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Abstract

Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop 

communications. There are many reasons for this phenomenon, such as unstable wireless 

communications, synchronization issues, and unreliable sensors. Unfortunately, missing data 

creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-

powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-

transmission may also cause time delays when detecting abnormal changes in an environment. 

Furthermore, localized reasoning techniques on sensor nodes (such as machine learning 

algorithms to classify states of the environment) are generally not robust enough to handle missing 

data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate 

how replacing missing sensor values with spatially and temporally correlated sensor values can 

significantly improve the network’s performance. However, our studies show that it is important to 

determine which nodes are spatially and temporally correlated with each other. Simple techniques 

based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we 

have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in 

WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search 

time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. 

Instead of using traditional mean and variance of each dimension for kd-tree construction, and 

Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean 

distances based on measured percentages of missing data. We have evaluated this approach 

through experiments on sensor data from a volcano dataset collected by a network of Crossbow 

motes, as well as experiments using sensor data from a highway traffic monitoring application. 

Our experimental results show that our proposed -NN imputation method has a competitive 

accuracy with state-of-the-art Expectation–Maximization (EM) techniques, while using much 

simpler computational techniques, thus making it suitable for use in resource-constrained WSNs.
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1. Introduction

Wireless Sensor Networks (WSNs) are widely used in environmental monitoring 

applications, in which sensor nodes transmit raw sensor signals, processed signals, or local 

decisions to each other. Oftentimes, some of these sensor values are lost during wireless 

communication, due to synchronization problems, sensor faults, sensor power outages, 

communication malfunctions, malicious attacks, packet collisions, signal strength fading, or 

environmental interference (due to, for example, a microwave, walls, or human blockage). 

For highly dense WSNs used primarily for data collection, this may not be a problem. 

However, in many applications, the WSN processes data locally within the network in a 

hierarchical fashion in order to extract useful information, such as the detection of anomalies 

in the environment. In such applications, it can be useful to employ machine learning 

algorithms distributed across the network to automatically learn to recognize normal and 

abnormal modes of operation. However, most autonomous learning techniques are not robust 

to incomplete data, and will generate incorrect results (such as false positives) when there is 

missing data. One solution would be to use a reliable transport protocol, which requires 

nodes to re-transmit their data until successful. But since sensor nodes are usually battery-

powered, data re-transmission can cost significant additional energy. In addition, the re-

transmission process could delay the decision time when the processing algorithms are 

embedded in the network. While additional nodes could be added to create a dense WSN 

that relies on data redundancies to compensate for the missing values, the extra hardware is 

more costly, and also adds to the computational cost of routing path discovery.

A better technique for many applications is to estimate and replace missing sensor values 

using a well-suited statistical imputation technique. We believe that properly estimating the 

missing data should improve the performance of localized reasoning algorithms (such as 

machine learning techniques) and the overall system in general. Such an approach would 

also be useful in WSNs in which every sensor reading is critical and the system cannot 

afford to lose any information.

Our work is based on the observation that, in most applications of WSNs, sensor data in the 

environment tends to be highly correlated for sensors that are geographically close to each 

other (spatially correlated), and also highly correlated for a period of time (temporally 

correlated). Using this observation, we present a novel imputation technique for WSNs that 

takes advantage of the spatial and temporal correlations in the sensor data. After reviewing 

the literature on missing data imputation techniques in Section 2, we illustrate in Section 3 

that utilizing spatial and temporal information to replace missing values yields high 

accuracies with low computational complexity, compared to other imputation strategies that 

do not use spatial–temporal correlation. However, this first study presumes that sensor data 

correlation is a linear function of the Euclidean distance between sensors. In practical 

applications, this assumption may not be valid, such as WSN deployments in complex 

environments in which sensors have environmental features between them, such as walls, 

obstacles, hills, and so forth. Thus, Section 4 presents a novel Nearest Neighbor (NN) 

imputation method that learns the spatial–temporal correlations among sensors. This 

technique does not require an offline analysis of the temporal and spatial sensor data 

correlations. The proposed method organizes the temporally and spatially correlated data 
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into a kd-tree data structure [1]. When estimating missing sensor values, the NN imputation 

technique uses the nearest neighbors found from the kd-tree traversal. Rather than use the 

Euclidean distance metric in the kd-tree construction and search, a weighted Euclidean 

metric is developed to compensate for missing data by considering the percentage of missing 

data for each sensor, in a manner that is more suitable for WSNs. We present results of 

applying this technique to a volcano dataset and a traffic monitoring dataset. We compare 

our NN imputation technique to an Expectation–Maximization (EM)-based imputation 

technique. The experimental results show that our technique achieves a similar solution 

quality to the EM-based imputation, but with much lower computational complexity, making 

our technique more suitable for use in WSNs.

Our imputation approach is expected to work for both dense and sparse sensor networks. In 

dense networks, designers hope to use additional hardware to compensate for lost 

information. When analyzing data, techniques like majority vote or averaging can be used. 

Including additional nodes in the network is equivalent to adding more features to a 

classifier. The “Ugly Duckling” theorem [2] states that adding more features may not 

necessarily improve classification performance. With more features, one still has to decide 

which (subset) of features to use. Our proposed kd-tree approach offers a systematic way of 

finding the useful features automatically regardless of network densities.

The rest of the paper is organized as follows, we first review the existing literature in Section 

2. In Section 3, we illustrate spatial temporal imputation correlations. We present our novel 

Nearest Neighbor (NN) imputation method and our experimental results for wireless sensor 

networks in Section 4. Finally, we conclude our study in Section 5.

2. Related work

Many researchers working with WSNs (e.g., [3–5]) have encountered problems with missing 

sensor data. It is common to have as much as 40% of the sensor readings to be missing in a 

one-hop network and 85% of the sensor readings to be missing in a multi-hop sensor 

network [6]. Several solutions have been suggested to tolerate this error at the 

communication level, such as link quality profiling [3] or reliable data transportation 

protocols [7]. As previously noted, this type of solution usually requires retransmitting the 

lost data, which costs additional transmission power that is unavailable in resource-

constrained WSNs. Moreover, the retransmission process can cause delays in the local 

sensor node processing algorithms (such as an anomaly detection decision).

Higher-level algorithms have been developed to estimate missing sensor data, such as 

Fletcher et al. [4], who have estimated missing sensor data using a jump linear system and 

Kalman filtering. However, these regression models usually require extensive computation 

and an offline training process, in addition to large storage capabilities. Werner-Allen et al. 

[5] built a simple linear Autoregressive model to estimate missing values based on collected 

historical sensory readings.

Although missing data is not a well-studied area in WSNs, many missing data imputation 

methods have been developed outside of the WSN research area, including Nearest 
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Neighbors (NN) imputation [8,9], Bayesian-based imputation [10,11], and regression-based 

imputation [12]. Missing data in general is a well-studied subject in statistics. Little and 

Rubin [13] provide an introduction to statistical missing data imputation techniques, such as 

Least Squares Estimates, Bartlett’s ANCOVA, and likelihood-based approaches. However, 

these techniques for general missing data imputation are not suitable for WSNs, due to their 

high space and/or time complexities.

Nearest Neighbor (NN) classifiers were first introduced by Fix and Hodges [14]. Cover et al. 

have proven that NN classifier risk is less than twice the Bayes risk for all reasonable 

distributions and for any number of categories [15]. Since we use sensor data that are 

correlated in space and time, we would expect performance better than the worst case 

scenario.

The NN methods gained popularity in machine learning through the work of Aha in [16], 

who showed that instance-based learning can be combined with attribute-weighting and the 

pruning of noisy instances. The resulting methods perform well in comparison with other 

learning methods. The use of the kd-tree to improve nearest-neighbor classification time was 

introduced by Friedman et al. [17]. The approach used in this article was directly modified 

from the algorithm given by Andrew Moore [18] and Friedman et al. [17]. Moore, along 

with Omohundro [19], pioneered kd-tree usage in machine learning. However, these existing 

kd-tree data structures do not consider missing data when constructing the tree. Furthermore, 

existing approaches assume all sensors in the network are the same. Our approach makes the 

traditional kd-tree more suitable for WSNs by introducing weighted variance and weighted 

Euclidean distance measures, which take into account the missing data as well as the 

possible uniqueness of each sensor in the network.

