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Abstract Clustering categorical data is an integral part of data mining and has attracted much
attention recently. In this paper, we present <~-ANMI, a new efficient algorithm for clustering
categorical data. The k-ANMI algorithm works in a way that is similar to the popular k-means
algorithm, and the goodness of clustering in each step is evaluated using a mutual information
based criterion (namely, Average Normalized Mutual Information-4ANMI) borrowed from cluster
ensemble. Experimental results on real datasets show that &~ANMI algorithm is competitive with

those state-of-art categorical data clustering algorithms with respect to clustering accuracy.
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1. Introduction

Clustering is an important data mining technique that groups together similar data records.
Recently, much attention has been put on clustering categorical data [e.g., 1-2]126 -31], where
records are made up of non-numerical attributes. Fast and accurate clustering of categorical data
has many potential applications in customer relationship management, e-commerce intelligence,
etc.

In [21], the categorical data clustering problem is defined as an optimization problem using a
mutual information sharing based object function (namely, Average Normalized Mutual
Information-ANMI) from the viewpoint of cluster ensemble. However, those algorithms in [21]
have been developed from intuitive heuristics rather than from the vantage point of a direct
optimization, which can’t guarantee to find a reasonable solution.

In this paper, we propose a new k-means like clustering algorithm called A~-ANMI for
categorical data that directly optimizes the mutual information sharing based object function. The
k-ANMI algorithm takes the number of desired clusters (supposed to be k) as input and iteratively
changes the class label of each data object to improve the value of object function. That is, for
each object, the current label is changed to each of the other £ — 1 possible labels and the ANMI
objective is re-evaluated. If the ANMI increases, the object's label is changed to the best new
value and the algorithm proceeds to the next object. When all objects have been checked for
possible improvements, a sweep is completed. If at least one label was changed in a sweep, we
initiate a new sweep. The algorithm terminates when a full sweep does not change any labels,
thereby indicating that a local optimum is reached.

Although the basic idea of A--ANMI is very simple, it is nontrivial to effectively implement
the algorithm so that it is scalable to large datasets. To make the ~~ANMI algorithm scalable, we



employ multiple hash tables to improve its efficiency. We also provide the analysis on the time
complexity and space complexity of k&~ANMI algorithm. The analysis shows that the k-ANMI
algorithm is capable of handing large categorical datasets.

The remainder of this paper is organized as follows. Section 2 presents a critical review on
related work. Section 3 introduces basic concepts and formulates the problem. In Section 4, we
present the k~~ANMI algorithm and provide complexity analysis. Experimental results are given in
Section 5 and Section 6 concludes the paper.

2. Related Work

A few algorithms have been proposed in recent years for clustering categorical data
[1-226 3]. In [1], the problem of clustering customer transactions in a market database is
addressed. STIRR, an iterative algorithm based on non-linear dynamical systems is presented in
[2]. The approach used in [2] can be mapped to a certain type of non-linear systems. If the
dynamical system converges, the categorical databases can be clustered. Another recent research
[3] shows that the known dynamical systems cannot guarantee convergence, and proposes a
revised dynamical system in which convergence can be guaranteed.

K-modes, an algorithm extending the k-means paradigm to categorical domain is introduced
in [4,5]. New dissimilarity measure to deal with categorical data is conducted to replace means
with modes, and a frequency based method is used to update modes in the clustering process to
minimize the clustering cost function. Based on k-modes algorithm, [6] proposes an adapted
mixture model for categorical data, which gives a probabilistic interpretation of the criterion
optimized by the k-modes algorithm. A fuzzy k-modes algorithm is presented in [7] and tabu
search technique is applied in [8] to improve fuzzy k-modes algorithm. An iterative initial-points
refinement algorithm for categorical data is presented in [9]. The work in [19] can be considered
as an extension of k&-modes algorithm to transaction domain.

In [10], the authors introduce a novel formalization of a cluster for categorical data by
generalizing a definition of cluster for numerical data. A fast summarization based algorithm,
CACTUS, is presented. CACTUS consists of three phases: summarization, clustering, and
validation.

ROCK, an adaptation of an agglomerative hierarchical clustering algorithm, is introduced in
[11]. This algorithm starts by assigning each tuple to a separated cluster, and then clusters are
merged repeatedly according to the closeness between clusters. The closeness between clusters is
defined as the sum of the number of “links between all pairs of tuples, where the number of
“links is computed as the number of common neighbors between two tuples.

