]. This
categorization of lip movements helps in identifying
which viseme or phoneme is being produced in the video
recording, enabling the system to understand spoken
language without relying on audio signals.

2) Preprocessing: is a critical step in speaker independent
VSR, as it helps to improve the accuracy and efficiency
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Feature Normalization
This section depicts the methods 
used for feature extraction and 
feature vector transformations.

3

Research on Speaker 
Independent VSR

This section illustrates the 
different methodologies, both 

traditional and DL, used for 
Speaker Independent VSR and 

their performance on benchmark 
datasets

4

Datasets’ Description
This section describes the 
different
datasets proposed and their 
descriptions
from an isolated/continuous 
speaker
independent perspective

1

Facial Feature Extraction
This section describes the 

different techniques used for 
face localization, RoI extraction 

and their performance

2

Fig. 3: Methodology of the Survey

of the speech recognition system. The preprocessing
pipeline involves several steps, including the splitting of
visemes into frames, proper frame selection, cropping
of face and lip regions of interest [18]–[20], quality
enhancement, and filtering. In the present scenario,
this preprocessing step can be considered a fundamental
and standard practice for various speaker independent
VSR methodologies. The use of traditional computer
vision techniques, and in some cases DL, can enable
the successful execution of this preprocessing step to
enhance the accuracy and reliability of the VSR system.
However, the techniques employed may vary depend-
ing on the application and other factors. Overall, the
preprocessing stage is an essential component of most
speaker-independent VSR pipelines in use today.

3) Feature Extraction and Normalization: After the
visual media preprocessing step, feature extraction and
normalization are used to extract discriminatory features
from the region of interest (RoI) of segmented lip
area [21]–[23]. This step involves mapping the high-
dimensional picture data into a lower-dimensional rep-
resentation and identifying valuable and pertinent infor-
mation from redundant features. This can be performed
using a variety of techniques, including traditional com-
puter vision techniques such as image processing and
feature engineering, as well as DL techniques such as
CNNs and RNNs. These techniques can automatically
extract relevant features from the visual data without
the need for explicit feature engineering In speaker-
independent VSR, feature extraction is particularly im-
portant because it is necessary to recognize speech
accurately even when the system has not been trained on
the specific speaker’s visemes. This requires identifying
features that are common across different speakers rather
than relying on speaker-specific features.

4) Classification: Once feature extraction and normaliza-
tion are completed, the next step is Classification. In this
step, the system reduces the dimensions of the extracted
feature vector to predict the class and if possible, the

characteristics of the input visual media. For instance, if
the dataset includes speakers pronouncing 10 different
words, then the number of classes in the system would
be 10.

F. Highlights

The highlights of this paper can be stated as follows:
1) This review article offers exclusive perspectives and a

comprehensive comparison of methodologies employed
for feature extraction, normalization, and speech classi-
fication.

2) This article provides a detailed and all-encompassing
guide on the various datasets utilized for speaker-
independent VSR from the early stages of research in
the 1990s until now.

3) In this review article, an extensive analysis of con-
ventional algorithms and DL structures for speaker-
independent VSR is presented. The comparison between
these approaches is conducted based on factors such
as accuracy, testing, feature representation, and deploy-
ment, providing a comprehensive survey of the field.

The organization of the paper is as follows: Section II
provides a detailed account of the various datasets employed
for VSR. Section III elucidates the different techniques applied
for feature extraction and normalization, while Section IV
outlines the information concerning the diverse architectures
employed for prediction and classification. Fig. 3 illustrates
the methodology employed in this survey.

II. OVERVIEW OF THE DIFFERENT DATASETS USED IN
VSR

To perform the task of VSR, a well-defined dataset is
deemed essential. Since the task of VSR has many cate-
gories like sentence-level VSR and word-level VSR based,
Isolated and Continuous, and speaker dependent and speaker
independent, it is considered highly essential to choose the
appropriate dataset to work upon. When selecting datasets
for speaker independent VSR, it is important to consider
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several criteria. One key factor is the size of the dataset,
as having a large amount of data can help improve the
system’s accuracy. Additionally, the dataset should be diverse,
including a wide range of speakers with different accents,
dialects, and speech styles. This diversity helps ensure that
the system can accurately recognize speech from various
sources. Finally, proper annotation of the dataset is also
crucial, as it allows for the training and evaluation of the VSR
system. By considering these criteria when selecting datasets,
researchers can ensure that their VSR system is robust and
effective in real-world applications. In this section, we provide
a detailed description of the different datasets for the task
of VSR along with their comparison as depicted in Table I.
During the 1990s, limited studies focused on developing and
evaluating speaker independent VSR systems. As a result,
most experiments were conducted using customized datasets,
which were not validated on benchmark datasets. This limited
evaluation of speaker independent VSR systems was due to
several factors, including the lack of standard datasets, limited
computational resources, and the complexity of developing
robust and accurate VSR systems. However, some studies
did evaluate both speaker-dependent and speaker-independent
VSR systems on a few datasets, including the Tulips1 and
M2VTS datasets. Tulips1 [24] is a dataset for audio-visual
speech recognition. This dataset consists of 12 speakers, who
are undergraduate students of UCSD who are native speakers,
each uttering the first four digits of English, and each speaker
repeats the digits twice. The audio portion is captured at 11127
Hz with 8 bits per sample. The video portion consists of 934
grayscale lip frames with a size of 100 × 75 pixels, captured at
a rate of 30 fps on a frontal pose. Another popular dataset used
in the 90s, the M2VTS dataset [25], is a publicly available
benchmark dataset for speaker verification and identification
research. It was created in the late 1990s by the University
of Surrey and the Swiss Federal Institute of Technology in
Lausanne, Switzerland. The dataset consists of video and audio
recordings of 37 speakers, 22 of whom are male and 15 of
whom are female, all of them being native Swiss speakers.
Each speaker was recorded multiple times, resulting in a total
of 1,000 video and audio recordings collected over a period
of 4 months. The recordings were captured using a fixed
camera and a close-up view of the speaker’s face, allowing for
the analysis of lip movements and facial expressions during
speech.

The AVLetters [26] dataset consists of 10 speakers (five
men and five women), each uttering the letters A-Z 3 times,
so a total of 780 utterances is one of the most used alphabet
recognition datasets. It consists of native english speakers
and is recorded at the University of East Anglia. The audio
portion is recorded using 26 MFCC (Mel-frequency Cepstral
Coefficient), and the video portion is recorded with a size
of 376 × 288 pixels. The dataset is divided into two cate-
gories: training (first two utterances of every letter of every
speaker); and testing data (third utterance from all speakers).
AVLetters2 [27] was recorded at the University of Surrey in
2008, a revised version of the AVLetters dataset. This dataset
consists of 5 speakers, each uttering the letters A-Z 7 times, so
a total of 35 videos per letter. High Definition cameras with

a resolution of 1920 × 1080 were used to capture videos of
this dataset in RGB colorspace. This dataset is superior to its
predecessor version as it contains more classes with enhanced
resolution of the recordings. Another dataset, OuluVS [28], is
a dataset containing 20 speakers, each uttering 10 sentences
and every speaker uttering each sentence five times. All image
sequences of the OuluVS dataset are segmented, and the mouth
area is determined by the manually marked eye position in
every frame. Every image in all the sequences has a resolution
of 720 × 576 pixels and is captured at 25 fps. Unlike the
previous datasets mentioned above, this dataset deals with
sentences in an isolated framework. An enhanced version
of this dataset, also called the OuluVS2 dataset, contains
multidimensional images as depicted in Fig. 4. Applying the
concept of multidimensionality, a dataset named Lip Reading
in the Wild (LRW) is proposed. LRW is an audio-visual
dataset comprising 500 distinct classes of words spoken by
more than 1000 people, both native and non-native speakers.
This dataset is made up of 1.16-second-long MPEG4 clips
that were each captured at 25 fps. The dataset is divided into
training sets (800 utterances from each class) and validation
and test sets containing 50 utterances from each class.

Fig. 4: Frames from the OuluVS2 dataset

Since the proposal of the LRW dataset, several other
datasets involving the multidimensional data concept have also
been proposed. One such example of a dataset is the Lip
Reading Sentences 2 (LRS2) dataset [29]. Most videos in
the LRS2 dataset come from BBC news and TV shows. The
length of each sentence is up to 100 characters. According to
the broadcast date, the dataset is divided into 3 sets: training,
validation, and test set, to avoid similarity in the data. It is
complex since it has a wide range of head poses and thousands
of speakers without speaker labels. All the clips are captured
with a resolution of 160 × 160 pixels at 25fps. Another
dataset, the LRS3-TED [30], is a dataset for both visual and
audio-VSR. This dataset comprises 5594 English TED and
TEDx talks gathered from YouTube, and it consists of more
than 400 hours of video. The trimmed face recordings are
provided as a .mp4 file, encoded with the h264 codec with
a resolution of 224 × 224 pixels at 25 fps. The dataset is
divided into pre-train, train-Val, and test. A dataset involving
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the pronunciation of digits in a multidimensional space is the
AVDigits dataset [31]. It consists of 53 speakers, each uttering
the 0–9 digits five times each, and 39 speakers, each uttering
10 sentences five times each. The videos are captured in 3
different positions (0, 45, & 90), and three different speech
modes (standard, whisper, & silent), and the speakers were
asked to close their mouths at the start and end of uttering
the digits. The video portion of each utterance is captured
with a resolution of 1280 × 780 pixels at 30 fps. One of the
significant datasets for isolated sentence and word-level VSR
is the MIRACL-VC1 dataset [32]. The major highlight of this
dataset is that it also contains depth images of the speakers,
as illustrated in Fig. 5, which adds to the training of any DL
model. The dataset consists of 10 words and 10 phrases, with
15 speakers (5 men and 10 women) each uttering the words
and phrases ten times each, totaling 3000 utterances. Every
utterance in the sequence is an image of size 640 x 480 pixels
with 25fps.

Fig. 5: Frames from the MIRACL-VC1 dataset

As researchers aim to develop VSR systems that can rec-
ognize speech in languages other than English, non-English
datasets have gained importance. These datasets are chosen
based on criteria such as dataset size, diversity, and proper
annotation. OLKAVS [39], for instance, is a Korean dataset
comprising over 1150 hours of audiovisual data, while Glips
[36] includes over 250000 utterances of German speakers.
CAS-VSR-W1k [34] is a Mandarin dataset that consists of
over 1,000 sentences spoken by 2000 speakers, and CN-
CVS [37] includes over 122.6 hours of Chinese audiovisual
data. RUSAVIC [38] is a Russian dataset that includes over
14000 utterances of Russian audiovisual data, while CMLR
[35] includes over 102076 video clips of Mandarin speakers.
These datasets differ in various aspects such as the number of
speakers, the duration of recordings, and the number of video
clips. These factors can affect the performance and robustness
of VSR models trained on them. Despite the variations, these
datasets provide valuable resources for developing and eval-
uating VSR models for a range of languages. These datasets
are open-source with the exception of M2VTS and OuluVS
having been replaced by their upgraded versions, which en-
ables researchers worldwide to access and use them. In the
subsequent sections, we illustrate the different methodologies
applied to these datasets for preprocessing, feature extraction,
and prediction. This would give readers an insight into the
techniques used in the field and the potential of these datasets
in advancing the performance of VSR models.

III. FEATURE EXTRACTION

Preprocessing and feature extraction are essential steps in
the process of speaker independent VSR. Preprocessing aims
to enhance the quality of the data by eliminating unwanted dis-
tortions or enhancing specific visual properties necessary for
subsequent processing and analysis tasks. Figure 6 depicts the
face localization and preprocessing process used for extracting
the lip region of interest. This section outlines the various
techniques used for dataset preprocessing and lip region of
interest extraction.

Video Sampling Face Localization RoI Extraction

Face Detection Face Tracking Landmarks

Fig. 6: Preprocessing Pipeline

The concept of fuzzy clustering, which allows a data point
to belong to more than one cluster, has become increasingly
important in many DL classification tasks [40]–[42]. In the
context of VSR, a novel technique for lip contour extraction
was proposed by Srinivasa Rao Chalamala et al. [43],
which employs fuzzy clustering with active contour modeling
(ACM) [44] and elliptic shape information. The proposed
approach involves the extraction of lip structure using the
fuzzy membership distribution, followed by the application of
an ellipse function to refine the extracted lip structure. The
authors defined their base model as an ellipse enclosing the
lip area, which was then used to develop active contours to
precisely match the lip’s contour. By combining image and
model-based lip contour extractions, the proposed technique
aims to increase the accuracy of lip contour extraction for VSR
tasks. Overall, this research presents a promising approach to
improve lip contour extraction accuracy for VSR, utilizing the
concepts of fuzzy clustering and active contour modeling. The
use of an ellipse function to refine the lip structure is a novel
addition to existing techniques, and the combination of image
and model-based extractions is expected to provide more
robust and accurate results. However, it is noteworthy that
the authors do not explicitly address the effectiveness of their
proposed approach across different populations. Specifically,
they do not provide explicit insights into whether the method
performs consistently well across individuals of different ages,
ethnicities, or other demographic factors. The researchers
contend that the ACM, when applied solely by itself, fails
to yield accurate lip contours. They specifically highlight
scenarios in which the pixel values in the lip region and its
surrounding areas lack distinct separation, making it challeng-
ing for the ACM to accurately delineate the lip boundaries.
This aspect leaves room for further investigation and validation
of the approach’s generalizability and applicability to diverse
populations.

