
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Mayhua-López, E., Gómez-Verdejo, V. & Figueiras-
Vidal, A. R. (2015). A new boosting design of Support
Vector Machine classifiers. Information Fusion, 25,
63–71.

DOI: 10.1016/j.inffus.2014.10.005

© 2014 Elsevier B.V. All rights reserved.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.inffus.2014.10.005

A New Boosting Design of Support Vector Machine
Classifiers

Efráın Mayhua-Lópeza, Vanessa Gómez-Verdejob, Ańıbal
R. Figueiras-Vidalb

a
Universidad Católica San Pablo, Arequipa, Perú.

b
Department of Signal Theory and Communications, Universidad Carlos III de Madrid,

28911 Madrid, Spain.

Abstract

Boosting algorithms pay attention to the particular structure of the training

data when learning, by means of iteratively emphasizing the importance of

the training samples according to their di�culty for being correctly classified.

If common kernel Support Vector Machines (SVMs) are used as basic learners

to construct a Real AdaBoost ensemble, the resulting ensemble can be easily

compacted into a monolithic architecture by simply combining the weights

that correspond to the same kernels when they appear in di↵erent learners,

avoiding to increase the operation computational e↵ort for the above poten-

tial advantage. This way, the performance advantage that boosting provides

can be obtained for monolithic SVMs, i.e., without paying in classification

computational e↵ort because many learners are needed. However, SVMs are

both stable and strong, and their use for boosting requires to unstabilize and

to weaken them. Yet previous attempts in this direction show a moderate

success.

In this paper, we propose a combination of a new and appropriately

designed subsampling process and an SVM algorithm which permits sparsity

October 12, 2014

*Manuscript
Click here to view linked References

control to solve the di�culties in boosting SVMs for obtaining improved

performance designs. Experimental results support the e↵ectiveness of the

approach, not only in performance, but also in compactness of the resulting

classifiers, as well as that combining both design ideas is needed to arrive to

these advantageous designs.

Keywords: Classification, Real AdaBoost, subsampling, Support Vector

Machines, Linear Programming, ensemble classifiers, boosting.

1. Introduction

1.1. Background

The concept of Maximal Margin (MM) for classification purposes was

introduced by Vapnik in his works on statistical learning [1–3]. The applica-

tion of the Representer Theorem [4] and the Lagrangian formulations of its

overlapping class versions originated the Support Vector Machines (SVMs)

[5–10], an appreciated family of algorithms to optimizes a unique extremum

functional which much deserve the general interest and the wide use they

have found, even in other research areas, such as some regression forms in

Digital Signal Processing (DSP) [11–14].

The basic standard form of the optimization for designing a binary SVM

classifier is:

min
w,b,{⇠(l)}

"
1

2
kwk2 + C

LX

l=1

⇠
(l)

#

s.t. y
(l)
⇥
hw,�(x(l))i+ b

⇤
� 1� ⇠

(l)
, l = 1, . . . , L

⇠
(l) � 0, l = 1, . . . , L

(1)

2

where {x(l)
, y

(l)} are the labeled training examples, �(·) is some nonlinear

transformation (which is absorbed by means of the kernel trick), {⇠(l)} are

(non-negative) slack variables that serve to penalize out-of-margin sample

locations, and, finally, C > 0 is a regularization parameter that controls the

trade-o↵ between the margin inverse measure kwk2 and the overall penal-

ization. An alternative vision [15] considers that (1) minimizes the sum of

the slack variables plus kwk2
2 , which plays the role of a conventional regular-

ization term. The optimization is solved by applying Lagrange multipliers

and introducing the dual form, a simple problem which can be solved by

Quadratic Programming (QP) routines.

The above and many alternative forms, such as the quadratic penalization

[16], the ⌫-SVM [5] and the (dual) Linear Programming SVM (LPSVM)

[3, 17–20], provide sparse (i.e., excluding some of all the kernels that can

appear in the solution) and high performance solutions as linear combinations

of selected kernelsK(·,x(l)). There are other forms that propose more general

functional optimizations [21], requiring to apply other search algorithms.