In [12], the authors propose the notion of large item. An item is large in a cluster of
transactions if it is contained in a user specified fraction of transactions in that cluster. An
allocation and refinement strategy, which has been adopted in partitioning algorithms such as
k-means, is used to cluster transactions by minimizing the criteria function defined with the notion
of large item. Following the large item method in [12], a new measurement, called the small-large
ratio is proposed and utilized to perform the clustering [13]. In [14], the authors consider the item
taxonomy in performing cluster analysis. Xu and Sung [15] propose an algorithm based on
“caucus , which is fine-partitioned demographic groups that is based the purchase features of

customers.



Squeezer, a one-pass algorithm is proposed in [16]. Squeezer repeatedly read tuples from
dataset one by one. When the first tuple arrives, it forms a cluster alone. The consequent tuples are
either put into an existing cluster or rejected by all existing clusters to form a new cluster
according to the given similarity function.

COOLCAT, an entropy-based algorithm for categorical clustering, is proposed in [17]. Based
on height-to-width ratio of the cluster histogram, Yang et al. [18] develop the CLOPE algorithm.
Ref. [20] introduces a distance measure between partitions based on the notion of generalized
conditional entropy and a genetic algorithm approach is utilized for discovering the median
partition. LIMBO introduced in [27] is a scalable hierarchical categorical clustering algorithm that
builds on the Information Bottleneck framework. Li et al. [28] shows that the entropy-based
criterion in categorical data clustering can be derived in the formal framework of probabilistic
clustering models and develops an iterative Monte-Carlo procedure to search for the partitions
minimizing the criterion.

In [21], the authors formally define the categorical data clustering problem as an optimization
problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for
clustering categorical data. Simultaneously, Gionis et al. [30] use cluster ensemble methods with
disagreement measure to solve the problem of categorical data clustering.

Chen and Chuang [26] develop the CORE algorithm by employing the concept of
correlated-force ensemble. He et al. [29] propose TCSOM algorithm for clustering binary data by
extending traditional self-organizing map (SOM). Chang and Ding [31] present a method for
visualization of the clustered categorical data such that users’ subjective factors can be reflected

by adjusting clustering parameters, and therefore to increase the clustering result’s reliability.

3. Introductory Concepts and Problem Formulation
3.1 Notations

Let 4;, ..., 4, be a set of categorical attributes with domains Dy,..., D, respectively. Let the
dataset D = {X}, X, ..., X,} be a set of objects described by r categorical attributes, 4;, ..., 4,.The

value set V; of 4; is set of values of 4; that are present in D. For each ve V}, the frequency 1 (v),
denoted as f,, is number of objects O € X with O. 4;= v. Suppose the number of distinct attribute

values of 4; is p,, we define the histogram of 4; as the set of pairs: h; = {(v;, f7), (V2, f2),...,

(vp’_ , f, )} and the size of 4;is p; . The histograms of the data set D is defined as: H= {h.,h >, ...,

h}.

Let X, Y be two categorical objects described by » categorical attributes. The dissimilarity
measure between X and Y can be defined by the total mismatches of the corresponding attribute
values of the two objects. The smaller the number of mismatches is, the more similar the two

objects. Formally,
d(X,Y)=)68(x;,y,) (1)
j=1

where
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Given the dataset D = {X}, X,, ..., X,,} and an object Y, The dissimilarity measure between X and ¥
can be defined by the average of the sum of the distances between X; andY .

2 di(X,.Y)
d,(D,Y)=""—— 3)
n

If we take the histograms H = {/,h ,,...,h ,} as the compact representation of the data set D,
formula (3) can be redefined as (4).

iﬂh_/’y_/)

dy(H,Y)=1"——— )
n
where
P
#h,y,)=D.f,*6(v.y,) ®)
I=1

From a viewpoint of implementation efficiency, formula (4) can be presented in form of (6).

>ty

dy(HY)=1—— (6)
n
where
P
W(hjﬂyj)ZZﬁ*(1_5(vlﬂyj)) (7
I=1

Formula (6) can be computed more efficiently for which requires only the frequencies of

matched attribute value pairs.

