
Reducing False Positives In Anomaly

Detectors Through Fuzzy Alert Aggregation

Federico Maggi 1 Matteo Matteucci 1 Stefano Zanero 1,∗

Abstract

In this paper we focus on the aggregation of IDS alerts, an important component
of the alert fusion process. We exploit fuzzy measures and fuzzy sets to design
simple and robust alert aggregation algorithms. Exploiting fuzzy sets, we are able
to robustly state whether or not two alerts are “close in time”, dealing with noisy
and delayed detections. A performance metric for the evaluation of fusion systems
is also proposed. Finally, we evaluate the fusion method with alert streams from
anomaly-based IDS.

Key words: Intrusion Detection, Anomaly Detection, Fuzzy Measures, Fuzzy Sets,
Aggregation, Multisensor Fusion

1 Introduction

In the modern, ever-changing scenario of computer security, the traditionally
effective misuse-based approach to Intrusion Detection (ID) is dramatically
showing its limits, being based on the exhaustive enumeration of each pos-
sible attack signature. As a matter of fact, misuse-based Intrusion Detection
Systems (IDSes) turn out to be effective only against commonly known at-
tack tools, for which a signature is already available. Their inability to detect
unknown attacks (the so-called “zero-days” [1]) or new ways to exploit an old
vulnerability is severely limiting. Evasion techniques [2, 3] are another well
known example of weakness in misuse-based systems. A possible solution is
to use an anomaly detection approach, modelling what is normal rather than
what is anomalous. This is how an intrusion detection system was originally
conceived to work [4, 5]. Such systems do not need an up to date database

∗ Corresponding author.
1 All the authors are with the Dipartimento di Elettronica e Informazione of the
Politecnico di Milano Technical University.

Preprint submitted to Elsevier 30 April 2008

of “known” attacks, and therefore can detect unknown techniques and insider
abuses as well.

The problem of intrusion detection becomes even more challenging in todays’
complex networks. In fact, it is common to have more than one IDS deployed,
monitoring different segments and different aspects of the whole infrastruc-
ture (e.g., hosts, applications, network, etc.). The amount of alerts fired by a
network of IDSes running in a complex computer infrastructure is larger, by
several orders of magnitude, than what was common in the smaller networks
monitored years ago. In such a context, network administrators are loaded
by several alerts and long security reports often containing a non-negligible
amount of false positives. Thus, the creation of a clean, compact, and unified
view of the security status of the network is needed. This process is commonly
known as alert fusion (or alert correlation) [6] and it is currently one of the
most difficult challenges of this research field.

Skipping the trivial alert format conversion phase, the core steps of an alert
fusion process are called aggregation and correlation; the first one has the
goal of grouping alerts sharing common features (for instance, those close
in time); and the next phase, called alert correlation. It has to do with the
recognition of logically linked alerts; note that the term “correlation” does not
imply “statistical correlation” (even if statistical correlation based methods are
sometimes used to reveal such relationships). Alert correlation usually works
on already aggregated alert streams and, as shown in Fig. 1, the process is
usually performed after the aggregation.

The focus of this paper is on alert aggregation, which is more complex when
taking into account anomaly detection systems, because no information on the
type or classification of the observed attack is available to any of the fusion al-
gorithms. Beside the aforementioned drawbacks, misuse detectors are reliable,
and give very precise and detailed information upon which a reaction can be
planned; on the other hand, they cannot recognize new attacks. Anomaly de-
tectors are symmetrically able to detect new attacks, but are generally prone
to false positives and give less information to the user. Most of the algorithms
proposed in the current literature on correlation make use of the information
regarding the matching attack provided by misuse detectors; therefore, such
methods are inapplicable to purely anomaly based intrusion detection sys-
tems. However, since failures and strengths of anomaly and misuse detection
are symmetric, it is reasonable and noteworthy to try to integrate different
approaches through an alert fusion process.

Toward such goal, we explore the use of fuzzy measures [7] and fuzzy sets [8] to
design simple, but robust aggregation algorithms. In particular, we contribute
to one of the key issues, that is how to state whether or not two alerts are
“close in time”. In addition, uncertainties on both timestamp measurements

2

Normalization Prioritization Aggregation

Correlation for scenario
reconstructionVerificationAlert visualization and

management

.

.

.

A1

An-1
An

Fig. 1. The alert fusion model used in this work: a slightly modified version of the
generic, comprehensive framework proposed in [6].

and threshold setting make this process even more difficult; the use of fuzzy
sets allows us to precisely define a time-distance criterion which “embeds”
unavoidable errors (e.g., delayed detections).

The remainder of the paper is organized as follows: in Section 2 the problem of
alert aggregation and correlation is defined; we will also overview selected pa-
pers. Section 3 investigates our idea of exploiting fuzzy models for robust alert
aggregation. Section 4 details our experimental setup, the anomaly detection
prototype used and outlines the performances of our proposal; in this section,
we also sketch the motivations, the main requirements and a framework for
the evaluation of alert fusion systems. Finally, in Section 6 we will draw our
conclusions and outline some future work.

2 Problem statement and state of the art

The desired output of an alert fusion process is a compact, high-level view of
what is happening into the network as a whole. In the security field, such a
process is also known as security information monitoring and has historically
been a labor-intensive, error-prone, manual task. Effective algorithms for au-
tomatic alert fusion are needed to handle real world applications. In this work
we will make use of a slightly modified version of the generic, comprehensive
framework of alert fusion proposed in [6]. Fig. 1 summarizes the overall pro-
cess flow: alerts streams are collected from distributed IDSes, normalized (i.e.,
translated into a common format), aggregated, and finally, logically linked
events in the streams are correlated. In [6] the aggregation phase is called
fusion; in order to avoid misunderstandings we call it “aggregation” reserving
the word “fusion” to indicate the whole process. We will not investigate the pri-
oritization phase and the verification process: the first deals with alert ranking
and subsequent discarding, according to predefined priorities and heuristics;
alert verification is instead focused on collecting required context information
in order to verify whether the attack reported by an alert has succeeded or
not.

3

In this work we will mainly focus on the aggregation phase. Aggregation should
group together alerts which share common features, such as the same source or
destination address port or the same attack name (if known). As a secondary
effect, this phase should solve alert granularity issues due to how attacks are
reported from an IDS. For instance, an IDS could fire an alert whenever a
malicious network packet is detected, while another one might report the same
alert at the end of the TCP connection regarding the same attack packet.
Thus, the main issue of this phase is how to state that two alerts refer to the
same attack, especially if they are reported with slightly different timestamps.

The correlation phase is even more challenging: it implements the core algo-
rithms for recognizing related events. An effective correlation algorithm should
be able to reconstruct unknown attack scenarios. To give an example, a sim-
ple attack scenario is the exploitation of a system and subsequently its use to
penetrate another machine; obviously, the violation of both different hosts and
the connecting network would cause different (types of) IDSes to fire alerts,
all referring to the same scenario.

Alert fusion algorithms commonly need a priori knowledge; for instance, pre-
cise information about attacks names, division of attacks into classes, and alert
priorities. Such a need is limiting for anomaly detectors, because the lack of at-
tack names and classes do not allow grouping along these dimensions. In order
to be useful also with anomaly detectors, a generic alert fusion system should
not rely only on a priori knowledge, except for obviously required working hy-
pothesis (i.e., alert format, network protocols, etc.) and system configuration
settings (i.e., algorithm tuning, etc.).