3. Using spatial–temporal correlation for missing data imputation

There are two main roles for a sensor node in a WSN: (1) sense the environment, and (2) 

gather information from other nodes in the network. Our missing data imputation techniques 

are primarily designed for nodes that gather data from other nodes (i.e., clusterheads, data 

hops, or a sink); such methods are needed for these nodes, since re-transmitting the missing 

values via wireless communication costs too much battery life. In addition, re-transmissions 

may take more time and create synchronization issues.

The formulation of the missing data imputation problem in a WSN is as follows. Let 

denote the observation vector made by sensor node i at time t. When , it means the 

observations of node i at time t are missing. The missing data imputation problem is to 

determine a substitute value for each missing data that is as close a match to the likely true 

value as possible. Note that the missing data problem in WSNs is Missing At Random 
(MAR), which means that the probability of the data being missing is independent of the 

data values. However, this assumption does not mean that the pattern itself is random.

We hypothesize that if the sensor data are correlated in time and space, this correlation can 

be used to replace missing values, and should yield high accuracy. This section investigates 

the potential of using spatial–temporal correlations for missing data imputation. Section 3.1 
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presents our spatial–temporal imputation technique that is based on the assumption that 

spatial–temporal correlation is a linear function of Euclidean distance. For comparison, 

Section 3.2 discusses several alternative simple strategies for imputation in WSNs that are 

not based on spatial–temporal correlations. Section 3.3 presents experimental results that 

compare our approach with the alternative approaches, showing that using a spatial–

temporal correlation approach to imputation is highly beneficial. Following this discussion, 

the next section (Section 4) relaxes the assumption that the sensor data correlation is a linear 

function of the Euclidean distance between sensors, and presents a new technique that can 

learn the spatial and temporal correlations.

3.1. Spatial–temporal imputation technique

We have previously designed a simple online algorithm to estimate missing data based on 

spatial–temporal correlations, as a function of Euclidean distance between the sensors. (The 

detailed algorithm can be found in [20].) The missing data algorithm first checks if a 

neighbor sensor node is within the missing sensor’s sensing range. The observations from 

the neighbor are used for filling in the missing values if there are neighboring sensors within 

the cluster. This generates a spatially correlated replacement. If there are multiple neighbors 

within the sensor’s range, and they do not have the same readings, the majority reading is 

chosen. Otherwise, the last seen sensor reading is used, resulting in a temporally correlated 

replacement.

The computational space complexity for this simple approach is O(1), since only one 

previous observation needs to be stored. The computational time complexity is O(k), where 

k is the number of nodes within the communication range, since the computational 

requirement for a sensor node to estimate missing data using this algorithm is a linear 

function of the number of nodes, k. Assume the sensing range is the same as the 

communication range and all sensors have the same communication/sensing range. Let r 
denote the radius of the WSN, c denote the communication range or sensing range of each 

sensor, and l denote the number of nodes in a WSN. If r is much larger than a node’s 

communication range c, then k is much smaller than l. The worst-case scenario is when k = 

l. In typical WSN applications, the sensor nodes are divided into clusters; each cluster covers 

a local region, and together they cover the entire environment. Hence, searching within a 

local cluster of k nodes is typically not computationally intensive.

3.2. Alternative imputation techniques for WSNs

Due to the constrained resources on the sensor nodes, any appropriate missing data 

imputation technique should be simple and require only limited memory. However, there are 

many possible simple strategies for imputation, and it is not clear in advance which strategy 

might be best. We have listed several possible alternative missing data replacement strategies 

in the following list. These imputation strategies have been used to improve the performance 

of localized algorithms for information fusion in WSNs; a detailed study can be found in 

[20]. Section 3.3 summarizes some of the key techniques and experimental findings to 

illustrate that using temporal and spacial correlations to estimate missing values in WSNs 

yields high performance, and is thus feasible for resource-constrained WSNs. It is important 

to note that these simple strategies (strategies 1–5, and 7) have many limitations. They are 
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hard to adapt to different network topologies and/or different applications. Therefore, we 

propose an improved imputation technique in Section 4.

• Strategy 1 uses the most recent available data to fill in the missing values (we 

also refer to this strategy as “do nothing”). The computational complexities for 

both time and space of this imputation strategy are O(1) for each node.

• Strategies 2 and 3 replace the missing data by a fixed constant. Specifically, the 

minimum non-existing value (e.g., 0) and the maximum non-existing value (e.g., 

1) are used for strategies 2 and 3, respectively. The computational time and space 

complexities of these strategies are O(1) for each node.

• Strategies 4 and 5 replace missing values by a moving average. Specifically, 

strategy 4 uses the mean of the past 5 used sensor values, including the estimated 

missing values; strategy 5 uses the mean of the past 5 observed values, but 

excluding the processed missing values. The computational time and space 

complexities of these strategies are O(1) for each node.

• Strategy 6 is an Expectation Maximization (EM)-based imputation technique 

(explained in more detail below). The computation time complexity for EM-

based imputation is O(nk), where n is number of observations made by a sensor 

node. The space complexity is O(n).

• Strategy 7 fills in missing data by a neighbor sensor node’s readings. If there are 

no readings available from sensor nodes within the cluster, the last seen sensor 

reading is used. The computational time for this algorithm is O(n), and the space 

complexity is O(1).

Strategy 6 is the Expectation Maximization (EM)-based imputation technique, which is the 

standard missing data imputation strategy from the literature of statistics. However, the EM-

based imputation method is computationally intensive both in space and time. Therefore, it 

is not practical for resource-constrained WSNs. We nevertheless include this technique for 

comparison purposes. A detailed explanation of EM-based imputation is given in [13]. We 

summarize the technique as follows. The EM algorithm is an iterative procedure that finds 

the Maximum Likelihood (ML) estimation of the parameter vector by repeating the 

following steps:

• The Expectation step (E-step): Given the mean vector and covariance matrix for 

a multivariate normal distribution, the estimation step calculates the conditional 

expectation of the complete-data log-likelihood given the observed data and 

these parameter estimates. Specifically, let θ(t) be the current estimate of the 

parameter θ. The E-step of EM finds the expected complete data log-likelihood if 

θ were θ(t):

(1)

where observation Y = (Yobs, Ymiss), Yobs represents the observed part of Y, and 

Ymis represents the missing part of Y.
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• The Maximization step (M-step): Given the complete-data log likelihood, this 

step finds the parameter estimates to maximize the complete data log-likelihood 

from the estimation step. The M-step of EM determines θ(t+1) by maximizing the 

expected complete-data log likelihood:

(2)

These two steps are iterated until convergence, i.e., the log-likelihood does not 

exceed a threshold value. Note that there is an initialization step before the EM 

procedure, which fills in a guess for each missing value. Typically, this 

initialization step directly impacts the performance of the EM-based imputation.

3.3. Experimental evaluation of spatial–temporal imputation

To determine the extent to which spatial–temporal information can improve performance, 

we have conducted physical experiments to compare these imputation strategies. To fully 

study the impact, we must evaluate the approaches both for data that truly is spatially–

temporally correlated, and for data that is not correlated. The following section first 

discusses common techniques for determining if a particular set of data is spatially or 

temporally correlated. We then discuss, in Section 3.3.2, the performance metrics used to 

evaluate the alternative approaches. Section 3.3.3 presents results for experimental data that 

is spatially–temporally correlated.

3.3.1. Testing for spatial and temporal correlations—To determine whether the 

sensory values are correlated in space and time, standard techniques can be used from 

statistics. For time correlations, two time-series tests can be used—the Durbin–Watson 

(DW) test and the Partial AutoCorrelation Function (PACF). The DW test determines 

whether or not the data set is time correlated, and the PACF gives information on how the 

sensor data are correlated with each other in time. The value of the DW statistic lies in the 

range of [0, 4]. A value of 2 indicates that there appears to be no autocorrelation. If the DW 

statistic d is substantially less than 2, there is evidence of positive serial correlation. On the 

other hand, large values of d indicate that successive error terms are, on average, much 

different in value from one another, or are negatively correlated.

