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PRAbstract

We present methods for designing quantizers for a distributed system that estimates a continuous quantity at a fusion center

based on the observations of multiple sensors subject to communication constraints at the channels and to storage constraints at the

fusion center. We consider the case where the observation statistics are unknown and only a training sequence is available. We

propose the use of regression trees and two approaches to reduce the storage requirements. The first approach gives a direct sum

estimate of the continuous quantity. The second approach provides a neural network implementation of the estimates. We study the

trade-offs between storage complexity and performance using simulations. The experiments showed that the direct sum estimation

approach achieves performance close to that of the unconstrained case while greatly reducing the space complexity of the fusion

center. The neural network approach further improves the performance. Moreover, it provides more flexible trade-offs between

space complexity and performance.

� 2003 Published by Elsevier B.V.

Keywords: Multi-sensor fusion; Quantization; Distributed estimation; Neural networks; Regression trees
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RE1. Introduction

Distributed information systems consist of several

separated nodes (sensors, fusion centers) observing an

environment, collecting information, and making deci-

sions or estimations based on their own observations

and information that is communicated among nodes.
Networks of embedded sensors are becoming increas-

ingly important especially due to their potentially

enormous impact in environmental monitoring, product

quality control, defense systems, etc. New exciting

technologies such as MicroElectroMechanical Systems

(MEMS) [5] and Smart-Dust devices [14,28] are ex-

pected to expand the capabilities of embedded devices

and networks of sensors by putting a complete sensing/
communication platform inside a cubic millimeter.
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Given the great technological advances and the

enormous potential for applicability of sensor networks

in many situations, research in data fusion in multi-

sensor systems is receiving more and more attention.

The main advantages of multi-sensor fusion systems

[12,13,27] over single-sensor systems include the fol-

lowing: (a) in many applications the observations of
individual sensors are incomplete, imprecise and often

inconsistent so the use of multiple sensors reduces the

effect of noise in measuring a quantity, (b) the use of

multiple types of sensors increases accuracy in which a

quantity is observed, (c) observation of a certain phe-

nomenon may require the use of multiple sensors dis-

tributed across multiple spatial locations, (d) contextual

information is very important in critical decision mak-
ing. Data fusion can occur at three levels: data level,

feature level, and decision level [7]. In the data level, the

sensors observe the same physical phenomenon and data

are directly combined. In the feature level, features are

extracted from data. In the decision level, information

mail to: vasilis@cis.temple.edu
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Fig. 1. A distributed estimation system with two sensors.
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about an entity’s attributes is extracted from each sen-

sor.

Here, we focus on fusion at the data level. We con-

sider a distributed system of a fusion center with a

number of remote sensors. The fusion center makes
decisions that are based on data collected by remote

sensors and transmitted to the center. Depending on the

application, the decision making at the fusion center can

be in the form of binary hypothesis testing (e.g., radar

detection) [1,6,20,24,25], or estimation (e.g., target

tracking using multiple radars) [8,11,16,17,29]. Al-

though here we consider the case of a single fusion

center, the work has applicability to hop-by-hop com-
munication networks with many fusion centers where

the fusion center considered can be a cluster-head sensor

of its own cluster. Especially in wireless communication

networks, in order to conserve battery resources and/or

communicate around obstacles, short-range hop-by-hop

communication is often preferred over direct long-range

communication to a destination. In this case, the design

of the multiple-hop network can be performed using the
proposed approach by designing separately in a cas-

cading manner each cluster of sensors starting from the

leaves of the tree and proceeding towards the root.

We concentrate on distributed systems that perform

estimation of a certain quantity at the fusion center

using the observations of the sensors. Examples of such

quantities or conditions are: temperature, humidity,

noise levels, movement of objects (such as vehicles,
equipment, robotic devices), mechanical stress levels,

etc. If these observations are directly available at the

fusion center then the problem is termed centralized, and

it can be carried out by more traditional methods of

detection and estimation theory [26]. Here, we consider

the distributed problem where the observations are not

directly available to the fusion center. Rather, they are

collected at the fusion center through communication
channels with capacity constraints [11,16,17,20]. This is

the case in wireless sensor networks where sensors have

wireless communication capabilities and may be battery

constrained and operate under power conservation

conditions. The capacity constraints on communication

along with the storage constraints on the fusion center

suggest very challenging problems.

The scheme considered serves as a model for many
applications from environmental monitoring, to home-

land security and quality control and from seismology

to meteorology and medicine. The goal is to minimize

the expected error in estimating a continuous quantity.

Due to constraints on the communication lines imposed

by power limitations (battery constrained) and wireless

capabilities, there are several restrictions on the model

we consider: the sensors cannot communicate with each
other and there is no feedback from the fusion center

back to the sensors. Due to limitation in communication

bandwidth the observations are compressed (quantized).
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D
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The estimation is achieved via compressed information.