2.1 Correlation and aggregation approaches

Due to space limitations, we do not attempt to review all the previous liter-
ature on intrusion detection, focusing instead on the latest alert fusion tech-
niques. We refer the reader to [9] for a more comprehensive and taxonomic
review of IDS literature.

According to an early definition, the alert fusion problem was formalized
through state-transition analysis; in [10] this approach has been proven to
be an effective technique for representing attack scenarios. In this type of
matching engines, observed events are defined as transitions in finite state
machine representing signatures of scenarios. When a machine reaches the ac-
ceptance state, the described scenario is detected. This approach allows for
the modelling of complex intrusion scenarios (mixing network and host based
detection) and it is capable of detecting slow or distributed attacks, but it
relies on a priori generated scenarios signatures.

4

In a similar fashion, cause-effect analysis has been applied. JIGSAW [11] is
a formal language to specify attacks (called “facts”) by means of their pre-
and post-conditions (called “requirements” and “providings”, respectively). It
enables the description of complex scenario and the definition of signatures
through the specification of the context needed for an attack to occur. A
similar approach that uses a different formalism is proposed in [12]. The same
idea is also implemented in TIAA [13], an alert fusion tool that exploits both
pre- and post-condition matching and time-distance criteria for aggregation
and correlation. As with previous techniques, the major shortcoming of these
approaches is the need for a priori knowledge (i.e., scenario pre- and post-
conditions).

Statistical techniques have been also proposed. The current version of EMER-
ALD [14] implements a “probabilistic” alert fusion engine. Described in [15],
the approach relies on the definition of some similarity metrics between alerts;
the correlation phase calculates a weighted similarity value and finds “near”
alerts to be grouped together. The features used include source IDS identifiers,
timestamps, source and destination addresses and ports. However, the alerts
must be already grouped in thread (a characteristic of EMERALD sensors,
which is not commonly present on other sensors). The authors recognize the
problem of robustly evaluating the distance in time, but use a large, crisp
time-window, whereas in this paper we advocate the use of fuzzy intervals.
Thus, the two approaches could integrate each other. Unluckily, EMERALD
was tested on data which is not available for reproducing the results, and the
software itself is not available for download and testing: this makes it difficult
to compare the results with our approach.

Classic time-series modelling and analysis have been also applied. The ap-
proach detailed in [16] constructs alert time-series counting the number of
events occurring into fixed-size sampling intervals; authors then exploits trend
and periodicity removal techniques in order to filter out predictable compo-
nents and leave real alerts only as the output. The main shortcoming of this
approach is the need for long alert streams in order to be effective.

The technique reported in [17] is particularly interesting because it does not re-
quire a priori knowledge, except for an optional prioritization phase that needs
a basic probability assignment for each attack class. Alerts are aggregated into
so-called “hyper-alerts” which may be seen as collections of time-ordered items
belonging to the same “type” (i.e., with the same features) [16]; each hyper-
alert (i.e., time series) is then transformed into frequency time series. The
prototype implements a Granger statistical causality test [18]. Without go-
ing into details, the test is based on a causality statistic which quantifies how
much of the history of a given hyper-alert is needed to explain the evolution of
another hyper-alert. Repeating the procedure for each couple of hyper-alerts
allows to identify “causally related” events and to reconstruct scenarios in an

5

unsupervised fashion. We compare our technique to [17] in Section 5, and we
also analyzed it in depth in [19].

Also, association rule mining techniques have been used [20] in order to learn
recurrent alert sequences for unsupervised alert scenario identification. Similar
methods have been applied in [21], but the suggested approach requires a
manually labeled set of attacks patterns. A similar proposal is described in [22].

In [23], a complementary approach is proposed; the described methodology
takes into account the alert priority in order to achieve effective contextual-
ization, better understanding of occurring phenomena, and minor attack ver-
ification w.r.t. business impacts. Alerts are prioritized and ranked exploiting
a priori defined priorities and ranking trees; a subsequent aggregation phase
computes similarities values to fuse related alerts together.

3 Time based alert aggregation: a fuzzy approach

As proposed in most of the reviewed literature, a first, näıve approach consists
in exploiting the time distance between alerts for aggregation; the idea is to
aggregate “near” alerts. In this paper we focus on this point, starting by the
definition of “near”.

Time-distance aggregation might be able to catch simple scenarios like remote
attacks against remote applications vulnerabilities (e.g., web servers). For
instance, consider the scenario where, at time t0, an attacker violates a host
by exploiting a vulnerability of a server application. An IDS monitoring the
system recognizes anomalous activity at time tn = t0 + τn. Meanwhile, the
attacker might escalate privileges and break through another application; the
IDS would detects another anomaly at th = t0 + τh. In the most general case
tn is “close” to th (with tn < th), so if th − tn ≤ Tnear the two alerts belong to
the same attack.

The idea is to fuse alerts if they are both close in time, raised from the same
IDS, and refer to the same source and destination. This intuition obviously
needs to be detailed. First, the concept of “near” is not precisely defined;
secondly, errors in timestamping are not taken into account; and, a crisp time
distance measure is not robust. For instance, if |th − tn| = 2.451 and Tnear =
2.450 the two alerts are obviously near, but not aggregated, because the above
condition is not satisfied. To overcome such limitations, we propose a fuzzy
approach to time-based aggregation.

In the following, we will use the well-known dot notation, as in object-oriented
programming languages, to access a specific alert attribute: e.g., a.start ts

6

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

Instantaneous alert

Crisp window

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

Fuzzy alert event

Fuzzy window

Closeness

(a) (b)

Fig. 2. Comparison of crisp (a) and fuzzy (b) time-windows. In both graphs, one
alert is fired at t = 0 and another alert occurs at t = 0.6. Using a crisp time-window
and instantaneous alerts (a), the distance measurement is not robust to neither
delays nor erroneous settings of the time-window size. Using fuzzy-shaped functions
(b) provides more robustness and allows to capture the concept of “closeness”, as
implemented with the T-norm depicted in (b). Distances in time are normalized in
[0,1] (w.r.t. the origin).

indicates the value of the attribute start ts of the alert a. Moreover, we will
use T(·) to indicate a threshold variable: for instance, Tnear is the threshold
variable called (or regarding to) “near”.

Our proposal relies on fuzzy sets for modelling both the uncertainty on the
timestamps of alerts and the time distance in a robust manner. Regarding
the uncertainty on measurements, we focus on delayed detections by using
triangle-shaped fuzzy sets to model the occurrence of an alert. Since the mea-
sured timestamp may be affected by errors or delays, we extend the singleton
shown in Fig. 2 (a) with a triangle, as depicted in Fig. 2 (b). We also take into
account uncertainty on the dimension of the aggregation window: instead of
using a crisp window (as in Fig. 2 (a)), we extend it to a trapezoidal fuzzy set,
resulting in a more robust distance measurement. In both graphs, one alert is
fired at t = 0 and another alert occurs at t = 0.6. Using a crisp time-window
and instantaneous alerts (Fig. 2 (a)), the distance measurement is not robust
to neither delays nor erroneous settings of the time-window size. Using fuzzy-
shaped functions (Fig. 2 (b)) provides more robustness and allows to capture
the concept of “closeness”, as implemented with the T-norm depicted in Fig.
2 (b). In Fig. 2 distances in time are normalized in [0,1] (w.r.t. the origin).