For space correlation testing, the Pearson correlation coefficients and R2 testing are used. 

The Pearson correlation coefficient is a common measure of the correlation between two 

random variables X and Y. Pearson’s correlation reflects the degree of association between 

two variables, yielding values in the range from −1 to +1. A correlation of +1 means that 

there is a perfect positive association between variables, while a correlation of −1 means that 

there is a perfect negative association between variables. A correlation of 0 means there is no 

linear relationship between the two variables. R2 is a statistical measure of how well a 

regression line approximates data points. R2 is a descriptive measure between 0 and 1, where 

a value of 1.0 indicates a perfect fit. Thus, the closer the R2 value is to 1, the better the 

model.
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3.3.2. Performance metrics—In these studies, accuracy is used as the performance 

metric. Since we are applying these techniques to localized learning algorithms in WSNs, 

we supply a machine learning classifier1 with the imputed data, and measure the mismatch 

between the classifier’s categorization and the true category. Accuracy is defined as the 

number of correct categorizations divided by the total number of observations. To ensure a 

fair comparison, the parameters of the classifier were readjusted for each replacement 

strategy until the best performance is obtained.

In the conducted experiments, our spatial–temporal imputation technique is compared 

against the other techniques. To determine the significance of the differences in the results, 

the Student’s t-test is applied. The assumption of the test is that the underlying distributions 

of accuracies/errors are Gaussian, because of the Central Limit Theorem—as the number of 

testing sets approaches infinity, the distribution of the mean of accuracy/error approaches a 

Normal distribution.

3.3.3. Experiment with spatially–temporally correlated physical sensor data—
Our wireless sensor network consists of six Crossbow Motes [21], in which five serve as 

cluster members and one serves as a clusterhead that receives data from the cluster members. 

We distribute the five cluster members uniformly around the clusterhead in a typical office 

environment. All sensor nodes are within communication range of each other. The cluster 

members use light and microphone sensors as input to an on-board learning algorithm that 

classifies the current environmental state into classes. All learned classes from the cluster 

members are transmitted to the clusterhead through wireless communication. The 

clusterhead uses the class labels as input to its own localized learning algorithm. Like most 

existing classifiers, these localized learning algorithms on each cluster member and 

clusterhead are sensitive to missing data. While we only present results from a two-layered 

WSN in this experiment, we believe our approach is scalable to many clusters in a 

hierarchical fashion, since the localized learning would take place at each level, based on the 

class labels transmitted from the next lower layer.

The following experimental results are obtained from three sets of trials. In each trial, each 

sensor node has made 6500 observations. For testing time and space correlations, only the 

first trial of collected data is used, since the other two trials repeat the first trial and the 

environment settings do not change. For the purposes of correlation testing, samples with 

missing values are removed. All testing results have been made from a data set of 

approximately 1500 samples with no missing values.

The sensory data under the lab setting passed the Durbin–Watson test with a value of 0.0059 

with 99.5% confidence level. A DW value of less than 2 indicates there is a high correlation 

in time. The DW value obtained from the lab setting is near 0, which is evidence that the 

sensory data does have time correlation. The partial autocorrelations results show that the 

sensor data has high correlation with one previous data point, i.e., the lag 1 value is close to 

1; however, there is little association with 2 or more sensory observations made in the past, 

i.e., low lag 2–5 values (refer to [22] for more details on the test results).

1In this case, we used a Fuzzy ART classifier [20].
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To determine space correlation, the correlation coefficients between the sensors at each 

observation as well as R2 are calculated. The Pearson correlation coefficients between nodes 

show that the correlation coefficients between sensor nodes are close to 1, meaning that 

there are high positive associations between sensor nodes. This study further tested the 

goodness of fit of the model of one sensor’s observations replaced by other sensor’s 

observations. As an example, the entire observations made by sensor 1 are used to against 

the entire observations made by sensor 2 to obtain the R2 value. The R2 value is almost 

perfect (close to 1), which means if sensor 1’s reading is used to replace sensor 2’s reading 

when sensor 2’s observation is missing, it should result in high accuracy, due to the model 

fitness being high. The sensory data under this setting passed both the time and space 

correlation tests; therefore, the sensory data is highly correlated in time and space.

Fig. 1 shows the averaged accuracies and standard deviations of the different imputation 

techniques. We applied the Student’s t-test to the accuracy results for the spatial–temporal 

strategy compared against other imputation strategies. The Student’s t-test confirmed that 

the differences in these results are statistically significant, with a confidence level of 99.5%. 

The spatial–temporal imputation strategy (strategy 7) outperformed the other strategies. This 

is due to the fact that the sensory data in this experiment have high correlation both in time 

and space. If the nodes are densely deployed, the readings from nearby nodes are likely to be 

highly correlated. The system is able to achieve good performance with relatively low 

computational costs.

The experimental results show that the “do nothing” (strategy 1) has a better performance 

than a moving average of 5 (strategies 4 and 5), since the sensory data is highly correlated 

with the past 1 data point, not 5 data points (a high lag 1 value). It is important to use the 

correct time model, since it directly affects the imputation performance. Strategies 2 and 3 

just use a fixed value for missing data, which should not be expected to perform well. The 

EM-based imputation technique tries to find the best distribution for the observations in 

terms of likelihood; therefore, it has a relatively high accuracy. However, since the EM-

based imputation is computationally expensive in both time and space compared to other 

strategies, the performance gain does not have a clear advantage. In summary, the proposed 

simple imputation algorithm (strategy 7) works the best because the correct temporal and 

spatial models were used.

In previous work [22], we also explored the use of a spatial–temporal imputation technique 

for data that is not spatially or temporally correlated. Our findings showed that all of the 

possible imputation techniques perform poorly (around 30–40% accuracy) when the data 

have no correlations in time or space. Thus, since the proposed spatial–temporal imputation 

approach performs well with data that is time/space correlated, and no worse when the data 

is not correlated, it is the preferred method for imputation among the methods listed thus far.

Of course, as previously noted, this simple method is based on the assumption that the 

sensor correlations are proportional to the Euclidean distance between sensor nodes—an 

assumption that often does not hold. The results from this section show the importance of 

using the correct time and space models for the given application. An alternative approach 

would be to change the localized decision algorithm (e.g., learning classifier) to learn the 
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pattern of missing data; however, we have shown that this approach does not result in 

satisfactory performance [22], primarily due to the fact that the missing data pattern varies 

too much. An ideal approach, then, is to enable the network to learn an accurate time and 

space correlation model for the current application. The next section discusses our approach 

for learning the correct time and space correlation model.

4. Nearest neighbor missing data imputation for WSNs

As shown in the previous section, environmental data tends to be correlated in space and 

time. Therefore, searching among nearest neighbors whose values are spatially and 

temporally correlated yields good performance. In the previous spatial–temporal missing 

data technique, the system makes use of the spatial property of the WSN to impute the 

missing sensor value with the most common sensor reading within the same cluster. If no 

spatial data is available at the current time instance, the algorithm uses the missing sensor’s 

latest known value (using the temporal correlation assumption of the environment). 

However, the previous spatial–temporal imputation approach possesses some shortcomings. 

First, the correct time and space models have to be used in order for this technique to have 

good performance. Additionally, the time and space correlation tests must be performed 

offline. Further, it requires a brute-force search on available time and space correlated data, 

which can be expensive as the data size increases. Finally, the approach assumes sensors 

within a cluster have the same sensor readings, and the sensor value correlations are 

proportional to the Euclidean distances between the sensors. However, these assumptions 

may not be true in certain environments. For example, Fig. 2 shows sensors 1, 2 and 3 

deployed in two offices. Even though the Euclidean distance between sensors 1 and 2 is less 

than the distance between sensors 2 and 3, the sensor correlation between sensors 2 and 3 is 

higher than the sensor correlation between sensors 1 and 2, since sensors 2 and 3 are located 

in the same room while sensors 1 and 2 are located in two different rooms.