Chengjia Yang et al. [45] proposed an improved version
of the region growing algorithm [46] which utilizes the
RGB colorspace for lip contour extraction. The proposed
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TABLE I: Comparison between the existing datasets for isolated VSR

Dataset Language Year I/C Segment Speakers Classes Utterances Resolution Pose Avg Sample Size
Tulips1 [24] English 1996 Isolated Digits 12 4 96 100 × 75 Frontal -
M2VTS [25] English 1997 Isolated Digits 37 10 1000 768 × 576 Frontal 1.5s

AVLetters [26] English 1998 Isolated Alphabets 10 26 780 376× 288 Frontal -
AVLetters2 [27] English 2008 Isolated Alphabets 5 29 910 1920× 1080 Frontal -

MIRACL-VC1 [32] English 2011 Isolated Words 15 10 1500 640 × 480 Frontal 1s
OuluVS [28] English 2015 Isolated Sentences 20 10 1000 720× 576 Frontal 3s

LRW [33] English 2016 Continuous Words > 1000 500 400000 256× 256 -30 ∼ 30 3s
LRS2 [29] English 2017 Isolated Sentences > 1000 17428 118116 160× 160 -30 ∼ 30 3.75s

LRS3-TED [30] English 2018 Isolated Sentences > 1000 70000 165000 224× 224 -90 ∼ 90 3.2s
AVDigits [31] English 2018 Isolated Digits 53 10 795 1280× 780 0,45,90 -
AVDigits [31] English 2018 Isolated Sentences 39 10 5850 1280× 780 0,45,90 -

CAS-VSR-W1k [34] Mandarin 2019 Continuous Word 2000 1000 718,018 Naturally distributed Natural -
CMLR [35] Mandarin 2021 Isolated Sentences 11 9 102076 64 × 128 Frontal -
GLips [36] German 2022 Continuous Words 100 500 250000 256 × 256 Frontal -

CN-CVS/Speech [37] Mandarin 2022 Continuous Sentences 2529 ∼ 75 193,329 640 × 480 Natural -
CN-CVS/News [37] Mandarin 2022 Continuous Sentences 28 ∼ 465 13016 640 × 480 Frontal -

RUSAVIC [38] Russian 2022 Isolated Sentences 20 72 14000 1920 × 1080 -30 ∼ 30 -
OLKAVS [39] Korean 2023 Isloated Sentences 1107 > 100 250000 1920× 1080 0,45,90 -

method estimates the association between the color form and
adjacent pixels, thereby automatically selecting seed pixels.
Subsequently, the watershed algorithm is employed after
a series of image processing operations to extract the lip
contour region. The experimental analysis conducted on the
proposed approach demonstrates its straightforward nature and
effectiveness in extracting the lip contour region, achieving
an accuracy rate of 80%. Notably, the approach leverages
the full RGB color space, eliminating the necessity for color
space conversion, which in turn saves both memory space
and computing time. Given the absence of comprehensive
details regarding the customized dataset utilized in the
study, it becomes challenging to ascertain the general-
izability of the methodology across different ethnicities.
This lack of specificity pertaining to the dataset poses limi-
tations on the broader applicability and effectiveness of the
proposed approach across diverse ethnic populations. Sukesh
Kumar Das et al. [47] proposed an automated mechanism
for lip contour detection, utilizing segmentation based on
pixel characteristics and piecewise polynomial interpolation.
The initial RGB input color frame undergoes binary image
thresholding. The region of interest (ROI) is identified by
constructing a mathematical model that divides the data into
two distinct clusters, namely, lip pixels and non-lip pixels, with
discriminatory color information. The experimental analysis
indicates that the performance of this proposed methodology is
slightly better for females (accuracy = 99.46%) than for males
(accuracy = 98.84%) due to the greater color discriminant
intensity weights between female subjects’ lips and non-lip ar-
eas. Although it is important to acknowledge the limitations
of solely relying on the performance on a single dataset, the
successful results obtained on the GRID Database provide
encouraging evidence of the methodology’s efficacy. As
the GRID Database consists of recordings from individuals of
various ethnic backgrounds, the methodology’s high accuracy
on this dataset implies its potential for generalization across

different ethnicities.

Active contour is a popular segmentation technique in
image processing that employs energy forces and limitations to
extract essential pixels from an image for further analysis and
processing. The primary purpose of active contours is to define
smooth shapes in images and identify asymmetrical shapes.
Xin Liu et al. [48] proposed a localized active contour model
with automatic parameter assignment for lip segmentation. The
proposed technique involves identifying the lips’ initial edge
landmarks to determine the lips’ minimum-bounding ellipse.
At each iteration, local energies are computed at each point
along the curve, resulting in the deformation of the evolving
curve. The iterations continue until the minimum bounding
ellipse is the best fit. With an impressive accuracy rate of
96.4%, the authors confidently assert that their methodology
successfully extracted lip contours, even in cases involving
deformable or irregular lips. The proposed approach exhibits
a higher tolerance towards challenges such as uneven illumi-
nation, rotation, deformation, and the presence of teeth and
tongue, which can significantly impact the accuracy of lip con-
tour extraction. Moreover, the authors conducted a thorough
examination of the unsatisfactory results, which accounted for
only 3.6% of the cases, and identified that these instances were
primarily attributed to either poor contrast between the lip
and surrounding skin regions or the presence of noticeable
beard effects around the lips.

In contrast to typical ACMs with global information, Chin
et al. [49] proposed a region-based ACM with local energy
terms, assisted by the watershed algorithm. The framework
includes localized energy estimation based on watershed seg-
mentation, delivering a more satisfactory contour extraction
mechanism than global energies computation. Additionally,
a modified H mechanism is presented to efficiently identify
lip feature landmarks, which counteracts the delicate nature
of ACM with the initial contour position. The proposed
framework is experimented with the CUAVE and XM2VTS
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benchmark video datasets, and results show a Percentage
of Overlap (POL) of 90% and 86.2%, respectively. The
authors assert that their proposed system surpasses existing
methodologies when confronted with scenarios where the
color differences between the lips and surrounding skin regions
are indistinct. The localized analysis employed in their
approach, which focuses on local details rather than
solely seeking global energies, proves to be more effective
in these challenging situations. Additionally, the authors
claim that their algorithm demonstrates superior lip contour
detection for subjects with darker skin tones and individuals
with facial hair, specifically mentioning black subjects. Since
the experimentation encompassed two benchmark datasets, it
can be reasonably concluded that the proposed algorithm
exhibits proper generalization across different ethnicities.

Alan Wee-Chung Liew et al. [50] proposed a spatial
fuzzy clustering algorithm [51] for binary-class clustering and
segmentation tasks. The algorithm leverages feature space data
and the spatial associations between adjacent pixels to achieve
successful segmentation. This algorithm includes appropriate
preprocessing and postprocessing phases to enhance the image
quality further. According to the results obtained, the proposed
algorithm demonstrated successful segmentation, achieving
a POL of 95% or a Segmentation Error (SE) of 5%.
However, it is important to note that a portion of the error
can be attributed to the mismatch between the parametric lip
model employed and the actual lip characteristics. Based on
the author’s experience, this type of error typically accounts
for approximately 2% to 5% of both POL and SE, with the
specific percentage varying depending on the actual shape of
the lips. It should be noted that the algorithm does not
incorporate the consideration of facial hair, such as mus-
taches and beards. Shu-Hung Leung et al. [52] introduced
a spatial-color-based fuzzy clustering framework for lip region
segmentation. This framework called fuzzy c-means with
shape function (FCMS), utilizes color information and spatial
distance to extract the lip region. The proposed framework
presents a new dissimilarity measure incorporating the shape
function in its embeddings, which improves the segmenta-
tion performance. The framework’s implementation involves
color transformation, image preprocessing, lip extraction with
FCMS, and postprocessing. However, the computational time
complexity of the proposed FCMS is nearly 1.78 times that of
the classical fuzzy c-means (FCM) algorithm. In conclusion,
the research papers by Alan Wee-Chung Liew et al. [50] and
Shu-Hung Leung et al. [52] introduce novel approaches for
image segmentation using spatial fuzzy clustering algorithms.
These techniques are valuable in extracting essential features
from an image by leveraging spatial and color information.
The proposed frameworks demonstrate improved segmentation
performance, but the computational complexity should be
considered when applying them in real-world applications.

Yao Wen Juan et al. [53] proposed a real-time lip
localization framework comprising two phases: lip region
location and lip tracking. Firstly, the framework detects the
face and eyes using AdaBoost [54], [55] and Haar Features
[56], [57] and, based on their association with the mouth,
locates the lips. Subsequently, the lips are tracked using

the a component of the Lab color space. In the study, it
is reported that the proposed lip tracking method achieved
accurate tracking for 98% of the lips. The authors substantiate
this by demonstrating that the acomponent of the lab color
space exhibits superior separation ability compared to other
color space components. Additionally, the authors highlight
the successful improvement of their lip location method in
enhancing lip tracking performance across various lighting
conditions, diverse lip shapes, and different head poses.
In a similar vein, a color-based geometrical algorithm for lip
region extraction was proposed by Shemshaki et al. [58]. This
algorithm defines geometrical rules for skin and lip distribu-
tions in the chromatic and YCbCr color spaces, respectively,
to extract pixels containing skin and lip separately in an
image. After segmenting the lip region, the proposed algorithm
further improves its accuracy by performing perpendicular and
horizontal accumulation curves, achieving a detection rate of
93.33%. The results obtained from the study provide evidence
that the proposed method is capable of accurately detecting the
lip region in images with complex backgrounds. The authors
also claim that the method demonstrates efficiency in terms
of both implementation and execution time, making it a
practical solution. Additionally, the proposed method exhibits
high precision in detecting lips in images with rotated faces.
It should be noted that the study does not provide specific
information regarding the performance of the methodology on
different ethnicities. The authors do not explicitly address the
methodology’s effectiveness or generalizability across diverse
ethnic populations.

Xinjun et al. [59] proposed an improved jumping-snake
model for lip segmentation that considers the geometric pa-
rameters of the lips. This model includes a division-detection
procedure, which involves the estimation of the lip region and
the detection of lip landmarks. The method starts by utilizing
the frontal face template matching technique to segment the
lips, which is followed by the application of the improved
jumping-snake technique to identify the lip landmarks. The
validation of the methodology on a customized dataset con-
sisting of Chinese speakers, with an average accuracy of
90%, is indeed valuable information. However, it is important
to recognize that the absence of other ethnic speakers
in the dataset limits the ability to directly assess the
performance of the methodology on different ethnicities.
Another approach to lip segmentation is the use of dynamic
deformable templates, which was proposed by Zhiyong Wu
et al. [60]. This method utilizes different templates based on
varying lighting conditions, head poses, and lip shapes. For
variable illumination conditions, a nostril-searching technique
is employed for lip segmentation. For variable head poses,
the lips are tracked on facial images with the inclusion
of a dynamic mechanism for conventional systems. Finally,
for variable lip shapes, the lips are tracked based on the
contours dynamically. The proposed method was evaluated on
the CU-TTAVS dataset and achieved promising results. By
incorporating ”dynamicity” into the deformable templates, the
proposed method addresses the challenges posed by changes
in head pose, face illumination, and lip shapes. These
variations can significantly impact the accuracy and reliability
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TABLE II: Comparison between existing Feature Extraction works

Existing Works Methodology Dataset Feature Details
Srinivasa et al. [43] Fuzzy clustering + active contour

modelling
VidTimit database Lip Contours

Chengjia Yang et al. [45] RGB–based improved region growing Custom lip images Lip Contours
Sukesh et al. [47] Pixel-based segmentation and

piece-wise polynomial fitting
GRID database Lip Contours

Xin Liu et al. [48] Localized Active Contour Model with
Automatic Parameter Selection

CVL and GTAV face database Lip Contours

Siew et al. [49] Watershed-based active contour model
and modified H∞

CUAVE, XM2VTS database Lip contour detection and tracking

Alan et al. [50] Spatial Fuzzy Clustering Homebrew, XM2VTS, AR face Lip Segmentation
Shu-Hung et al. [52] Fuzzy Clustering + Elliptic Shape

Function
Custom database Lip Segmentation

Yao WenJuan et al. [53] OpenCV and acomponent of Lab color
space

CR face and dual-mode video
database

Lip Localization and Tracking

Mehrdad et al. [58] Geometrical Model Of Color
Distribution

Bao Image database Lip Segmentation

MA Xinjun et al. [59] Improved Jumping-Snake Model Custom Database Lip point’s detection
Zhiyong et al. [60] Dynamic deformable templates CU-TTAVS Database Lip Tracking
Parisa et al. [61] Fuzzy logic approach with particle filter Custom Database Lip Tracking

Behrooz et al. [62] Modified Lip-Map Algorithm CVL, IMM, GTAV, and CID
Databases

Lip detection

Ma et al. [63] RetinaFace + FAN LRW Dataset Lip Localization and Tracking

of lip-tracking algorithms. The dynamic deformable templates,
being adaptable and flexible, effectively account for these
variations, resulting in improved tracking performance. These
approaches demonstrate the advancements in lip segmentation
techniques and highlight the importance of considering various
factors such as geometric parameters, lighting conditions, head
poses, and lip shapes in achieving accurate lip segmentation.
Such advances in lip segmentation techniques can have prac-
tical applications in various fields, such as speech recognition,
facial expression analysis, and biometric identification.

Improving the accuracy of lip tracking and segmentation
remains a challenging task, especially for extremely low-
contrast images. To tackle this problem, Darvish Zadeh et
al. [61] proposed a novel approach that utilizes an improved
particle filter lip tracker based on fuzzy logic. The method
is suitable for non-linear modeling and is appropriate for
dealing with non-Gaussian noise. The proposed technique
involves sampling lips using a modified particle filter, and the
evaluation of features is accomplished based on fuzzy rules.
The results of the proposed particle filter lip tracker indicate
that the detection rate is approximately 78% within a tolerance
of 5% of distances, which is a promising outcome. It is im-
portant to note that the methodology under consideration was
validated using a customized dataset. While this validation
provides valuable insights into the performance of the method
on the specific dataset, it does not provide direct information
about the methodology’s effectiveness on different ethnicities.
In addition, Behrooz et al. [62] proposed an improved lip-
map algorithm for lip region segmentation. In this approach,
the lower half part of the image is considered as the input,
followed by an improved lip map algorithm, which is further
transformed into a wavelet form. The algorithm emphasizes
the lip region during these phases, which helps to determine

the lip regions and locations accurately. Finally, the lip pixels
are extracted from the skin pixels with Top Hat transformation.
A significant advantage of this work lies in its evaluation on
multiple benchmark datasets, which provides evidence of its
ability to generalize across different ethnicities. By evaluating
the methodology on various datasets, researchers were able to
assess its performance in diverse scenarios and populations,
thereby enhancing confidence in its generalizability. Further-
more, the reported high accuracies of 99.1%, 98.0%,
98.5%, and 97.8% on the CVL, IMM, GTAV, and CID
databases, respectively, highlight the remarkable efficiency
of the methodology.

