

Information fusion in the immune system

Jamie Twycross *, Uwe Aickelin

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK

a b s t r a c t

Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial
immune systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research
has shown how AISs which use multi-level information sources as input data can be used to build effective algo-rithms for realtime computer
intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of
interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms
seen in the human immune system, and of how these mechanisms have been implemented as AISs.

Keywords: Information fusion Artificial immune system Innate immune system

1. Introduction

There is an increasing interest within the field of multi-sensor

data fusion in biologically-inspired methods such as evolutionary
algorithms [27] and neural networks [16]. The field of artificial im-
mune systems (AISs) is an emerging biologically-inspired method
which builds systems based on algorithms inspired by the biolog-
ical immune system. AIS research has provided a number of gen-
eral purpose techniques and algorithms which have successfully
been applied to a range of optimisation, classification and data
mining problems. As with evolutionary algorithms and neural net-
works, AISs could also provide useful solutions to optimisation and
classification problems in multi-sensor data fusion.

More interestingly though perhaps, recent research in
AISs [14,15,35,36] shows the importance of multi-level
information in the construction of AISs. New models for AISs are
emerging that are inspired by research in immunology into the
role of the innate immune system in overall immune system
dynamics. These AISs, which incorporate mechanisms inspired
by both the innate and adaptive immune systems, are called
second generation AISs. They stand in contrast to first
generation AISs, which are inspired by adaptive immune
system mechanisms only. One of the conse- quences of
incorporating innate and adaptive mechanisms, as well as one of
the defining characteristics of second generation AISs, is the need
for a multi-level problem representation, and a multi-le- vel
interaction of the components of the AIS with the problem [36].

As systems that integrate multi-level information sources, sec-
ond generation AISs share much in common with multi-sensor
data fusion systems. In this sense, researchers within the fields of

* Corresponding author.

E-mail address: jpt@cs.nott.ac.uk (J. Twycross).

AISs and multi-sensor data fusion have the potential to benefit
from each other’s findings. This paper focusses on the integration
of multi-level information in AISs. The first section gives a brief
introduction to AISs, and is followed by a short overview of biolog-
ical mechanisms of information fusion seen in the human immune
system. An implementational framework which allows AISs to be
built which model these mechanisms is then summarised. An algo-
rithm inspired by biological information fusion seen in the im-
mune system is then presented, along with results from a
number of experiments. This paper concludes with a discussion
of the role of multi-level information sources in AISs.

2. Artificial immune systems

The field of artificial immune systems began in the early 1990s

with a number of independent groups conducting research which
used the biological immune system as inspiration for solutions to
problems in other domains. There are several general reviews of
AIS research [1,5,17], and a number of books including
[6,8,32] covering the field. Large bibliographies have been collated
by Das- gupta and Azeem [7] (over 600 journal and conference
papers) and an annual international conference, ICARIS [30], has
been held since 2002.

AISs can be broadly divided into two categories based on the
mechanisms they implement: network-based models and popula-
tion-based models [8], although this distinction is blurred as many
hybrid models also exist. The first of these categories refers to sys-
tems that are largely based on idiotypic networks. Idiotypic net-
works are networks which model interactions between
antibodies and antibodies as well as between antibodies and anti-
gens. Population-based models use negative or clonal selection as
the method of generating and maintaining a population of

36 J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44

detectors. Generally, population-based models begin with the
pseudo-random generation of a population of detectors. Negative
selection refers to the removal of detectors which match instances
in a training set. Clonal selection refers to the expansion
and refinement of detectors which match instances.

AISs have been built for a wide range of application
domains including document classification, clustering,
optimisation, fraud detection, and network- and host-based
intrusion detection. On benchmark datasets, AISs have been
shown to offer comparable and in some cases better performance
compared to existing statis- tical and machine learning techniques.
In particular, AISs may offer advantages over traditional
approaches in problem domains such as dynamic clustering and
classification, where data are continu- ously gathered and
incorporated into existing clusters or classes, which themselves
change over time [33]. AISs may also offer advantages over
traditional algorithms in the classification of large static datasets.
Many standard classification techniques are not amenable to
parallelisation, whereas distributed immune-based classification
algorithms have been developed [37], allowing large amounts of
data to be efficiently processed in parallel.

In [17], Hart and Timmis assess the current state of AIS research.
They point to the solid base of research which now exists
using AISs to model the biological immune system, solve
artificial or benchmark problems, and produce solutions to real-
world applica- tions. At the same time they highlight the
somewhat scattergun approach which has been taken in the field to
date, with naive met- aphors often applied to problems that
other approaches have al- ready tackled with some success.
However, less research exists that addresses what the
necessary components and organisation of AISs might be from a
more general systems perspective. The ap- proach to date has
generally been one of applying novel algorithms to existing
problems.

We believe that the current state of AIS is understandable when
one considers the biological basis on which much of it has
been based: the mechanisms of the adaptive immune system. The
focus of AIS research on the adaptive immune system has been in
some ways similar to Artificial Intelligence’s early concentration
on the human mind and symbolic information processing. Only
more re- cently has the scope of AI been widened by the
acknowledgement of intelligence in the wider sense of adaptive
behaviour of organ- isms other than humans.

Second generation AISs represent a new approach in AIS. They
show that considering the biological immune system as composed
of interacting innate and adaptive subsystems can be a profitable
model of reality for AISs. A number of general design principles, de-
tailed in [34], can be applied to build second generation AISs. Such
AISs employ multi-level information sources as input data for pop-
ulations of artificial cells or agents, which process and integrate
this information. Such AISs can be used as recognition, control
and monitoring systems [14,15,35,36].

Of particular interest to the information fusion community
could be the mechanisms that are employed by the biological im-
mune system to combine information from a variety of
different sources. Essentially, the innate and adaptive immune
systems sense different aspects of the state of an organism, and
interact to combine this information to provide a robust and
accurate mon- itoring and control system. Our research has
developed a number of biologically-inspired algorithms, one of
which is described in this paper, which combine information
from a number of different sources.

The advantage of our second generation AIS algorithms is that
they are able to correlate data from multiple noisy sensors,
even in the presence of unknown time delays. For example, in
both bio- logical systems and computer systems there is often a
time delay between an event (such as infection by a biological
or computer virus, respectively) and the consequences of this

event (malfunctioning of the biological or computer system). A
priori we do not know how long this delay may be. If we knew
this we could prob- ably use an existing static machine learning
algorithm. However, because such information is unavailable, we
need a new type of algorithm.