Yet in all the cases the functionals to be optimized are “a priori” selected

according to the general characteristics of the database under analysis and

the interests of the designer, and this means that the intrinsic structure of the

training dataset is not taken into account –as it occurs for most conventional

training algorithms.

There are other machine learning processes that pay attention to the

structure of the databases, such as emphasized soft target methods [22] or

negative correlation learning [23, 24]. Among them, boosting algorithms

emerge as a fundamental concept to construct classifier ensembles. Boosting

3

ensembles are built step–by–step, and each new learner is trained to mini-

mize an overall error in which training examples receive a weight which is

selected with the value of a exponential marging measure of the correspond-

ing classification output of the ensemble which has bean built until adding

this learner, i.e., examples that are di�cult for being correctly classified re-

ceive more attention. So, the intrinsic characteristics of the problem are

considered for designing the ensemble, since training examples are empha-

sized according to the di�culty of classifying them in a correct manner. On

the other hand, the outputs of the learners are linearly combined. Note that

this means that, if SVMs are used as learners, each kernel of each learner con-

tributes to the overall output with its output value multiplied by a number (a

weight parameter), and the overall output simply adds these contributions.

After the pioneer AdaBoost (for binary output learners) [25] and Real Ad-

aBoost (for continuous output learners) (RAB) [26] forms, a huge quantity

of modifications and extensions have been proposed [27].

As for other ensembles, learner diversity (i.e., di↵erences among their

outputs in response to the same input) is necessary for the success of boost-

ing algorithms. This diversity comes from the emphasis e↵ect on unstable

architectures, those sensitive to moderate changes in the training set. A key

aspect of these architectures is the use of weak learners, i.e., units with mod-

erate classification capabilities. This seems to be the origin of a relevant and

somewhat surprising characteristic of boosting ensembles, their resistence to

overfitting [28–30]. It is true that overfitting can appear under some di�cult

conditions, such as a high level of noise or if many outliers are included in

the training set [31–33]. However, there are several modified algorithms that

4

reduce the corresponding negative e↵ects [34–41].

1.2. Boosting SVM learners

Since the output of a boosting ensemble is a linear combination of its

learners’ outputs and the output of each SVM learner is a linear combina-

tion of its kernels’ outputs, the overall output can be reduced to a linear

combination of kernels’ outputs, i.e., to a monolithic SVM structure. This is

a promising avenue to design monolithic SVM classifiers with improved per-

formance, which comes from the beneficial e↵ects of the boosting emphasis

process. But SVM classifiers are essentially stable –they are linear in the re-

duced kernel Hilbert space–, and they are also strong, and these facts provoke

that a direct use of SVM as RAB learners does not improve the classifica-

tion capabilities of the block designs, and in many cases these capabilities

are even reduced [42]. Boosting designs require unstable and weak enough

learners to obtain advantages of the step–by–step emphasis mechanism; if

learners are stable, diversity do not appears, and if learners are strong, the

process finishes in few steps. And to weaken SVM classification units by in-

tentionally selecting “ad-hoc” values for the regularization parameters does

not constitute a reasonable alternative, because the resulting designs tend

to keep the same kernels (the same Support Vectors), and this reduces the

necessary diversity.

On the one hand, this has conducted the recent research for designing

boosting ensembles having local approximation capabilities along other di-

rections, such as the indirect way [43], or including local gates in the aggrega-

tion step of global approximation learners [44], or even MM designs for other

local-global big monolithic architectures that come from modifying other

5

ensembles [45, 46]. The resulting ensembles have excellent performances,

but they are computationally demanding because learners remain separate

[43, 44] or the number of elements becomes much higher than the number of

training samples [45, 46].