Note that, Fig. 3 compares two possible manners to model uncertainty on alert
timestamps: in Fig. 3 (a) the alert is recorded at 0.5 seconds but the measure-
ment may have both positive (in the future) and negative (in the past) errors.
Fig. 3 (b) is more realistic because positive errors are not likely to happen
(i.e., we cannot “anticipate” detections), while events are often delayed, espe-
cially in network environments. In comparison to our proposal of using “fuzzy

7

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

(a) (b)

Fig. 3. Comparing two possible models of uncertainty on timestamps of single alerts.

timestamps”, the Intrusion Detection Message Exchange Format (IDMEF)
describes event occurrences using three timestamps (Create-, Detect-, and
AnalyzerTime): this is obviously more generic and allows the reconstruction
of the entire event path from the attack to the analyzer that reports the alert.
However, all timestamps are not always known: for example, the IDS might
not have such a feature, thus the IDMEF Alerts cannot be completely filled.

As stated above, the main goal is to measure the time distance between two
alerts, a1 and a2 (note that, in the following, a2 occurs after a1). We first
exemplify the case of instantaneous alerts, that is ai.start ts = ai.end ts =
ai.ts for i ∈ {1, 2}. To state whether or not a1 is close to a2 we use a Tnear sized
time window: in other words, an interval spreading from a1.ts to a1.ts+ Tnear

(Fig. 2 (a) shows the described situation for a1.ts = 0, Tnear = 0.4, and
a2.ts = 0.6: values have been normalized to place a1 alert in the origin).

Extending the example shown in Fig. 2 (a) to uncertainty in measurements is
straightforward; let us suppose to have an average uncertainty of 0.15 seconds
on the measured (normalized w.r.t. the origin) value of a2.ts: we model is as
a triangle-shaped fuzzy set as the one drawn in Fig. 2 (b).

In the second place, our method takes into account uncertainty regarding the
thresholding of the distance between two events, modeled in Fig. 2 (b) by
the trapezoidal fuzzy window: the smoothing factor, 0.15 seconds, represents
potential errors (i.e., the time values for which the membership function is
neither 1 nor 0). Given these premises, the fuzzy variable “near” is defined
by a T-norm [8] as shown in Fig. 2 (b): the resulting triangle represents the
alerts overlapping in time. In the example we used min(·) as T-norm.

In the above examples, simple triangles and trapezoids have been used but
more accurate/complex membership functions could be used as well. How-
ever, we remark here that trapezoid-like sets are conceptually different from
triangles as the former have a membership value of 100%; this means cer-

8

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

Measured start timestamp

R
ea

l s
ta

rt
 t

im
es

ta
m

p

M
ea

su
re

d
 e

n
d

 t
im

es
ta

m
p

Fig. 4. Non-zero long alert: uncertainty on measured timestamps are modeled.

tainty on the observed/measured phenomenon (i.e., closeness), while lower
values mean uncertainty. Trapezoids-like functions should be used whenever a
100%-certainty interval is known: for instance, in Fig. 2 (b) if two alerts occur
within 0.4 seconds they are near at 100%; between 0.4 and 0.55 seconds, such
certainty decreases accordingly.

The approach can be easily generalized to take into account non-instantaneous
events, i.e. ai.start ts < ai.end ts. In this case, alerts delays have to be rep-
resented by a trapezoidal fuzzy set. Note that, smoothing parameters are
configurable values as well as fuzzy set shapes, in order to be as generic as
possible w.r.t. the particular network environment; in the most general case,
such parameters should be estimated before the system deployment. In Fig.
4 the measured value of ai.start ts is 0.4, while ai.end ts = 0.8; moreover, a
smoothing factor of 0.15 seconds is added as a negative error, allowing the
real ai.start ts to be 0.25.

3.1 Alert pruning

As suggested by the IDMEF Confidence attribute, our IDSes provide an
attack belief feature. For a generic alert a the attack belief represents
the deviation of the anomaly score, a.score, from the threshold, T . Intuitively,
it gives the idea of the “power” of the detected anomaly. It should be noted
that the concept of anomaly score is typical of anomaly detectors and, even
if there is no agreement about its definition, it can intuitively interpreted as
an internal, absolute indicator of abnormality. To complete our approach we
consider the attack belief attribute for alert pruning, after the aggregation
phase itself.

9

As detailed in Section 4, our IDSes rely on probabilistic scores and thresholds
in order to isolate anomalies from normal activity; thus, we implemented a
first näıve belief measure:

Bel(a) = |a.score− Tanomaly| ∈ [0, 1] (1)

We remark that a.score ∈ [0, 1] ∧ Tanomaly ∈ [0, 1] ⇒ Bel(a) ∈ [0, 1]. Also
note that in the belief theory [7, 8] Bel(B) indicates the belief associated to
the hypothesis (or proposition) B; with an abbreviate notation, we indicate
Bel(a) meaning the belief of the proposition “the alert a is associated to a
real anomaly”. In this case, the domain of discourse is the set of all the alerts,
which contains both the alerts that are real anomalies and the alerts that are
not.

The belief theory has been used to implement complex decision support sys-
tems, such as [24], in which a more comprehensive belief model has been for-
malized taking into account both belief and misbelief. The event (mis)belief
basically represents the amount of evidence is available to support the (non-
)occurrence of that event. In a similar vein, we exploit both the belief and
the a-priori misbelief, the False Positive Rate (FPR). The FPR tells how
much the anomaly detector is likely to report false alerts (i.e., the a-priori
probability of reporting false alerts, or the so called type I error), thus it is
a good candidate for modelling the misbelief of the alert. The more the FPR
increases, the more the belief associated to an alert should decrease. In the
first place, such intuition can be formalized using a linear-scaling function:

Bellin(a) = (1− FPR︸ ︷︷ ︸
misbelief

)Bel(a) (2)

However, such a scaling function (see, dashed-line plot in Fig. 5) makes the
belief to decrease too fast w.r.t. the misbelief. As Fig. 5 shows, a smoother
rescaling function is the following:

Belexp(a) = (1− FPR)Bel(a)eFPR (3)

The above defined attack belief is exploited to further reduce the amount
of alerts. Alerts are reported only if ai.attack belief > Tbel, where Tbel must be
set to reasonable values according to the particular environment (in our exper-
iments we used 0.66). The attack belief variable may be modeled using fuzzy
variables with, for example, three membership functions labeled as “Low”,
“Medium”, and “High” (IDMEF uses the same three-values assignment for
each alert Confidence attribute and we used crisp numbers for it), but this
has not been implemented yet in our working prototype.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

FPR

B
el

Fig. 5. A sample plot of Belexp(a) (with |a.score−Tanomaly|, FPR ∈ [0, 1]) compared
to a linear scaling function, i.e. Bellin(a) (dashed line)

Let us now to summarize the incremental approaches; the first “näıve time-
distance” uses a crisp window (as in Fig. 2 (a)) to groups alerts w.r.t. their
timestamps. The second approach, called “fuzzy time-distance”, extends the
first method: it relies on fuzzy sets (as shown in Fig. 2 (b)) to take into account
uncertainty on timestamping and window sizing. The last version, “fuzzy time-
distance with belief-based alert pruning”, includes the last explained criterion.
In the following we will show the results of the proposed approaches on a
realistic test bench we have developed using alerts generated by our IDS on
the complete IDEVAL testing dataset (both host and network data).