3.2 A Unified View in the Cluster Ensemble Framework

Cluster ensemble (CE) is the method to combine several runs of different clustering
algorithms to get a common partition of the original dataset, aiming for consolidation of results
from a portfolio of individual clustering results.

Clustering aims at discovering groups and identifying interesting patterns in a dataset. We
call a particular clustering algorithm with a specific view of the data a clusterer. Each clusterer
outputs a clustering or labeling, comprising the group labels for some or all objects.

Given dataset D = {X, X,, ..., X,,}, a partitioning of these n objects into k clusters can be

represented as a set of k sets of objects C,={/=1,..., k}or as a label vector A€ N". A



clusterer @ is a function that delivers a label vector given a set of objects. Fig.1 (adapted from [24])

r)

shows the basic setup of the cluster ensemble: A set of » labelings A" s combined into a

single labeling A (the consensus labeling) using a consensus function I .

As shown in [21], categorical data clustering problem can be considered as the cluster
ensemble problem. That is, for a categorical dataset, if we consider attribute values as cluster
labels, each attribute with its attribute values give a “best clustering on the dataset without
considering other attributes. So the categorical data clustering problem can be considered as the
cluster ensemble problem, in which the attribute values of each attribute are the outputs of
different clustering algorithms.
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Fig. 1. The cluster ensemble. A consensus function I combines clusterings A9 from a variety of

sources.

More precisely, for the dataset D = {X;, X;, ..., X,} with r categorical attributes, 4;, ..., 4,.
The value set V; is a set of values of 4; that are present in D. According to the CE framework

. . . . (1) . . .
described in Fig.1, if we define each clusterer @ as a function that mapping values in V; to

. . e @ . .
distinct natural numbers, we can get the optimal partitioning A" determined by each attribute 4;

as: AV ={®® (X,.4,)| X;.4, €V,,X, € D}. So, we can combine the set of r labelings

A52" into a single labeling A using a consensus function I to get the solution for the problem

of clustering categorical data.

3.3 Object Function

Continue Section 3.2, intuitively, a good combined clustering should share as much
information as possible with the given r labelings. Strehl and Ghosh [22-24] use the mutual



information in information theory to measure the shared information, which can be directly

applied in this literature.

More concisely, as shown in Strehl’s papers [23,24], given r groupings with the g-th grouping

A9 having k'Y clusters, a consensus function I is defined as a function

N"" — N"mapping a set of clusterings to an integrated clustering:
{29 ge{l,2,...r}t > A (8)

The set of groupings is denoted as A = {1 |g € {1,2.....7}}. The optimal combined

clustering should share the most information with the original clusterings. In information theory,

mutual information is a symmetric measure to quantify the statistical information shared between

two distributions. Let 4 and B be the random variables described by the cluster labeling A and

AP with £““and k" gruops respectively. Let I (4, B) denote the mutual information between

A and B, and H (A4) denote the entropy of A. As Strehl has shown in [24],

I(A,B) < w holds. Hence, the [0,1]-normalized mutual information (NMI) [24]
used is:
NM[(A,B):M 9)
H(A)+ H(B)

Obviously, NMI (4, A) = 1. Equation (9) has to be estimated by the sampled quantities
provided by the clusterings [24]. As shown in [24], if we let n™ be the number of objects in

cluster Cj, according to A9 and let ng be the number of objects in cluster C, according to AP

Let néh) be denote the number of objects in cluster C;, according to A as well as in cluster C,

according to A The [0,1]-normalized mutual information criteria ¢(NM1) is computed as

follows [23,24]:

Wi 4@ o 25 n.’n
¢ (V) ):_zzng logk<u>*k(h)(—) (10)

(h)
N p=y g=1 n-'n,

Therefore, the Average Normalized Mutual Information (ANMI) between a set of r labelings,

A, andalabeling A is defined as follows [24]:

UMD (A i) _ li¢(NM[) (/:t,l(q)) (11)
r

g=1

According to [23,24], the optimal combined clustering A%7P) should be defined as the one



that has the maximal average mutual information with all individual partitioning A9 given that

the number of consensus clusters desired is k. Thus the objective function for categorical data

clustering is Average Normalized Mutual Information (4ANMI). Then, A% s defined as [24]:

qlk-onn) _ argmglxz¢(NM1)(/:tJv(q)) (12)

A g=l

where A goes through all possible k-partitions.