In our survey, we recognize the importance of analyzing
the feature extraction techniques employed on widely-used
datasets, such as the LRW dataset. To address this, we
included an overview of the feature extraction works that
have been performed on this dataset. We acknowledge the
significance of this dataset in the field of VSR and aim to
provide a comprehensive analysis of the techniques employed
for feature extraction. Ma et al. [63] utilized the RetinaFace
tracker [64] to detect the faces present in the video frames.
Following this, the authors utilized the Face Alignment Net-
work (FAN) [65] for the detection of facial landmarks, which
helps to accurately locate the lip area in each frame. They
also normalized the frames by removing any size and rotation
differences by registering the faces to the mean face in the
training set. In order to focus on the mouth region of the face,
they cropped a bounding box of size 96 × 96 around the lip
area. Furthermore, they applied normalization to each frame by
subtracting the mean and dividing by the standard deviation of
the training set. This helped them to standardize the data and
ensure that the model could effectively learn from the input
data without being biased towards any particular distribution.
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Similar methods of ROI extraction were stated in [66]–[68]
Facial feature extraction plays a vital role in the success of

speaker independent VSR systems, and accurate localization
and extraction are critical components of facial recognition
pipelines. The section highlights various methods used for
facial feature extraction and face localization, with Table II
summarizing the methodologies of different techniques. The
datasets used in these works vary from VidTimit, GRID,
CVL, GTAV, XM2VTS, AR face, CR face, dual-mode video
database, Bao Image database, CU-TTAVS, CID, IMM, to
LRW. Most of these datasets contain a large number of images
or videos, with different angles, poses, and expressions of the
subjects. Fuzzy clustering has emerged as a popular choice
for lip segmentation due to its ability to accurately classify
pixels as part of the lip or non-lip area, even when the lip
area is partially obscured or blended with the surrounding skin.
Furthermore, fuzzy clustering can handle variations in lighting
and noise, making it a practical choice for lip segmentation in
real-world environments. Regarding lip contour detection, the
majority of works used active contour models, while some
utilized the watershed algorithm. Active contour models excel
at handling variations in lip texture, shape, and illumination,
making them well-suited for lip contour detection in challeng-
ing conditions. Moreover, active contour models can adapt
to lip shape and motion, making them ideal for tracking lip
movements over time. These models can also detect subtle
lip movements that are crucial for accurate VSR. It is also
essential to understand the computational complexity of It is
worth noting that accurate facial feature extraction requires
a correct measure to represent the extracted features. This
measure can be in the form of feature vectors that represent the
unique characteristics of each face. Therefore, it is essential to
use appropriate methods for feature extraction to ensure that
the feature vectors accurately represent the individual’s facial
features. In the subsequent section, we will focus on different
techniques used for transforming the feature vectors obtained
from feature extraction into suitable forms for various VSR
architectures.

IV. FEATURE NORMALIZATION

The subsequent step of this pipeline includes feature nor-
malization. The significance of image normalization is that
it helps in the faster convergence to find more similarities
based on measured feature values from the dataset while
training any DL model. In this section, we analyze the different
methodologies used to perform the task of image normaliza-
tion. One of the earliest methodologies of facial detection
and normalization proposed by Wang et al. [69] uses the
similarity of skin color pixels to detect the face in an image.
The noise removal is performed by expansion and corrosion
after the detection of skin. The methodology uses binarization,
image cutting, and enlargement for image normalization. The
methodology generalizes well on a diverse set of faces having
different patterns of facial and also due to the presence of
a simple methodology, it can be considered computationally
efficient. However, even due to the presence of diverse facial
features, the methodology could face limitations due to the

absence of evaluation on benchmark datasets. Kim et
al. [70] proposed a methodology involving the usage of the
defined facial section pattern’s symmetry and its characteristics
for normalizing range data. Surface curvatures can indicate
a local surface form and are utilized for accurate feature
detection. The significant advantage of this methodology is the
inclusion of 3D feature maps for normalization. However, the
work faces the same limitation of lack of testing on benchmark
datasets.

Li et al. [71] suggested a High-Fidelity Illumination Nor-
malization for Face Recognition Based on Auto-Encoder. The
proposed methodology involves the usage of conventional
autoencoders to map the face under various illumination
conditions and to perform feature normalization. The authors
also claim that facial features are preserved, thus helping
in effective facial recognition. Also, the methodology was
evaluated on the CAS-PEAL database and the extended Yale B
database and the results show the superior performance of the
methodology on all angles and frames. Similar work involving
the normalization of images under illumination conditions was
proposed by Ling et al. [72] The technique integrates GANs
[73]–[76] with feature maps of different sizes derived from
pretrained feature networks using various convolutional layers
and then uses these feature maps to compute loss. Under
various lighting conditions, the suggested technique produces
favorable illumination normalization results compared to ear-
lier methods. Fig. 7 depicts the phase of preprocessing and
feature normalization. After the preprocessing step, this feature
vector is then given as input to the speaker-independent VSR
architectures, which are designed to recognize the spoken
words regardless of the speaker’s identity. In the following
section, we discuss the different architectures used for the task
of speaker independent VSR.

(a) (b) (c) (d)

Fig. 7: (a) Input Video Frame, (b) Face Localization, (c) Lip
Region Cropping, (d) Feature Normalization and Gray Scale
conversion. Credit: Nemani et al. [77]

V. PROPOSED METHODOLOGIES FOR VSR

A. Summary of Seminal Works in VSR in the 1990s

While the concept of VSR is not new, it gained significant
attention in the 1990s due to advances in computer vision (CV)
and ML. During this time, researchers developed various tech-
niques and algorithms to analyze video recordings of speakers
and recognize speech from visual input. These early studies
laid the foundation for modern VSR systems and continue to
be a source of inspiration for current research in the field.
In the context of the study, we conducted a comprehensive
review of fifteen seminal works in the field of VSR that share
fundamental similarities with the contemporary concept of
VSR. The review aims to analyze and compare the approaches,
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techniques, and algorithms employed in these works to gain
insights into the evolution and progress of VSR research over
time. The findings of the review provide valuable information
and guidance for researchers and practitioners working in the
area of VSR. In 1991, Gelder et al. [78] investigated the
cognitive relationship between face recognition and lip-reading
abilities in individuals with autism. The study suggested that
individuals with Autism Spectrum Disorder (ASD) have
difficulty recognizing faces but may be able to read lips
at a level comparable to typically developing individuals.
In 1993, works by Walden et al. [79] and Silsbee et al.
[80] illustrated that visual cues provide significant benefits in
auditory-visual speech recognition by improving the accuracy
of speech perception, especially in noisy environments. When
speech is accompanied by visual cues, listeners are better able
to distinguish between similar-sounding phonemes, resulting
in increased speech intelligibility.

Visual cues can also help listeners to identify the speaker, as
well as their emotional state, which can aid in understanding
the meaning of the speech. This was further improved in 1994
when Javier et al. [81] proposed a VSR methodology involving
stochastic networks. The study described a speaker indepen-
dent VSR system that used HMMs for limited vocabulary
recognition. A Hidden Markov Model (HMM) [82]–[84] is
a statistical model that is used to describe the probabilistic
sequence of observable events, where the states generating the
events are hidden or unknown. In an HMM, the observable
events represent the outputs of a system, and the hidden states
represent the underlying processes generating those outputs.
The transitions between hidden states are governed by a set
of probabilities called transition probabilities, which determine
the probability of transitioning from one state to another. Addi-
tionally, each hidden state emits a set of observable events with
a probability determined by a set of emission probabilities. The
underlying mechanism of an HMM can be depicted in Fig. 8
The system recognizes the first four English digits and could
be used in car-phone dialing applications. The images were
modeled as mixtures of independent Gaussian distributions,
and temporal dependencies were captured with left-to-right
hidden Markov models. The results showed that the system
achieved performance levels comparable to untrained humans
in recognizing the first four English digits.

In a series of studies conducted in the mid-1990s, re-
searchers investigated the potential of using limited facial
movement exposure to recognize monosyllabic words and
improve speech recognition systems based on visual features.
Marassa et al. [85] in 1995 utilized a new method that
restricted facial movements in video sequences to only the
lips-plus-mandible region and found that speech readers
could recognize monosyllabic words using video sequences
that provided only this limited information. Bregler et al. [86]
introduced a novel approach for learning smooth nonlinear
manifolds and applied it to various lip reading tasks. Their
technique was capable of determining the surface structure
and finding the closest manifold point to a query point, thus
enhancing the performance of acoustic speech recognizers in
noisy environments. In a subsequent study in 1996, Luettin
et al. [87] presented a speechreading system that relied solely

Feature Extraction

Vector 
Quantization

Feature Vector Symbol Sequence

HMM Based Recognition

Input for the HMM

Recognized 
Word Code

Fig. 8: Underlying mechanism of HMMs

on visual features extracted from grey-level image sequences
of a speaker’s lips. The system utilized Active Shape Models
[88], [89] to track the lip contours and extract visual speech
information from their shape, which was then modeled using
continuous-density HMMs. The authors found that speech-
relevant information was present in low dimensional space
and was relatively robust to variations in both inter- and
intra-speaker variability. Luettin et al. [90] also introduced
an approach to visual speech recognition using a similar
Active Shape Model to represent the shape of the mouth, with
recognition tests yielding an accuracy of 85.42% for a speaker-
independent recognition task of the first four digits using lip
shape information only. Overall, these studies suggest that
utilizing limited facial movement exposure and visual features
can potentially enhance speech recognition systems.

In 1997, researchers developed innovative approaches to
lipreading systems for speech recognition tasks using only
visual information from human lips without any acoustic data.
Chiou et al. [91] presented a system that utilized snake
algorithms to extract geometric visual features, Karhunen-
Lo‘eve transform to extract principal components in the color
eigenspace, and HMMs to recognize visual feature sequences,
achieving an impressive 94% accuracy rate for ten isolated
words. Yu et al. [92] proposed a method that treated the
intensity of each pixel in an image sequence as a function
of time, and lip movements were modeled by applying a one-
dimensional Fourier Transform to this intensity-versus-time
function. The approach was evaluated through experiments
on two distinct databases of ten English digits and letters.
In another study, Luettin et al. [93] introduced a novel ap-
proach to speechreading that utilized visual feature extraction
for speaker-independent continuous digit recognition. The lip
tracker was used to extract information about the lip shape
and the grey-level intensity around the mouth, which were
then used to train visual word models using Continuous-
Density HMMs. The experimental results showed that the
method generalized well to new speakers, and the recognition
rate varied considerably across digits due to the high visual
confusability of certain words.

Recurrent Neural Networks (RNNs) [98], [99] are a type
of neural network that is designed to handle sequential data.



12

TABLE III: Tabulated Overview of VSR Research from the 1990s

Existing Works Year Methodology Dataset Nature of the corpus
Gelder et al. [78] 1991 - - -
Walden et al. [79] 1993 Visual Cue Derivation Customized Dataset of 20 middle-aged and 20

elderly Subjects
Vowels and Sentences

Silsbee et al. [80] 1993 Visual Cue Derivation - Vowels
Javier et al. [81] 1994 Stochastic Networks Customized Dataset of 9 males, 3 females

pronouncing 4 digits
Digits

Marassa et al. [85] 1995 lips-plus-mandible region restriction Customized Dataset of 26 normal hearing college
students and 4 adults with bilateral sensorineural

hearing loss

Monosyllabic Words

Bregler et al. [86] 1995 HMM + Learned Lip Manifold Customized Dataset of 4500 images of 6 speakers
uttering random words

Words

Luettin et al. [87] 1996 Active Shape Models + HMMs Tulips1 Digits
Luettin et al. [90] 1996 Improved Active Shape Models Tulips1 Digits
Chiou et al. [91] 1997 Karhunen-Lo‘eve transform + HMM Custom Dataset Continuous Digits

Yu et al. [92] 1997 Fourier Transforms - -
Luettin et al. [93] 1997 HMM M2VTS Database Continuous Digits
G. Rabi et al. [94] 1997 RNNs Custom Words
Nanaku et al. [95] 1999 Continuous Density HMMs Tulips1 Digits
Javier et al. [96] 1999 Stochastic version of RNNs Tulips1 Digits

Baldwin et al. [97] 1999 Fuzzy Set Theory Custom and Tulips1 Digits

Unlike traditional neural networks, which only operate on a
fixed-sized input, RNNs can process inputs of variable length,
making them well-suited for tasks such as language modeling,
speech recognition, and time series analysis. The key feature of
an RNN is its ability to maintain a ”hidden state” that captures
information about the sequence processed so far. This hidden
state is updated at each time step, allowing the network to
capture long-term dependencies in the data. However, they
suffer from some limitations, such as difficulties in handling
long-term dependencies and a tendency to forget earlier inputs
as the sequence gets longer. In this context, G. Rabi et al. [94]
proposed a method for speech recognition based on RNNs,
which involves first extracting time-varying visual speech
patterns from a sequence of images, followed by classifying
the spatiotemporal pattern as one of the previously trained
words using recurrent neural networks. The recurrent network
is trained using only feed-forward complexity by specifying a
certain behavior when it is given exemplar sequences. The
training sequences of a given word are segmented using
adaptive segmentation.