4 The problem of evaluating alert fusion systems

This section investigates the problem of testing an alert fusion engine. In order
to better understand the data we used, the experimental setup is here detailed
and, before reporting the results obtained with the fuzzy approach introduced,
we also briefly sketch the theoretical foundations, the accuracy, and the pe-
culiarities of the overall implementation of the IDSes used for gathering the
alerts. At the end of the section, we compare the results of the aggregation
phase in comparison with an analysis of the accuracy of an alternative fusion
approach [17].

4.1 A common alert representation

The Internet Engineering Task Force (IETF) proposed IDMEF [25] as a com-
mon format for reporting alert streams generated by different IDS. Even if this
imposes a parsing overhead being XML based, the use of IDMEF is strongly
recommended for distributed environments, i.e. for alert correlation systems.

11

The output format of our prototypes has been designed with IDMEF in mind,
in order to make the normalization process (see Fig. 1) as straightforward as
possible. Being more precise, alerts are reported by our tools as a modified
version of the original SNORT [26] alert format, in order to take into account
both the peculiarities of the anomaly detection approach, namely the lack of
attacks name, and suggestions from the IDMEF data model. In this way, our
testing tools can easily implement conversion procedures from and to IDMEF.

Basically, we represent an alert as a tuple with the following 9 attributes:

(ids id, src, dst, ids type, start ts, end ts, attack class,
attack bel, target resource)

The ids id identifies the IDS, of type ids type (host or network), that has
reported the alert; src and dst are the IP source and destination addresses,
respectively; start ts and end ts are the detection NTP [27] timestamps:
they are both mandatory, even if the alert duration is unknown (i.e., start -

ts equals end ts). The discrete attribute attack class (or name) indicates
the name of the attack (if known); anomaly detectors cannot provide such an
information because recognized attacks names are not known, by definition.
Instead, anomaly detectors are able to quantify “how anomalous an activity is”
so we exploited this characteristic and defined the attack belief (formally
defined in Section 3.1). Finally, the target resource attribute stores the TCP
port (or service name), if known, or the program begin attacked. An example
instance is the following one:

(127.0.0.1-z7012gf, 127.0.0.1, 127.0.0.1, H, 0xbc723b45.0xef449129,
0xbc723b45.0xff449130, -, 0.141044, fdformat(2351))

The example reports an attack detected from an host IDS (ids type = H),
identified by 127.0.0.1-z7012gf: the attack against fdformat is started
at NTP-second 0xbc723b45 (NTP-picosecond 0xef449129) and finished at
NTP-second 0xbc723b45 (NTP-picosecond 0xff449130); the analyzer detected
the activity as an attack with a belief of 14.1044%. An equivalent example for
the network IDS (ids type = N) anomaly detector would be something like:

(172.16.87.101/24-a032j11, 172.16.87.103/24, 172.16.87.100/24, N,
0xbc723b45.0xef449129, 0xbc723b45.0xff449130, -, 0.290937, smtp)

Here the attack is against the smtp resource (i.e., protocol) and the analyzer
believes there is an attack at 29.0937%.

12

4.2 A framework for evaluating alert fusion systems

Alert fusion is a relatively new problem, thus evaluation techniques are limited
to a few approaches [28]. The development of solid testing methodologies is
needed from both the theoretical and the practical points of view (a problem
shared with IDS testing).

The main goal of fusion systems is to reduce the amount of alerts the security
analyst has to check. In doing this, the global Detection Rate (DR) should
ideally not decrease while the global FPR should be reduced as much as pos-
sible. This suggests that the first sub-goal of fusion systems is the reduction
of the global FPR (for instance, by reducing the total number of alerts fired
by source IDS through a rejection mechanism). Moreover, the second sub-goal
is to limit the decreasing of the global DR. Let us now formalize the concepts
we just introduced.

We indicate with Ai the alert set fired by the i-th IDS. An alert stream is ac-
tually a structure 〈Ai,≺〉 over Ai, where the binary relation ≺ means “occurs
before”. More formally, ∀a, a′ ∈ Ai : a ≺ a′ ⇒ a.start ts < a′.start ts with
a.start ts, a′.start ts ∈ R+ (NTP timestamps have picoseconds precision, this
let us safely assume that it is practically impossible for two alerts to occur
simultaneously). We also assume that common operations between sets such
as the union ∪ preserves the order or, otherwise, that the order can be recom-
puted; hence, given the union between two alert sets Ak = Ai ∪ Aj, the alert
stream (i.e., ordered set) can be always reconstructed.

In the second place, we define the two functions d : A×O 7→ [0, 1], f : A×O 7→
[0, 1] representing the computation of the DR and the FPR, respectively, that
is: DRi = d(Ai, Ô), FPRi = f(Ai, Ô). The set O contains each and every true
alert; Ô is a particular instance of O containing alerts occurring in the system
under consideration (i.e., those listed in the truth file). We can now define the
global DR, DRA, and the global FPR, FPRA, as:

A =
⋃
i∈I

Ai (4)

DRA = d
(
A, Ô

)
(5)

FPRA = f
(
A, Ô

)
(6)

The output of a generic alert fusion system, is another alert stream A′ with
|A′| ≤ |A|; of course, |A′| = |A| is a degenerative case. To measure the “im-
pact” of an alert fusion system we define the Alert Reduction Rate (ARR)
which quantifies:

13

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.200

0.30

0.400

0.50

0.600

0.70

0.800

0.90

1.000

Alert Reduction Rate

G
lo

ba
l D

R

Best performances

Average performances

Poor performances

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Best performances

Average performances

Poor performances

Alert Reduction Rate

G
lo

ba
l F

PR

(a) (b)

Fig. 6. Hypothetical plots of (a) the global DR, DRA′ , vs. ARR and (b) the global
FPR, FPRA′ , vs. ARR.

ARR =
|A′|
|A|

. (7)

The aforementioned sub-goals can now be formalized into two performance
metrics. The ideal correlation system would maximize both ARR and DRA′

DRA
;

meanwhile, it would minimize FPRA′
FPRA

. Of course, ARR = 1 and ARR = 0

are degenerative cases. Low (i.e., close to 0.0) FPRA′
FPRA

means that the fusion
system has significantly decreased the original FPR; in a similar vein, high
(i.e., close to 1.0) DRA′

DRA
means that, while reducing false positive alerts, the

loss of detection capabilities is minimal.

Therefore, a fusion system is better than another if it has both a greater DRA′
DRA

and a lower FPRA′
FPRA

rate than the latter. This criterion by no means has to
be considered as complete or exhaustive. In addition, it is useful to compare
DRA′ and FPRA′ plots, vs. ARR, of different correlation systems obtaining
diagrams like the one exemplified in Fig. 6; this gives a graphical idea of which
correlation algorithm is better. For instance, Fig. 6 show that the algorithm
labeled as Best performances is better than the others, because it shows higher
FPRA′ reduction while DRA′ does not significantly decrease.