Taking ANMI as the object function in our k~-ANMI algorithm, we have to compute the value
of ¢(NM1). More precisely, we should be able to efficiently get the accurate value of each

parameter in Equation (10). In the next Section, we will describe our data structures and k-ANMI
algorithm in detail.

4. The k-ANMI Algorithm

4.1 Overview

The k-ANMI algorithm takes the number of desired clusters (supposed to be k) as input and
iteratively changes the class label of each data object to improve the value of object function. That
is, for each object, the current label is changed to each of the other £ — 1 possible labels and the
ANMI objective is re-evaluated. If the ANMI increases, the object's label is changed to the best
new value and the algorithm proceeds to the next object. When all objects have been checked for
possible improvements, a sweep is completed. If at least one label was changed in a sweep, we
initiate a new sweep. The algorithm terminates when a full sweep does not change any labels,
thereby indicating that a local optimum is reached.

4.2 Data Structures

Taking the dataset D = {X}, X, ..., X,} with r categorical attributes, 4,,... , 4, and the number
of desired clusters, £, as input, we need (+1)*k hash tables as our basic data structures. Actually,
each hash table is the materialization of a histogram. The concept and structure of histogram has
been discussed in Section 3.1. In the remaining parts of the paper, we will use histogram and hash
table interchangeably.

. . . . . . e @ .
As discussed in Section 3.2, each attribute 4; determines an optimal partitioning A" without

S . . (O _ . .
considering other attributes. Storing A7 inits original format will be costly both in space and

computation. Therefore, we only keep the histogram of 4; on D , denoted as AH,, as the compact

. @ . . .
representation of A" Since we have r attributes, r histograms are constructed.

Suppose that the partition of these n objects into k clusters is represented as a set of & sets of



objects C,={I=1,..., k}or as a label vector A € N". For each C,, we construct a histogram for
each attribute separately. We denote the histogram of 4; on C, as CAH, ;. Hence, we need r

histograms for each C, and r*k histograms for A .

Overall, we need (#+1)*k histograms totally.

Example 1: For example, Table 1 shows a categorical table with 10 records, each described by 2
categorical attributes. Only considering “Attribute I , we can get the optimal partitioning
{(1,2,5,7,10), (3,4,6,8,9)} with 2 clusters. Similarly, “Attribute 2 gives an optimal partitioning as

{(1,4,9), (2,3,10), (5,6,7,8)} with 3 clusters. Suppose k=2, and A ={(1,2,3,4,5), (6,7,8,9,10)}. The

6 histograms that we need are described in a vivid form, as shown in Fig. 2.

Table 1 Sample Categorical Data Set

Record Number Attribute 1 Attribute 2

1 M A

2 M

3 F B

4 F A

5 M C

6 F C

7 M C

8 F C

9 F A
10 M B

AH, AH, CAH,, CAH,, CAH,,
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Fig. 2. The 6 Histograms for Example 1.
4.3 Computation of ANMI

In this section, we show how to use those histograms introduced in Section 4.2 to compute
the ANMI value.



To compute the ANMI between a set of 7 labelings, A, and a labeling A, we only need to
compute ¢ (1,47 for each A” € A. Therefore, we will focus on the computation of
™D (A,A7) . To be consistent with the description in Section 3.3, we use

MDA AP instead of #™(A,4”) for illustration by setting A =1 and

A8 — 20
k(ﬂ) k()
Recalling that ¢ (A, 1") = ZZn(h) logkm*k(,,)( ) where n® is the
n = g=1

number of objects in cluster C, according to A9 and ngis the number of objects in cluster C,

(

according to A? . n'™is the number of objects in cluster Cj, according to A as well as in

cluster C, according to A . k'“is the numbers of clusters in A’ and k" is the numbers
of clusters in A"

To compute the value of @™ (1), 1)), we must know 6 values, which are n, k“,

k(b) (@] N

,ngand n,

(1) For a given dataset, the value of n is number of objects in the dataset and hence is fixed;
(2) Since 4> = 4,s0 k'“=k;

(3) Since AP is original partition derived from attribute A4,, hence ks equal to the size

of AH,, where AH, is histogram of 4, on D. Note that the value of k®is directly derived from

the corresponding histogram.

(4) The value of n® is equal to the sum of frequencies of attribute values in the histogram
CAH,, ;forany 1<i<r.