Furthermore, noise is an inherent factor in both biological sen-
sors and the sensors employed in our algorithms. If a single infor-
mation source could be used to deduce accurate predictions, then
there would be little point in using other information sources.
However, no single indicator of system state has been found to ex-
ist in many biological and artificial systems. Instead, the data from
each information source provides a noisy and partial picture of the
overall state of the system, and information from a number of dif-
ferent information sources needs to be combined to determine an
accurate picture of the system. Our approach offers a way of com-
bining information from a large number of noisy and inaccurate
sensors. As sensing is population-based and distributed across a
large number of simple sensors, our approach should also be ro-
bust against damage to individual sensors.

3. The human immune system

Biological systems have provided the inspiration for a number

of novel biologically-inspired computational approaches such as
genetic algorithms and neural networks. The first step in building
effective biologically-inspired systems is an understanding of the
biological system from which inspiration is drawn. This under-
standing of how biology solves the problems which nature poses
can then be mapped to artificial systems. In this section current
understanding of the human immune system, which forms the ba-
sis and justification for the algorithms described in the remainder
of this paper, is briefly reviewed.

The human body is an amazingly complex organism which can
be viewed at a number of levels. Cells are the basic structural and
functional units of biological organisms. All together, humans have

around 1014 cells. Cells are able to interact with their
environment and communicate and coordinate their behaviour
with other cells by synthesising and responding to a range of
molecules. Molecules
in the immediate environment of a cell are sensed by receptor
proteins which are bound to the outer surface of the cell. These
receptors can be thought of as locks, which are activated when a
specific molecule, called the ligand (or key), binds to the receptor.
Activation of the receptor initiates changes in the metabolism
and function of the cell.

As well as receiving signals via receptors, cells also synthesise
molecules that are ligands for receptors on other cells. These sig-
nalling molecules can either be membrane-bound, in which case
direct (cognate) contact between cells is necessary for receptor
activation, or they can be released into the environment of the cell.
Secreted molecules which mediate and regulate cell behaviour are
called cytokines, and molecules which stimulate cell movement are
called chemokines. Cells within the body aggregate to form tissue,
such as muscle or connective tissue. Tissues themselves combine
to form organs, such as the heart, brain, or thymus. Groups of these
organs work together tightly to form systems, such as the cardio-
vascular system or immune system [2,25].

Structurally, the immune system is a collection of cells, mole-
cules, tissue, organs and circulatory systems [20]. Immune system
cells are produced and mature in specialised areas of the
body called primary lymphoid organs such as the thymus or bone
mar- row. They are transported via the cardiovascular and
lymphatic cir- culatory systems to peripheral tissues or
specialised secondary lymphoid organs such as the lymph nodes or
spleen. The body it- self exists in a world which is full of
microorganisms. Many of these microorganisms find the body
a rich resource of energy

J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44 37

and material, and, if left unchecked, would consume so much
of these resources and cause such damage to the body that
its destruction and death would occur. Damage to the body is
called pathology, and the damaging agent, such as a bacteria or
virus, a pathogen. Functionally, the human immune system is able
to locate and remove many of these pathogens from the body and
maintain the body in a healthy state for many years.

This view of the immune system we have just described, one of
a multi-level dynamic system of cells, molecules, tissue, organs and
circulatory systems, is important for AISs. It provides the basis for a
representation of second generation AISs as systems of autono-
mous agents which exist within a distributed and compartmenta-
lised environment. These agents interact with each other and their
environment through models of receptors, ligands and intercellular
signalling. This mechanism of interaction is key to the dynamics of
the biological system and relies on multi-level sources
of information.

3.1. Innate and adaptive immunity

The immune system is often divided into two distinct yet inter-

related subsystems: the innate immune system and adaptive im-
mune system. The innate immune system is characterised as
having three roles: host defence in the early stages of
infection through non-specific recognition of a pathogen,
induction of the adaptive immune response, and determination of
the type of adap- tive response [18]. The main characteristics of
adaptive immunity are specific recognition of pathogen leading to
the generation of pathogen-specific long-term memory [20].

Differences between the innate and adaptive immune systems
can be seen on a number of levels and are summarised in Table 1.
The adaptive immune system is organised around two classes of
cells: T cells and B cells, while the classes of cells of the innate immune
system are much more numerous, including natural killer (NK) cells,
dendritic cells (DCs), and macrophages. Cells within these classes are
further subdivided into different types, such as naive or helper T cell,
or immature, semimature or mature DC.

The receptors of innate system cells are entirely germline-en-
coded, in other words their structure is determined by the genome
of the cell and has a fixed, genetically-determined specificity.
Adaptive immune system cells possess somatically generated vari-
able-region receptors such as T and B cell receptors with varying
specificities, created by a complex process of gene segment rear-
rangement within the cell. On a population level, this leads to a
non-clonal distribution of receptors on innate immune system cells,
meaning that all cells of the same type have receptors with identi-
cal specificities. Receptors on adaptive immune system cells, how-
ever, are distributed clonally in that there are subpopulations of a
specific cell type (clones) which all possess receptors with identical
specificities, but that generally, cells of the same type have recep-
tors with different specificities [18–20,28,29].

Table 1

Differences between innate and adaptive immunity.

Property Innate immune system Adaptive immune system

Cells DC, NK, macrophage T cell, B cell

Receptors Germline-encoded Encoded in gene segments

No somatic rearrangement Somatic rearrangement necessary

Non-clonal distribution Clonal distribution

Recognition Conserved molecular patterns Details of molecular structure

The variable-region receptors of the adaptive immune
system respond to features of pathogen structure, with B cell
receptors di- rectly recognising peptide sequences on pathogens,
such as com- ponents of bacterial cell membranes, and T
cell receptors recognising peptide sequences. These receptors
are selected for over the lifetime of the organism by processes
such as clonal expansion, deletion or anergy and are under
adaptive not evolu- tionary pressure. The immune system utilises
adaptation of vari- able-region receptors to keep pace with
evolutionary more rapid pathogens. This involves processes of cell
selection such as clonal expansion, deletion and anergy, which
take several days [19,29].