4.3 Our experimental setup

The experimental setup we used involves two novel prototypes 2 for network
and host anomaly detection. These tools were used to generate alert streams
for testing the three variants of the fuzzy aggregation algorithm we proposed.

2 The prototypes are available upon request to the authors.

14

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

FI
RS

T
ST

AG
E

Un
su

pe
rv

ise
d

le
ar

ni
ng

 c
la

ss
ifie

r

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

SECOND STAGE
Time correlation and outlier detection

Tim
e

Time

Fig. 7. The overall architecture of the two-stage network-based IDS prototype.

The same tools were also used to generate alerts data for testing our correlation
algorithm detailed in [19].

4.3.1 Network Anomaly Detector

In previous works [29–32] we proposed a novel network based anomaly de-
tection system which uses a two-tier architecture to overcome dimensionality
problems and apply unsupervised learning techniques to the payload of pack-
ets, as well as to the headers. Most existing researches avoid this problem
altogether by discarding the payload and retaining only the information in
the header [33–37].

Without going into details, the overall architecture is shown in Fig. 7. The first
tier exploits the clustering capabilities of a Self Organizing Map (SOM) [38] to
analyze network packet payloads, characterizing their recurring patterns in an
unsupervised manner [29,30]. On most network segments, the traffic belongs to
a relatively small number of services and protocols that can be mapped onto
a relatively small number of clusters. In [31] we analyzed the performance
of these algorithms, and suggested improvements in order to decrease the
computational cost of the SOM algorithm, and to increase the throughput of
the system. The second tier is based on a modified version of SmartSifter [39],
a discounting learning algorithm for outlier detection. We showed that our

15

Threshold Detection Rate False Positive Rate

0.03% 66.7% 0.031%

0.05% 72.2% 0.055%

0.08% 77.8% 0.086%

0.09% 88.9% 0.095%

Table 1
Detection rates and false positive rates for our prototype

two-tier architecture greatly enhances efficiency of the prototype.

In [29–32] we also analyzed the accuracy and the performance of the prototype.
The average results are reported in Table 1 and Fig. 8. The first column
contains the sensitivity threshold of the algorithm, generated as a quantile of
the approximated distribution of observed data [40]; as it could be expected, it
is a proper statistical predictor of the percentage of data that will be flagged
as outliers by the algorithm (i.e., the empirical distribution is close to the
real one). As we can see, it is also a good predictor of the FPR, if the attack
rate is not too high. The prototype is able to reach a 66.7% DR with as
few as 0.03% false positives. In comparison, in the only prototype dealing
with payloads, available in literature [41], the best overall result leads to the
detection of 58.7% of the attacks, with a FPR that is between 0.1% and 1%.
Our prototype shows thus a better DR, with a number of false positives which
is between one and two order of magnitudes lower than comparable systems
(e.g., [41]), as shown in the Receiver Operating Characteristic (ROC) curve
Fig. 8.

4.3.2 System Call Anomaly Detector

The second prototype, proposed and detailed in [42], is an Host-based IDS
(HIDS) which can detect anomalies by analyzing system call arguments and
sequences. The system is an almost complete re-engineering of SyscallAno-
maly [43], that was able to detect only anomalies in arguments in its original
release. In particular, our prototype implements some of the ideas of Sys-
callAnomaly along with Markovian based modelling, clustering and behavior
identification outperforming the original application with both an increased
DR and a reduced FPR.

The tool works by analyzing syscall traces logged in OpenBSM [44] or other
custom ASCII formats. The overall architecture is drawn in Fig. 9. During
training, a hierarchical clustering algorithm, based on a distance measure be-
tween probabilistic models, is used to identify groups of similar syscalls (for
details see [32,42]); the resulting clusters become the nodes a of Markov chain

16

0

10

20

30

40

50

60

70

80

90

100

0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800 0,900 1,000
FPR (%)

DR
 (%

)

Fig. 8. The ROC curve of the network anomaly detector: the tool has been trained
with about 106 TCP/IP dumped packets and tested with about 104 packets.

. . .exit

<args> (arg1, arg2, ..., argN)execve

ArgModelNArgModel2ArgModel1

C
o
m
p
re
s
s
o
r
(c
lu
st
er
in
g
)

<args> (arg1, arg2, ..., argN)<syscall>
ArgModel1 ArgModel2 ArgModelN

.

C
lu
s
te
rM
a
n
a
g
e
r

O
p
en
B
S
M
 a
u
d
it
 t
ra
il
s ...

...

In
p
u
tM
a
n
a
g
e
r

BehaviorModeler

MarkovManager

clu
sters =

 m
o
d
el sta

tes

Alert

Manager
Detection

syslog/IDMEF

Fig. 9. The overall architecture of the host-based IDS prototype.

built in the second stage to characterize and learn the process behavior of each
application in terms of syscall sequences behavior. At the end of this training
step we store both clusters and transition models, along with two thresholds
(syscall threshold and sequence threshold) required at runtime for deciding
whether or not a new call or a new syscall sequence is anomalous. For fur-
ther details on cluster models, implementation of the transition models, and
threshold computation please refer to [32,42].

17

0

20

40

60

80

100

0,000 2,000 4,000 6,000 8,000 10,000 12,000
FPR (%)

DR
 (%

)

Fig. 10. The ROC curve of the host anomaly detector.

As detailed in [42], the tool is implemented in ANSI C and it is capable
of processing around 103 system calls per second in the training phase; the
runtime throughput is as high as 22266 syscall/s. We recall that the prototype
is also very accurate: on novel attacks (e.g., custom and stealthy exploits
against bsdtar and eject), it is capable of DR between 88 − 100% with no
more than 1.6% as FPR. For comprehensive accuracy and performance tests,
please refer to [42]. We also recall the accuracy of the prototype: the DR vs.
FPR is plot in Fig. 10.

4.4 Test data generation

A well-known problem in IDS research is the lack of reliable sources of test
data. Gathering full traces of real world networks is generally impossible for
privacy reasons; also, IDS researchers need clearly labeled data where attacks
are described in full details, something which is usually impossible to achieve
with real-world dumps. The dataset created by the Lincoln Laboratory at
M.I.T., also known as “DARPA IDS Evaluation dataset” [45], is basically the
only dataset of this kind which is freely available along with complete truth
files. Other datasets exist (e.g., the DEFCON CTF packet capture [46]), but
they are not labeled and do not contain “background traffic” (i.e., attack-free
activity for IDS training). Thus, most existing researches on network based
IDS use mainly the DARPA datasets for evaluation.

18

These data have been artificially generated and collected in order to evaluate
detection rates and false positives rates of IDS. There are two datasets: 1998
and 1999. The 1999 dataset [47], which we extensively used in this work, spans
over 5 weeks, and contains the packet dumps in tcpdump format of 5 weeks,
over 2 sniffers, one placed between the gateway and 5 “target” machines (thus
emulating an “internal” sniffer), and the other placed beyond the gateway,
recording packets flowing between the simulated LAN and the simulated In-
ternet. Both attack-free data and clearly labeled attack traces are present.
Besides the tcpdump traces, BSM auditing data for Solaris systems, NT au-
diting data for Windows systems, directory tree snapshots of each system, the
content of sensitive directories, and inode data are available.