(5) Suppose the cluster C, in A?) is determined by attribute value v, and then n,4is equal to
the frequency value of v in histogram AH.
(6) As in (5), suppose the cluster C, in A?) is determined by attribute value v, and then

néh) is equal to the frequency value of v in histogram CAH, , if v has an entry in CAH,, ;.

otherwise, néh) =0.



From (1) to (6), we know that the ANMI value can be computed by only using histograms
and without accessing the original dataset. Thus, the computation is very effective.

Example 2: Continuing example 1, suppose we are trying to compute ¢ ™" (1, 1)) | where

A=1={1.234.5),(6,7,8,9,10)} and A ={(1,2,5,7,10), (3,4,6,8,9)}. In this case, we have n=

10, k' =k=2, A’ =2. Further suppose that C,=(1,2,3,4,5) and C,=~(1,2,5,7,10). We have
n"=3+2=5 (according to CAH, ;), ng=5 (the value frequency of “M in histogram 4H;) and

néh) =3 (the value frequency of “M in histogram CAH]; ).

44 The Algorithm
Fig.3 shows the ~~ANMI algorithm. The collection of records is stored in a file on the disk

and we read each record ¢ in sequence.

Algorithm /-ANMI
Input: D // the categorical database
k  // the number of desired clusters

Output: clusterings of D

/* Phase 1-initialization */

01 Begin

02 foreach transaction ¢ in D

03 counter++

04 update histograms for each attribute

05 if counter<=k then

06 put ¢ into cluster C; with the number of counter

07 else

08 put ¢ into cluster C; with which has the smallest distance
09 write <t, i>

/* Phase 2-Iteration */

10 Repeat

11 not_moved =true

12 while not end of the database do

13 read next record < ¢, C; >

14 moving ¢ to an existing cluster , C; to maximize ANMI
15 if C; != C; then

16 write <t, j>

17 not_moved =false

18 Until not_moved

19 End

Fig. 3. The k/~-ANMI algorithm.



In the initialization phase of the ~-ANMI algorithm, we firstly select the first & records from
the data set to construct initial histograms for each cluster. Each consequent record is put into the
closed cluster according to Equation (6). The cluster label of each record is stored. At the same
time, the histogram of partition derived from each attribute is also constructed and updated.

In iteration phase, we read each record ¢ (in the same order as in initialization phase), move ¢
to an existing cluster (possibly stay where it is) to maximize ANMI. After each move, the cluster
identifier is updated. If no record is moved in one pass of all records, iteration phase terminates;
otherwise, a new pass begins. Essentially, at each step we locally optimize the criterion ANML
The key step is finding the destination cluster for moving a record according to the value of ANMI.
How to efficiently compute ANMI using histograms has been discussed in Section 4.3.

4.5 Time and Space Complexities

Worst-case analysis: The time and space complexities of the ~~ANMI algorithm depend on the
size of dataset (n), the number of attributes (r), the number of the histograms, the size of every
histogram, the number of clusters (k) and the iteration times (/).

To simplify the analysis, we will assume that every attribute has the same number of distinct
attributes values, p. Then, in the worst case, in the initialization phase, the time complexity is O
(n*kc*r*p). In the iteration phase, since the computation of ANMI requires O (+*p”*k)) and hence
this phase has time complexity O (/*n P prp?). Totally, the algorithm has time complexity O
(I*n*I* r*p) in worst case.

The algorithm only needs to store (»+1)*k histograms and the dataset in main memory, so the
space complexity of our algorithm is O (r*k*p+n*r).

Practical analysis: As pointed out in [10], categorical attributes usually have small domains.
Typical categorical attributes domains considered for clustering consist of less than a hundred or,
rarely, a thousand attribute values. An important of implication of the compactness of categorical
domains is that the parameter, p, can be regarded to be very small. And the use of hashing
technique in histograms also reduces the impact of p. So, in practice, the time complexity of
k-ANMI can be expected to be O (I*n*k** r¥p).

The above analysis shows that the time complexity of &~ANMI is linear to the size of dataset,
the number of attributes and the iteration times, which make this algorithm deserve good
scalability.

5. Experimental Results

A performance study has been conducted to evaluate our method. In this section, we describe
those experiments and the results. We ran our algorithm on real-life datasets obtained from the
UCI Machine Learning Repository [25] to test its clustering performance against other algorithms.