Conversely, innate immune system receptors recognise a genet-
ically-determined set of ligands under evolutionary pressure. One
key group of innate receptors is the pattern recognition receptor
superfamily which recognises evolutionary-conserved pathogen-
associate molecular patterns. Pattern recognition receptors do not
recognise a specific feature of a specific pathogen as variable-re-
gion receptors do, but instead recognise common features or prod-
ucts of an entire class of pathogens. Thus, innate immune system
receptors are termed non-specific, while adaptive immune system
receptors are termed specific. The Toll-like receptor (TLR) family of
pattern recognition receptors is the best characterised, and most
mammals have around 10 to 15 different TLRs. For example, TLR4
is activated by lipopolysaccharide (LPS), a major component in the
cell membrane of all gram-negative bacteria, TLR5 is activated by
flagellin, a protein that forms the flagellum used by many classes
of bacteria for locomotion, and TLR9 by unmethylated DNA found
in DNA viruses [31].

Dendritic cells (DCs) of the innate immune system lie at the
heart of the generation of peripheral tolerance. Tolerance is the
ability of the immune system to react in a non-biodestructive man-
ner to stimuli and has long been associated with adaptive immu-
nity. Tolerance is usually discussed in terms of apoptosis or
anergy of self-reactive T and B cells, and was initially proposed
to occur centrally in a relatively short perinatal period, as epito-
mised in the clonal selection theory of Burnet [4]. While recent re-
search shows the continuing importance of central tolerance
mechanism [11,22], it is now accepted that peripheral tolerance
mechanisms which operate to censor cells throughout the lifetime
of the host are of equal importance.

3.2. Discussion

As outlined in the previous section, the biological immune sys-
tem can be seen to carry out information fusion in a particular man-
ner. The cells of the immune system, through their different
repertoires of receptors, sense different levels of information relat-
ing to the state of the tissues of the body. Variable-region receptors
on adaptive immune system cells sense structural features, i.e. the
protein composition of cells in the tissue. Variable-region receptors
can be produced to recognise any possible protein sequence, and the
particular set of proteins sequences that the immune system can
recognise at any one time is determined by on-line learning mech-
anisms over the lifetime of the individual. On-line learning mecha-
nisms are still an under-researched area in multi-sensor data fusion
[38], and the biological immune system could provide an important
source of inspiration for the development of such mechanisms.

In contrast, the germline-encoded receptors of innate immune
system cells respond to behavioural as well as structural features
of the cells which make up and inhabit the tissues of the
body. By behavioural features of cells we mean what the cell is
doing

Selected over evolutionary Selected over lifetime i.e. what proteins it is producing, as opposed to the proteins which
the cell is composed of. Having access to behavioural features pro-
vides immune system cells with a different level of information
concerning the tissues of the body. Also, as detailed above, certain
innate immune system receptors respond to protein sequences

38 J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44

that are common to entire classes of pathogens. Thus, adaptive and
innate immune system cells together can be seen to sense informa-
tion at several different levels: the proteins that structure individ-
ual cells; the proteins that structure classes of cells; and the
proteins that are produced by cell.

What is more, the biological immune system combines this mul-
ti-level information in a decentralised and distributed manner,
fusing the information from individual immune system cells. There
is no centralised controller in the biological immune system.
Decentralised and distributed data fusion has a number of advanta-
ges over centralised fusion: robustness, scalability, survivability
and modularity [10,24]. The biological immune system could pro-
vide a rich source of inspiration in the development of
decentralised and distributed information fusion systems. Multi-
agent informa- tion fusion systems such as [13,26] are currently
an active area of research. As well as the different levels of
information sensed by the immune system, its overall
organisation and the mechanisms of control and communication
that exist could be used to develop more sophisticated multi-
agent information fusion systems.

4. System overview

The aim of this section is to summarise the implementation of

libtissue, a prototype software system for building second gener-
ation AISs and applying them to real-world problems. The libtis-
sue software allows researchers to implement AISs as multi-agent
systems and analyse the behaviour of these systems when
they are applied to real-world problems. In particular, libtissue
is de- signed to allow researchers to implement second generation
AISs.

The libtissue system has a client/server architecture as pic-
tured in Fig. 1. An AIS is implemented as part of a libtissue ser-
ver, and libtissue clients provide input data to the
algorithm and response mechanisms which change the state of
the moni- tored system. This client/server architecture separates
data collec- tion by the libtissue clients from data
processing by the libtissue servers and allows for
relatively easy extensibility and testing of algorithms on new
data sources. The libtissue system is coded in C as a Linux
shared library with client and ser- ver APIs, allowing new
antigen and signal sources to be easily added to libtissue
servers through the use of callbacks provided by these APIs.
Because libtissue is implemented as a library, algorithms can
be compiled and run on other researchers’ ma- chines with no
modification. Clients and servers can potentially run on
separate machines, for example a signal or antigen client may in
fact be a remote network monitor.

AISs are implemented within a libtissue server as multi-
agent populations of cells. Cells exist within an environment,
called a tissue compartment, along with other cells, antigen
and signals. The problem to which the algorithm is being

applied is represented by libtissue as antigen and external
signals. Clients in libtissue collect antigen and external signals
and pass them to the libtissue server, which makes them
available to the AISs. Cells express various repertories of
recep- tors and producers which allow them to interact with
antigen and control other cells through signalling networks.
Additionally, libtissue allows data on implemented
algorithms to be col- lected and logged, allowing for
experimental analysis of the system.

Building an AIS using libtissue essentially involves creating
a tissue compartment or compartments and populating these
compartments with populations of different types of cell. Pseudo-
code for skeleton algorithm implemented in libtissue is given
in Algorithm 1. First, a file containing all the parameters for the
algorithm is read in. Next, the compartments and the maximum
number of cells, antigen and signals the compartments can store
are created (initialise tissue subroutine). Different types of
cells are then initialised (create cells subroutine). They are
initialised with different sets of producers and receptors, which
determine their input and output capabilities, and the other cell
types they can interact with. These cells are placed into tissue
compartments as they are initialised. Usually, a function to log
data periodically as the AIS is running, called a probe, is
started by the user (initialise tissue probe subroutine).
The probe is started after the compartments have been
initialised and pop- ulated with cells. Finally, the libtissue
scheduler (step tis- sue subroutine) is called periodically
to update the tissue compartments and the cells they contain.