In 1999, Nanaku et al. [95] presented a novel approach
to parameter estimation for continuous density HMMs in the
context of visual speech recognition. The authors propose
an average-intensity and location-normalized training method,
which integrates the normalization process into model training.
The proposed method is based on a maximum likelihood
formulation, providing a theoretically well-defined algorithm,
and the likelihood for the training data is guaranteed to
increase at each iteration of the normalized training. Javier
et al. [96] introduced a novel approach to image sequence
recognition that differs from HMMs. The proposed method is
based on a stochastic version of recurrent neural networks,
which the authors call diffusion networks. Unlike HMMs,
diffusion networks use continuous state dynamics and generate

continuous paths, which can be beneficial in computer vision
tasks that require continuity. The paper presented a review
of the necessary results for the implementation of diffusion
networks and applies them to a VSR task. The experimental
results demonstrate that diffusion networks outperform the
results obtained with the best HMMs. Baldwin et al. [97]
presented a novel approach to automatic computer lip-reading
using fuzzy set theory and mass assignment theory for feature
extraction from video sequences. The proposed method utilizes
simple rules based on fuzzy sets to generate a knowledge
base for phonemes or sounds using probabilistic grid models.
The system was trained and tested on phonemes from a
medium-sized vocabulary of words and achieved a reasonable
accuracy for classification. The method was further evaluated
on the Tulips1 database and demonstrated efficient and general
learning techniques that can be applied to different speakers.

The analysis and comparison of the fifteen seminal works
in the field of VSR presented in Table III highlight some
significant findings and results. One of the key observations is
that the majority of VSR solutions utilized HMMs for speech
recognition. In particular, the works of Bregler et al. [86]
and Luettin et al. [90] demonstrated improved performance
in speech recognition through the use of HMMs with learned
lip manifolds and active shape models, respectively. However,
towards the late 90s, modern deep learning methodologies like
RNNs were also utilized in VSR research, as seen in the works
of Javier et al. [81] and G. Rabi et al. [94]. Another noteworthy
observation is the utilization of standardized datasets such
as Tulips1 and M2VTS in VSR research towards the late
90s. This allowed for more accurate and fair comparisons
of different VSR techniques and served as a benchmark for
future research. Despite the progress made in VSR research
during the 90s, the performance metrics used in the majority
of the solutions were not clear enough. Therefore, more
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work was required to establish better performance metrics
and benchmarking procedures for VSR research. It is also
important to note that not all works in the table explicitly
mentioned the concept of speaker independence. This may be
because some of the works focused on recognizing speech
from a limited set of speakers, making speaker independence
less relevant. Nonetheless, several works in the table addressed
the issue of speaker independence. For instance, Bregler et
al. [86] used a customized dataset of six speakers to train their
system but tested it on a new speaker outside the training set.
Similarly, Chiou et al. [91] achieved speaker independence
in the recognition of continuous digits using the Karhunen-
Lo‘eve transform and HMMs. The concept of speaker indepen-
dence was recognized as an important challenge that needed
to be tackled to develop a robust and practical VSR system.
Overall, the works reviewed in the table provide a foundation
for subsequent research in VSR, laying the groundwork for the
development of more accurate and efficient VSR techniques
in the future.

B. Works between 2000 and 2010

During the 1990s, traditional methodologies were the norm
for speech recognition tasks, with little emphasis on de-
veloping models that could operate speaker-independently.
However, with the advent of the new millennium, there was
a shift towards evaluating traditional architectures on bench-
mark datasets, and the need for developing more speaker-
independent models became more apparent. Towards the end
of the 2000s, deep learning methodologies, such as Artificial
Neural Networks (ANNs), started gaining more attention
in the VSR community. This approach allowed for more
flexibility and better performance on VSR tasks. Despite the
improved performance, the aspect of speaker independence
was still less explored compared to the works after 2010.
In this section, we review 20 such papers that describe the
transition of VSR works from traditional methods to modern-
day methodologies, with a specific focus on the aspect of
speaker independence.

In 2000, Vanegas et al. [100] presented a novel approach
for enhancing the performance of a visual-information-based
speech recognition system by normalizing the lip position.
The proposed method aimed to address the issues that arise
due to the variability in the lip location, which can adversely
affect recognition accuracy. The lip location normalization
algorithm is integrated into the model training process, and
a search algorithm is employed to locate the lips’ position
accurately. Experiments were conducted on two speaker-
independent databases, Tulips1 and M2VTS, for isolated word
recognition. The results demonstrate a recognition rate of
74.5% and 94.8% for the M2VTS and Tulips1 datasets,
respectively, and an error reduction rate of 35.7% and
76.3% on the M2VTS and Tulips1 datasets, respectively.
Nankaku et al. [101] proposed a novel approach for esti-
mating the parameters of continuous density HMMs in VSR.
One of the significant challenges in image-based visual speech
recognition is the normalization of lip location and lighting
conditions, which are crucial for the accurate estimation of

HMM parameters. To address this issue, the paper presents a
normalized training method that integrates the normalization
process into the model training. This approach has been ex-
tended to include contrast normalization in addition to average
intensity and location normalization. The proposed method
utilizes a maximum likelihood formulation, which provides a
theoretically well-defined algorithm. This formulation ensures
that the likelihood of the training data increases at each
iteration of the normalized training. Experiments have been
conducted on the M2VTS database achieving a recognition
rate of 74.1% and an error reduction rate of 24.7%, and
the results demonstrate that the proposed approach can sig-
nificantly improve recognition performance. The normalized
training method provides a practical solution to address the
challenges in VSR, and it has the potential to enhance the
accuracy and robustness of the system.

In 2002, numerous researchers utilized Support Vector
Machines (SVMs) [102] in the field of VSR. SVMs are
powerful and popular machine learning algorithms used for
classification and regression tasks [103]. SVMs are a su-
pervised learning method that can be used for both linear
and non-linear data classification. The basic idea of SVM
is to find a hyperplane in a high-dimensional space that
separates different classes of data points in such a way that
the margin between the hyperplane and the closest data points
is maximized. This margin is known as the maximum margin
hyperplane (MMH). The MMH is found by solving a convex
optimization problem that involves maximizing the distance
between the hyperplane and the closest data points, subject
to some constraints. One of the key advantages of SVMs is
their ability to handle high-dimensional data sets and their
ability to generalize well to new data points. SVMs are also
less prone to overfitting than other classification algorithms,
as they optimize the margin between the hyperplane and the
closest data points rather than minimizing the classification
error. In this context, Gordan et al. [104] investigated the
feasibility of employing SVMs in VSR by modeling each word
as a temporal sequence of visemes that correspond to different
phones. The proposed method trained an SVM for each viseme
to recognize and convert its output into a posterior probability
through sigmoidal mapping. To capture the temporal aspect
of speech, the SVMs were incorporated as nodes in a Viterbi
lattice. The proposed approach is evaluated on a small VSR
task, specifically the recognition of the first four English
digits. The experimental results on the Tulips1 dataset depict
a word recognition rate of 90.6% on the addition of delta
features, demonstrating that the proposed method performs
comparably to previously reported state-of-the-art results in
terms of word recognition rate. The authors also compare
the results with several works involving the usage of AAMs
and HMMs and demonstrate the superior performance of the
methodology in terms of word recognition rate and accuracy.
The authors of the aforementioned paper have also proposed
diverse modifications of SVMs for VSR, as outlined in [105]
and [106].

In 2003, Foo et al. [107] presented a novel boosted classi-
fier for VSR that employed multiple HMMs. The composite
HMMs are specifically trained to emphasize certain groups of
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training samples through the adaptive boosting technique. Ex-
perimental evaluations are conducted on a customized dataset
defined in the MPEG-4 multimedia standards to identify
the fundamental visual speech elements in English using the
proposed boosted classifier. By comparing the outcomes of
the proposed classifier with those of the traditional single
HMM classifier, the system achieves an accuracy of 37%,
and it can be concluded that the proposed system is consid-
erably superior in terms of accuracy and robustness, which
demonstrates its potential for improving VSR performance.
Yao et al. [108] presented a novel approach to selecting and
extracting visual features for lipreading, which combines both
low-level and high-level features that complement each other.
The resulting feature set consists of 41 dimensions and is
used for recognition. The approach is evaluated on a bimodal
database called AVCC, which includes sentences that cover
all Chinese pronunciations. The results show that the proposed
method achieves an accuracy of 87.8% for automatic speech
recognition by lipreading assistance, which is an improvement
from 84.1%. Moreover, it improves accuracy from 31.7%
to 51.2% for speaker-dependent recognition and from
27.6% to 55.3% for speaker-independent recognition in
noisy conditions. The paper also demonstrates that visual
speech information can effectively compensate for the loss of
acoustic information caused by noise, with an improvement
rate ranging from 10% to 30% depending on the amount
of noise in speech signals. The improvement rate achieved by
the proposed system is higher than that of the ASR system of
IBM, and it performs better in noisy environments.

In 2004, Anwar et al. [109] proposed a method to learn
fuzzy rules for VSR. The system automatically extracts fea-
tures from video sequences and constructs a rule base using
two-dimensional fuzzy sets on feature and time parameters.
The method was applied to the Tulips1 database, and the
results were better than those obtained with neural networks
and Hidden Markov Models, implying the concept of speaker
independence. A medium-sized vocabulary of around 300
words, representative of phonemes in the English language,
was used for training and testing, achieving reasonable ac-
curacy for phoneme classification. The accuracy achieved
was 21-33%, comparable to expert human lip-readers whose
accuracy on nonsense words is about 30%. Foo et al. [110]
introduced a new method for VSR that combines adaptive
boosting and hidden Markov models to create an AdaBoost-
HMM classifier. The approach trains composite HMMs to
cover different groups of training samples and uses a novel
probability synthesis rule to combine the decisions of compo-
nent classifiers, resulting in a more complex decision boundary
than the traditional single HMM classifier. The method is
evaluated on a customized dataset sampled at 50 frames
per second with the typical viseme length of 0.3-1s for
recognition of basic visual speech elements and outperforms
the traditional HMM classifier in accuracy, particularly for
visemes extracted from contexts. The proposed methodology
achieves a training error of 10% and a classification error
of 16%.

In 2005, Saenko et al. [111] proposed an architecture
for VSR that utilizes discriminative detection of visual

speech and articulate features. The approach uses discrim-
inative classifiers to identify the subclass of lip appearance
corresponding to the presence of speech and decompose
it into physical components of articulate production. These
components evolve semi-independently, which conventional
viseme-based approaches fail to capture. The authors propose
a dynamic Bayesian network with a multi-stream structure
to model co-articulation effects. The system is evaluated on
a command utterance task that happens to be a subset of
the AVTIMIT dataset and shows promising results in lip
detection, speech/non-speech classification with an accuracy
of 67%, and recognition performance against several baseline
systems. Sagheer et al. [112] proposed a new approach for
VSR using a hypercolumn model (HCM) for feature extraction
and HMM for modeling the extracted features with Gaussian
distributions. The system is evaluated on an Arabic database
set, and the accuracy achieved for words is 74% and for
sentences 55%, making it the first time VSR is applied to
the Arabic language. The performance of HCM is compared
to the fast discrete cosine transform (FDCT) approach using
the same dataset and experimental conditions. Results show
that HCM achieves higher recognition accuracy than FDCT
and can achieve shift-invariant recognition. In 2006, Lee et
al. [113] introduced a new training algorithm for HMMs
used in VSR. The algorithm is based on a modified version
of Simulated Annealing (SA) called hybrid simulated
annealing, which combines SA with a local optimization
technique to improve both convergence speed and solution
quality. Unlike the expectation-maximization (EM) algorithm,
a popular HMM training method that only achieves local op-
tima in the parameter space, the proposed algorithm performs
a global search and thus obtains solutions that lead to better
recognition performance. The algorithm is evaluated through
isolated word recognition experiments, and it displayed an
error rate of 33.4%, thus demonstrating its effectiveness in
improving recognition accuracy.

Yau et al. [114] presented a novel approach for speech
recognition using visual information by representing the
speaker’s mouth movement through Motion History Images
(MHIs). The MHIs are generated by applying accumulative
image differencing on the video frames to capture temporal
information. The decomposed wavelet sub-images obtained
through discrete stationary wavelet transform (SWT) are used
to extract three moment-based features (geometric moments,
Zernike moments, and Hu moments). The features are then
classified using a multilayer perceptron (MLP) [115], [116]
type ANN with a backpropagation learning algorithm. The
paper compares and evaluates the classification ability of the
different moments. The initial results demonstrate an error
rate of less than 5% or an average accuracy of 95% for
English consonant classification on the created customized
dataset. In 2007, Leung et al. [117] introduced an automatic
lipreading technique for both speaker dependent and speaker
independent speech recognition tasks. The approach em-
ploys a spline representation to convert the visual features,
which are extracted based on the video sequence frame rate,
into the continuous domain. To improve the accuracy of
the recognition system, the spline coefficients in the same
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word class are constrained to have similar expressions and
are estimated using the Expectation-Maximization (EM)
algorithm on the training data. Moreover, the paper proposes
an adaptive multi-model approach to account for the variation
in speaking style during the speaker-independent recognition
task. The experimental results demonstrate the effectiveness
of the proposed approach, achieving an accuracy of 96% for
speaker dependent recognition and 88% for speaker inde-
pendent recognition on recognizing ten English digits. The
results also indicate that the proposed approach outperforms
other classifiers investigated in the study.