This section presents an automatic and efficient Nearest Neighbor (NN) imputation 

technique for missing data in WSNs that learns the correct time and space correlations 

between sensor nodes. The -Nearest Neighbor ( -NN) method is a common imputation 

method, in which  candidates are selected from the neighbors such that they minimize 

some similarity measure [22]. The -NN imputation approach has many attractive 

characteristics [24]: (1) it is a non-parametric method, which does not require the creation of 

a predictive model for each feature with missing data; (2) it can handle both continuous and 

categorical values; (3) it can easily deal with cases where there are multiple missing values; 

and (4) it takes into account the correlation structure of the data. The most important 

characteristic is its capability of using auxiliary information, such as space and/or time 

correlation between sensor node values. As already shown, using spatial correlations to 

impute missing data can yield high performances.

In WSN applications, to is important to find the closest match for missing values efficiently. 

Thus, our approach uses an efficient data structure for nearest neighbor imputation—the kd-

tree [25]. The kd-tree is one of the earliest and most popular data structures used for NN 

retrieval. The kd-tree improves the previous spatial–temporal missing data imputation 

method by automatically learning the sensor data correlations in time and space. The 
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advantages of using a kd-tree to store the sensor data are that the tree building process is 

data-driven, and the search process for each observation vector is localized, with a 

computation time of O(lg n), where n is the size of the training data. In the designed WSN 

sensor imputation process, a kd-tree is able to capture the spatial–temporal correlations 

automatically without human supervision; hence, human operators do not need to have any 

initial knowledge of the environment or of the sensor network deployment.

As illustrated in Fig. 3, the overall imputation procedure works as follows. First, there is an 

initial training period in which each data gathering node constructs a kd-tree using an initial 

dataset. Traditional approaches to kd-tree construction use variance and Euclidean distance 

to split k-dimensional data, with the underlying assumption that all dimensions have equal 

weights. However, in WSNs, some parts of the region may have more missing values than 

others, resulting in computed variances not correctly representing the true distribution. 

Therefore, the system should also consider the missing rates in building the kd-tree. To 

address this problem, we propose the use of weighted variances and weighted Euclidean 

distance measures, which are calculated as a function of the missing data rate for each 

dimension. These weight factors are then used to control the order of dimensions to be 

searched.

After the kd-tree is fully constructed, it can be used for online imputation. When the current 

sensor node data has missing values, the algorithm searches for its nearest neighbor(s) by 

traversing the kd-tree and replacing the missing values in the current sensor node data with 

the nearest neighbor values. The kd-tree search uses a weighted Euclidean distance that we 

develop to find the nearest neighbor values. Finally, the observation instance with no missing 

values can be used in the localized reasoning algorithm (such as a machine learning 

classifier).

The main contributions of this imputation method are twofold. First, a -NN missing data 

imputation technique is developed that enables the system to take advantage of space and/or 

time correlations in the sensor data. Second, a weighted dimension ranking procedure is 

defined to make the kd-tree data structure more suitable for missing data in WSNs. The 

following sections describe this approach in more detail.

4.1. The kd-tree construction

The kd-tree is a multidimensional data structure that decomposes a multidimensional space 

into hyper-rectangles. The constructed tree is a binary tree in which each node of the tree 

corresponds to a hyper-rectangle. Stored with each node are the following fields: splitting 

dimension number, splitting value, left kd-tree, and right kd-tree.

The procedure for constructing the kd-tree takes as input a training set Ω, where Ω contains n 
observation vectors made by k sensor nodes from time 1 to time tn. Each vector has k-

dimensions, and each dimension corresponds to one sensor node in the WSN. The kd-tree 

construction procedure then returns a kd-tree storing the training data Ω.

One caveat to this construction process is that the training set Ω does not contain all training 

instances, but only those training instances that contain complete (i.e., no missing) data. 
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Since incomplete data is not useful for imputation, adding them into the tree would slow the 

search time. Therefore, only complete data instances are used during construction of the kd-

tree. This approach assumes some reasonable upper bound on the percentage of missing 

data.

The conventional kd-tree data structure is constructed by splitting the dimension with the 

largest variance first, based on the training data. This is justified by realizing that, in general, 

the sensor with the largest variance may have the most influence on the classification 

process. Since the tree search time can be greatly reduced by starting from the dimension 

that varies the most (i.e., the largest variance) and skipping dimensions that do not change 

much, the typical kd-tree is built so that dimensions with the largest variance are at the top 

of the tree. The variance σ2 is defined as follows:

(3)

where x is a sensor’s readings and N is the size of the dataset. However, with missing values 

in a WSN, the kd-tree construction process also needs to account for missing values in a 

particular dimension. If the system uses an inaccurate estimation of the variance to construct 

the kd-tree data structure, then searching for the nearest neighbor takes longer. Our approach 

accomplishes this by weighting the variances of the sensor node data according to the 

percentage of missing data. These percentages are determined by analyzing the original 

training input that contains both complete and missing data.

The weighted variance of dimension k can be viewed as a scoring function for dimension k, 

in which the score is proportional to the variance and inversely proportional to the 

percentage of missing data. Thus, as the variance increases, the score increases as well; and, 

as the amount of missing data increases, the score decreases. Our approach is to set the 

weight of dimension k to:

(4)

with the score of that dimension set equal to σk × wk, where σk is the variance and Mk is the 

percentage of missing data for sensor k. This score function automatically accounts for both 

missingness and variance values. Note that the actual function may depend on the 

application; system designers can choose a different weight function if desired.

After choosing the split dimension, the system needs to determine the splitting value. 

Generally, it is good to choose the split to be in the middle of the points along the splitting 

dimension. There are many ways to accomplish this. Splitting at the median ensures a 

balanced tree. Splitting at the mean results in square hyper- rectangles, but may lead to an 

unbalanced tree. An unevenly distributed tree can result in long and skinny hyper-rectangles. 

Our approach chooses the splitting value to be the mean, µs, of the training observations of 

the splitting sensor, since it can be easily determined by the distribution of the data. Thus, 
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during the training process, the training vectors in Ω are recursively split into two subsets. 

One subset contains observations smaller than the splitting value µs, the other contains the 

observations larger than or equal to the splitting value µs. The splitting value µs is stored at 

the root and the two subsets are stored recursively in the two subtrees.

We now give an example to illustrate the importance of using weight factors for missing data 

in a WSN during kd-tree construction. Suppose there are two sensor nodes observing the 

environment. The system collects a set of 2-dimensional data points over time (shown in Fig. 

4a), where dimension/sensor x has a variance of 4.62 and dimension/sensor y has a variance 

of 1.64. Sensor x has a larger variance than sensor y. Therefore, the kd-tree first splits 

dimension x, then dimension y when no weights are used. Suppose sensor y has 

approximately 52% missing values at both the beginning and the end of the data collection 

period. A new kd-tree constructed by using the remaining data instances with no weights 

included is shown in Fig. 4b. With no weights included, the new variances become 0.39 and 

0.58 for sensors x and y, respectively. The new kd-tree first splits dimension y, then 

dimension x. However, this split is not consistent with the complete data case. This is 

because sensor y has missing values and its variance obtained from incomplete data is 

different from the complete data. By adding weights (i.e., w1 = (1–0%) = 1 and w2 = (1–

52%) = 0.42), and reconstructing the tree, the splitting order of the kd-tree is changed back 

to its original form (see Fig. 4c). The final scores (weighted variances) are 0.39 × 1 = 0.39 

and 0.42 × 0.58 = 0.28 for dimensions x and y, respectively. In this manner, the constructed 

kd-tree is more likely to resemble the true distribution of the sensor data.

The detailed kd-tree construction algorithm is given in Algorithm 1. The developed 

implementation closely follows the algorithm that is presented by Friedman in [17], except 

for the added CHOOSESPLIT function. The developed CHOOSESPLIT function chooses 

the splitting order based on weighted variances instead of unweighted variances.

Algorithm 1

BUILDKDTREE (Ω)

Input: A set of observations Ω, and a weight vector w.

Output: a kd-tree storing Ω.

1: if Ω is empty

2:     return NULL.

3: end if

4: if Ω contains one observation

5:     return a leaf storing this observation.

6: end if

7: s ← CHOOSESPLIT (Ω, w), where s is the splitting
dimension.

8: µs←mean of dimension s.