Algorithm 1. Pseudocode for a typical libtissue algorithm.

read parameter file
call initialise tissue
call create cells
call initialise tissue probe
for ever do

call step tissue
sleep for cell_update_rate

end for
subroutine initialise tissue do

max_cells, max_antigen, max_cytokines
create tissue compartment to store cells, antigen and signals
start tissue client thread

end subroutine
subroutine create cells do

create num_cells cells
for each cell do

create cell according to cell-specific parameters
set cell cycle callback # cell_cycle_callback
place cell at a random location in tissue compartment

end for
end subroutine

monitored hosts libtissue clients libtissue server

compartment
subroutine initialise tissue probe do

set tissue probe callback for tissue probe # probe_callback
processes

operating
system

networking

data source

antigen

response

signal

data representation

antigen store

cells

signal store

AIS algorithm

set time interval for tissue probe # probe_rate
start tissue probe thread

end subroutine
subroutine cell cycle callback # cell_cycle_callback do

process input from receptors and set producers accordingly
end subroutine
subroutine tissue probe callback # probe_callback do

algorithm-specific data logging routine
write algorithm-specific data to log file

Fig. 1. The architecture of libtissue. Clients in libtissue monitor a host

and provide input data to a libtissue server and AIS algorithm. Clients also

allow algorithms to change the state of the monitored host.

end subroutine

J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44 39

5. Process anomaly detection

We have used libtissue to implement several second gener-

ation AISs that are used for dynamic anomaly detection. One
of these AISs will be described shortly, but first, in this section,
we discuss the nature of the specific problem domain, intrusion
detec- tion, on which we have tested our AISs.

Intrusion detection systems are designed to identify and
pre- vent the misuse of individual computers and networks of
comput- ers [21]. Such systems can be classified, based upon
the analysis approach they employ, as either misuse detection
or anomaly detection systems [9]. Misuse detection examines
network and system activity for known misuses, usually through
some form of pattern-matching algorithm. In contrast, anomaly
detection sys- tems base their decisions on a profile of normal
network or system behaviour, often constructed using statistical or
machine learning techniques.

Each of these two approaches offers its own strengths and
weaknesses. Misuse-based systems generally have quite low
false positive rates but are unable to identify novel or obfuscated
attacks, leading to high false negative rates. Anomaly-based sys-
tems, on the other hand, are able to detect novel attacks but cur-
rently produce a large number of false positives [3]. This
stems from the inability of current anomaly-based techniques
to cope adequately with the fact that in the real world
normal, legiti- mate computer network and system usage
changes over time, meaning that any profile of normal
behaviour also needs to be dynamic.

Our work is aimed at developing an anomaly-based intru-
sion detection system which is able to cope with
changing patterns of normal behaviour. An open problem with
such sys- tems is the reduction of false positive rates while
maintaining a high true positive rate [3]. Biological immune
systems, which have to adapt to changing conditions over the
lifetime of an organism, are an important source of
inspiration when attempting to building artificial systems with
the same proper- ties. Such systems are able to identify
effectively anomalous events even though the normal state of
the organism changes considerably as a result of
environmental conditions and ageing.

A number of intrusion detection systems have been
built around monitoring running processes to detect intrusions,
termed process anomaly detection. In general, these collect
information about a running process from a variety of sources,
including from log files created by the process, or from other
information gathered from the operating system. The idea is that
by observing what the process is currently doing, for example by
looking at its log files, we can tell whether the process is
behaving normally or has been subverted by an attack.

While log files are an obvious starting point for such systems,
and are still an important component in a holistic security ap-
proach, attacks may not cause any logging to take place, and
so evade detection. Because of this, there has been a
substantial amount of research into other data sources, usually
collected by the operating system. Of these, system calls
(syscalls) have been the most favoured approach. Syscalls are a
low-level mechanism by which applications request system
services such as peripheral I/O or memory allocation from an
operating system. As a process runs it cannot usually directly
access memory or hardware devices. Instead, the operating
system manages these resources and pro- vides a set of
functions, called syscalls, which processes can call to access
these resources.

Furthermore, recent research [12,39] suggests that
syscalls can be combined with other sources of information to
increase

Table 2

Statistics for the six rpc.statd datasets gathered. For each monitored session,

the table lists the total duration of the session (in seconds), the total number of

antigen (i.e. syscalls) collected, the maximum number of antigen observed per

second, the number of signals monitored, and the total number of signals collected.

Session Total time Total antigen Max rate Num signals Total signals

success1 55 1739 1102 2 474
success2 36 1743 790 2 316

failure1 54 518 405 2 461

failure2 68 495 405 2 590

normal1 38 434 405 2 334

normal2 104 450 405 2 908

the detection capabilities of syscall-based anomaly detection sys-
tems. In this respect, there is a convergence between intrusion
detection and multi-sensor data fusion research. Our work is fo-
cussed on developing immune-inspired algorithms which use
syscalls combined with resource usage statistics to decrease
the false positive rate of anomaly detection systems. Resource
usage statistics are indicators of process behaviour gathered at
runtime, such as CPU, memory or file usage indicators. One of
the important properties of second generation AISs is their use
of multiple input data sources which reflect behaviour at a num-
ber of levels. Our idea is that resource usage statistics and
other information provided by the operating system can be
combined with syscall information to provide these multiple
input data sources for second generation AISs. In such AISs,
syscalls and re- source usage statistics form the antigen and
external signals, respectively.

Data were collected on the behaviour of a number of
servers under a range of normal and attack usage. In this paper
we em- ploy a dataset generated by monitoring an RPC
(Remote Proce- dure Call) statd server. Such a server is used
by network file systems to determine when a computer has
rebooted. The server was monitored under normal and attack
conditions, and syscalls and two resource usage statistics (CPU
and memory usage) were gathered to provide sources of
antigen and external signals, respectively. Statistics for the six
rpc.statd sessions are given in Table 2. The dataset is available
online [23] and more informa- tion is given in [34].

6. The twocell algorithm

In this section a second generation AIS, twocell, that was

implemented using libtissue is described. This algorithm utilis- es
several important properties of second generation AISs, such as
multiple cell types, multi-level input signals and internal signals,
and shows how these properties can be implemented in
libtissue.

The twocell algorithm is a second generation AIS, implement-
ing aspects of biological innate and adaptive immunity. In particu-
lar, twocell models innate immune system dendritic cells
(DCs) and adaptive immune system T cells. The cells in twocell,
shown schematically in Fig. 2, are of two types, labelled Type 1 and
Type 2, and each type has different receptor and producer
repertories. Pseudocode for twocell is given in Algorithm 2.
Receptors allow cells to sense information from different sources.
Antigen receptors allow structural information about the problem
to be sensed and cytokine receptors allow behavioural
information to be sensed. Each cell type has a different cell cycle
callback which determines how the information received through
its receptors is integrated. This information in turn determines
the function of the cell and the signals it produces.