We assume error free communication channels and fixed

length coding for the transmission. We also assume that

the observation statistics, i.e., the joint probability

density function, is unknown.
The problem we are considering is defined as follows:

For a distributed system with k sensors, find, for each

sensor, a mapping from the observation space to code-

words (of a certain number of bits given by the capacity

constraints), and find a fusion center function that maps

a vector of k codewords to an estimate vector for the

unobserved quantities, so that the mean of the square of

the Euclidean norm of the estimation error is minimized.
The representation of the fusion center function may

take into account the storage constraints at the fusion

center. There is a joint probability distribution of all

observations and unobserved quantities. However, since

this distribution is unknown, the design of the system is

based on a training set and the mean squared error is

computed based on a test set. Although the number of

sensors, k, can be in general arbitrary, here we consider
the two-sensor case (see Fig. 1) since the method for this

case can be easily extended to the more general case.

We assume that a training set is available. Training

data can usually be obtained, with some additional cost,

in the collection process. For example, in the case of

remote object tracking, in addition to the estimates at

the sensors the actual location of the object can be

available by other means (e.g., the object moves on a
predetermined path with a known speed to collect data

for training before the design phase). This is similar to a

calibration procedure.

The problem of quantizer design for a distributed

estimation system in the case of unknown observation

statistics was considered by Megalooikonomou and
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Yesha [21–23]. The same problem in the case of a known

probability model was considered by Lam and Reibman

[16,17]. Longo, et al. [20] considered the design of the

peripheral encoders for a decentralized hypothesis test-

ing network under communication constraints in the
case where the joint distribution is known. Ephraim and

Gray [8] and Ayanoglou [2] studied quantization for

estimation for the single sensor case. However, storage

complexity issues for the fusion center were not ad-

dressed in those papers.

The methods that have been proposed for designing

quantizers for distributed estimation use a simple table

for the fusion center that is indexed by the codewords of
the quantizers. Storage requirements of this fusion

center table can be a problem for a large number of

sensors and/or a large number of codewords for each

sensor (space for the fusion center table is exponential in

the number of sensors). Gubner [11] considers the

problem of quantizer design for this system subject not

only to communication constraints but also to compu-

tation constraints at the fusion center. Gubner, though,
assumes that the probability model is known. The

computational capabilities of the fusion center are

constrained to direct sum estimation of the continuous

quantity. As a result, his algorithm uses only bivariate

joint distributions. We design methods that deal with the

case of unknown distribution.

In this paper we consider the problem of quantizer

design subject to both communication constraints and
storage constraints at the fusion center in the case where

the joint probability model is unknown and one must

rely on a training set. To deal with the unknown joint

probability model we use a regression tree approach for

designing the quantizers. We propose two approaches

that use reduced storage representations of the fusion

center table. The first approach gives a direct sum esti-

mation of the continuous quantity. The second ap-
proach uses a neural network for the representation of

the reconstructed values at the fusion center.
233
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2. Background

Let h be the unobservable continuous (in values)

quantity that the fusion center tries to estimate. Let Xq
1

and X r
2 be the random observation vectors at the two

sensors, where q and r denote the number of elements in

each vector. We use the vector notation Xp
k as a short-

hand for (Xk½1�;Xk½2�; . . . ;Xk½p�). Let

T ¼ fðXq
1 ;X

r
2 Þ
ðtÞ; hðtÞ; t ¼ 1; . . . ;Mg be a training set of

size M that represents the statistics of the source. Note

that when referring to the random observation vectors

present in the training set we use the notation Xp;t
k where

as before p and k denote, respectively, the number of

elements in the vector and the particular sensor, while t
denotes the particular sample from the training set T.
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Let Qk be the quantizer for sensor k, and QkðXp;t
k Þ or, in

other terms, X̂X p;t
k (denoting that this is the quantized

version of Xp;t
k ) be the codeword for the observation Xp;t

k
that is transmitted to the fusion center. The task of the

fusion center is to estimate the unobserved quantity h
based on the X̂X p;t

k it receives. Note that the codeword

received is the same as the codeword transmitted due to

the assumption of error-free communication channels.

Let h be the function of the fusion center that gives the

estimate of h and

PQ1
¼ fUi; i ¼ 1; . . . ;Ng ð1Þ

and

PQ2
¼ fVj; j ¼ 1; . . . ; Lg; ð2Þ

be the sets of partition regions for quantizers Q1 and Q2,

respectively. The transmitted values, X̂X q;t
1 and X̂X r;t

2 from

the sensors to the fusion center are given by:

X̂X q;t
1 ¼

PN
i¼1ði� 1ÞIUiðX

q;t
1 Þ and

X̂X r;t
2 ¼

PL
j¼1ðj� 1ÞIVjðX r;t

2 Þ, where IAðxÞ denotes the

indicator function of a set A � Rd of dimension d, i.e.,
IAðxÞ ¼ 1 if x is in A and IAðxÞ ¼ 0 otherwise. Then the

output of the distributed estimation system is

hðX̂X q;t
1 ; X̂X r;t

2 Þ or in other words hðQ1ðXq;t
1 Þ;Q2ðX r;t

2 ÞÞ. The
fusion center h has the following value for each pair of

codewords i, j:

hði; jÞ ¼ 1

jRi;jj
X

t:ðXq
1
;Xr

2
ÞðtÞ2Ri;j

hðtÞ ð3Þ

where Ri;j ¼ fðXq
1 ;X

r
2 Þ
ðtÞ : Xq;t

1 2 Ui;X
r;t
2 2 Vjg is a subset

of the training set. We consider the mean-squared error

(MSE) distortion function. The objective is to find Q1,

Q2, and h such that the error expression below is mini-

mized

Error ¼ 1

M

XM
t¼1

hðtÞ
�

� h X̂X q;t
1 ; X̂X r;t

2

� ��2

ð4Þ

The numbers N , L of partition regions for quantizers Q1

and Q2 respectively are provided so that the capacity

constraints on the communication channels are satisfied.
In the case where the joint distribution pðx1; x2; hÞ

(i.e., the observation statistics) is known and continu-

ous, necessary conditions for optimal Q1, Q2, and h for

the MSE distortion function are given by Lam and

Reibman [17]. These conditions are not sufficient.

However, their joint solution leads to an estimation er-

ror that converges. It is widely believed that this solution

is indeed locally optimal, although no general theoreti-
cal derivation of this result has ever been obtained [9]. In

order to find the solution, the Cyclic Generalized

Lloyd’s Algorithm (CGLA) proposed by Longo, et al.

[20] in the framework of decentralized hypothesis testing

under capacity constraints and for a known joint dis-

tribution is used [11,16,17,20]. The CGLA is a variation

of the Generalized Lloyd Algorithm (GLA) [10,18,19], a
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well-established methodology for designing single
quantizers when the aim is to minimize the distortion

[10,18,19]. It starts with an initial guess of quantizers

and fusion center and it iteratively improves them by

finding the optimal component given the others.

The methods proposed for designing quantizers for

distributed estimation use a simple table for the fusion

center that is indexed by the codewords of the quantizers

(see Fig. 2 for an example of a fusion center table for
two quantizers). The amount of space required for

storing this fusion center table is exponential in the

number of sensors. For example, a fusion center table

for 10 sensors and just 8 codewords per sensor should

have 810 elements! Here, we propose methods for

reducing the space requirements of the fusion center

while at the same time satisfying the capacity constraints

of the communication channels and minimizing the
estimation error.

In the following sections we introduce regression trees

and present background information on how to use

them to design quantizers.

2.1. Regression trees

Regression analysis is the generic term revolving
around the construction of a predictor from a training

set. Breiman et al. [4] describe tree structured predictors

(BFOS regression trees) that are formed by iteratively

splitting subsets (nodes) of the training set into descen-

dant disjoint subsets, beginning with the training set it-

self, in order to maximize the decrease in the mean

prediction error. In each terminal node (leaf) the pre-

dicted response value is either constant (where the tree
can be thought of as a histogram estimate of the

regression surface) or some approximating function.

The main issues in designing regression trees are the

assignment of a value to every terminal node, the

selection of good splits (queries), and the stop splitting

rules. However, in order to grow trees of the right size,

instead of attempting to stop the splitting at the right set

of terminal nodes, one may continue the splitting until
the expected prediction error is below a certain thresh-
TE
D
PR
Oold (resulting in a large tree), and then selectively prune

this large tree by recombining leaves that are siblings.

Regression trees [4] are decision trees with queries of

the form Xk½l� < cj (for an observation variable Xk½l� and
a constant cj) where each leaf Ri is labeled by an esti-
mation value hðiÞ which is generally constant. See Fig.

3(a) for a regression tree on two variables, Xk½1� and
Xk½2�, and Fig. 3(b) for the representation of its parti-

tions. For observations of dimension d the leaves of the

regression tree correspond to d-dimensional rectangles.

All splits are on single variables so they are perpendic-

ular to the coordinate axes. The regression tree is grown

by introducing a split at a time. The basic operation that
finds the next split is as follows: At each node the tree

algorithm searches through the variables one by one.

For each variable it finds the split that results in the

greatest reduction in prediction error. Then it compares

the best single variable splits and selects the best among

them for the split at this node. Finally, it splits the node

for which the greatest reduction of the prediction error

was noticed.

2.2. Designing quantizers using regression trees

In order to deal with the problem of unknown joint

distribution we design the quantizers using the regres-

sion tree approach proposed by Megalooikonomou and

Yesha [21]. In this section, having introduced regression

trees, we present details on the design of quantizers.
As mentioned earlier the regression trees are formed

by iteratively splitting subsets of the training set into

decendant disjoint subsets in order to reduce the esti-

mation error. For sensor k the next split is chosen

(considering all the variables Xk½1�; . . . ;Xk½p� and all the

values of these variables) so that the error in the esti-

mation of the quantity h, given by Eq. (4), is minimized.