9: pLeft ← {x ∈ Ω : xs < µs}.

10: pRight ← {x ∈ Ω : xs ≥ µs}.

11: kdLeft ← BUILDKDTREE(pLeft).
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12: kdRight ← BUILDKDTREE(pRight).

13: return kd-tree with fields [s, µs, kdLeft, kdRight]

CHOOSESPLIT (Ω, w)

1: σ ← get variances of all dimensions in Ω.

2: score ← apply weights to all variances (i.e., σi × wi).

3: return j ← dimension of the max score.

4.2. Nearest neighbor imputation

When the current observation has missing values, the developed NN imputation algorithm is 

activated. The imputation works as follows: First, find the current observation’s closest 

match in the built kd-tree by using a NN search algorithm. Then, fill in each missing value 

with the corresponding value in the best match found. This approach is called a hot-deck 
imputation technique [24], and is one of the most commonly used missing data imputation 

techniques, in which missing values of incomplete records are filled in using values from 

similar, but complete records of the same dataset.

To find nearest neighbors, a NN search algorithm makes use of a pre-specified distance 

metric. The conventional distance used is Euclidean distance, defined as follows:

(5)

where, xi and xj are two data vectors with K-dimensions. The average squared distance 

between objects across all K-dimensions is given by:

(6)

However, in the presence of missing data, it is preferred to choose the splitting dimension in 

the kd-tree by using a weighted Euclidean distance, defined as follows:

(7)

where w(k) is the weight factor previously defined (i.e., a function of the percentage of 

missing data for the kth dimension). The average squared distance between objects for all K-

dimensions is given by:

(8)
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The following are some well-known properties of a weighted Euclidean distance:

• If the w(k) for each dimension is set to be the identity matrix, then the weighted 

Euclidean distance is equivalent to the conventional Euclidean distance.

• If the w(k) is set to be the inverse of the variance squared at dimension k, then the 

weighted Euclidean distance is proportional to the Mahalonobis distance with the 

diagonal covariance matrix.

If the system sets the weight to be two times the inverse of the variance squared at 

dimension k, then the system has demoted the importance of dimension k by half.

The developed kd-tree search algorithm closely follows the conventional NN search 

implementation [17] with slight modifications. First, the algorithm uses the weighted 

Euclidean distances given in Eq. (8) instead of the Euclidean distance to determine the 

closeness of previously-seen sensor data. When there are missing values from the current 

dimension, the algorithm needs to search both sides of the subtree, since, without any 

information on that dimension, the nearest neighbors could reside on either side of the 

(sub)tree. This is why keeping the dimensions with the most missing values towards the 

bottom of the tree during tree construction can help the system localize the search, which 

can improve the search time. Once the closest match to the current observation is found, the 

missing values can be filled in.

4.3. Complexity analysis

Our kd-tree construction and search algorithms are direct modifications of the algorithms 

presented in [17], and thus the algorithm complexities are not changed from the original. 

That is, for tree construction, the algorithm time complexity is O(kn lg n), where k is the 

number of sensor nodes that the data gathering node is listening from and n is the number of 

training instances.

The kd-tree search time is constrained by the amount of data that the algorithm can eliminate 

in each dimension. As shown in Fig. 5, based on the distance and mean (split point) for each 

dimension, the tree search algorithm decides to traverse the left or right side of the kd-tree; 

hence, at each iteration, one side of the subtree can be eliminated. It is important to choose 

the top levels of the kd-tree wisely, since they determine the tree search order and can help 

the system limit the amount of search early on. For complete data, the search time is O(lg n). 

In the -NN missing data imputation approach, each missing value corresponds to a data 

point in a dimension. If the dimension is at the top of the tree, the traversal can be expensive, 

since the search algorithm must continue to search both sides of the tree. If the missing value 

dimension is towards the bottom of the built kd-tree, the NN search is faster, since the 

system searches both sides of the subtree with fewer data points. Therefore, by using 

weights to lower the dimensions that have high missing rates toward the bottom of the kd-

tree, the system can speed up the nearest neighbor search process. The assumption made 

here is that if sensor nodes tend to miss values during the training period, they are likely to 

have similar missing rates online. The more one can constrain the search to part of the 

subtrees, the faster the system can find the NNs for the missing values.
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This approach can be compared to a brute-force NN search method (like the previous 

spatial–temporal imputation method in Section 3); if we assume no sorting is performed, 

then the search may require that each data vector be examined. To find the nearest neighbor 

of each point in a data set of n vectors requires O(n2) time using a brute-force method. With 

k sensor nodes, and an O(n lg n) sorting algorithm, the brute-force search therefore has a 

total search time of O(kn2).

We note that the kd-tree construction can be performed online as well. The simplest way of 

constructing the kd-tree online works as follows: for each complete data instance, add the 

new instance to the tree as in other search trees. Then, use the kd-tree construction algorithm 

as shown in Algorithm 1. This is a simple modification to the existing algorithm. If we 

assume that there are j complete instances in the kd-tree, then the online construction 

algorithm takes O(lg j) time to traverse and add the new instance to the tree. Reconstructing 

the kd-tree takes O(j lg j) time.

The space complexity of storing a kd-tree is linear, i.e., O(kn) where k is the number of 

sensors in a cluster and n is the number of observations in the past history. A system 

designer can always trade off space for time. Suppose one tree is constructed for each 

combination of missing sensor values. When an observation has a missing pattern in it, the 

tree with only that missing pattern can be searched. The total possible number of trees for k 

sensors is . Storing data into different trees may limit the search time; 

however, the space grows quickly with this method.

These computation and space requirements are considered to be acceptable, since they help 

to save communication costs in WSNs. If the developed missing data algorithm were not in 

place, the WSN would need to continue to broadcast and query the data transmitting sensor 

nodes repeatedly until all data are received. The extra energy requirements for these repeated 

messages are not acceptable in our resource-constrained WSNs.

Since we compare our approach (in the next section) with an EM-based imputation 

technique, we also include the time and space complexity analysis for EM in Table 1. The 

time and space complexities are calculated based on a single sensor node, and for finding 

one imputation value, where n is the number of observations made from time 1 and k is the 

number of sensor nodes within proximity (dimensions).mis the number of Gaussian 

mixtures used for the EM-algorithm. Like our spatial–temporal kd-tree approach, the EM 

imputation strategy also uses space linear in k and n. However, the time complexity for EM-

based imputation is much more than our kd-tree based imputation technique. If the EM-

based imputation assumes m mixtures of Gaussian models are used, this results in O(mkn) 

computation time for the E-step, and O(mkn) computation time for the M-step. The EM 

procedure continues until convergence, so these steps are repeated many times. The space 

cost for EM-based imputation is O(kn + 2m + m2), which includes storing all data points 

and Gaussian mixture models.
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4.4. Experimental evaluation of NN imputation technique using Volcano Monitoring 
Application

One objective of our research is to design a flexible NN imputation technique for resource 

constrained WSNs that is applicable to a wide range of applications. Thus, to validate our 

approach, we illustrate it in two applications—volcano monitoring and highway traffic 

monitoring. In the volcano monitoring application we show the system using a network of 

16 seismic sensors with a high sampling rate and a large volume of data, while in the 

highway traffic monitoring application, we show a network of 5 sensor nodes with a very 

sparse sampling rate and small amounts of data.

A volcano monitoring dataset was collected by Werner-Allen et al. at the Volcano 

Reventador. The detailed data collection process can be found in [5]. The data used in these 

experiments was obtained from a network of 16 Crossbow sensor motes. Each of the sensors 

continuously sampled acoustic data at 100 Hz over a 19-day deployment. Motes used an 

event-detection algorithm to trigger on interesting volcanic activity and initiate data transfer 

to the base station. Each data collection event is “triggered” when the event-detection 

algorithm exceeds a threshold. The 60 s download window contains approximately 30 s 

before the trigger and 30 s after the trigger. Note that the trigger may not be exactly centered 

at the intended event within the download window.

Our implementation of the kd-tree imputation approach with weighted variances and 

distances uses an adaptation of the kd-tree implementation in the WEKA [26] open source 

machine learning software. All of the following experiments have been conducted on a PC 

with an Intel Core duo processor E6320 running at 1867 MHz, with 2 GB of main memory.