Yu et al. [118] presented a novel approach for VSR by
proposing a new manifold representation. The real-time input
video data is compressed using Principal Component Anal-
ysis (PCA) to define manifolds based on the low-dimensional
points calculated for each frame. Since the number of frames
varies based on the complexity of the word, the manifolds
need to be resampled into a fixed number of key points for
visual speech classification. Two classification schemes, the k
Nearest Neighbour (kNN) algorithm with two-stage PCA and
HMM classifier, are evaluated on a customized dataset with
the nature of the corpus being words. The proposed approach
is shown to produce accurate classification results for a group
of English words with an average classification of 95%. In
2008, Jie et al. [119] proposed a new approach to feature
extraction called Modular Bidirectional PCA (MBDPCA),
which is a modification of Bidirectional PCA (BDPCA). The
MBDPCA method divides the original mouth frames into
smaller sub-frames and uses two approaches for building
the covariance matrix. The first approach builds a global
covariance matrix using all sub-frame sets collectively, while
the second approach builds local covariance matrices using
various sub-frame sets separately. Afterward, each sub-frame
set is processed by BDPCA. Their study and experimentation
on the CUAVE Dataset showed that MBDPCA outperformed
PCA and BDPCA in accuracy, with the former achieving an
accuracy of 95.71%. However, the experimentation was lim-
ited to a small vocabulary dataset. In a different study, Wang
et al. [120] proposed a speech recognition technique that uses
visual features and HMM. In their technique, the underlying
state process of the HMM, which is considered a Markov
mesh, has transition probabilities that depend on the states of
surrounding blocks in both horizontal and vertical directions,
treating feature vectors as statistically dependent. As a result,
the dependence in two dimensions is simultaneously reflected.
To train the HMM, a new Genetic Algorithm (GA) [124],
[125] was proposed for global optimization. The study used
ten disabled speakers as subjects and six Chinese vowels were
used for testing. The improved HMM model resulted in an
average recognition rate increase of 2.51 and an accuracy
of 91.47% compared to the traditional HMM model.

In 2009, researchers at the Delft University of Technol-
ogy recorded a custom dataset to build their system [126].
The study utilized three different image processing methods,
including Active Appearance Models (AAMs) [88], [89] for
landmark recognition, lip geometry estimation to locate all lip
pixels using a color filter, and optical flow for motion recogni-
tion in a visual representation. The HMM and Hidden Markov

Model Toolkit (HTK toolkit) were employed for actual recog-
nition. To detect the face region, the input visual speech video
was given to the face localization module, and the mouth
region was identified regarding the face region. Rajavel et
al. [121] investigated the effectiveness of static and dynamic
visual speech features for improving visual speech recognition.
To extract visual features, two approaches are considered: (1)
an image transform-based static feature approach that employs
Discrete Cosine Transform (DCT) on each video frame and
reduces redundancy using PCA, resulting in 21 static visual
features, and (2) a motion segmentation-based dynamic feature
approach that uses motion history images (MHI) to segment
facial movements from the video and applies DCT on triangle
region coefficients to obtain dynamic visual features. Two
types of experiments are conducted using concatenated fea-
tures and dimension-reduced features obtained through PCA.
A left-right continuous Hidden Markov Model (HMM) is used
to classify nine MPEG-4 standard viseme consonants. The
experimental results demonstrate that both concatenated and
dimension-reduced features enhance visual speech recognition
accuracy, achieving a high accuracy rate of 92.45% and
92.15%, respectively.

In 2010, Pass et al. [122] presented a novel approach to vi-
sual speech recognition that enhances contextual modeling by
combining Inter-Frame Dependent and Hidden Markov Mod-
els. By incorporating contextual information, this approach is
able to capture nuances in visual speech that may be missed
by relying solely on a Hidden Markov Model. The proposed
method is evaluated on a large speaker independent isolated
digit recognition task and is compared against two commonly
used feature-based techniques for incorporating speech dy-
namics. The results from baseline feature-based systems and
the combined modeling approach are presented and analyzed.
It is demonstrated that while both techniques perform similarly
when used alone, a significant improvement in performance
can be achieved by combining them. Specifically, the com-
bined modeling approach yields an improvement of over
17% relative Word Error Rate compared to the best baseline
system. These findings highlight the potential of combining
different modeling techniques to improve VSR. Lu et al.
[123] proposed a new approach for automatic visual speech
recognition using Convolutional VEF snake and canonical
correlations. The approach utilizes a head-mounted camera
to record the utterance image sequences of isolated Chinese
words and applies the Convolutional VEF snake model to
detect and track lip boundaries in a rapid and accurate manner.
Geometric and motion features are extracted from lip contour
sequences and combined to form a joint feature descriptor.
Canonical correlation is employed to measure the similarity
of two utterance feature matrices, and a linear discriminant
function is introduced to improve the recognition accuracy
further. With an average recognition accuracy of 92.3% for
digits and words combined, the experimental results show
that the proposed approach is promising, and the joint feature
descriptor is more robust than individual ones.
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TABLE IV: Examining VSR works from 2000 to 2010: a tabulated overview

Existing Works Year Methodology Dataset Nature of Corpus Performance Metrics
Vanegas et al. [100] 2000 Lip Position Normalization + Model

Training
Tulips1 Digits Recognition Rate = 94.8% , Error

Reduction Rate = 76.3%
Vanegas et al. [100] 2000 Lip Position Normalization + Model

Training
M2VTS Digits Recognition Rate = 74.5% , Error

Reduction Rate = 35.7%
Nankaku et al. [101] 2000 Continous HMMs M2VTS Digits Recognition Rate = 74.1% , Error

Reduction Rate = 24.7%
Gordan et al. [104] 2002 SVMs Tulips Digits Recognition Rate = 90.6%

Foo et al. [107] 2003 Adaboost + HMM Custom Words Accuracy = 37%
Yao et al. [108] 2003 Low-level and high-level feature

combination
AVCC Sentences Accuracy = 55.3% for speaker independent

VSR
Anwar et al. [109] 2004 Fuzzy Logic Tulips1 Digits Accuracy = 33%

Foo et al. [110] 2004 AdaBoost-HMM Classifier Custom - Training Error = 10%, Classification Error
= 16%

Saenko et al. [111] 2005 Dynamic Bayesian Network Subset of AVTIMIT Sentences Viseme Classification Accuracy = 63%
Sagheer et al. [112] 2005 hypercolumn model (HCM) + HMMs Custom Words, Sentences Word Accuracy = 74%, Sentence = 55%

Lee et al. [113] 2006 Simulated Annealing Digit Database Digits Error Rate = 33.4%
Yau et al. [114] 2006 SWT + MLP Custom Consonants Error Rate = 5%

Leung et al. [117] 2007 adaptive multi-model approach Custom Digits speaker dependent accuracy = 96% and
speaker independent = 88%

Yu et al. [118] 2007 KNN + HMM Classifier Custom Words Avg Accuracy = 95%
Jie et al. [119] 2008 Modular Bidirectional PCA

(MBDPCA)
CUAVE Digits Accuracy = 95.71%

Wang et al. [120] 2008 Genetic Algorithm Custom Vowels Accuracy = 91.47%
Rajavel et al. [121] 2009 DCT + Motion Segmentation-based

Dynamic Feature Approach
Custom Consonants Accuracy = 92.45%, 92.15% for both

approaches
Pass et al. [122] 2010 Contexual Modeling using HMMs XM2VTS Phrases Improvement of over 17% relative Word

Error Rate
Lu et al. [123] 2010 Convolutional VEF snake Custom Digits, Words Average Recognition Accuracy = 92.3%

C. Works between 2011 and 2023

In 2011, Damien et al. [127] proposed a novel approach
to visual speech recognition which involves introducing a
consonant-vowel detector and utilizing two classifiers: an
HMM-based classifier for the recognition of the ”consonant
part” of the phoneme and a classifier for the ”vowel part”. This
approach offers several benefits, such as reducing the number
of hidden states and the number of HMMs. The proposed
method was tested on a limited set of words in the Modern
Classic Arabic language, and a recognition rate of 81.7%
was achieved. Additionally, the proposed model is speaker-
independent and uses visemes as the basic units, making it
applicable to any set of words with varying content or size.
Shaik et al. [128] presented a novel lip-reading technique that
can identify visemes using visual data only, without relying
on the corresponding acoustic signals. The approach is based
on analyzing the vertical components of the optical flow
(OF), which are classified using support vector machines
(SVM). To achieve automatic temporal segmentation of the
utterances, the pair-wise pixel comparison method is used to
evaluate the differences in intensity of corresponding pixels
in two successive frames. The OF is decomposed into non-
overlapping fixed scale blocks, and the statistical features of
each block are computed for successive video frames of an
utterance. The experiments were conducted on a database
of 14 visemes taken from seven subjects, and the accuracy
was tested using five and ten-fold cross-validation for binary
and multiclass SVMs, respectively, to determine the impact
of subject variations. With an accuracy of 85%, the results

indicate that the proposed method is more robust to inter-
subject variations compared to other systems in the literature,
with high sensitivity and specificity for 12 out of 14 visemes.

In 2012, P. Sujatha et al. [129] tested eight different
feature extraction techniques for speech recognition, and the
16-point Discrete Cosine Transform (DCT) method achieved
the highest accuracy rate of 93.5 percent. The feature vectors
obtained from the 16-point DCT method were given as input
to the HMM, which was trained and tested on a dataset
consisting of 10 speakers uttering 35 different words, and
a test accuracy of 97.5% is obtained. In 2013, Salah W
et al. [130] proposed an Automatic Lip-reading Feature
Extraction (ALiFE) prototype for recognizing the vowels
uttered by multiple speakers. The ALiFE system has three
phases. In the first phase, the lip contour is identified and
tracked, and a set of Points of Interest (POIs) is identified.
In the second phase, the lip features are extracted, and the
extracted visual data is categorized to identify the vowel sound.
One of the challenges in visual-only speech recognition is
controlling aspects such as lighting, identity, motion, emotion,
and expression, but some aspects, such as video resolution,
can be controlled. The experiments were conducted on a
customized dataset whose nature of corpus is vowels, and
a training accuracy of 73.33% and a testing accuracy of
72.73% was obtained. In 2014, A study by Helen et al. [131]
addressed the impact of resolution on speech recognition using
a novel dataset called Rosetta Raven. The study employed
the Active Appearance Models (AAMs) method for feature
extraction, and the results suggested that resolution is not
essential for automatic lip-reading. In their study, Helen et
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al. analyzed the impact of video resolution on automatic lip-
reading using the Rosetta Raven dataset. The results of the
study suggest that resolution may not be a crucial factor in
speech recognition and that feature extraction methods such as
AAMs can be employed to extract relevant features from low-
resolution video data. Overall, these studies provide valuable
insights into the challenges of visual-only speech recognition
and propose effective solutions to address them.

In 2016, Amit et al. [132] proposed several techniques for
predicting words and phrases from videos without any audio.
The first approach involved combining a specific number of
images from a video sequence to create a single image, which
was then used as input to a CNN architecture, VGG Net. The
VGG Net is a CNN architecture that was introduced in 2014
by the Visual Geometry Group (VGG) at the University of
Oxford [133]–[136]. It is a widely used CNN architecture
for image classification tasks due to its simplicity and high
accuracy. The VGG Net consists of 16 convolutional layers
followed by 3 fully connected layers. Each convolutional layer
has a fixed 3x3 filter size with a stride of 1 and padding of
1, and the max-pooling layer with a 2x2 filter size with a
stride of 2 is applied after every two convolutional layers.
The VGG Net architecture is characterized by its depth and
uniformity, meaning that all the convolutional layers have the
same filter size, and the number of filters is doubled after
every pooling layer. The VGG Net was pre-trained on faces
and served as a set of weights. The second method was similar
to the first, but it expanded and normalized the number of
images per sequence using nearest-neighbor interpolation. In
the third approach, a single image was fed into the VGGNet
to extract features, which were then passed into the LSTM
layers [137]. The proposed methodology achieved a training
accuracy of 66.15% and a testing accuracy of 44.5% on
the MIRACL-VC1 phrases corpus, thus making it one of the
pioneering works experimented on the same. The combination
of CNNs and Long Short-Term Memory (LSTM) networks has
proven to be highly effective in this field, as depicted in Figure
9. Chung et al. [138] proposed a primary methodology that
uses Watch, Listen, Attend, and Spell (WLAS) architecture
to translate recordings of mouth action into words. They
developed a mechanism that handles audio and video input
separately and together. Their work emphasized a curriculum-
driven approach to increase training and minimize the issue
of excessive variance. They trained the Weighted-Average
Least Squares (WALS) model on the LRS dataset, which
contains more than 10,000 sentences. Additionally, the WLAS
architecture has been employed to translate mouth action
recordings into words, which serves as a promising approach
for speech recognition.

Assael et al. [139] proposed an end-to-end sentence-
level VSR that converts sequences of picture frames of a
speaker’s mouth to complete sentences using spatiotemporal
convolutional neural networks (STCNNs) [140]–[142] tested
on the GRID corpus dataset. Spatiotemporal Convolutional
Neural Networks (STCNNs) are deep learning models used
for analyzing and classifying spatiotemporal data, such as
video data. These models are an extension of the popular
CNNs, which have proven to be highly effective in image

CNN CNN CNN CNN

LSTM LSTM LSTM LSTM ….
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Output

….

Sequence of Video Frames

Fig. 9: CNN and LSTMs combination for VSR

recognition tasks. The key difference between STCNNs and
traditional CNNs is that STCNNs can capture both spatial and
temporal information from the data. This is achieved by using
3D convolutional layers, which convolve the input data along
three dimensions (width, height, and time). The 3D convolu-
tional layers are typically followed by pooling layers, which
reduce the spatial resolution of the data, and recurrent layers,
such as LSTMs or Gated Recurrent Units (GRUs) [143],
which capture temporal dependencies between the frames in
the video sequence. STCNNs have several advantages over
traditional CNNs for video analysis tasks. Firstly, they can
capture both spatial and temporal features simultaneously,
allowing for more accurate and robust classification. Secondly,
they can handle variable-length video sequences by using
recurrent layers, which can process inputs of varying lengths.
Finally, STCNNs can be trained end-to-end, meaning that
the entire network can be optimized using backpropagation,
which simplifies the training process. The core idea of an
STCNN can be depicted in Fig. 10. A methodology is built to
eliminate the requirement of dividing the visuals into words
before predicting the phrase. Experimentations were conducted
on the LRS-Sentences corpus, and a testing accuracy of
95.2% was achieved. This methodology was compared with
hard-of-hearing people’s ability to perform the task of VSR
and significantly improved accuracy.