5.1 Real Life Datasets and Evaluation Method

We experimented with three real-life datasets: the Congressional Votes dataset, the
Mushroom dataset and the Wisconsin Breast Cancer dataset, which were obtained from the UCI



Machine Learning Repository [25]. Now we will give a brief introduction about these datasets.

v Congressional Votes: It is the United States Congressional Voting Records in 1984. Each
record represents one Congressman’s votes on 16 issues. All attributes are Boolean with Yes
(denoted as y) and No (denoted as yvalues. A classification label of Republican or Democrat
is provided with each record. The dataset contains 435 records with 168 Republicans and 267
Democrats.

v' The Mushroom Dataset: It has 22 attributes and 8124 records. Each record represents
physical characteristics of a single mushroom. A classification label of poisonous or edible is
provided with each record. The numbers of edible and poisonous mushrooms in the dataset
are 4208 and 3916, respectively.

v Wisconsin Breast Cancer Data': It has 699 instances with 9 attributes. Each record is
labeled as benign (458 or 65.5%) or malignant (241 or 34.5%). In our literature, all attributes
are considered categorical with values 1,2, ..., 10.

Validating clustering results is a non-trivial task. In the presence of true labels, as in the case
of the data sets we used, the clustering accuracy for measuring the clustering results was computed
as follows. Given the final number of clusters, k, clustering accuracy » was defined as: r

k

2.
i=1

i . . . . .
=———, where 7 is the number of records in the dataset, a; is the number of instances occurring
n

in both cluster 7 and its corresponding class, which had the maximal value. In other words, ; is the
number of records with the class label that dominates cluster i. Consequently, the clustering error

is defined as e = 1-7.
5.2 Experiment Design

We studied the clustering found by four algorithms, our A~-ANMI algorithm, the Squeezer
algorithm introduced in [16], the GAClust algorithm proposed in [20] and ccdByEnsemble
algorithm in [21].

Until now, there is no well-recognized standard methodology for categorical data clustering
experiments. However, we observed that most clustering algorithms require the number of clusters
as an input parameter, so in our experiments, we cluster each dataset into different number of
clusters, varying from 2 to 9. For each fixed number of clusters, the clustering errors of different
algorithms were compared.

In all the experiments, except for the number of clusters, all the parameters required by the
ccdByEnsemble algorithm are set to be default as in [21]. The Squeezer algorithm requires only a
similarity threshold as input parameter, so we set this parameter to a proper value to get the
desired number of clusters. For the GAClust algorithm, we set the population size to be 50, and set

other parameters to their default values®.

! We use a dataset that is slightly different from its original format in UCI Machine Learning Repository, which has
683 instances with 444 benign records and 239 malignant records. It is public available at:
http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/brcancerall.dat.

% The source codes for GAClust are public available at: http://www.cs.umb.edu/~dana/GAClust/index.html. The
readers may refer to this site for details about other parameters.



Moreover, since the clustering results of &~ANMI algorithm, ccdByEnsemble algorithm and
Squeezer algorithm are fixed for a particular dataset when the parameters are fixed, only one run is
used in the two algorithms. The GAClust algorithm is a genetic algorithm, so its outputs will differ
in different runs. However, we observed in the experiments that the clustering error is very stable,
so the clustering error of this algorithm is reported with its first run. In summary, we use one run

to get the clustering errors for all the four algorithms.

5.3 Clustering Results on Congressional Voting (votes) Data

Fig. 4 shows the results on the vofes dataset of different clustering algorithms. From Fig. 4,
we can summarize the relative performance of these algorithms as Table 2. In Table 2, the
numbers in column labelled by & (k=1, 2, 3 or 4) are the times that an algorithm has rank £ among
the four algorithms. For instance, in the 8 experiments, Squeezer algorithm performed second best
in 2 cases, that is, it is ranked 2 for 2 times.