A common question is how realistic these data are, having been artificially
generated specifically for IDS evaluation. Many authors already analyzed the
network data of the 1999 dataset, finding many shortcomings [48,49]: no detail
is available on the generation methods, there is no evidence that the traffic
is actually realistic, and no spurious packet, checksum errors or fragmented
packets are present. In addition, the synthetic packets share strange regu-
larities. Host auditing data is all but immune from problems as well, as we
showed in [42]: the dataset is limited, full of artifacts, and prone to overfit-
ting. However, it must be noted that these anomalies are mainly an issue when
evaluating the performance of single intrusion detectors. In our case, they are
not extremely relevant.

What is relevant, actually, is that the whole dataset is outdated, both in the
background traffic and the in the attacks. The most used attack technique
is buffer overflow, and intrusion scenarios are extremely simple. Additionally,
even if IDEVAL contains both host and network auditing data, some attacks
are not directly detectable in both systems, making them less relevant for
correlation testing. The only such attacks are the ones in which an attacker
exploits a vulnerability in a local or remote service to allow an intruder to
obtain or escalate privileges. One of the best target hosts for finding such
correlations is pascal.eyrie.af.mil, which runs Solaris 2.5.1.

For all the previous reasons, in our testing we will use the IDEVAL dataset
with the following simplification: we will just try to fuse the stream of alerts
coming from a HIDS sensor and a NIDS sensor, which is monitoring the whole
network. To this end, we ran the two prototypes described above in Section
4.3 on the whole 1999 IDEVAL testing dataset, using the network dumps and
the host-based logs from pascal. We ran the NIDS prototype on tcpdump

data and collected 128 alerts for attacks against the host pascal.eyrie-

.af.mil. The NIDS also generated 1009 alerts related to other hosts. Using
the HIDS prototype we generated 1070 alerts from the dumps of the host
pascal.eyrie.af.mil. With respect to these alerts, the NIDS was capable
of detecting almost 66% of the attacks with less than 0.03% of false positives;

19

the HIDS performs even better with a detection rate of 98% and 1.7% of false
positives.

In the following, we use this shorthand notation: Net is the substream of all
the alerts generated by the NIDS. HostP is the substream of all the alerts
generated by the HIDS installed on pascal.eyrie.af.mil, while NetP re-
gards all the alerts (with pascal as a target) generated by the NIDS; finally,
NetO = Net\NetP indicates all the alerts (with all but pascal as a target)
generated by the NIDS.

5 Experimental Results

Using the data generated as described above in Section 4.4, and the metrics
proposed in Section 4.2, we compared three different versions of the alert
aggregation algorithms proposed in Section 3. In particular we compare the
use of crisp time-distance aggregation, the use use of a simple fuzzy time-
distance aggregation; and finally, the use of attack belief for alert pruning.

Numerical results are plotted in in Fig. 11 for different values of ARR. As we
discussed in Section 4.2, Fig. 11 (a) refers to the reduction of DR while Fig.
11 (b) focuses on FPR. DRA′ and FPRA′ were calculated using the complete
alert stream, network and host, at different values of ARR. The values of
ARR are obtained by changing the parameters values: in particular, we set
Tbel = 0.66, the alpha cut of Tnear to 0.5, the window size to 1.0 seconds, and
varied the smoothing of the trapezoid between 1.0 and 1.5 seconds, and the
alert delay between 0 and 1.5 seconds. It is not useful to plot the increase in
false negatives, as it can be easily deduced from the decrease in DR.

The last aggregation algorithm, denoted as “Fuzzy (belief)”, shows better per-
formances since the DRA′ is always higher w.r.t. the other two aggregation
strategies; this algorithm also causes a significant reduction of the FPRA′ .
Note that, taking into account the attack belief attribute makes the differ-
ence because it avoids true positives to be discarded; on the other hand, real
false positive are not reported in the output alert stream because of their low
belief.

It is difficult to properly compare our approach with other other fusion ap-
proaches proposed in the reviewed literature, because the latter were not
specifically tested from the aggregation point of view, separately from the
correlation one. Since the prototypes used to produce results are not released,
we are only able to compare our approach with the overall fusion systems
presented by others.

20

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.7

0.75

0.8

0.85

0.9

0.95

1
Crisp
Fuzzy
Fuzzy (belief)

Alert Reduction Rate

G
lo

ba
l D

R

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Alert Reduction Rate

G
lo

ba
l F

PR

Crisp
Fuzzy
Fuzzy (belief)

(a) (b)

Fig. 11. Plot of the DRA′ (a) and FPRA′ (b) vs. ARR. “Crisp” refers to the use
of the crisp time-distance aggregation; “Fuzzy” and “Fuzzy (belief)” indicates the
simple fuzzy time-distance aggregation and the use of the attack belief for alert
discarding, respectively.

In particular, we analyzed the use of the Granger causality test [50] as pro-
posed in [17]. These results were preliminarily presented in [19]. We used the
same dataset used for evaluating our system, with the following approach:
we tested if NetP has any causal relationship 3 with HostP ; we also tested
HostP ��; NetP . Since only a reduced number of alerts was available and
since it was impossible to aggregate alerts along the “attack name” attribute
(unavailable on anomaly detectors), we preferred to construct only two, large
time series: one from NetP (denoted as NetP (k)) and one from HostP (de-
noted as HostP (k)). In the experiment reported in [17] the sampling time, w,
has been fixed at 60 seconds, although we tested different values from 60 to
3600 seconds.

Since the first experiment (w = 60) led us to unexpected results (i.e., using a
lag, l, of 3 minutes, both NetP (k) ��; HostP (k), and vice versa) we decided
to plot the test results (i.e., p-value and Granger Causality Index (GCI)) vs.
both l and w. In Fig. 12 (a) l is reported in minutes while the experiment
has been performed with w = 60s; the dashed line is the p-value of the test
“NetP (k) ; HostP (k)”, the solid line is opposite one. As one may notice,
neither the first nor the second test passed, thus nothing can be concluded:
fixing the test significance at α = 0.20 is the only way for refusing the null
hypothesis (around l ' 2.5 minutes) to conclude both that NetP ; HostP”
and that HostP��;NetP ; the GCI plotted in Fig. 12 (b) confirms the previous
result. However, for other values of l the situation changes leading to opposite
results.

3 In the following we will use the symbol “;” to denote “Granger-causes” so, for
instance, “A ; B” has to be read as “A causes B”; the symbol “��;” indicates the
negated causal relationship, i.e., “does not Granger-cause”.

21

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag [minutes]

p−
Va

lu
e

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

Lag [minutes]

G
ra

ng
er

 C
au

sa
lit

y
In

de
x

(a) (b)

Fig. 12. p-value (a) and GCI (b) vs. l (in minutes) for the first Granger causal-
ity test experiment (w = 60.0 seconds): “NetP (k) ; HostP (k)” (dashed line),
“HostP (k) ; NetP (k)” (solid line).

50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

Lag [minutes]

p−
Va

lu
e

50 100 150 200 250

2
4

6
8

Lag [minutes]

G
ra

ng
er

 C
au

sa
lit

y
In

de
x

(a) (b)

Fig. 13. p-value (a) and GCI (b) vs. l (in minutes) for the first Granger causal-
ity test experiment (w = 1800.0 seconds): “NetP (k) ; HostP (k)” (dashed line),
“HostP (k) ; NetP (k)” (solid line).