Numerous research studies have utilized Deep Complemen-
tary Bottleneck Features [144]–[147] from audio for speech
recognition. However, the application of these features to video
data is currently limited. To address this issue, Stavros et
al. [148] proposed a study utilizing deep encoders to build
DBNFs. These deep encoders were trained with a bottle-
neck layer to reduce the image’s dimensionality. Additionally,
during training, DCT features were added to the bottleneck
layer to make the bottleneck features complementary to the
DCT features. The proposed method was evaluated on two
well-known datasets, OuluVS and AVLetters, using an LSTM
model, and the accuracy achieved was 81.8% for the letters
corpus and 58.1% for the sentence corpus. In 2017, Philip
et al. [149] presented a novel method for liveness evaluation
based on VSR. Their approach involved a combined system
consisting of DNN and HMM models for speech recognition.
The XM2VTS dataset was utilized for training and testing
the model and the dataset achieved a testing accuracy of
86.3%. To estimate liveness, the system used model VSR and
calculated the Levenshtein Distance [150] between a randomly
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Fig. 10: Architectural Mechanism of STCNNs

generated challenge phrase and the hypothesis utterances from
the visual speech recognizer. Eric et al. [151] proposed a sys-
tem that combines a camera with an ultrasound imaging sys-
tem to monitor the subject’s lips and tongue movement. In this
work, CNNs were employed to extract visual features from the
original ultrasound and video images. The authors suggested
a multimodal architecture that simultaneously processed two
visual perceptions and developed various methods for using
CNNs as a feature extractor combined with an HMM-GMM
decoder. The proposed methodology was evaluated on a
customized dataset, and a testing accuracy of 80.4% was
achieved.

AlexNet is a deep CNN that won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012, marking
a breakthrough in computer vision research. The network
architecture consists of five convolutional layers, followed by
three fully connected layers, and uses the Rectified Linear Unit
(ReLU) activation function to avoid the vanishing gradient
problem. AlexNet also incorporates techniques such as over-
lapping pooling, data augmentation, and dropout regularization
to prevent overfitting [152], [153]. The network was trained
on over 1 million images from 1000 different classes and
achieved a top-5 error rate of 15.3%, significantly outper-
forming previous state-of-the-art methods. The success of
AlexNet paved the way for further research and development
in deep learning and its applications in computer vision.
Similarly, Inception V3 is a CNN architecture that utilizes
inception modules [154]–[156]. These modules use parallel
convolutional layers of different sizes to capture features at

different scales. Inception V3 also incorporates batch normal-
ization, factorized 7x7 convolutions, and auxiliary classifiers to
improve training and regularization. The network has a deep
architecture with 48 layers, including stem layers, inception
modules, and fully connected layers. In a study by P. Sindhura
et al. [157] in 2018, AlexNet was thoroughly evaluated along-
side Inception V3 for lip reading. Both models were trained
using the MIRACL-VC1 dataset and were analyzed from
both speaker-dependent and speaker-independent perspectives.
The authors extracted each word’s lip region individually and
combined them into a single image, which was used to train
the algorithm. The experimentation was conducted on the
MIRACL-VC1 words dataset, and an accuracy of 37.1%
was illustrated.

H. Gupta et al. [158] proposed a lip-reading model using
CNN batch normalization for audio-less video data. The Haar
Cascade algorithm is employed to extract the lip region from
each individual frontal facial image in the video sequence
and combine them into a single image. Haar Cascade is an
object detection algorithm that is widely used in computer
vision. It is based on the Haar wavelet technique and uses
machine learning to detect objects in images or videos. The
algorithm works by first extracting features from the input
image using Haar-like features. These features are then used
to train a classifier, such as the AdaBoost algorithm. The
trained classifier is then used to detect objects in the input
image. Haar Cascade has been successfully applied to face
detection, pedestrian detection, and object recognition tasks.
The algorithm is widely used in real-world applications and is
known for its accuracy and speed. Furthermore, for extracting
the visual features, a 12-layer CNN with two layers of batch
normalization is used for training the model. The proposed
model was trained using the MIRACL-VC1 dataset. The
methodology depicted a high training accuracy of 96.5%,
but, however, a low testing accuracy of 52.9%. In 2019, M.
A. Abrar et al. [159] developed a CNN model for predicting
words from videos without any acoustic features. The videos
are categorized into frames and are reduced to equivalent
lengths, and the ROI is cropped from the videos. A pre-trained
VGGNet architecture is trained on the MIRACL-VC1 dataset.
This methodology, too, achieved a high training accuracy
(94.86%) and a low testing accuracy (60%), implying the
concept of overfitting. To operate the framework in real-time,
an application has been developed to support the hearing
impaired in their day-to-day activities.

D.Parekh et al. [160] proposed the use of convolutional
auto encoders for extracting the feature vectors from the video
frames, and these feature vectors are given as input to the
LSTM model. Three separate standard datasets: BBC’s LRW,
MIRACL-VC1, and the GRID dataset, are used to test the
proposed approach. The model achieved an accuracy of 98%
and 63.22% for speaker dependent and speaker indepen-
dent on the MIRACL-VC1 dataset and an accuracy of
84.8% on the GRID dataset. CNN is used as a baseline
model for extracting the features. Then the performance of
the proposed model is compared with the baseline model. Y.
Lu et al. [161] suggested three-step procedures for automatic
lip-reading recognition. The first step is to extract the frames
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from the created custom dataset (Pronunciation of 0-9 digits
by three men and three women in the English language). The
feature vectors have been extracted from the frames using
VGG Net. Then, to identify lip-reading, an attention-based
LSTM-CNN fusion model was developed. With a training
accuracy of 88.2% and a testing accuracy of 84.9%, the
results obtained from the fusion attention-based model have
been compared with the general RNN-CNN model, and it has
shown that the proposed model has achieved more accuracy
on the test data.

In 2020, Cheng Cheng Guan et al. [162] proposed a mod-
ern architecture fuzzy CNN model for lip image segmentation.
This model integrates the deep CNN subnet and the fuzzy
learning module. The integration of deep CNNs and fuzzy
learning modules has been proposed as a way to improve the
accuracy and interpretability of deep learning models. CNNs
have been shown to be highly effective at feature extraction
and pattern recognition tasks in many fields, including com-
puter vision, speech recognition, and natural language process-
ing. However, CNNs can be difficult to interpret, and their
decisions may not always be transparent. On the other hand,
fuzzy logic systems are a form of artificial intelligence that can
handle imprecise or uncertain data and provide transparent,
interpretable results. By integrating a fuzzy learning module
with a deep CNN subnet, it is possible to combine the feature
extraction capabilities of the CNN with the interpretability of
fuzzy logic. The deep convolutional subnet is used for the
extraction of multiscale visual features, and the fuzzy learning
module is used to extract high-level semantic features while
considering ambiguities and non-linearities. Additionally, a
training strategy was employed to identify the ideal parameters
for the CNN subnet and fuzzy module. A customized dataset
with more than 48,000 images was used to evaluate the lip
segmentation using this model and a testing accuracy of
98.4% was depicted. Navin et al. [163] proposed a deep
learning model for VSR to perform word-level classification.
ResNet architecture is used along with 3D convolution layers
and Gated recurrent units (GRU). The entire video sequence
is used as input for the architecture. On the BBC data set,
the architecture obtained an accuracy of 90%, and on the
custom video dataset, it obtained an accuracy of 88%. The
major drawback of this study is that it doesn’t perform well
for subjects with facial hair.

In 2021, Santos et al. [164] proposed a study in which trans-
fer learning was utilized to train the Inception v3 CNN model,
which already had pre-trained weights from IMAGENET, with
the GRID corpus. The resulting speech recognition outcomes
were deemed satisfactory, with a precision of 0.61, recall of
0.53, and F1-score of 0.51. The lip-reading model demon-
strated the ability to learn relevant features automatically, as
evidenced by visualization, and achieved speaker-independent
outcomes that were comparable to those achieved by human
lip readers on the GRID corpus. The researchers identified lim-
itations that are consistent with those encountered by humans,
which could limit deep learning performance in real-world
scenarios. Soundarya et al. [170] proposed a methodology
that involves utilizing a combination of convolutional neural
networks and Hidden Markov models, known as CNN-HMM,

for lip reading. CNNs are able to identify important features
within input images, making it easier to distinguish differences
among the images. The HMM is then applied to handle the
dynamics of the image sequence. To implement this method,
the incoming video is first converted into a series of images,
and then selected images are used for further analysis. The use
of HMM provides a robust approach to speech recognition,
resulting in a highly reliable lip reading model.

Yang et al. [165] have proposed a novel DNN for improving
lipreading performance in the absence of a speaker. The
proposed network comprises two components, namely the
Speaker Confusion Block (SC-Block) and the transformer-
based VSR Network (TVSR-Net). The TVSR-Net is designed
for recognizing speech and extracting lip characteristics, while
the SC-Block is intended to achieve speaker normalization by
reducing the impact of different talking styles and habits. The
proposed system also incorporates a multi-task learning (MTL)
system for network optimization. Experimental results on the
GRID dataset demonstrate that the proposed network achieves
excellent speaker-independent recognition performance even
with limited training data. In 2021, Qun Zhang et al. [166]
proposed a method for enhancing the performance of VSR in
the speaker-independent scenario by using disentangled feature
representation and adversarial learning. The proposed disen-
tanglement component effectively separates identity-irrelevant
and content-related features from the lip image sequence to
improve the VSR’s accuracy. Experimental results demonstrate
that the proposed method can successfully separate identi-
fication and content characteristics, and the refined content
features have a high level of discrimination in speech content
recognition and are independent of different speaking styles.
The performance of the proposed method is evaluated using
word error rate on two different datasets, GRID and VSA,
which shows significant improvement over the state-of-the-
art methods. In 2022, Ma et al. [168] suggested a VSR
method that achieves state-of-the-art performance by carefully
developing a model and using larger datasets. They also
stressed hyperparameter tweaking, which may improve present
designs, and time-masking, which makes the network focus
more on context. The authors used six datasets and found that
larger datasets improve performance, consistent with existing
findings. The authors conducted an ablation study and have a
word error rate of 29.5±0.4 on LR2 and 35.8±0.5 on the LR3
datasets. The proposed VSR algorithm surpasses all others
trained on publicly available English, Spanish, and Mandarin
datasets.

Xue et al. [167] suggested a cross-modal Transformer
framework for sentence-level lipreading that can generalize
to unseen speakers by calibrating visual changes using land-
marks as motion trajectories. Cross-attention to exhibit cross-
modal fusion may help the model align features. Extensive
experimentation was conducted on the CMLR dataset and
the sentence level accuracy achieved was 57%. The approach
generalizes to unseen speakers, according to considerable
experimental evidence. The recommended solution outper-
forms five cutting-edge algorithms for unseen and overlapping
speakers, including those of different ethnicities. Nemani et
al. [77] pointed out that the current state of Video-based
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TABLE V: Comparison between existing VSR works

Existing Works Methodology Dataset Year Nature of
Corpus

Train
Accuracy

Test
Accuracy

Damien et al. [127] HMM Classifier Custom 2011 Words 81.67% -
Shaik et al. [128] Optical Flow + SVM Custom 2011 Vowels,

Consonants
85% -

Sujatha et al. [129] DCT + HMM Custom 2012 Words - 97.5%
Salah W et al. [130] POI + Energy Custom 2013 Vowels 73.33% 72.73%
Helen L et al. [131] HMM + HTK Toolkit Rosetta Raven 2014 -

Amit et al. [132] CNN + LSTM MIRACL-VC1 2016 Phrases 66.15% 44.50%
J. S. Chung et al. [138] CNN + LSTM LRS 2016 Sentences - -

Assael et al. [139] Spatio-Temporal CNN + GRU LRS 2016 Sentences - 95.2%
Petridis et al. [148] DCT + LSTM OuluVS, AVLetters 2016 Letters - 81.8%
Petridis et al. [148] DCT + LSTM OuluVS, AVLetters 2016 Sentences - 58.1%
Philip et al. [149] DNN XM2VTS 2017 Words - 86.3%

Eric Tatulli et al. [151] CNN Custom 2017 Sentences - 80.4%
P. Sindhura [157] AlexNet, Inception V3 MIRACL-VC1 2018 Words 37.1% -

H. Gupta et al. [158] CNN batch normalization MIRACL-VC1 2018 Words 96.5% 52.9%.
M. A. Abrar et al. [159] VGGNet MIRACL-VC1 2019 Words 94.86% 60 %

D. Parekh et al. [160] Autoencoders + LSTMs MIRACL-VC1 2019 Words 92.29% 63.22%
Y.Lu et al. [161] CNN + LSTM Custom 2019 Words 88.2% 84.9%
Guan et al. [162] Fuzzy CNN Custom 2020 Phrases - 98.4%

N. K. Mudaliar et al. [163] ResNet with 3D Conv. Layers + GRU LRW 2020 Words 90% 88 %
Santos et al. [164] Inception V3 GRID 2021 Sentences 53% -
Yang et al. [165] TVSR-Net GRID 2021 Sentences - -

Qun Zhan et al. [166] DVSR-Net GRID, VSA 2021 Sentences - -
Xue et al. [167] Cross-Modal Fusion via Transformer CMLR 2021 Sentences - 57%
Ma et al. [168] Hybrid Res-Net LRW, LRS 2022 Sentences - 70.5%

Nemani et al. [77] 3D CNNs MIRACL-VC1 2022 Words 71.3% 70.2%
Nemani et al. [77] 3D CNNs Custom 2022 Words 80.2% 77.9%
Kim et al. [169] Prompt Tuning GRID 2023 Sentences - -

Speech Recognition (VSR) systems faces various challenges,
such as insufficient training data, lack of holistic feature
representation, and lower accuracy rates. To overcome these
limitations, a novel and scalable VSR system is proposed in
this study. The system uses the user’s videotape to determine
the spoken word, and a customized 3-Dimensional Convolu-
tional Neural Network (3D CNN) architecture is proposed for
feature extraction and mapping prediction probabilities. To
validate the concept of person independence, a customized
dataset is created similar to the MIRACL-VC1 dataset. The
proposed system is robust to various lighting conditions across
multiple devices and achieves a training accuracy of 80.2%
and testing accuracy of 77.9% in predicting the spoken word
by the user. Also, the authors imply the presence of an end-to-
end solution for isolated word-level VSR by the introduction
of an edge device prototype to predict the word spoken by
the user. The research conducted by Kim et al. [169] in
2023 presents findings on the impact of prompt adjustment in
speaker-adaptive VSR models. In contrast to previous studies,
the authors utilized target speaker adaptation data instead of
model parameters, taking advantage of advancements in NLP.
They explored various prompt adjustment methods, including
the addition, padding, and concatenation of CNN Transformer
VSR models. However, the Transformer variation architecture
limited quick tweaking methods. The research revealed that

even though the pre-trained VSR model should be developed
with a large speaker variation, a small amount of adaptation
data, such as less than 5 minutes, could improve the model’s
performance on unknown speakers with quick tuning. The
authors also conducted a comparison of prompt performance
and parameters for fine-tuning. The study’s findings indicate
that prompt adjustment using target speaker adaptation data
can significantly improve unseen speaker performance in VSR
models. These results have implications for the development
of speaker-adaptive VSR models and could inform future
research in the field.