4.4.1. Preprocessing the sensor data—During the deployment, the network recorded 

229 earthquakes, eruptions, and other acoustic events; however, only eight events have 

complete readings from all 16 sensor nodes. After discarding the data that does not have all 

16 sensor readings, only 8 min of data are left; this data is selected as the training and testing 

data. With this complete data and all 16 sensors’ readings, the ground truth can be obtained 

for the following missing data experiments.

Two 1-min events are chosen (one minute as training and one minute as testing data) to 

evaluate the developed imputation method in the following experiments. The training and 

testing data sets from the 16 sensor nodes’ acoustic signals are plotted in Fig. 6. The training 

data contains 7950 observations, and the testing data contains 4415 observations. To 

determine the impact of the developed -NN missing data technique on a localized machine 

learning classifier,2 we trained this unsupervised classifier using the training data and the 

testing data, to determine the best classification performance that could be achieved with 

complete data. This process resulted in the identification of 16 discrete categories.

We then removed data from the complete testing set to create new testing sets with missing 

sensor data. Based on observing the volcano dataset, if a sensor has missing values at the 

beginning of the fetch procedure, the values in that sensor would stay missing during the 

2Specifically, we used a FuzzyART classifier [20].
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entire procedure. Therefore, 15 missing datasets are generated from the testing data by 

randomly removing sensors. That is, the first missing dataset is created by randomly 

removing the data of one sensor from the original testing data; the second missing dataset is 

created by randomly removing the data from two sensors, and so on. The last missing 

dataset is created by removing the data from 15 sensors. Thus, the percentage of missing 

data for the newly generated testing cases are chosen to be one of the following percentages: 

1/16, 2/16, …, 15/16. We also generated 9 other missing datasets with different missing data 

percentages (i.e., 10%, 20%, …, 90%) for each sensor. The missing data are removed at 

random for each sensor based on the missing percentage.

We compare the accuracies of the developed NN missing data imputation technique to two 

EM-based imputation software packages. The first EM-based software is the state-of-the-art 

missing data imputation software Amelia II [11]. Amelia II makes use of a bootstrapping-

based EM-algorithm, which is a parametric approach to estimate missing values that 

assumes the complete data (that is, both observed and unobserved) is modeled by a 

multivariate Gaussian distribution. Note that our NN imputation is a nonparametric 

approach, which makes no assumption of the data distribution.

To compare the run times of the approaches, we found it difficult to use Amelia II as a 

comparative approach, since it is installed under R (a free software environment for 

statistical computing that runs under Linux). Instead, we compare our technique’s run time 

to that of another EM-based imputation software available in WEKA. For the EM 

imputation procedure, we used default parameter settings of the threshold for convergence in 

Expectation Maximization. That is, if the change in the observed data log-likelihood across 

iterations is no more than 0.0001, then convergence is considered to be achieved and the 

iterative process is ceased.

4.5. Performance metrics

To measure the quality of the imputed volcano data sets, micro-average accuracy and macro-

average accuracy metrics are used. Micro-average accuracy is defined as the ratio of the 

observations that have been correctly categorized (A), to the total number of instances that 

have been categorized (T). Macro-average accuracy is defined as the average accuracy for 

each class—that is, the ratio of the number of correctly categorized observations in category 

i to the number of observations in category i.

These two averaging procedures bias the results differently—micro-averaging tends to over-

emphasize the performance on the largest categories, while macro-averaging over-

emphasizes the performance of the smallest categories. Both of the averaging results are 

often examined simultaneously to get a good idea of how the developed algorithm performs 

across different categories.

To ensure a fair comparison, the parameters of the classifier have been readjusted for each 

replacement strategy until the best performances are obtained.
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4.6. NN imputation accuracies

As shown in Fig. 7, the performance of the developed nearest neighbor technique is 

competitive with that of the Amelia II missing data imputation software in terms of micro-

averaging accuracies. The kd-tree is constructed using approximately 8000 observations 

with 500 splits. The Amelia II missing data imputation software’s performances are 

averaged over 30 trials.

As shown in Fig. 8, the macro-average accuracies of the developed NN imputation technique 

are about the same as Amelia II. A shortcoming of Amelia II is that it assumes the 

underlying distribution is Gaussian. However, when the underlying distribution is not 

Gaussian, parametric approaches have a model mismatch problem. Additionally, parametric 

based approaches generally require large numbers of training instances to estimate the 

parameters of the models accurately. If the training instances are not sufficient to train the 

model, the imputation results would not be accurate. The developed NN approach is a non-

parametric approach, with no assumptions of the data distribution. Therefore, its 

performances could be better than the parametric approach in some applications. Note that 

instead of replacing missing data with a single estimated value, -NN imputation can also 

replace the missing value with  different values, for  greater than one. This technique is 

generally referred to as a Multiple Imputation (MI) method. MI-based approaches replace 

each missing value with a set of plausible values that represent the uncertainty about the 

correct value to impute. In this situation, the Amelia II imputation procedure has to iterate 

over patterns of missingness (that is, all the possible ways that a row has missing cells). 

Thus, the complexity grows quickly with the number of these patterns. On the other hand, 

for the developed kd-tree imputation approach, the cost remains linear when searching more 

nearest neighbors.

To determine the statistical significance of the comparison between our imputation technique 

and the EM approach, 10-fold cross-validations are performed on the training data. The EM 

imputation technique used in the following experiments is from the WEKA machine 

learning software. Rather than determining missing data accuracy in terms of the learning 

classifier’s performance, in this experiment, the Sum Squared Error performance is used to 

compare the imputation results between the NN imputation and the EM-based imputation 

algorithm. The Sum Squared Error is defined as ∑ (Y − Ŷ)2, where Y denotes the ground 

truth and Ŷ denotes the imputation value. Fig. 9 plots the mean and standard deviations of 

Sum Squared Errors of 1-NN imputation and EM imputation over different percentages of 

missing data. The mean and standard deviations are obtained from 10 sets of testing data. 

The 1-NN imputation has a better performance than the EM imputation technique in most 

cases except when 90% of the data is missing. To determine the significance of these results, 

the Student’s t-test is applied to the Sum Squared Error results for the 1-NN imputation 

technique compared against WEKA’s EM imputation strategy. This test confirms that the 

differences are statistically significant (except for the 90% missing data case), with a 

confidence level of 99.5%. The NN imputation strategy performed better than EM-

imputation in most cases because the training data set is correlated in time and space, 

whereas the EM-based imputation technique assumes there is only one Gaussian distribution 

in the training data. When there is too much data missing (e.g., 90% missing data), 1-NN 
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imputation and the EM-based imputation technique perform about the same because it is 

hard to find solutions when only a few sensors are available. In general, the distance error 

increases as the percentage of missing data increases.

The imputation times for each data instance of different imputation techniques are averaged 

over 10 sets of data and the results are shown in Fig. 10. Nearest neighbor imputation uses 

less time compared to the EM imputation method, due to the fact that NN imputation does 

not have to iterate through all the data until convergence. To determine the significance of 

these results, the Student’s t-test is applied to the time performances for the 1-NN 

imputation scheme compared against the EM-based imputation strategy. This test confirms 

that the differences in these results are statistically significant, with a confidence level of 

99.5%. Combining these results with those of Fig. 9, we can conclude that the -NN 

imputation is preferred over the EM-based imputation technique for solving the missing data 

problem in WSNs.