40 J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44

Algorithm 2. Pseudocode for the twocell algorithm.

subroutine dc cell cycle callback # type 1 cell
if signal level in tissue compartment has increased then

for all antigen producers # num_antigen_producers_1 do
set action time of antigen producer to

antigen_producer_action_time
end for

end if
ifsignal level in tissue compartment has decreased bf then

for all antigen producers bf do
set action time of antigen producer to 50% of current action

time
end for

end if
end subroutine
subroutine tc cell cycle callback # type 2 cell bf do

if cell iterations >¼ cell_lifespan_2 bf then
replace cell with a new tc
return

end if
for all vr receptors # num_vr_receptors_2 bf do

if vr receptor activated then
write matched antigen to log file

end if
end for

end subroutine

Type 1 cells are designed to emulate two key functions of bio-
logical DCs: antigen and signal processing. For antigen processing,
each Type 1 cell is equipped with a number of antigen
receptors and producers. Antigen is collected by Type 1 cells
using antigen receptors and presented to Type 2 cells using
antigen producers. This allows Type 1 cells to aggregate antigen
into temporally-re- lated groups. A cytokine receptor allows
Type 1 cells to respond to the value of a signal in the tissue
compartment.

Type 2 cells emulate three of the functions of biological T cells:
cellular binding, antigen matching and antigen response. Each
Type 2 cell has a number of cell receptors specific for Type 1 cells,
VR receptors to match antigen, and a response producer which is
triggered when antigen is matched. Type 2 cells also
maintain one internal cytokine, an integer which is incremented
every time a match between an antigen producer and VR
receptor occurs. If the value of this cytokine is still zero, that is
no match has oc- curred, after a certain number of cycles then
the values of all of the VR receptor locks on the cell are
randomised.

A tissue compartment is created and populated with a number
of Type 1 and 2 cells. Antigen and signals in the compartment are

Table 3

The libtissue parameter settings used for twocell.

max_antigen 1000

max_cytokines 0

max_cells 100

cell_update_rate (ls) 100,000
antigen_multiplier 10

num_cells 1 50

num_antigen 1 100

num_antigen_receptors 1 10

num_antigen_producers 1 10

antigen_producer_action_time 10

num_cells 2 50

cell_lifespan 2 100

num_cell_receptors 2 2

num_vr_receptors 2 20

num_response_producers 2 1

probe_rate (ls) 1,000,000

set by libtissue clients based on the syscalls a process is making
and its CPU usage. Type 1 cells ingest antigen through their antigen
receptors and present it on their antigen producers. The period for
which the antigen is presented is determined by a signal read by a
cytokine receptor on these cells, and so can be made dependant
upon CPU usage.

Table 4

The naive syscall policy and the average twocell policy generated from the normal1

and normal2 datasets. The first column lists the names and numbers (in brackets)

of syscalls that are permitted in the naive policy. The second column gives the

number of times each syscall appears in both datasets. The third column gives

the mean number of times a syscall appears in a twocell policy over 20 runs.

The fourth column gives the standard deviations of these means, and the fifth

column gives the coefficient of variation.

Syscall Frequency Mean sd cv

chdir(12) 2 0.07 0.26 371

execve(11) 2 0.07 0.26 371

personality(136) 2 0.07 0.34 485

setsid(66) 2 0.07 0.34 485

fork(2) 2 0.10 0.37 370

write(4) 2 0.10 0.37 370

send(309) 2 0.15 0.56 373

time(13) 2 0.15 0.40 266

fstat64(197) 2 0.17 0.52 305

lseek(19) 2 0.17 0.42 247

fsync(118) 2 0.25 0.80 365

getrlimit(191) 2 0.28 0.67 320

listen(304) 2 0.28 0.63 239

select(142) 3 0.57 1.48 225

gettimeofday(78) 4 0.50 0.85 276

getsockname(306) 4 0.53 1.47 170

_exit(1) 4 0.55 1.38 277

uname(122) 4 0.75 1.91 250

stat(106) 4 0.80 2.58 259

connect(303) 5 1.60 2.48 254

getdents(141) 8 0.20 0.73 322

antigen
receptor

cytokine
receptor

type 1

cell

antigen

cell
receptor

vr

response
producer

type 2

cell

mprotect(125) 8 0.47 1.30 185

poll(168) 8 0.90 1.67 224

sendto(311) 9 0.95 2.13 225

recvfrom(312) 9 2.45 3.68 233

rt_sigaction(174) 10 0.97 2.19 155

getpid(20) 10 1.60 2.28 142

fcntl(55) 12 1.18 2.76 268

bind(302) 12 1.68 4.51 200

munmap(91) 15 1.88 3.77 225
producer receptor

brk(45) 16 2.25 3.78 168

fstat(108) 23 2.33 4.45 229
Fig. 2. The two different cell types implemented in twocell. Type 1 cells
ingest
antigen through antigen receptors and display antigen on their surface via antigen

producers. They also respond to an external signal through a cytokine

receptor, which determines the amount of time antigen is presented for. Type 2

cells bind with Type 1 cells via cell receptors and then match antigen presented

on Type 1 cells with VR receptors. If a match occurs Type 2 cells produce an alert

through their response producers.

ioctl(54) 24 2.73 4.67 190

socket(301) 25 3.10 4.97 150

old_mmap(90) 27 1.90 4.29 171

read(3) 27 2.25 5.17 160

open(5) 30 5.95 7.75 130

close(6) 557 19.43 27.03 139

sy
sc

al
l n

u
m

b
er

sy
sc

al
l n

u
m

b
er

J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44 41

Type 2 cells attempt to bind with Type 1 cells via their

cell receptors. If bound, VR receptors on these cells interact with
anti- gen producers on the bound Type 1 cell. If an exact match
between a VR receptor lock and antigen producer key occurs, the
response producer on Type 2 cells produces a response, in this case a
log en- try containing the value of the matched receptor and
indicating that the syscall is permitted.

7. twocell experiments

The behaviour of twocell was examined in an number of

experiments using the rpc.statd dataset, described in Section 5
above. The first experiment looks at a number of twocell
runs, while the second takes one run and examines it more
closely.