VI. KEY FINDINGS AND COMPARATIVE ANALYSIS

After describing the different methodologies used for
speaker-independent VSR, in this section, we intend to com-
pare the above methodologies based on their accuracy, scal-
ability, feature representation, and deployment. For any VSR
system, the above factors are considered essential to measure
its performance and robustness to various conditions.

A. Comparing Datasets: Key Findings and Attributes Analysis

In this section, a comparative analysis is presented for
different datasets on seven attributes: the presence of lip
features, availability of facial features, recording condi-
tions in a laboratory environment, isolation of person in
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TABLE VI: Attribute Comparison of the datasets for speaker independent VSR

Dataset Year Lip Region Features Facial Features Laboratory Conditions Isolated Magnitude Open Source HD Resolution
Tulips1 [24] 1996 ✓ × ✓ ✓ × ✓ ×
M2VTS [25] 1997 ✓ ✓ ✓ ✓ × × ×

AVLetters [26] 1998 ✓ × ✓ ✓ × ✓ ×
AVLetters2 [27] 2008 ✓ × ✓ ✓ × ✓ ✓

MIRACL-VC1 [32] 2011 ✓ ✓ ✓ ✓ × ✓ ×
OuluVS [28] 2015 ✓ ✓ ✓ ✓ × × ×

LRW [33] 2016 ✓ ✓ × ✓ ✓ ✓ ×
LRS2 [29] 2017 ✓ ✓ × ✓ ✓ ✓ ×

LRS3-TED [30] 2017 ✓ ✓ × ✓ ✓ ✓ ×
AVDigits [31] 2018 ✓ ✓ × ✓ × ✓ ×

GLips [36] 2022 ✓ × × × ✓ ✓ ×
CN-CVS/Speech [37] 2022 ✓ ✓ × × ✓ ✓ ×
CN-CVS/News [37] 2022 ✓ ✓ × × ✓ ✓ ×

RUSAVIC [38] 2022 ✓ ✓ × ✓ ✓ ✓ ✓
OLKAVS [39] 2023 ✓ ✓ ✓ ✓ ✓ × ✓

the recording, dataset size, open-source availability, and
dataset resolution in Table VI. These attributes were chosen
as key factors to examine and differentiate the datasets. Based
on the table, it can be observed that all of the datasets exhibit
the presence of lip features, which are discernible through
the movements of the lips during the pronunciation of words
or sentences. Nevertheless, there are some datasets that do
not prioritize the inclusion of facial features or the complete
faces of the individuals being recorded [24], [26], [27], [36].
Although the lip region is a crucial area for speech perception
and recognition as it conveys significant information about
phonemes and syllables, facial features also play a crucial role.
While lip movements can convey a significant amount of pho-
netic information, other facial features such as eyebrows, eyes,
and cheeks also contribute to speech perception. For instance,
raising the eyebrows can indicate surprise or emphasis, while
the narrowing of the eyes can convey anger or frustration.
These facial features and lip movements provide a more com-
prehensive view of the speaker’s speech, making it easier to
recognize and understand. Therefore, it is essential to include
both lip features and other facial features when preparing a
VSR dataset to improve recognition accuracy. For speaker
independent VSR, preparing the dataset with a single person
present in each frame is crucial. This ensures that the VSR
system can accurately recognize the speech signal independent
of the speaker’s identity. By isolating the individual in each
frame, the VSR model can learn to recognize and generalize
speech patterns more effectively. Additionally, this approach
reduces the variability in the dataset caused by differences in
the appearance and speech patterns of multiple individuals,
leading to a more robust and reliable recognition system. The
table shows that the datasets cited as [36], [37] deviate from
the standard practice of isolating a single individual in each
frame. These datasets contain multiple persons in each frame,
so they are not isolated.

Laboratory conditions are necessary for speaker-
independent VSR as they provide a controlled environment
for data collection. In a laboratory, lighting, camera position,
and background can be standardized, reducing the dataset’s

variability and ensuring that the visual cues for speech
recognition are consistent across all samples. Moreover, a
laboratory environment also allows for the use of high-quality
equipment, such as cameras and microphones, which can
capture speech signals with higher accuracy and resolution.
In contrast, if the data is collected outside of the laboratory,
there can be variations in lighting, background noise, and
camera position, which can affect the quality of the data and
make it more challenging to recognize speech accurately.
Datasets such as LRW and CN-CVS were not recorded under
laboratory conditions, as they were captured from television
shows. As a result, the data in these datasets may be more
diverse and complex than data captured under controlled
laboratory conditions. It is true that datasets recorded in a
laboratory tend to be smaller in size than those captured in
natural environments, which is illustrated by the LRW, LRS2,
and CN-CVS datasets. This is because laboratory conditions
limit the variability of the data, resulting in a smaller range of
speech patterns and visual cues for recognition. In contrast,
datasets captured in natural environments may contain a
larger amount of data due to the variability in speech patterns
and visual cues that occur in different settings. However,
this larger dataset size comes at the cost of increased
complexity and variability, making it more challenging to
build an accurate and reliable VSR model. Therefore, when
preparing a VSR dataset, the trade-off between dataset size
and variability must be considered. While larger datasets may
provide more information for recognition, smaller datasets
recorded in a laboratory can be more controlled and reliable,
leading to better recognition accuracy in some cases.

It is evident that the magnitude of datasets increased dras-
tically as the years progressed. Resolution is one of the most
critical factors for speaker-independent VSR dataset creation
because it directly affects the quality of the visual cues
captured in the dataset. Visual cues for speech recognition are
subtle and can be affected by even minor variations in lighting,
camera position, and resolution. Higher-resolution images can
capture more detailed visual cues for speech recognition,
making it easier for VSR models to accurately identify and
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TABLE VII: Attribute comparison of VSR works from the 90s: A Tabulated Overview

Existing Works Holistic Feature
Representation

Speaker In-
dependence

Edge Device
Deployment

Real-time
Testing

Benchmark
Dataset

Evaluation

Accuracy ≥
80%

Gelder et al. [78] × × × ✓ × ×
Walden et al. [79] × × × ✓ × ×
Silsbee et al. [80] × × × ✓ × ×
Javier et al. [81] ✓ × × ✓ × ×

Marassa et al. [85] × × × ✓ × ×
Bregler et al. [86] ✓ ✓ × ✓ × ×
Luettin et al. [87] ✓ × × × ✓ ✓
Luettin et al. [90] ✓ × × × ✓ ✓
Chiou et al. [91] × ✓ × ✓ × ×

Yu et al. [92] × × × × × ×
G. Rabi et al. [94] ✓ ✓ × ✓ × ×
Nanaku et al. [95] ✓ × × × ✓ ×
Javier et al. [96] ✓ ✓ × ✓ ✓ ×

Baldwin et al. [97] ✓ × × ✓ ✓ ×

differentiate between different speech sounds. In contrast, low-
resolution images may not capture enough visual information,
making it more challenging for VSR models to recognize
speech accurately. Moreover, higher-resolution images also
provide more precise and accurate data for training and testing
VSR models. This can help improve the overall accuracy
and robustness of the VSR model, particularly in complex
and dynamic environments. Therefore, the resolution is a
critical factor in speaker-independent VSR dataset creation,
and the use of high-resolution images can lead to better speech
recognition performance in VSR models. From the table, it is
depicted that only AVLetters2 and OLKAVIS Datasets have
samples in high resolution. Based on the preceding inference,
it can be inferred that the OLKAVIS dataset fulfills all
the aforementioned requirements and is thus deemed to be
an optimal dataset for the speaker-independent VSR task. It
is also considered highly essential to compare the highest
accuracies achieved by each dataset in the task of speaker
independent VSR. Comparing the highest accuracies also
facilitates evaluating and selecting appropriate datasets for
specific research or application requirements. Researchers can
choose datasets that have consistently shown high accuracies,
indicating their suitability for training and testing speaker-
independent VSR models. From Table VIII, it can be inferred
that the MIRACL-VC1 dataset, as reported by D. Parekh et
al. [160], achieved a remarkable highest accuracy of 92.29%.
On the other hand, the AVLetters2 dataset and LRS3-TED
dataset, and the newly proposed multilingual datasets do not
have the specific highest accuracy values mentioned in the
table. This could be due to the unavailability of accurate
reported results or the absence of relevant research papers.

B. Attribute Comparison in VSR: Overview from the 90s

Table VII clearly demonstrates the explosive growth of
research in VSR during the 1990s. Seminal works in the

TABLE VIII: Accuracy Metrics of Speaker Independent VSR
Datasets

Dataset Highest Accuracy Achieved Author
Tulips1 [24] 74.5% Vanegas et al. [100]
M2VTS [25] 60.2% Luettin et al. [93]

AVLetters [26] 81.8% Petridis et al. [148]
AVLetters2 [27] - -

MIRACL-VC1 [32] 92.29% D. Parekh et al. [160]
OuluVS [28] 60.2% Luettin et al. [93]

LRW [33] 70.5% Ma et al. [168]
LRS2 [29] 70.5% Ma et al. [168]

LRS3-TED [30] - -

field were evaluated on various parameters, including Holistic
Feature Representation, Deployment, Testing, Dataset Evalua-
tion, Accuracy, and speaker independence. Holistic feature
representation [171]–[173] refers to the approach used in
VSR that considers the whole facial area rather than just
specific facial features. This involves analyzing the changes
in facial features, such as the lips, tongue, and jaw, to extract
information about the spoken words. The idea is to capture
the overall motion of the facial features, which can provide
more information about the spoken words than just analyzing
individual features. Holistic feature representation is a popular
approach in VSR, as it can lead to better accuracy in recogniz-
ing spoken words. Notably, the majority of works during this
period focused on speaker-dependent VSR and aimed to create
a basic framework that could achieve the highest possible
accuracy. As a result, end-to-end solutions that satisfied all
parameters were not yet available. The table also suggests that
Holistic Feature Representation emerged as a significant aspect
of VSR research in the late 90s, with many works displaying
this attribute. Moreover, since the majority of datasets used in
these studies were customized and recorded under laboratory
conditions, it can be inferred that most works underwent
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real-time testing. The introduction of benchmark datasets like
Tulips1 and M2VTS also made dataset evaluation an essential
component of VSR research. Despite these advancements,
techniques during this time were not highly efficient, with
few studies achieving accuracy greater than 80%. Additionally,
speaker independence, which is a critical component of VSR,
was only evident in a limited number of works.

C. Exploring the Evolution of Visual Speech Recognition: An
in-depth Analysis of Attribute Comparison in VSR Research
from 2000 to 2010

The period between 2000 and 2010 witnessed significant
advancement in various areas of VSR. One of the noticeable
improvements during this period was the remarkable enhance-
ment in the accuracy of VSR techniques. Moreover, there
was a notable emphasis on creating benchmark datasets to
evaluate the performance of different VSR methodologies,
which is crucial for ensuring the reliability and reproducibility
of results. The table presented in this context, Table IX,
highlights the progress in this area during this period. Ad-
ditionally, the decade of 2000-2010 marked the emergence
of innovative ideas on deploying VSR on edge devices,
which has become a crucial research area in recent times.
Traditional approaches like Hidden Markov Models (HMMs),
Support Vector Machines (SVMs), AdaBoost classifiers, Dis-
crete Cosine Transform (DCT), and Contextual modeling were
extensively used during this decade, leading to high accuracy
with minimal error rates. The techniques were evaluated using
various corpuses, including words, sentences, alphabets, and
phrases, resulting in an average recognition rate of 70% in the
early 2000s and an increase to about 85% in the late 2000s.
The average error rate during this period was 10%. However,
speaker independence remained a challenging problem, as il-
lustrated in Table IX. Overall, the decade of 2000-2010 marked
significant progress in the field of VSR by enhancing the
accuracy of existing techniques, creating benchmark datasets,
and exploring innovative ideas for deploying VSR on edge
devices.