The tree growing is cooperative since the estimation
error depends on the existing rectangles of both trees. In

order to grow trees of the right size, pruning is also in-

volved in the growing procedure. The pruning algorithm

that is used, which recombines leaves that are siblings, is
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the Recursive Optimal Pruning Algorithm (ROPA)

proposed by Kiang et al. [15]. The purpose of pruning

the original regression trees in the case of fixed rate

quantization is to get a subtree with a given number of

leaves and with estimation error that is as small as
possible. When one tree is pruned given the other tree,

the risk of every node (i.e., the expected estimation error

of the subtree that has as root that node [4]) in the tree is

calculated taking into account the other tree.

After building a regression tree for each one of the

sensors the rate is reduced using a labeling technique

that combines rectangles into the required number of

partition regions assigning the same codeword (label) to
the rectangles of the same region. The rectangles are

labeled using s-CGLA (set-CGLA), an algorithm that

considers together groups of training samples and is

related to the Cyclic Generalized Lloyd Algorithm

(CGLA) [20]. A variation of s-CGLA is the lh-s-CGLA

(lookahead-set CGLA) that changes the fusion center

temporarily whenever there is a decision that has to be

made in order to calculate the effect of every possible
change and also keeps the fusion center table updated all

the time.

Let nk be the number of codewords and mk P nk be

the number of leaves for quantizer k. Let also lðrÞ be the
label of a specific rectangle r. Given the partition regions

PQ1
and PQ2

, for Xq
1 and X r

2 respectively, the optimal

fusion center h is given by:

hðm; nÞ ¼ 1

jR0m;nj
X

t:ðXq
1
;Xr

2
ÞðtÞ2R0m;n

hðtÞ ð5Þ

where R0m;n ¼ fðX
q
1 ;X

r
2 Þ
ðtÞ : lðrðXq;t

1 ÞÞ ¼ m; lðrðX r;t
2 ÞÞ ¼ ng

is a subset of the training set. The estimation error, erri,

contributed by the subset,

R00i ¼ fðX
q
1 ;X

r
2 Þ
ðtÞ

: rðXq;t
1 Þ ¼ ig, of the training set (based

on Xq
1 ) is given by:

erri ¼
1

jR00i j
X

t:ðXq
1
;Xr

2
ÞðtÞ2R00i

hðtÞ
�

� hðlðiÞ; lðrðX r;t
2 ÞÞÞ

�2

ð6Þ

The total estimation error is then given by:

Error ¼
X

i:0...m1�1
erri ð7Þ

The estimation error can also be expressed using a

similar formula that includes the corresponding subsets

of the training set based on X r
2 . The main component of

lh-s-CGLA performs the following for each sensor k [21]
until the reduction on the estimation error given by Eq.

(7) is less than a given threshold:

for each rectangle i from 0 to mk � 1 do

for each label j from 0 to nk � 1 do
lðiÞ  j
calculate h (Eq. (5)), erri½j� (Eq. (6))

lðiÞ  argminj:0...ðnk�1Þðerri½j�Þ
calculate h (Eq. (5))

The breakpoint initialization method [23] is used to

initialize the labels of the rectangles.
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3. Methods for reducing the storage requirements of the

fusion center

Here, we introduce two fusion strategies with a re-

duced space complexity for the fusion center. The first

approach gives a direct sum estimation of the continu-

ous quantity. The second approach uses a neural net-

work representation of the reconstructed values at the

fusion center. We also propose a combination of the two

approaches.

3.1. Direct sum estimation of the continuous quantity

Recall that the transmitted value X̂X q
1 ¼ i� 1 if and

only if the observation Xq
1 is in the partition region Ui,

i ¼ 1; . . . ;N of quantizer Q1, and similarly, the trans-

mitted value X̂X r
2 ¼ j� 1 if and only if the observation X r

2

is in the partition region Vj, j ¼ 1; . . . ; L of quantizer Q2.