4.7. Timing comparisons for searching different NNs

Fig. 11 shows the average search time for -NN (  ∈ {1, 3, 5, 7, 9}) per observation on the 

pre-built kd-tree; specifically, Fig. 11a plots the search time for a different number of 

missing sensors, and Fig. 11b plots the search time for a different percentage of missing 

data. Note that the combinations of sensors missing are randomly selected in Fig. 11a, and 

that the missing data is randomly selected for different percentages in Fig. 11b. The search 

times for each nearest neighbor are averaged over 10 trials, and the variances of the search 

times are plotted as error-bars. In most of the cases, the variances are too small to notice. All 

search times per observation are between 1 and 5 ms. In general, the search time shows an 

upward trend as the volume of missing data increases. This is true for varying numbers of 

sensors missing and for varying percentages of data missing. The search time for finding 9 

nearest neighbors is usually slightly longer than the rest in both missing data cases. The 

search time for finding 1, 3, 5, and 7 NN are approximately the same. The search time 

curves in Fig. 11a are not as smooth as the curves in Fig. 11b. This is due to the 

combinations of missing sensors that are selected at random. Different combinations of the 

missing sensors create different search patterns for the kd-tree approach. Fig. 11b shows 

much smoother curves than Fig. 11a because the missing sensors for all the testing sets are 

selected at random. Depending on the sensor and combinations of sensors missing, some 

may take longer to traverse than others.

4.8. Timing comparisons after adding weights

To test the effect of the weight factor, the variances for all 16 dimensions (sensors) are 

evaluated. The sensor with the most variance (sensor 12) is selected, a very small weight is 

applied to its variance, and a kd-tree is built with the weighted variance. This selection is 

empirical and is intended to demonstrate the importance of the designed weight factor. In the 

original kd-tree, sensor 12 has the highest rank; however, by adding the weight factor, sensor 

12 ranks the last among all 16 dimensions in the new weighted kd-tree construction. The 

hypothesis is that the system uses more time to traverse the non-weighted kd-tree to find the 

nearest neighbors.
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Fig. 12 shows the average search time and standard deviation per observation for different 

percentages of missing data (although most of the standard deviations are too small to see). 

The solid lines denote the average search time for traversing kd-trees with added weights, 

while the dashed lines denote the average search time for traversing regular kd-trees with no 

weights added. The search times are averaged over ten trials. The performances are 

evaluated based on finding 1-NN with tree size d, where d ∈ {50;,500, 1000}. The weighted 

kd-trees take less search time than non-weighted kd-trees, because sensor 12 has the largest 

variance during training time; however, the testing data has missing values and the 

distributions are changed from the training data. It takes the system less time to localize its 

searches, because the system is able to eliminate more data as compared to the non-weighted 

kd-tree. Therefore, if the weights are used correctly, the system can localize the search faster.

The average search times for search 1-NN on regular kd-trees are 2.9 ms, 3.8 ms, and 4.2 ms 

for tree sizes of 50, 500 and 1000 splits, respectively. The average search times for search 1-

NN on weighted kd-trees are 2.8 ms, 3.4 ms, and 4.1 ms for tree sizes of 50, 500, and 1000 

splits, respectively. Thus, the percentage that the search time differs between the regular kd-

trees and the weighted kd-trees are approximately 3%, 10%, and 2% for tree sizes of 50, 

500, and 1000 splits, respectively. Note that the weight of only one dimension is changed 

(out of a total of 16 dimensions). Depending on the data distribution, re-ranking more 

dimensions may have more influence on the search time. The ranking of the dimensions in 

kd-tree construction according to the missing percentage is likely the most influential factor 

in the search time.

This experiment shows that using weights are very important to retrieve nearest neighbors 

from the kd-tree data structure. The weight factors require some knowledge of the 

environment’s and sensors’ behaviors. For example, if a sensor constantly misses values, or 

transmits noisy data, the system can re-rank the search tree by applying small weights to the 

noisy sensor, saving search time. The designed weighted variance and Euclidean distance 

offer an automatic way of changing the importance of each sensor in the network. With 

changes in the environment and sensor nodes (i.e., power outage, replacements of new 

sensors, etc.) the system designers can choose any functions to calculate weights as desired. 

The weighted variance of dimension i should be proportional to the variance of dimension i 
and inversely proportional to the missing percentage of dimension i. Therefore, using a 

weight parameter allows the system to control the ranking of the kd-tree. As the environment 

or the network structure changes, the system can re-evaluate the weights and construct a new 

kd-tree easily without re-programming all sensor nodes in the WSN.

4.9. Traffic monitoring application

To further evaluate the flexibility and effectiveness of our NN imputation technique for 

WSNs, we have evaluated our framework in the application of highway traffic monitoring 

using data from the Caltrans Performance Measurement System (PeMS) project. The traffic 

data of the PeMS system is collected in real time from over 25,000 sensors that span the 

freeway system across all major metropolitan areas of the State of California [27]. In a 

typical highway sensor deployment under PeMS, a single sensor is positioned in each 

highway lane, as illustrated in Fig. 13. While the PeMS system often has missing data, it is 
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difficult to compare our approach with other techniques if we do not have ground truth data. 

Thus, we chose a highway segment of PeMS sensor data that happened to not have any 

missing data, as well as being one of the most congested segments of the highway; we then 

simulate missing data (as described below), and compare it to the actual ground truth data. 

Specifically, for our study, we chose a highway segment on highway I-5 with speed flow 

sensor readings. This Vehicle Detector Station (VDS) is located at the CA PM = 6.284 

marker, San Diego County, Chula Vista, and the VDS is 1114748 in District 11. The chosen 

highway segment has five lanes, with each lane having one detector (as shown in 13b). The 

lane detection IDs are 1114737 to 1114741 for lanes 1 to 5, respectively.

We treat sensor data collected from each lane as an individual cluster member sensor node. 

We obtain data from the PeMS over a period of 14 days, from July 26, 2010 to August 8, 

2010. This dataset gives us 4032 data samples per detector, totaling 20,160 samples across 

the five sensor nodes. The sampling rate is once every five minutes (i.e., 12 samples per 

hour), and the unit for speed feature is mph. This data also includes ground truth labels that 

indicate when traffic incidents occur; this information is used to determine the accuracy of 

the algorithms we are comparing. To illustrate our proposed approach in a hierarchical 

sensor network, we simulated an additional clusterhead sensor node for these five traffic lane 

sensors. Thus, each of the five cluster member nodes would use the traffic data as input to 

our missing data imputation module to estimate missing values.

As previously mentioned, since there are no missing values from the chosen traffic 

monitoring highway segment, we simulate the missing data scenario by removing 

observations at random from the dataset for different percentages of missing data—i.e., 

10%, 20%, …, 90% missing observations from each sensor node. The complete dataset 

serves as the ground truth for the following missing data experiments. Fig. 14 shows the raw 

speed readings from the five sensors over a 14 day period.

To ensure the robustness of our approach, we split our data evenly into three parts and 

performed a 3-fold cross-validation. Each part of data has 1344 samples. Each part has a 

chance to be the training data, the validation data and the testing data. We have normalized 

the training & validation and training & testing data pairs between 0 and 1. Next, we process 

the validation sets and the testing sets by randomly removing data by specified missing 

percentages (e.g., 10%, 20%, …, 90%). We have generated 9 missing data sets with 10%, 

20%, …, 90% missing data from each sensor. The missing data are removed at random for 

each sensor based on the missing percentage.

We compare our NN imputation technique with the EM imputation algorithm from the 

WEKA software package. The EM imputation algorithm stopping criteria is when the log-

likelihood value is converged (i.e., less than 0.0001). Our NN imputation algorithm stops 

growing the kd-tree at 950 splits and only searches for 1 nearest neighbor. Fig. 15 shows the 

averaged Sum Squared Errors (SSE) of our 1-NN imputation vs. the EM-based imputation 

for different missing percentages. The errors were averaged over 3-folds of testing data. To 

determine the significance of these results, the student’s t-test is applied to the averaged Sum 

Squared Errors for the 1-NN imputation and the EM-based imputation. This test confirms 

that the differences are statistically significant, with a confidence level of 85%. From these 
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experimental results, our NN imputation technique performs slightly better than the EM 

imputation technique with an 85% confidence interval. Both techniques become less stable 

as the missing percentages increase. In this experiment, the EM-based imputation becomes 

unstable when the missing percentages are high, compared to our technique.

To determine the efficiency of our NN algorithm, we have calculated the total running time 

for imputation of all missing values in each testing trial. Then, the averaged total running 

times are computed for different missing percentages. Fig. 16 plots the averaged total 

running times of our NN imputation technique (green3) and the EM-based imputation 

technique (blue). The error bars indicate one standard deviation of time in seconds. Note that 

our developed algorithm is more efficient than the EM imputation technique, making it 

much more suitable for resource-constrained WSNs.