Fig. 13 shows the results of the test for w = 1800 seconds and l ∈ [50, 300]
minutes. If we suppose a test significance of α = 0.05 (dotted line), for l ' 120
the result is that HostP ; NetP while NetP��;HostP , the opposite of the
previous one. Moreover, for other values of l the p-value leads to different
results.

The last experiment results are shown in Fig. 14: for l > 230 minutes, one may

22

100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag [minuti]

p−
V

al
ue

100 150 200 250 300

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Lag [minuti]

G
ra

ng
er

 C
au

sa
lit

y
In

de
x

(a) (b)

Fig. 14. p-value (a) and GCI (b) vs. p (in minutes) for the first Granger causal-
ity test experiment (w = 3600.0 seconds): “NetP (k) ; HostP (k)” (dashed line),
“HostP (k) ; NetP (k)” (solid line).

conclude that NetP ; HostP and HostP��;NetP ; i.e., the expected result,
even if the p-value for the second test is close to α = 0.05.

The previous experiments show only that the Granger causality test failed
on the dataset we generated, not that it doesn’t work in general. It may be
the case that the Granger causality test is not suitable for “blind” alerts (i.e.,
without any information about the attack) reported by anomaly detectors: in
fact, [17] used time series built from hyper-alerts resulting from an aggregation
along all attributes: instead, in the anomaly-based case, the lack of attack
names does not allow such hyper-alerts to be correctly constructed. In any
case, the test result significantly depends on l (i.e., the test is asymptotic);
this means that an appropriate choice of l will be required, depending on
specific environmental conditions. The optimal l is also likely to change over
time in a given environment.

6 Conclusions

In this paper we described and evaluated a technique which uses fuzzy sets
and measures to fuse alerts reported by the anomaly detectors. After a brief
framework description and precise problem statement, we analyzed previous
literature about alert fusion (i.e., aggregation and correlation), and found that
effective techniques have been proposed, but they are not really suitable for
anomaly detection, because they require a priori knowledge (e.g., attack names
or division into classes) to perform well.

23

Our proposal defines simple, but robust criteria for computing the time dis-
tance between alerts in order to take into account uncertainty on both mea-
surements and the threshold-distance sizing. In addition, we considered the
implementation of a post-aggregation phase to remove unaggregated alerts
according to their belief, a value indicating how much the IDS believes the de-
tected attack to be real. Moreover, we defined and used some simple metrics
for the evaluation of alert fusion systems. In particular, we propose to plot
both the DR and the FPR vs. the degree of output alert reduction vs. the size
of the input alert stream.

We performed experiments for validating our proposal. To this end, we used
two prototypes we previously developed: a host anomaly detector, that ex-
ploits the analysis of system calls arguments and behavior, and a network
anomaly detector, based on unsupervised payload clustering and classification
techniques that enables an effective outlier detection algorithm to flag anoma-
lies. During our experiments, we were able to outline many shortcomings of
the IDEVAL dataset (the only available IDS benchmark) when used for eval-
uating alert fusion systems. In addition to known anomalies in network and
host data, IDEVAL is outdated both in terms of background traffic and attack
scenarios.

Our experiments showed that the proposed fuzzy aggregation approach is
able to decrease the FPR at the price of a small reduction of the DR (a
necessary consequence). The approach defines the notion of “closeness” in
time as the natural extension of the näıve, crisp way; to this end, we rely both
on fuzzy set theory and fuzzy measures to semantically ground the concept of
“closeness”. By definition, our method is robust because it takes into account
major uncertainties on timestamps; this means the choice of window size is
less sensitive to fluctuations in the network delays because of the smoothing
allowed by the fuzziness of the window itself. Of course, if the delays are
varying too much, a dynamic resizing is still necessary. The biggest challenge
with our approach would be its extension to the correlation of distributed
alerts: in the current state, our modelling is not complete, but can potentially
be extended in such a way; being the lack of alert features the main difficult.

We also showed preliminary results on the use of the Granger causality test
to recognize logically linked alerts, also giving a statistical quantification of
the degree of “causality”. However, a full exploitation of this technique is the
subject for future extensions of this work. Even if the method does not require
a priori knowledge, we identified two significant issues: first, the statistical test
relies on non-obvious configuration parameters which values significantly affect
the final result; second, in order to extensively test such a methods a better
dataset than IDEVAL would be needed. We believe that the use of the Granger
causality test might be applied to alerts reported by anomaly detectors as well.
Another possible extension of this work is the investigation of algorithms and

24

criteria to correlate anomaly and misuse-based alerts together, in order to
bridge the gap between the existing paradigms of intrusion detection.

Acknowledgments

Most of this work was supported by the Italian Ministry of Education and
Research under the FIRB Project “Performance evaluation for complex sys-
tems”, in the research unit led by Prof. Giuseppe Serazzi, whose support we
gratefully acknowledge. We need also to thank Prof. Andrea Bonarini for his
helpful comments.

References

[1] S. Zanero, Detecting 0-day attacks with learning intrusion detection systems,
in: Blackhat USA 2004 Briefings, 2004.

[2] T. H. Ptacek, T. N. Newsham, Insertion, evasion, and denial of service: Eluding
network intrusion detection, Tech. Rep. T2R-0Y6, Secure Networks, Calgary,
Canada (1998).

[3] G. Vigna, W. Robertson, D. Balzarotti, Testing Network-based Intrusion
Detection Signatures Using Mutant Exploits, in: Proceedings of the
ACM Conference on Computer and Communication Security (ACM CCS),
Washington, DC, 2004, pp. 21–30.

[4] D. E. Denning, An intrusion-detection model, IEEE Transactions on Software
Engineering SE-13 (2) (1987) 222–232.

[5] J. P. Anderson, Computer security threat monitoring and surveillance, Tech.
rep., J. P. Anderson Co., Ft. Washington, Pennsylvania (April 1980).

[6] F. Valeur, A comprehensive approach to intrusion detection alert correlation,
IEEE Trans. Dependable Secur. Comput. 1 (3) (2004) 146–169, member-
Giovanni Vigna and Member-Christopher Kruegel and Fellow-Richard A.
Kemmerer.

[7] Z. Wang, G. J. Klir, Fuzzy Measure Theory, Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[8] G. J. Klir, T. A. Folger, Fuzzy sets, uncertainty, and information, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987.

[9] R. G. Bace, Intrusion detection, Macmillan Publishing Co., Inc., Indianapolis,
IN, USA, 2000.

25

[10] S. Eckmann, G. Vigna, R. Kemmerer, STATL: An attack language for state-
based intrusion detection, in: Proceedings of the ACM Workshop on Intrusion
Detection, Athens, 2000.

[11] S. J. Templeton, K. Levitt, A requires/provides model for computer attacks,
in: NSPW ’00: Proceedings of the 2000 workshop on New security paradigms,
ACM Press, New York, NY, USA, 2000, pp. 31–38.

[12] F. Cuppens, A. Miége, Alert correlation in a cooperative intrusion detection
framework, in: SP ’02: Proceedings of the 2002 IEEE Symposium on Security
and Privacy, IEEE Computer Society, Washington, DC, USA, 2002, p. 202.