Constraining the storage requirements of the fusion
center using the direct sum estimation approach we re-

quire (as in the approach proposed by Gubner [11]) that

the estimation of the quantity h for a certain training

point t is:

ĥhðtÞ ¼
XN
i¼1

aiIUi X qðtÞ
1

� �
þ
XL

j¼1
bjIVj X rðtÞ

2

� �
ð8Þ

where ai : i ¼ 1; . . . ;N and bj : j ¼ 1; . . . ; L are the

parameters of the fusion center that we are trying to

find, N , L, are the numbers of partition regions for

quantizers Q1 and Q2 respectively (see Eqs. (1) and (2)),

and IAð�Þ is the indicator function of a set A as defined

earlier. If the partition regions of the sensors are fixed,

choosing the ai’s, bj’s that minimize the error

Errorlin ¼
1

M

XM
t¼1

hðtÞ
�

� ĥhðtÞ
�2

ð9Þ

is a linear estimation problem whose solution is given by
the normal equations (also used by Gubner [11]). We use

an iterative solution to the normal equations. The

parameters ai, i : 1; . . . ;N are given as follows:

ai ¼
1

jRij
XL

j¼1

X
t:ðXq

1
;Xr

2
ÞðtÞ2Ri;j

hðtÞ

0
@ �

XL

j¼1
jRi;jjbj

1
A ð10Þ

where Ri ¼ fðXq
1 ;X

r
2 Þ
ðtÞ

: Xq;t
1 2 Uig, and

Ri;j ¼ fðXq
1 ;X

r
2 Þ
ðtÞ

: Xq;t
1 2 Ui;X

r;t
2 2 Vjg are subsets of the

training set. A similar formula is derived for the

parameters bj, j : 1; . . . ; L. We calculate the parameters

ai, i : 1; . . . ;N and bj, j : 1; . . . ; L iteratively until the
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reduction on the estimation error given by Eq. (9) is less

than a given threshold. We initialize the parameters bj,
j : 1; . . . ; L with 0. This iterative method solves the

normal equations using a training set and converges to

the actual solutions given by analytical methods. It is
actually the Gauss–Seidel (successive displacements)

method where each new component is immediately used

in the calculation of the next component.

When the partition regions of one sensor along with

the fusion center parameters are fixed we partition the

space of the other quantizer using a variation of the

methods for growing and pruning the regression trees

that were used in the case of an unrestricted fusion
center [21]. This variation of the methods is used be-

cause of the restrictions on the storage requirements of

the fusion center. The estimation error is now calculated

using Eq. (9). Also, when we build the regression tree for

Xq
1 taking into account the partitions of the quantizer

for Xr
2 along with their associated parameters bj,

j : 1; . . . ; L we use the quantities hðtÞ � bj (where X rðtÞ
2 is

in partition region Vj) instead of hðtÞ in the methods that
try to find the best split on Xq

1 . A similar variation is

used when we build the regression tree for X r
2 given the

regression tree for Xq
1 . It can be proved that minimizing

the expected squared estimation error based on the

above quantities is equivalent to minimizing the ex-

pected squared estimation error based on the direct sum

estimate. The proof is omitted.

In the case of direct sum estimation, finding the best
splits for one tree, when the other tree and the coeffi-

cients that correspond to it are fixed, is feasible. We

build the quantizers taking into account the special form

that the fusion center function takes in order to satisfy

the storage constraints.

3.2. Neural network representation of the reconstructed

values

By partially relaxing the space requirements of the

fusion center we can further improve the performance

achieved by the direct sum estimation of the quantity

using a neural network representation of the fusion

center table (i.e., of the reconstructed values given by

Eq. (3)). The neural network output (after training)

approximates the reconstructed values of the fusion
center. Simulations show (see Table 2) that with enough

parameters (that correspond to weights and biases of

neurons) the neural network can achieve better perfor-

mance than the one given by the direct sum estimation

method. Moreover, we can have control on the number

of parameters that need to be stored in order to

approximate the fusion center table h.
The neural network that we use is a two-layer feed-

forward network and the learning rule is backpropaga-

tion with momentum and adaptive learning rate. The

momentum method decreases the probability that the
TE
D
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network will get stuck in a shallow minimum in the error

surface and helps decrease training times. Adaptive

learning rate decreases training time by keeping the

learning rate reasonably high while insuring stability.

For the first layer we use a hyperbolic tangent transfer
function and for the second layer we use a linear transfer

function. This kind of networks has been proven capa-

ble of approximating any function with a finite number

of discontinuities with arbitrary accuracy [3]. By varying

the number of neurons, we can achieve various trade-

offs of the complexity of the fusion center representation

and the performance of our system.

Let S1 be the number of neurons in the first layer of
the neural network. We use only one neuron for the

second layer (the output layer). We use the notation

ck : k ¼ 1; . . . ;M for the elements of the weight and bias

matrices that are, in other words, the parameters of the

neural network. Let I be the number of inputs of the

neural network. These correspond to the codewords of

the quantizers. We use the unary representation of the

codewords with each input corresponding to a codeword
being present or absent. Therefore, the number of inputs

for the neural network is equal to the total number of

codewords from all the quantizers. Then the number of

parameters, M , used for the description of the two-layer

neural network is

S1ðI þ 2Þ þ 1: ð11Þ
The number of parameters for the weights and the biases

of the neural network depends on the representation of

the input.