Next, we have analyzed our NN imputation performances by varying the number of nearest 

neighbors found. Fig. 17 shows the average SSE of -NN (  ∈ {1, 3, 5, 7, 9}). These 

experimental results show that the average SSEs of -NN (  ∈ {1, 3, 5, 7, 9} are about the 

same. In addition, as the missing percentage increases, the average SSE also increases.

To determine the computational efficiency of finding different numbers of nearest neighbors, 

we have collected the statistics of average total running time. Fig. 18 shows the average total 

running time of searching -NN (  ∈ {1, 3, 5, 7, 9}). We have applied the student’s t-test 

to each pair of nearest neighbor imputations’ average total running times. These tests 

confirm that the differences are statistically significant between 3-NN imputation and 5-NN 

imputation with a confidence interval of 80%; and the differences are statistically significant 

between 1-NN imputation and 3-NN imputation with a confidence interval of 60%. Since 

the searching time for finding different NNs for traffic monitoring data are almost about the 

same, 1-NN should be used for the traffic monitoring application because it has less 

computational steps compared to multiple-NNs.

In summary, we believe that the experimental results from the traffic monitoring application, 

combined with the volcano application, have illustrated that our proposed nearest neighbor 

imputation technique is flexible enough to be applied in very different application domains 

in WSNs, and can achieve a high performance. In both applications, we have used the state-

of-the-art EM-based imputation technique as the baseline in comparison to our proposed 

nearest neighbor imputation technique. Our experimental results have shown that the NN-

imputation techniques have comparable (sometimes better) performances with the EM-based 

imputation techniques in terms of micro/macro accuracies, and Sum Squared Errors. In 

addition, our NN-imputation technique out-performs the EM-based imputation technique in 

terms of computational time and space. This is mainly because our technique uses a online 

kd-tree that takes the advantage of the fact that the sensor network data tends to be 

correlated with time and space. We further improve the search performances of the existing 

kd-tree by adding a weighted Euclidean distance metric to consider both variations in sensor 

values and the missing data percentage of sensor nodes. These results also show that EM-

based imputation techniques are not appropriate for WSNs for 2 main reasons: (1) the EM 

3For interpretation of color in Fig. 16, the reader is referred to the web version of this article.
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algorithm is expensive for resource-constrained sensor nodes, both in computational time 

and space; and, (2) the EM imputation technique is an offline method, which does not suit 

our online monitoring needs in environmental applications. Therefore, our NN imputation 

technique is more suitable for resource-constrained WSNs.

5. Conclusion

The environments that WSNs operate in tend to be both time and space correlated. A novel 

spatial–temporal missing data imputation technique has been developed that takes advantage 

of such correlations. We studied several alternative missing data imputation strategies to 

illustrate the potential of spatial–temporal missing data imputation. The experimental results 

show that making use of time and space information to estimate missing values allows the 

system to achieve high accuracy. However, the results also show that using the correct 

spatial–temporal model is important to achieve high performance. Thus, we developed a 

nearest neighbor imputation technique that learns the true temporal and spatial correlations 

among the sensor nodes. The NN imputation approach organizes a set of temporally and 

spatially correlated data into a kd-tree. To impute missing values, the system traverses the 

constructed kd-tree to find the nearest neighbor(s) of the querying data instance and replaces 

the missing values with the nearest neighbors. Unlike traditional kd-trees, a weighted 

Euclidean metric is developed that considers the probability of missing values during tree 

construction and search. We compared our technique with state-of-the-art EM-based 

imputation approaches, showing that our approach achieves similar accuracy while requiring 

much less computation, and achieving faster search times. These characteristics of our 

approach result in an imputation technique that is highly suitable for resource-constrained 

WSNs. Since our approach is a non-parametric technique that makes no assumptions of the 

underlying distribution of the data, it should be expected to achieve good performances in a 

wide variety of WSN applications.
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Fig. 1. 
Accuracies of different imputation techniques, with the x axis indicating the strategy 

number. Error bars indicate one standard deviation. (Refer to the list in Section 3.2 for the 

definitions of the strategies.)
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Fig. 2. 
Correlations between sensors are not necessarily proportional to their Euclidean distance. 

Sensors 1, 2 and 3 are deployed into two offices. Even though the Euclidean distance 

between sensors 1 and 2 is smaller than that between sensors 2 and 3, the sensor correlation 

between sensors 1 and 2 is lower than the correlation between sensors 2 and 3.
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Fig. 3. 
Overall view of the NN imputation approach. Top: The training procedure for constructing 

the kd-tree. Bottom: The imputation process when part of the current observation values are 

missing. The imputation procedure is a NN kd-tree search.
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Fig. 4. 
An example illustrating the use of the weight function. See text for details.
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Fig. 5. 
An example of a kd-tree search. At each level/dimension, eliminate some part of the tree 

based on the distance.
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Fig. 6. 
Acoustic sensor readings from all 16 sensors: (a) shows the training data to build kd-trees, 

and (b) shows the testing data.
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Fig. 7. 
Micro-averaging of -NN (  ∈ {1, 3, 5, 7, 9}) vs. Amelia II.
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Fig. 8. 
Macro-averaging of  − NN(  ∈ {1, 3, 5, 7, 9}) vs. Amelia II.
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Fig. 9. 
The Sum Squared Error of 1-NN vs. EM-based imputations. The averaged Sum Squared 

Error and standard deviations are obtained from 10-fold cross-validation on the training data. 

1-NN imputation has less Sum Squared Errors than the EM-based imputation method except 

in the case of 90% missing data.
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Fig. 10. 
The imputation times of 1-NN imputation vs. EM-based imputation for estimating each data 

instance. The average time and standard deviations are obtained from 10-fold cross-

validation on the training data. For all missing percentages, 1-NN imputation has much 

better imputation time than the EM-based imputation method.
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Fig. 11. 
Average search time per observation for -NN (  ∈ {1, 3, 5, 7, 9}), where (a) shows the 

search time for different numbers of sensors missing. The missing sensors are selected at 

random. (b) Shows the search time for different percentages of missing data. The search 

times are averaged over 10 trials. Error bars plot the standard deviations of search time. The 

missing data are selected at random.
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Fig. 12. 
Search time per observation for finding 1-NN from kd-tree sizes. The regular kd-trees are 

plotted using dashed lines and the weighted kd-trees are plotted using solid lines. Standard 

deviations are also shown, although most of them are too small too see.
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Fig. 13. 
The Vehicle Detector Station 1114748 is located in District 11, San Diego County, Chula 

Vista, I5-North CA PM = 6.284 (a); (b) shows sensor displacements. Both figures are from 

the PeMS website [27].
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Fig. 14. 
The raw traffic data from the VDS 1114748. There are five sensor nodes collecting speed 

readings over a period of 14 days.
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Fig. 15. 
The averaged Sum Squared Errors of the proposed NN imputation vs. the EM imputation for 

different missing percentages of the traffic monitoring dataset. The Sum Squared Errors 

were averaged over 3-folds of testing data.

Li and Parker Page 40

Inf Fusion. Author manuscript; available in PMC 2017 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 16. 
The average running time of the proposed NN imputation vs. the EM imputation for 

different missing percentages of the traffic monitoring dataset. The running times are 

averaged over 3-folds of testing data.
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Fig. 17. 
The average Sum Squared Errors of the -NN (  ∈ {1, 3, 5, 7, 9} for different missing 

percentages of the traffic dataset. The Sum Squared Errors are averaged over 3-folds of 

testing data.

Li and Parker Page 42

Inf Fusion. Author manuscript; available in PMC 2017 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 18. 
The average total time of the -NN (  ∈ {1, 3, 5, 7, 9} for different missing percentages of 

the traffic dataset. The Sum Squared Errors are averaged over 3-folds of testing data.
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Table 1

Comparison of EM and kd-tree imputations.

Imputation Time Space

kd-tree Construct: O(kn lg n) O(kn)

Search: O(lg n)

EM-based E-step: O(mkn) O(kn + m2)

M-step: O(mkn)

Iterate E and M steps until convergence
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