D. Analyzing the Evolution of Visual Speech Recognition:
A Comprehensive Study of Attribute Comparison in VSR
Research from 2011 to 2023

In the current era of technological advancements, VSR
has seen substantial growth in various aspects since 2011.
The research has been focused on exploring new techniques
and architectures for VSR to enhance its performance, and
benchmark datasets have become an integral part of the re-
search which can be depicted in Table X. Benchmark dataset
evaluation is an essential aspect of VSR because it allows
for the objective evaluation of different methodologies. Using
benchmark datasets, researchers can compare the performance
of different VSR techniques using the same data, allowing
for fair and meaningful comparisons. Moreover, benchmark
datasets help in understanding the limitations of the existing
VSR systems and provide a basis for further development.
These datasets are designed to cover a wide range of chal-
lenging conditions, such as variations in lighting, background,

speaker demographics, and camera angles. They also provide
a standardized testing protocol, which is crucial for compar-
ing the performance of different systems. Using benchmark
datasets, researchers can identify the strengths and weaknesses
of different VSR techniques and provide a standardized metric
to evaluate the performance of new techniques. Additionally,
benchmark datasets can be used to train machine learning
algorithms, which can learn to recognize speech patterns and
improve the overall accuracy of the VSR system. The majority
of the datasets mentioned in Table VI were formulated in this
period The introduction of deep learning architectures like
CNNs, RNNs, and LSTM, among others, has had a significant
impact on improving the accuracy of VSR. In addition, recent
works have emphasized the importance of developing speaker-
independent models, which are essential for VSR applications
in real-world scenarios. Based on the analysis of the table,
it is evident that speaker independence has been a crucial
aspect addressed in all the VSR works in the last decade.
A majority of the methodologies have also incorporated the
property of holistic feature representation. Furthermore, there
has been a remarkable improvement in the accuracy of the
proposed solutions in the late 2010s, making them the current
state-of-the-art.

E. The Vital Combination of DL Architecture and Proper
Datasets

The combination of DL architecture and a proper dataset is
crucial for the success of speaker-independent VSR systems.
DL architectures are designed to learn and extract relevant
features from the data, allowing them to automatically adapt
to the variability in speech signals caused by factors such as
speaker identity, accent, and speaking style. These architec-
tures are capable of modeling complex relationships between
input features and output labels, which is essential for accurate
speech recognition. However, the performance of DL models
heavily depends on the quality and size of the training dataset.
A proper dataset must be diverse and representative of the
target population, containing a wide range of speakers, accents,
and speaking styles. The dataset should also be annotated with
accurate transcription or labeling, allowing the DL model to
learn the relationship between acoustic features and linguistic
content. Without a proper dataset, the DL model may not
be able to capture the full range of variability in speech
signals, leading to poor performance on unseen speakers or
in noisy environments. Similarly, without an appropriate DL
architecture, the model may not be able to learn the complex
relationships between acoustic features and linguistic content,
resulting in inaccurate speech recognition. Custom datasets are
often used in VSR models to train the model to recognize a
particular domain or application’s specific speech patterns and
vocabulary. However, if the custom dataset is not diverse or
representative enough, the VSR model may not be able to
generalize well to speakers with different accents or speaking
styles, leading to less accuracy. While custom datasets can
improve the accuracy of VSR models in specific contexts,
they may also lead to less accuracy if they are not designed
and implemented correctly [130]. Traditional methods like
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TABLE IX: Attribute comparison of VSR works from 2000-2010: A Tabulated Overview.

Existing Works Holistic Feature
Representation

Speaker In-
dependence

Edge Device
Deployment

Real-time
Testing

Benchmark
Dataset

Evaluation

Accuracy ≥
80%

Vanegas et al. [100] ✓ × × × ✓ ×
Nankaku et al. [101] × × × × ✓ ×
Gordan et al. [104] × × × × ✓ ×

Foo et al. [107] × × × ✓ × ×
Yao et al. [108] ✓ × × × ✓ ×

Anwar et al. [109] × × × × ✓ ×
Foo et al. [110] × × × ✓ × ✓

Saenko et al. [111] × × × × ✓ ×
Sagheer et al. [112] × ✓ × × ✓ ×

Lee et al. [113] ✓ × × × ✓ ×
Yau et al. [114] × × × ✓ × ✓

Leung et al. [117] × ✓ × ✓ × ✓
Yu et al. [118] × × × ✓ × ✓
Jie et al. [119] ✓ ✓ × × ✓ ✓

Wang et al. [120] × × × ✓ × ✓
Rajavel et al. [121] ✓ × × ✓ × ✓

Pass et al. [122] × × × × ✓ ×
Lu et al. [123] ✓ × × ✓ × ✓

[119], [120], [129] have shown a significant accuracy in
word-level VSR. However, they can also lead to improper
generalization when used exclusively. Apart from improper
datasets and traditional methodologies, a proper combination
of DL models and datasets is also deemed essential. This
can be shown in [157]–[160] where there is a significant
difference in the Training and Test Accuracy of the model.
Accurate recognition of spoken words enhances the system’s
user experience, reliability, and productivity, making it an
essential consideration when designing and evaluating VSR
systems. Hence, the right combination of DL architectures and
datasets greatly improves the VSR system, which is visible in
[161], [163].

F. Speaker Independence

Speaker independence is a critical aspect of VSR systems,
as it enables them to recognize speech from various speakers
without any prior training or adaptation. To achieve speaker
independence, the VSR system must be trained on a large and
diverse dataset including speech samples from many speakers.
The feature extraction and normalization techniques used in
the system must be robust to variations in speech patterns
across different speakers. Additionally, the classification al-
gorithm used in the VSR system must be able to generalize
well to new speakers and not overfit to the training data
from specific speakers. Finally, the VSR system should be
evaluated using a testing dataset that includes speech samples
from different speakers than the training dataset to ensure that
the system can generalize to new speakers. By meeting these
conditions, a speaker-independent VSR system can accurately

recognize speech from unseen speakers. As demonstrated in
Table X, the proposed solutions in the field of VSR for the pe-
riod of 2011-2023 exhibit the concept of speaker independence
to a great extent. Despite some limitations, this makes them
highly relevant since they are based on datasets that support the
concept of speaker independence. Notably, achieving speaker
independence has been a significant challenge in the field
of VSR, and the works that fulfill this requirement can be
considered state-of-the-art in this domain.

G. Effect of Content-Type on Speaker Independent VSR Model
Performance

The content of what is being said, such as digits, alphabets,
or sentences, can significantly impact the performance of a
speaker independent VSR system. For instance, recognizing
digits and alphabets is generally considered easier than recog-
nizing sentences due to the smaller vocabulary size and simpler
context. This is because there are only ten digits and twenty-six
alphabets to recognize, whereas recognizing sentences requires
understanding the context of the sentence, which can be
challenging. Additionally, the number of syllables in a word or
sentence, the variation in pronunciation, and the complexity of
the language can also impact the accuracy of VSR models. In
speaker-independent VSR, dataset structure and variation are
crucial factors that can significantly impact the performance of
the model. A well-structured dataset can improve the model’s
accuracy and help it generalize better to new speakers and
environments. Additionally, variations in the dataset, such as
differences in lighting, background, and camera angles, can
help the model learn to recognize visual speech patterns more
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TABLE X: Attribute comparison of VSR works from 2011-2023: A Tabulated Overview

Existing Works Holistic Feature
Representation

Speaker In-
dependence

Edge Device
Deployment

Real-time
Testing

Benchmark
Dataset

Evaluation

Accuracy ≥
80%

Damien et al. [127] ✓ ✓ × ✓ × ✓
Shaik et al. [128] ✓ ✓ × ✓ × ✓

Sujatha et al. [129] ✓ ✓ × ✓ × ✓
Salah W et al. [130] ✓ ✓ × ✓ × ×
Helen L et al. [131] ✓ ✓ × × × ×
A.Amit et al. [132] ✓ ✓ × × ✓ ×

J. S. Chung et al. [138] ✓ ✓ × × ✓ ×
M. Assael et al. [139] ✓ ✓ × × ✓ ✓

Petridis et al. [148] ✓ ✓ × × ✓ ✓
Philip et al. [149] ✓ ✓ × × ✓ ✓

Eric Tatulli et al. [151] ✓ ✓ × × × ✓
P. Sindhura [157] × ✓ × × ✓ ×

H. Gupta et al. [158] × ✓ × × ✓ ×
M. A. Abrar et al. [159] ✓ ✓ ✓ ✓ ✓ ×

D. Parekh et al. [160] ✓ ✓ × × ✓ ×
Y.Lu et al. [161] × ✓ × × × ✓
Guan et al. [162] ✓ ✓ × ✓ × ✓

N. K. Mudaliar et al. [163] ✓ ✓ × ✓ ✓ ✓
Yang et al. [165] ✓ ✓ × × ✓ ×

Qun Zhan et al. [166] ✓ ✓ × × ✓ ×
Xue et al. [167] ✓ ✓ × ✓ ✓ ×
Ma et al. [168] ✓ ✓ × × ✓ ×
Kim et al. [169] ✓ ✓ × ✓ ✓ ×

Nemani et al. [77] ✓ ✓ ✓ ✓ ✓ ✓

effectively. Furthermore, VSR models may have a bias towards
certain phonemes or words due to variations in pronunciation
and the speaker’s accent [81], [174]. For instance, certain
words may be pronounced differently in different regions,
leading to variations in phoneme recognition. Additionally, the
speaker’s speaking style may affect the model’s performance,
such as speaking rate, volume, and enunciation. Hence, it
is essential to consider the variation in speaking styles and
accents while training VSR models to achieve optimal perfor-
mance. In conclusion, the content of what is being spoken can
significantly affect the performance of a speaker independent
VSR model. The complexity of the language, variations in
pronunciation, and the speaker’s accent and speaking style can
all impact the model’s accuracy. Therefore, developing VSR
models that can handle these variations is crucial to achieving
optimal performance.

H. Edge Device Deployment and Real-time Testing in VSR
systems

Edge device deployment [175] and real-time testing are
important aspects of VSR systems. Edge devices are small
computing devices that can perform data processing and
analysis close to the source of data collection [176]–[178].
In VSR, edge device deployment refers to the process of
deploying the VSR system on small, portable, and low-power

devices like mobile phones, tablets, or smart glasses. Real-time
testing refers to the process of testing the VSR system while
it is running in real-time, i.e., the system must process and
classify the visual speech input within a very short time frame,
typically a few hundred milliseconds, to be useful for practical
applications. This requires the VSR system to be optimized for
real-time performance, using efficient algorithms and architec-
tures to quickly process the input. Edge device deployment and
real-time testing are particularly important for VSR systems
that are designed for applications in which the system must
operate in real-time and in a distributed environment. For
example, a VSR system deployed on smart glasses can provide
real-time VSR for hearing-impaired individuals, enabling them
to communicate in noisy environments or without attracting
attention. Most existing works lack implemented solutions
or do not rely on sensor infrastructure to accomplish VSR
tasks. The edge device should be self-sufficient in predicting
the output and should not require additional equipment. This
would become a significant advantage of solutions that do
not have a good user interface. Out of the solutions surveyed
above, the presence of a user interface can be detected only in
the solutions proposed by M. A. Abrar et al. [159] and Nemani
et al. [77]. Though the solution portrays less testing accuracy,
it forms the basis for many solutions that involve the presence
of a UI.
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VII. CONCLUSION

This research provides a comprehensive overview of
the methodologies employed in speaker-independent Visual
Speech Recognition (VSR) and highlights the effectiveness of
modern deep learning (DL) techniques compared to traditional
approaches. The study evaluates the proposed solutions based
on various parameters, ultimately concluding that a combina-
tion of convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and long short-term memory (LSTM)
networks can effectively learn relevant features comparable to
the traditional hand-crafted features reported in the existing
literature. Moving forward, future research and development
in speaker-independent VSR systems encompass several key
areas. One such area is the exploration of transfer learning,
which involves leveraging knowledge from pre-trained models
and applying it to new models in different domains. This
approach can help reduce the reliance on extensive train-
ing data, which is often limited in the speaker-independent
VSR domain. Another area of interest is the investigation
of unsupervised learning techniques, which can automatically
discover data patterns without needing labeled training data.
Leveraging unsupervised learning can be particularly benefi-
cial in scenarios where large amounts of unlabeled data are
available for speaker-independent VSR systems. The develop-
ment of more sophisticated and robust deep learning models
is another important focus for future research. Attention-
based models, capable of handling varying lengths of input
data and extracting relevant features more effectively, hold
promise in advancing speaker-independent VSR. Furthermore,
the exploration of new modalities, such as depth cameras and
3D imaging sensors, can contribute to building more robust
and accurate VSR systems.

Integrating multiple modalities, such as audio and visual
data, is an intriguing direction for enhancing the accuracy of
speaker-independent VSR systems. The potential for improved
performance and robustness increases by leveraging com-
plementary information from different modalities. Moreover,
the development of novel evaluation metrics that encompass
multimodality and consider various aspects of VSR can pro-
vide more comprehensive assessments of system performance.
In line with the evolving technological landscape, ensuring
speaker-independent VSR systems’ security is of utmost im-
portance. Research efforts should be directed toward investi-
gating adversarial attacks and other security issues to develop
countermeasures and safeguard the integrity and reliability of
VSR systems. In summary, this research highlights the efficacy
of modern DL techniques in speaker-independent VSR and
identifies various areas for future exploration. The proposed
avenues, including transfer learning, unsupervised learning,
advanced deep learning models, new modalities, multimodal
integration, novel evaluation metrics, and security considera-
tions, pave the way for advancing the field and enhancing the
capabilities of speaker-independent VSR systems.
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IX. ABBREVIATIONS

We have included a table in which the abbreviations used
throughout this document are defined for the convenience of
the reader. This table aims to clearly understand the abbre-
viations used and prevent any confusion or misunderstanding
while reading the document. By referring to this table, readers
can quickly and easily find the meaning of any abbreviation
that may be unfamiliar to them, thereby enhancing their overall
comprehension of the text. We believe that providing this table
will help readers navigate the content easily and improve their
reading experience.

TABLE XI: Abbreviations

Abbreviation Meaning
VSR Visual Speech Recognition
DCT Discrete Cosine Transform
PCA Principal Component Analysis
DWT Discrete Wavelet Transform
HMM Hidden Markov Model
SVM Support Vector Machine
CNN Convolutional Neural Network
RNN Recurrent Neural Network

LSTM Long short-term memory
STCNN Spatio-Temporal Convolutional Neural Network
MHIs Motion History Images
EM Expectation-Maximization
GA Genetic Algorithm

VGG Visual Geometry Group
KNNs K- Nearest Neigbours
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