We use the Nguyen–Widrow initial conditions for the
weights and the biases in order to reduce even further

the training time. For the training we can use either the

quantities, hðtÞ, or the corresponding fusion table entry,

hðtÞ, given by:

hðtÞ ¼
XN
i¼1

XL

j¼1
hði; jÞIUi X qðtÞ

1

� �
IVj X rðtÞ

2

� �
ð12Þ

for every point t of the training set, where hði; jÞ is given
by Eq. (3). This is because the corresponding two

expressions for the estimation error differ by a quantity

that depends only on the training set (the proof is easy

and is omitted). However, the learning process is faster

in the second case because of the variation of the target

values for the same input in the first case.

If f ði; jÞ is the output of the neural network for inputs
i, j after the training, then the approximation of the

fusion center table entry hðtÞ, ĥhðtÞ, is given by:

ĥhðtÞ ¼
XN
i¼1

XL

j¼1
f ði; jÞIUi X qðtÞ

1

� �
IVj X rðtÞ

2

� �
ð13Þ

for every point t of the training set. Then the total

estimation error can be expressed as follows:
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ErrorNN ¼
1

M

XM
t¼1

hðtÞ
�

� ĥhðtÞ
�2

ð14Þ

In order to improve the performance of the system

further we allow changes of the labels of the quantizer

rectangles taking into account the last form of the fusion
center that now depends on the parameters, c’s, of the
neural network. We apply the lh-s-CGLA in order to

decide about the best label of a rectangle. The algo-

rithm, design-fc-q, that iteratively trains the neural net-

work used for the fusion center table and possibly alters

the quantizers by assigning new labels to the rectangles,

based on the new fusion center, is described below. The

variable l is the iteration counter, hl the fusion center at
iteration l, and cl’s the neural network parameters at

iteration l.

design-fc-q

1. l 1.

2. run lh-s-CGLA to assign better labels to the rectan-
gles of the quantizers.

3. calculate hl, cl’s (by constructing a neural network to

approximate the fusion center hl), and ErrorNN (Eq.

(14)).

4. if the reduction of the estimation error is less than a

given threshold, then stop, else l lþ 1 and goto

step 2.

Notice that an approach that, in addition to changing

the labels, attempts to change also the split points of the

quantizers, is not computationally feasible due to the

time involved in training the neural network for every
possible change of the split points.

3.3. Combining direct sum estimation with neural net-

works

An alternative solution to the neural network repre-

sentation of the reconstructed values given by Eq. (3) is

the use of a neural network representation for the
residual of the reconstructed values in addition to

the parameters ai : i ¼ 1; . . . ;N and bj : j ¼ 1; . . . ; L of

the direct sum estimation method. In other words, in

this combined approach, we take into account the direct

sum estimation given by Eq. (8) when training the neural

network. For the training we can use either the residual

r1, r
ðtÞ
1 ¼ hðtÞ � ĥhðtÞ, or the residual r2 given by:

rðtÞ2 ¼ hðtÞ � ĥhðtÞ ð15Þ
for every point t of the training set, where hðtÞ is the

corresponding fusion table entry given by Eq. (12) and

ĥhðtÞ is the estimation of hðtÞ by the direct sum estimation
system. Either quantity can be used in the training be-

cause the objective functions in the two cases differ by a

constant that depends only on the training set.
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In order to achieve even better performance given the

total number of parameters that we can use we propose

an iterative approach for finding the parameters of the

direct sum estimation method (a’s and b’s) and those of

the neural network (c’s). If the approximation ĥh0 of the
residual r2 by the neural network is given as:

ĥh0ðtÞ ¼
XN
i¼1

XL

j¼1
f ði; jÞIUi X qðtÞ

1

� �
IVj X rðtÞ

2

� �
ð16Þ

for every point t of the training set, the total estimation

error can be expressed as follows:

Errortot ¼
1

M

XM
t¼1

hðtÞ
�

� ĥhðtÞ
�

þ ĥh0ðtÞ
��2

: ð17Þ

In this case, we use the following iterative algorithm,

design-fc, to calculate the parameters a’s, b’s, and c’s of
the fusion center:

design-fc

1. l 1, ĥh0  0.

2. calculate al’s (Eq. (10)), bl’s iteratively to approxi-

mate the residual h� ĥh0.
3. calculate ĥh (Eq. (8)), cl’s (by constructing a neural

network to approximate r2 (Eq. (15))), ĥh0 (Eq. (16)),
and Errortot (Eq. (17)).

4. if the reduction on the estimation error is less than a

given threshold, then stop, else l lþ 1 and goto

step 2.

In order to further improve the performance of this

system we apply the lh-s-CGLA that allows changes of

the labels of the quantizer rectangles taking into account

the last form of the fusion center that now depends on
the parameters of the direct sum estimation system (a’s
and b’s) and on the parameters of the neural network

(c’s).
614
4. Experimental investigations and discussion

In the experiments we consider the case where the
observations at the quantizers are scalar quantities of

the form:

xk ¼ hþ nk; k ¼ 1; 2 ð18Þ
where the noises nk at the sensors are Gaussian distrib-

uted with correlation coefficient q and marginal distri-

butions Nð0; r2
nÞ, where r2

n is the variance of the noises.