The third evaluates the performance of a syscall policy generated
by twocell. During these experiments, to more clearly under-
stand the dynamics of twocell, the cytokine receptor on Type 1
cells is disabled, thus making twocell unresponsive to the
CPU usage external signal. The final experiment returns to the
question of signals and compares the effect the addition of the
signal, i.e. CPU usage, has on the dynamics of twocell. The
parameters given in Table 3 were used for all experiments, which
were carried out on a 2 GHz AMD64 Turion laptop running Debian
Linux. Runs used on average around 1%, and never more than 3%,
of the available CPU resources.

In experiments it is important to have a baseline with which to
compare algorithmic performance. In terms of syscall policies such
a baseline can be generated, and is here termed a naive policy. A na-

350 350

325 325

300 300

275 275

250 250

225 225

200 200

175 175

150 150

125 125

100 100

75 75

50 50

25 25

0

1 5 10 25 50 100 200
600

frequency (log)

(a)

0

1 5 10 25 50 100 200 600

frequency (log)

(b)

Fig. 3. The frequencies of the syscalls seen in the normal1 and normal2 datasets (a), and the frequencies of the syscalls produced over the 40 runs of twocell (b) on the

same datasets.

ra
te

 (
lo

g
)

42 J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44

ive syscall policy is generated for a process, such as rpc.statd, by
recording the syscalls it makes under normal usage, as in the nor-
mal1 and normal2 datasets. A permit policy statement is then cre-
ated for all syscalls seen. This baseline whitelist approach is not
too unrealistic when compared to how current systems such as
systrace automatically generate a policy. The first column of
Table 4 shows the permitted syscalls (syscall number given in
brackets) in such a naive policy generated from the normal1
and normal2 datasets. The frequency with which each syscall
was observed, combined over the two datasets, is given in the
second column, as this will be useful for further analysis. Fig.
3a shows the syscall number plotted against its frequency.

Similarly to a naive policy, one way in which twocell can be
used to generate a syscall policy is by running it with normal usage
data during a training phase. During this phase, responses made by
Type 2 cells are recorded. At the end of the training phase, a syscall
policy is created by allowing only those syscalls responded to, and
denying all others. Since interactions in libtissue are stochastic,
looking at the average results over a number of runs is necessary to
understand the behaviour of implemented algorithms. A script
starts the twocell server and then after 10 s starts the tcreplay
client and replays a dataset in realtime. The twocell server con-
tinues running for a further minute after replay had finished. This
process is repeated 20 times for both the normal1 and normal2 data-
sets, yielding 40 individual syscall policies. A single twocell pol-
icy is then generated by allowing all syscalls which are permitted
in any of the 40 individual policies.

The null hypothesis ðH0 Þ for this experiment is that there is no
difference in the response of twocell for syscalls with
different

Table 5

The syscall policy generated by twocell and the frequency of response for

each syscall for the normal2 dataset.

Syscall Frequency

gettimeofday(78) 1

listen(304) 1

send(309) 1

select(142) 2

poll(168) 3

recvfrom(312) 8

fcntl(55) 9

fstat(108) 9

open(5) 22

close(6) 34

400

frequencies. The alternative hypothesis ðH1 Þ is that twocell re-
sponds differently depending on the frequency of the syscall. The
second column of Table 4 and Fig. 3b show the frequency of each
syscall. The third column of Table 4 and Fig. 3b show the mean fre-
quency with which each syscall appears in a twocell policy. We
found that all of the 38 syscalls that occur are also permitted in
the twocell policy. The Spearman rank correlation coefficient
was calculated in the standard way for the distributions in these
two columns, and was found to be q ¼ 0:9285, which is larger than
the critical value for q at p < 0:001. Therefore, the null hypothesis
ðH0 Þ is false, and twocell responses are correlated to the fre-
quency of the syscalls. Standard deviations, given in the fourth col-
umn of Table 4, appear at first to show an increasing amount of
noise for high-frequency syscalls. However, examination of the
coefficient of variation for each syscall, given in the last column
of Table 4, shows that there is in fact more variation in the frequen-
cies of response to the lower frequency syscalls.

The previous experiment shows that the twocell algorithm
has the property of responding in a selective way to input
data based on the frequency at which an input data item occurs.
In or- der to examine more closely how twocell responds, a
single run of the twocell algorithm is now analysed.
Following the same general procedure as the previous
experiment, twocell is run once with the normal2 dataset. The
resulting policy is shown in Table 5, along with the frequencies
with which the permitted sys- calls are responded to. During the
run, the time at which a Type 2 cell produces a response to a
particular syscall is also recorded, and the rate at which these
responses occur is plotted in Fig. 4. The rate of incoming syscalls
is also plotted for comparison. This figure clearly shows a
correlation between the rate of incoming syscalls and the rate of
responses produced by Type 2 cells. Cells initially do not produce
any response until syscalls occur, and then produce a burst of
responses for a relatively short period before settling down to an
unresponsive state once again. This is to be expected, as antigens
enter and are passed through twocell until their eventual
destruction after being presented on Type 1 cell antigen producers.

For the same run, the individual receptors expressed by Type 2
cells can also be examined. Fig. 5 shows the repertoire of VR recep-
tors expressed by all 50 Type 2 cells during the run. A libtissue
probe periodically recorded the syscall values expressed by the VR
receptors on all of the Type 2 cells. A point is plotted in Fig. 5 if the
syscall was being expressed during that period. Points for the ten
syscalls that twocell responded to (see Table 5) are highlighted.
As expected, due to the limited lifespan of unmatched Type 2 cells,
set by the cell_lifespan parameter, and after which the cell’s VR
receptor is randomised, many bursts of around 10 s of expression

200

100

50

20

10

5
4
3
2
1

cell response
incoming antigen

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
150

seconds

of VR receptors specific for a given syscall are seen. Once a VR
receptor matches, and a response and permit policy is therefore
produced for that syscall, the cell stops randomising its receptors.
This can be observed from the continuous horizontal lines in Fig. 5
for the 10 highlighted syscalls.

An example is now given of how the classification accuracy and
error of a libtissue algorithm can be evaluated. In terms of sys-
call policies, a particular policy can be considered successful in
relation to the number of normal syscalls it permits versus the
number of attack syscalls it denies.The naive policy and average
twocell policy generated from datasets normal1 and normal2 in
the first experiment above are evaluated in such a way.