Compared to the other three algorithms, the k~ANMI algorithm performed best in most cases
and never performed the worst. And the average clustering error of the k~ANMI algorithm was
significantly smaller than that of other algorithms. Thus, the clustering performance of ~~ANMI

on the votes dataset is superior to all other three algorithms.
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Fig.4. Clustering error vs. Different number of clusters (votes dataset)

Table 2: Relative performance of different clustering algorithms (votes dataset)

Ranking 1 2 3 4 Average Clustering Error

Squeezer 0 2 2 4 0.163

GAClust 1 2 2 3 0.136
ccdByEnsemble 2 2 4 0 0.115

k-ANMI 6 2 0 0 0.092

5.4 Clustering Results on Mushroom Data

The experimental results on the mushroom dataset are described in Fig. 5 and the relative
performance is summarized in Table 3. As shown in Fig. 5 and Table 3, our algorithm beats all the
other algorithms in average clustering error. Furthermore, although the ~~ANMI algorithm didn’t
always perform best orthis dataset, it performed best in 5 cases and never performed worst. That

is, k~ANMI algorithm performed best in majority of the cases.
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Table 3: Relative performance of different clustering algorithms (mushroom dataset)

Ranking 1 2 3 4 Average Clustering Error

Squeezer 1 5 0 2 0.206

GAClust 0 1 3 4 0.393
ccdByEnsemble 2 1 3 2 0.315

k-ANMI 5 1 2 0 0.165

Moreover, the results of k-ANMI algorithm are significantly better than that of
ccdByEnsemble algorithm in most cases. It demonstrates that direct optimization strategy utilized
in k-ANMI is more desirable than the intuitive heuristics in ccdByEnsemble algorithm.

5.5 Clustering Results on Cancer Data

The experimental results on the cancer dataset are described in Fig. 6 and the summarization
on the relative performance of the 4 algorithms is given in Table 4. From Fig. 6 and Table 4, some
important observations are summarized as follows:

(1)  Our algorithm beats all the other algorithms with respect to average clustering error.

(2) The k-ANMI algorithm almost performed best in all cases (except for the case when the
number of clusters is 5); Furthermore, in almost every case, <~ANMI algorithm achieves better
output than that of ccdByEnsemble algorithm, which verify the effectiveness of the direct
optimization strategy in <~ANMI. In particular, when the number of clusters is set to 2 (the true
number of clusters for the cancer dataset), our ~~-ANMI algorithm is able to get clustering output

whose clustering error is significantly smaller than that of other algorithms.
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Fig.6. Clustering error vs. Different number of clusters (cancer dataset)



Table 4: Relative performance of different clustering algorithms (cancer dataset)

Ranking 1 2 3 4 Average Clustering Error

Squeezer 0 1 5 2 0.091

GAClust 0 0 2 6 0.117
ccdByEnsemble 1 6 1 0 0.071

k-ANMI 7 1 0 0 0.039

5.6 Scalable Tests

The purpose of this experiment was to test the scalability of the k-ANMI algorithm when
handling very large datasets. A synthesized categorical dataset created with the software developed
by Dana Cristofor [20] is used. The data size (i.e., number of rows), the number of attributes and
the number of classes are the major parameters in the synthesized categorical data generation,
which were set to be 100,000, 10 and 10 separately. Moreover, we set the random generator seed
to 5. We will refer to this synthesized dataset with name of DS1.

We tested two types of scalability of the &-ANMI algorithm on large dataset. The first one is
the scalability against the number of objects for a given number of clusters and the second is the
scalability against the number of clusters for a given number of objects. Our ~~ANMI algorithm
was implemented in Java. All experiments were conducted on a Pentium4-2.4G machine with 512
M of RAM and running Windows 2000. Fig. 7 shows the results of using k~-ANMI to find 2
clusters with different number of objects. Fig. 8 shows the results of using k&~ANMI to find
different number of clusters on DS1 dataset.

One important observation from these figures was that the run time of k-ANMI algorithm
tends to increase linearly as the number of records is increased, which is highly desired in real data
mining applications.
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Fig. 7. Scalability of k-ANMI to the number of objects when mining 2 clusters from DS1 dataset

Furthermore, although the run time of A~~ANMI algorithm doesn’t increase linearly as the
number of clusters is increased, it at least achieves good scalability at an acceptable level.
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Fig. 8. Selability of k-ANMI to the number of clusters when clustering 100,000 records of the DS1

dataset

6. Conclusions

In this paper, we propose a new k-means like clustering algorithm called A~-ANMI for
categorical data, which tries to directly optimize a mutual information sharing based object
function. Empirical evidences show that our method is effective in practice.

For future work, we are planning to design fast genetic clustering algorithms for categorical
data using ANML
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