The continuous quantity h has Gaussian distribution

Nð0; 1Þ and is independent of the noises nk, k ¼ 1; 2. The
quantizers are designed using a training set T of 5000
samples and are tested on a test set T0 of 5000 samples

that is independent of T although it is constructed the

same way as T. The results that we report here are on

the test set T0. In all experiments we use the breakpoint

initialization of labels and the value 0.005 for the error
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Fig. 4. Performance comparison of the direct sum estimation method

in the case (a) where we build the quantizers without taking into ac-

count in the building process the special form of the fusion center

function and in the case, (b) where we take it into account during the

whole building process.

Table 1

Comparison of the performance of the unconstrained (full fusion center table) and the direct sum estimation approach

r2
n bp_init, 16 leaves, (8, 8) labels

q ¼ 0 q ¼ 0:5 q ¼ 0:85

No-constr. Dir. sum. est. No-constr. Dir. sum. est. No-constr. Dir. sum. est.

64 params 16 params 64 params 16 params 64 params 16 params

0.005 0.0094 0.0172 0.0093 0.0173 0.0104 0.0216

0.010 0.0135 0.0221 0.0145 0.0226 0.0250 0.0288

0.050 0.0381 0.0466 0.0493 0.0582 0.0554 0.0627

0.100 0.0674 0.0762 0.0878 0.0984 0.0976 0.1198

0.150 0.0886 0.0982 0.1233 0.1303 0.1371 0.1505

0.200 0.1154 0.1288 0.1540 0.1703 0.1816 0.2038

0.300 0.1573 0.1685 0.2013 0.2210 0.2436 0.2611

0.400 0.1897 0.2053 0.2550 0.2701 0.2998 0.3178

0.500 0.2209 0.2518 0.2945 0.3213 0.3470 0.3698

0.600 0.2521 0.2702 0.3383 0.3625 0.3901 0.4100

0.700 0.2849 0.3030 0.3730 0.4081 0.4260 0.4509

0.800 0.3126 0.3295 0.3989 0.4157 0.4643 0.4868

0.900 0.3410 0.3588 0.4234 0.4502 0.4923 0.5109

1.000 0.3621 0.3796 0.4593 0.4835 0.5126 0.5523
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threshold. We also use 10,000 epochs to train the neural

network. Here we present results from experiments with

2 sensors and 8 partition regions for each quantizer.

In Table 1 we compare the estimation error of the

unconstrained method (without restriction on the fusion

center) with that of the direct sum estimation method

that constrains the capabilities of the fusion center using

Eq. (8). We assume breakpoint initialization of labels
and we present results for several values of r2n and for

q ¼ 0, 0.5, 0.85. Despite the great reduction on the

number of parameters used in the direct sum estimation

method its performance is close to that of the uncon-

strained method.

In Fig. 4 we present the performance of the direct

sum estimation method in the case where we do not take

into account the restrictions on the fusion center when
building the regression trees and we only apply the

procedure that calculates the parameters of the fusion

center as the last step (a). We also present the perfor-

mance in the case where the procedure that builds the

quantizers takes into account the special form that

the fusion center function takes in order to satisfy the

storage constraints (b). We present the results for

q ¼ 0:85. The difference in the estimation error is similar
for q ¼ 0, 0.5. As expected, it is better to build the

quantizers taking into account, during the whole pro-

cess, the restricted form of the fusion center.

In Table 2 we compare the performance of the direct

sum estimation system with that of the neural network

with 3 and 4 neurons. The number of parameters used

by each system is also shown. It is clear that the neural

network approach provides flexible trade-offs between
storage complexity of the fusion center (i.e., number of

neurons used) and performance of the quantizers. The

results that we report here for the neural network are

661
obtained after we apply the design-fc-q algorithm that

iteratively trains the neural network for the fusion center

and possibly alters the quantizers by assigning new la-

bels to the rectangles of their regression trees. Table 3

presents the improvement of the design-fc-q algorithm

over the one-iteration approach that builds a neural

network of 4 neurons and stops.
Finally, in Table 4 we compare the direct sum esti-

mation system with the one that in addition to the a’s
and b’s, uses a neural network representation of the

residual of the reconstructed values. We iteratively im-

prove the direct sum estimation system and the neural
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Table 3