The number of syscalls both policies permit and deny when ap-
plied to the four datasets in the attack and failed groups is re-
corded. For each dataset, Table 6 shows the percentages of
syscalls permitted by the naive and twocell policies. From the re-

Fig. 4. The rate of incoming antigen and corresponding cell response
rates

produced by twocell for the normal2 dataset. The amount of incoming antigen

is shown in orange (light grey), and the number of responses generated by Type 2

cells in green (dark grey).

sults, the tendency of the naive policy is to permit the vast majority
of syscalls, whether attack related or not. The twocell generated
policy behaves much more selectively, denying a slightly larger

 without signal
with signal

Dataset naive twocell
 Permitted (%) Denied (%) Permitted (%) Denied (%)

success1 91 9 48 52

success2 91 9 48 52

failure1 100 0 70 30

failure2 100 0 69 31

sy
sc

al
l n

u
m

b
er

re
sp

on
se

 r
at

e

J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44 43

350 30

325 25

 312

300

 309
304

20

275
15

250

10

225

5

200

175

 168

0

10 20 30 40 50 60
seconds

150

125

100

75

50

25

 142

108

78

 55

Fig. 6. The mean response rates produced by Type 2 cells of the twocell algorithm

with and without a signal for 20 runs on the success2 dataset.

proportion of syscalls in the success1 and success2 datasets than it
permits. For the failure1 and failure2 datasets the converse is true.

The previous experiments have all used the twocell algorithm
with the cytokine receptors of Type 1 cells disabled. This was nec-
essary to gain an initial understanding of the dynamics of two-
cell. This final experiment now examines how the addition of a
context signal changes the dynamics of the algorithm. The hypoth-
esis for this experiment is that the addition of a context signal to
twocell does not change the response in terms of Type 2 cells
(the null hypothesis H0). The alternative hypothesis ðH1 Þ is
that the addition of a context signals changes the response of
twocell in terms of Type 2 cells.

When enabled, the cytokine receptor on a Type 1 cell controls
the action_time parameter of antigen producers on these cells as fol-
lows. The action_time parameter is initialised to a value of 100.
If

 6

0
5

0 15 30 45 60 75 90 105 120 135 150

seconds

Fig. 5. The VR receptor repertoire expressed by Type 2 cells generated by twocell

for the normal2 dataset. An orange (light grey) point is plotted for the

corresponding syscall whenever a Type 2 cell with a VR receptor specific for the

syscall is present. Green (dark grey) points indicate that the Type 2 cell also

produced a response to the syscall.

Table 6

Performance of a naive policy and a twocell policy generated from the normal2

dataset. The naive policy permits the majority of syscalls in all four datasets,

and denies only a small number of syscalls. For both of the success datasets,

twocell

twocell permits around two thirds of syscalls, and denies one third.

there is no change in the signal, CPU usage in this case, then the ac-
tion time stays the same. If CPU usage has decreased, the
action time is reduced by 50%, and if it has increased, the action
time is reset to 100. The twocell algorithm with its cytokine
receptor en- abled is run 20 times on the success2 dataset and the
responses it produces are recorded. For a fair comparison, the mean
action time observed on antigen producers over all of the runs,
28.57 in this case, is calculated and the twocell algorithm
without signals is run 20 times on the same dataset with the
action time of its anti- gen producers set to 29.

Fig. 6 shows bspline curves fitted to the mean response rates of
twocell with and without a signal over the 20 runs. The results
show that the response time of twocell with a signal is much
more tightly controlled, with responses starting and dropping off
more rapidly and lasting for a shorter duration in total. The Spear-
man rank correlation coefficient was calculated in the standard
way for the distributions of the response rates with and
without
a signal. A value of q ¼ 0:9076 was obtained, which is larger than

therefore false and there is a significant change in Type 2 cell re-
sponses when a context signal is added to twocell. This can be ex-
plained in light of the incoming data, and from the action of
the cytokine receptor, which causes a sudden rise and quick
decreases in the action time of the antigen producers on Type 1 cells
based on

44 J. Twycross, U. Aickelin / Information Fusion 11 (2010) 35–44

8. Conclusions

This paper has shown how multi-level data fusion mechanisms

seen in the biological immune system can be used to build
AISs. These AISs are represented as populations of autonomous
agents. This representation works well in that it is fairly
straightforward to transfer biological experimental models of the
immune system into AISs. The use of multi-level information
sources in these AISs shows how a real-world problem can be
framed to reflect the envi- ronment of the biological immune
system seen as a combination of both the innate and the adaptive
immune systems. This problem representation proved to be a good
source of multi-level input data for second generation AISs. The
provision of signal and antigen receptors by libtissue was
shown to be useful in providing agents with access to the
sources of multi-level input data avail- able from this problem
representation.

The immune system provides a good example of a parallel and
distributed biological information fusion processes. Second gener-
ation AISs modelling some of these processes have been used to
build anomaly detectors with low false positive rates [34]. Central
to second generation AISs is the idea of a multi-level representa-
tion of the problem as the environment of the AIS. Coupled with
this multi-level problem representation is the representation of
the AIS as composed of populations of agents of multiple types.
These agents interact with each other and the environment to
establish a homeostatic balance of cell populations. The
mecha- nisms of biological information fusion modelled by
second gener- ation AIS might also prove useful in multi-
sensor information fusion.

References

[1] U. Aickelin, J. Greensmith, J. Twycross, Immune system approaches to intrusion

detection – a review, in: Proceedings of the Third International Conference on
Artificial Immune Systems, Catania, Italy, LNCS, vol. 3239, 2004, pp. 316–329.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular
Biology of the Cell, fourth ed., Garland Science, 2002,
<http://www.ncbi.nlm.nih.gov/ books/>.

[3] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner, State of
the practice of intrusion detection technologies, Technical Report CMU/SEI-
99-TR-
028, Software Engineering Institute, Carnegie Mellon University, January 2000.

[4] A.G. Baxter, P.G. Hodgkin, Activation rules: the two-signal theories of immune
activation, Nature Reviews in Immunology 2 (6) (2002) 439–446.

[5] D. Dasgupta, Advances in artificial immune systems, IEEE
Computational

Intelligence Magazine 1 (4) (2006) 40–49.
[6] D. Dasgupta, Artificial Immune Systems and Their Applications,
Springer

Verlag, New York, 1999.
[7] D. Dasgupta, R. Azeem, Artificial Immune Systems: A Bibliography,

2006, Published online at
<http://ais.cs.memphis.edu/papers/ais_bibliography.pdf>.