[13] P. Ning, Y. Cui, D. S. Reeves, D. Xu, Techniques and tools for analyzing
intrusion alerts, ACM Trans. Inf. Syst. Secur. 7 (2) (2004) 274–318.

[14] P. A. Porras, P. G. Neumann, EMERALD: Event monitoring enabling responses
to anomalous live disturbances, in: Proc. 20th NIST-NCSC Nat’l Information
Systems Security Conf., 1997, pp. 353–365.

[15] A. Valdes, K. Skinner, Probabilistic alert correlation, in: RAID ’00: Proceedings
of the 4th International Symposium on Recent Advances in Intrusion Detection,
Springer-Verlag, London, UK, 2001, pp. 54–68.

[16] J. Viinikka, H. Debar, L. Mé;, R. Séguier, Time series modeling for IDS alert
management, in: ASIACCS ’06: Proceedings of the 2006 ACM Symposium on
Information, computer and communications security, ACM Press, New York,
NY, USA, 2006, pp. 102–113.

[17] X. Qin, W. Lee, Statistical causality analysis of infosec alert data., in: RAID,
2003, pp. 73–93.

[18] W. N. Thurman, M. E. Fisher, Chickens, eggs, and causality, or which came
first?, American Journal of Agricultural Economics.

[19] F. Maggi, S. Zanero, On the use of different statistical tests for alert correlation
- short paper, in: C. Krügel, R. Lippmann, A. Clark (Eds.), RAID, Vol. 4637
of Lecture Notes in Computer Science, Springer, 2007, pp. 167–177.

[20] K. Julisch, M. Dacier, Mining intrusion detection alarms for actionable
knowledge, in: KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM Press, New York,
NY, USA, 2002, pp. 366–375.

[21] O. Dain, R. Cunningham, Fusing heterogeneous alert streams into scenarios, in:
Proc. of the ACM Workshop on Data Mining for Security Applications, 2001,
pp. 1–13.

[22] H. Debar, A. Wespi, Aggregation and correlation of intrusion-detection alerts,
in: RAID ’00: Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection, Springer-Verlag, London, UK, 2001, pp. 85–
103.

26

[23] P. A. Porras, M. W. Fong, A. Valdes, A mission-impact-based approach to
infosec alarm correlation, Lecture Notes in Computer Science 2516/2002 (2002)
35.

[24] E. H. Shortliffe, Computer-based medical consultations: MYCIN, Elsevier, 1976.

[25] H. Debar, D. Curry, B. Feinstein, The intrusion detection message exchange
format, Tech. rep., France Telecom and Guardian and TNT (March 2006).

[26] Snort, http://www.snort.org (2006).

[27] D. L. Mills, Rfc1305: Network time protocol (version 3), Available online at:
http://www.ietf.org/rfc/rfc1305.txt (1992).

[28] J. Haines, D. K. Ryder, L. Tinnel, S. Taylor, Validation of sensor alert
correlators, IEEE Security and Privacy 01 (1) (2003) 46–56.

[29] S. Zanero, S. M. Savaresi, Unsupervised learning techniques for an intrusion
detection system, in: Proc. of the 2004 ACM Symposium on Applied
Computing, ACM Press, 2004, pp. 412–419.

[30] S. Zanero, Analyzing tcp traffic patterns using self organizing maps, in: F. Roli,
S. Vitulano (Eds.), 13th International Conference on Image Analysis and
Processing - ICIAP 2005, Vol. 3617 of Lecture Notes in Computer Science,
Springer, Cagliari, Italy, 2005, pp. 83–90.

[31] S. Zanero, Improving self organizing map performance for network intrusion
detection, in: SDM 2005 Workshop on “Clustering High Dimensional Data and
its Applications”, 2005.

[32] S. Zanero, Unsupervised learning algorithms for intrusion detection, Ph.D.
thesis, Politecnico di Milano T.U., Milano, Italy (May 2006).

[33] M. Mahoney, P. Chan, Detecting novel attacks by identifying anomalous
network packet headers, Tech. Rep. CS-2001-2, Florida Institute of Technology
(2001).

[34] C. Chow, Parzen-Window network intrusion detectors, in: ICPR ’02:
Proceedings of the 16 th International Conference on Pattern Recognition
(ICPR’02) Volume 4, IEEE Computer Society, Washington, DC, USA, 2002,
pp. 385–388.

[35] K. Labib, R. Vemuri, NSOM: A real-time network-based intrusion detection
system using self-organizing maps, Tech. rep., Dept. of Applied Science,
University of California, Davis (2002).

[36] M. V. Mahoney, P. K. Chan, A machine learning approach to detecting attacks
by identifying anomalies in network traffic, Tech. Rep. CS-2002-08, Florida
Institute of Technology (2002).

[37] M. V. Mahoney, Network traffic anomaly detection based on packet bytes, in:
Proceedings of the 19th Annual ACM Symposium on Applied Computing, 2003.

27

[38] T. Kohonen, Self-Organizing Maps, 3rd Edition, Springer-Verlag, Berlin, 2001.

[39] K. Yamanishi, J.-I. Takeuchi, G. Williams, P. Milne, On-line unsupervised
outlier detection using finite mixtures with discounting learning algorithms,
Data Min. Knowl. Discov. 8 (3) (2004) 275–300.

[40] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, P. Milne, Online unsupervised
outlier detection using finite mixtures with discounting learning algorithms,
Knowledge Discovery and Data Mining 8 (3) (2004) 275–300.

[41] K. Wang, S. J. Stolfo, Anomalous payload-based network intrusion detection,
in: RAID Symposium, 2004.

[42] F. Maggi, M. Matteucci, S. Zanero, Detecting intrusions through system call
sequence and argument analysis, Submitted for publication (2006).

[43] C. Kruegel, D. Mutz, F. Valeur, G. Vigna, On the Detection of Anomalous
System Call Arguments, in: Proceedings of the 2003 European Symposium on
Research in Computer Security, Gjøvik, Norway, 2003.

[44] R. N. M. Watson, W. Salamon, The FreeBSD audit system, in: UKUUG LISA
Conf., Durham, UK, 2006.

[45] M. Zissman, Darpa intrusion detection evaluation, http://www.ll.mit.edu/
IST/ideval/data/dataindex.html (1999).

[46] B. Potter, The Shmoo Group Capture the CTF project, http://cctf.shmoo.
com (2006).

[47] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das, Analysis and results
of the 1999 DARPA off-line intrusion detection evaluation, in: Proceedings of
the Third International Workshop on Recent Advances in Intrusion Detection,
Springer-Verlag, London, UK, 2000, pp. 162–182.

[48] J. McHugh, Testing intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by lincoln
laboratory, ACM Trans. on Information and System Security 3 (4) (2000) 262–
294.

[49] M. V. Mahoney, P. K. Chan, An analysis of the 1999 DARPA / Lincoln
laboratory evaluation data for network anomaly detection, in: Proceedings of
the 6th International Symposium on Recent Advances in Intrusion Detection
(RAID 2003), Pittsburgh, PA, USA, 2003, pp. 220–237.

[50] C. Granger, Investigating causal relations by econometric methods and
crossspectral methods, Econometrica 34 (1969) 424–428.

28