Comparison of estimation error (MSE) for the neural network ap-

proach––one iteration versus design-fc-q

r2
n bp_init, q ¼ 0:85, 16 leaves, (8, 8) labels

One iteration Design-fc-q

0.005 0.0132 0.0106

0.010 0.0287 0.0261

0.050 0.0571 0.0571

0.100 0.1079 0.0984

0.150 0.1466 0.1370

0.200 0.1904 0.1819

0.300 0.2489 0.2481

0.400 0.3031 0.2996

0.500 0.3509 0.3474

0.600 0.4034 0.3920

0.700 0.4279 0.4261

0.800 0.4725 0.4637

0.900 0.4953 0.4939

1.000 0.5306 0.5144

Table 2

Comparison of estimation errors (MSE) between a direct sum esti-

mation and a neural network approximation of the fusion center table

r2
n bp_init, q ¼ 0:85, 16 leaves, (8, 8) labels

Dir. sum. est. 3 neurons 4 neurons

16 params 37 params 55 params

0.005 0.0216 0.0207 0.0106

0.010 0.0288 0.0270 0.0261

0.050 0.0627 0.0588 0.0571

0.100 0.1198 0.1078 0.0984

0.150 0.1505 0.1381 0.1370

0.200 0.2038 0.1880 0.1819

0.300 0.2611 0.2501 0.2481

0.400 0.3178 0.2999 0.2996

0.500 0.3698 0.3505 0.3474

0.600 0.4100 0.3952 0.3920

0.700 0.4509 0.4307 0.4261

0.800 0.4868 0.4650 0.4637

0.900 0.5109 0.4982 0.4939

1.000 0.5523 0.5269 0.5144

Table 4

Performance improvement (in terms of MSE) when combining the neural ne

r2
n bp_init, q ¼ 0:85, 16 leaves, (8, 8) labels

Dir. sum. est. (dse) dse+ 1 neuron

16 params 33 params

0.005 0.0216 0.0217

0.010 0.0288 0.0268

0.050 0.0627 0.0589

0.100 0.1198 0.1079

0.150 0.1505 0.1453

0.200 0.2038 0.1831

0.300 0.2611 0.2461

0.400 0.3178 0.3031

0.500 0.3698 0.3469

0.600 0.4100 0.3916

0.700 0.4509 0.4240

0.800 0.4868 0.4625

0.900 0.5109 0.5029

1.000 0.5523 0.5222
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network using the design-fc algorithm. We report the

case of a neural network with one neuron (hyperbolic

tangent transfer function), two neurons (one in the

hidden layer, one in the output layer) and three neurons

(two in the hidden layer, one in the output layer). We
also report the total number of parameters used in each

case. We present the results for q ¼ 0:85. As expected,

the performance of this system is similar to the one that

uses a neural network for the representation of the fu-

sion center table instead of a neural network for the

representation of the residual table in addition to the

direct sum estimation of the continuous quantity.
O
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O5. Conclusions

In this paper we have addressed the problem of

designing efficient quantizers for a multi-sensor fusion

system that performs estimation, where the efficiency is

in terms of space complexity of the fusion center. In our

system, quantization is used to meet the communication
constraints between the sensors and the fusion center.

Previous work on this problem assumed partial knowl-

edge of the data statistics. However, here, we considered

the case of unknown data statistics, and the system de-

sign was accordingly based on training sets.

To reduce the fusion center space requirements we

proposed two approximations of the estimation rule: a

direct sum estimation and a neural network implemen-
tation of the estimates. In addition, we considered a

combination of the two approaches. We performed

numerical investigations to quantify the estimation error

of the proposed approaches. Experiments demonstrated

that the performance loss observed for the direct sum

estimation approach was small while the space com-

plexity was greatly reduced. The neural network ap-

proach provided more flexible trade-offs between
twork with the direct sum estimation approach

dse+ 2 neurons dse + 3 neurons

35 params 53 params

0.0197 0.0145

0.0265 0.0253

0.0580 0.0561

0.1061 0.0987

0.1422 0.1381

0.1831 0.1828

0.2460 0.2460

0.3026 0.3011

0.3466 0.3465

0.3913 0.3904

0.4238 0.4238

0.4624 0.4615

0.5005 0.4972

0.5214 0.5212



696

697

698

699

700
701

702

703

704

705

706

707

708

709

710

711

712

713
714
715
716

717
718

719
720

721
722
723

724
725
726

727
728
729

730
731
732

733
734
735
736

737
738

739
740

741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

10 V. Megalooikonomou, Y. Yesha / Information Fusion xxx (2003) xxx–xxx

INFFUS 124 No. of Pages 10, DTD=4.3.1

21 November 2003 Disk used
ARTICLE IN PRESS
storage complexity of the fusion center and performance

of the quantizers with the performance loss becoming

even smaller than that of the direct estimation for

slightly increased space requirements. Another impor-

tant observation, which was expected but our experi-
ments confirmed, was that one can build better

quantizers by taking into account, throughout the de-

sign process, the restricted form of the fusion center

rather than by imposing the restriction at the end. The

main contribution of this work was the introduction of

two fusion strategies and the modification of previously

proposed regression-tree techniques to reduce the space

complexity of the fusion center.
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