[8] L.N. de Castro, J. Timmis, Artificial Immune Systems: A New
Computational

Intelligence Approach, Springer, London, 2002.
[9] H. Debar, M. Dacier, A. Wespi, A revised taxonomy for intrusion

detection systems, Annales des Telecommunications 55 (7–8) (2000) 361–
378.

[10] H.F. Durrant-Whyte, M. Stevens, E. Nettleton, Data fusion in
decentralised

sensing networks, in: Proceedings of the Fourth International Conference
on
Information Fusion, Montreal, Canada, 2001, pp. 302–307.

[11] A.M. Gallegos, M.J. Bevan, Central tolerance to tissue-specific
antigens mediated by direct and indirect antigen presentation,
Journal of Experimental Medicine 200 (8) (2004) 1039–1049.

[12] D. Gao, M.K. Reiter, D. Song, Gray-box extraction of execution graphs
for anomaly detection, in: Proceedings of the ACM Conference on Computer
and Communications Security, Washington, DC, 2004, pp. 318–329.

[13] V. Gorodetsky, O. Karsaev, I. Kotenko, V. Samoilov, Multi-agent
information fusion: methodology, architecture and software tools for learning
of object and situation assessment, in: Proceedings of the Ninth International
Conference on Information Fusion, Florence, Italy, 2006, pp. 346–353.

[14] J. Greensmith, U. Aickelin, J. Twycross, Articulation and clarification of
the dendritic cell algorithm, in: Proceedings of the Fifth International
Conference on Artificial Immune Systems, Oeiras, Portugal, LNCS, vol. 4163,
2006, pp. 404–
417.

[15] J. Greensmith, J. Twycross, U. Aickelin, Dendritic cells for anomaly
detection, in: Proceedings of the IEEE World Congress on Computational
Intelligence, Vancouver, Canada, 2006, pp. 664–671.

[16] D.L. Hall, J. Llinas (Eds.), Handbook of Multisensor Data Fusion, CRC Press LLC,
Boca Raton, Florida, 2001.

[17] E. Hart, J. Timmis, Application areas of AIS: the past, the present and the future,
in: Proceedings of the Fourth International Conference on Artificial
Immune Systems, Banff, Canada, LNCS, vol. 3627, 2005, pp. 483–497.

[18] C.A. Janeway, The road less traveled: the role of innate immunity in
the adaptive immune response – presidential address to the American
Association of Immunologists, Journal of Immunology 161 (2) (1998) 539–
544.

[19] C.A. Janeway, R. Medzhitov, Innate immune recognition, Annual Review of
Immunology 20 (1) (2002) 197–216.

[20] C.A. Janeway, P. Travers, M. Walport, M. Shlomchik, Immunobiology: The
Immune System in Health and Disease, sixth ed., Garland Publishing,
2005,
<http://www.ncbi.nlm.nih.gov/books/>.

[21] R. Kemmerer, G. Vigna, Intrusion detection: a brief history and
overview, Security and Privacy, Supplement to IEEE Computer Magazine 35
(4) (2002)
27–30.

[22] B. Kyewski, J. Derbinski, Self-representation in the thymus: an extended view,
Nature Reviews in Immunology 4 (9) (2004) 688–698.

[23] libtissue sourcecode and datasets, 2007, <http://cs.nott.ac.uk/~jpt>.
[24] M. Liggins, C.Y. Chong, I. Kadar, M.G. Alford, V. Vannicola, S.

Thomopoulos, Distributed fusion architectures and algorithms for
target tracking, Proceedings of the IEEE 85 (1) (1997) 95–107.

[25] H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, L. Zipursky,
J. Darnell, Molecular Cell Biology, fourth ed., W.H. Freeman and Co.,
1999,
<http://www.ncbi.nlm.nih.gov/books/>.

[26] R.C. Luo, A.M.D. Shr, C.Y. Hu, Multiagent based multisensor resource
management, in: Proceedings of the IEEE International Conference on
Intelligent Robotics and Systems, Victoria, Canada, vol. 2, 1998, pp. 1034–
1039.

[27] I.V. Maslov, I. Gertner, Multi-sensor fusion: an evolutionary
algorithm approach, Information Fusion 7 (3) (2006) 304–330.

[28] R. Medzhitov, C.A. Janeway, How does the immune system distinguish self
from nonself?, Seminars in Immunology 12 (3) (2000) 185–188

[29] R. Medzhitov, C.A. Janeway, Innate immunity, The New England Journal
of

Medicine 343 (5) (2000) 338–344.
[30] Proceedings of the International Conference on Artificial Immune
Systems,

2002–2007, <http://www.artificial-immune-systems.org/>.
[31] C. Reis e Sousa, Toll-like receptors and dendritic cells: for whom the bug tolls,

Seminars in Immunology 16 (1) (2004) 27–34.
[32] L. Segel, I.R. Cohen (Eds.), Design Principles for the Immune System and Other

Distributed Autonomous Systems, Oxford University Press, New York, 2001.
[33] J. Timmis, Artificial immune systems – today and tomorrow,
Natural

Computing 6 (1) (2007) 1–18.
[34] J. Twycross, Integrated innate and adaptive artificial immune systems applied

to process anomaly detection, PhD Thesis, School of Computer Science,
University of Nottingham, UK, 2007.

[35] J. Twycross, U. Aickelin, libtissue – implementing innate immunity, in:
Proceedings of the IEEE World Congress on Computational
Intelligence, Vancouver, Canada, July 2006, pp. 499–506.

[36] J. Twycross, U. Aickelin, An immune-inspired approach to anomaly detection,
in: J.N.D. Gupta, S.K. Sharma (Eds.), Handbook of Research on Information
Assurance and Security, IGI Global, New York, 2009, pp. 109–121 (Chapter 10).

[37] A. Watkins, J. Timmis, Exploiting parallelism inherent in AIRS, an
artificial immune classifier, in: Proceedings of the Third International

Conference on Artificial Immune Systems, Catania, Italy, LNCS, vol. 3239, 2004, pp.
427–438.

[38] N. Xiong, P. Svensson, Multi-sensor management for information fusion: issues
and approaches, Information Fusion 3 (2) (2002) 163–-186.

[39] H. Xu, W. Du, S.J. Chapin, Context sensitive anomaly monitoring of
process control flow to detect mimicry attacks and impossible paths, in:
Proceedings of the Seventh International Symposium on Recent
Advances in Intrusion Detection, Sophia Antipolis, France, LNCS, vol. 3224,
2004, pp. 21–38.