On the other hand, several modes of unstabilizing and weakening SVM

learners have been proposed. There are two main design approaches for it.

The first family of these designs introduces diversity by varying the ker-

nel characteristics along the growth of the ensemble [47–50]. In particular,

the Diverse AdaBoost SVM (D-ABSVM) [50], which employs the traditional

Gaussian kernels, additionally demands that each new learner presents some

diversity with respect to the previous ones to be added to the ensemble. Ob-

viously, this approach does not allow to reduce the ensemble to a monolithic

equivalent. The second family of elaborated SVM boosting ensembles ap-

plies subsampling to obtain adequate SVM learners [51, 52]. One of them,

the AdaBoost Weakness SV (AB-WSV) [52] also uses ⌫-SVM designs [5] for

gaining an additional control of the characteristics of the base classifiers.

These two kinds of procedures to unstabilize and to weaken SVM learners

showed a moderate success and their performance evaluation is not conclusive

about their real advantage. The reasons seem to be the following. The

subsampling approaches are prone to su↵er the e↵ects of frequently including

the most missclassified samples in the di↵erent subsampled training sets,

presenting overfitting problems. With respect to the algorithms that vary

the kernel width, they can select outliers as SVs for large values of its width,

and noisy samples if the width is small.

Therefore, it is clear that, to exploit the potential performance advantage

6

of SVM boosting designs, much care must be paid to the auxiliary mecha-

nisms that are needed to introduce learner diversity and weakness. In this

paper, we propose a combination of two components to deal with this chal-

lenge. First, a sophisticated structured subsampling mechanism which avoids

the possibility of repeatedly selecting di�cult samples, thus keeping diversity

while weakening the learners, unlike other subsampling mechanism that have

been used to force diversity among ensemble units [53, 54]. Second, a spar-

sity inducing SVM training algorithm, LPSVM [3, 17–20], is reformulated

using a row subsampled kernel matrix to integrate the selected samples as

kernels while training with all available samples. LPSVM does not create

di�culties with weakening the learners and, at the same time, dual domain

LP helps to control the number of kernels that are included in the SVM so-

lution, contributing to the obtention of compact equivalent monolithic final

architectures.

We want to emphasize that we have selected the above two components

of our SVM boosting ensemble design procedure to e↵ectively deal with the

serious problems that appear when both diversity and weakness are required

for SVM boosting learners, and it is their combination what permits the

remarkable performance and compactness of the resulting designs, as the

experiments we present in this paper clearly indicate.

The rest of the article is organized as follows. A brief look at RAB

algorithm is included in Section 2. The proposed subsampled LPSVM for-

mulation is described in Section 3. Section 4 shows the performance results

of our approach in a number of benchmark problems, as well as the degrada-

tion that excluding one of the design components induces. The same section

7

discusses the e↵ects of sampling intensity and the computational e↵ort. We

close the paper with our main conclusions and some suggestions for further

research in Section 5.

2. A brief summary of Real AdaBoost

For the sake of clarity, we will restrict our work to binary problems. Mul-

ticlass problems can be addressed in an analogous manner by using multiclass

monolithic designs of SVMs [55, 56] and multiclass versions of boosting [57]

that are compatible with our formulation. To employ multiple binary formu-

lations (one vs. one, one vs. rest, or Error Correcting Output codes [58, 59])

is an alternative possibility.

Let {x(l)
, y

(l)}Ll=1 be the training examples, where x(l) 2 Rd is a d-

dimensional input and y
(l) 2 {�1, 1} is its corresponding label. Considering

the set of base classifiers {ft(x)}Tt=1, with ft(x) 2 [�1, 1], RAB constructs an

ensemble classifier by a linear combination of these base learners as:

FT (x) =
TX

t=1

↵tft(x), (2)

where ↵t � 0 is the weight assigned to the output of the t-th base classifier.

The ensemble decision is made according to the sign of FT (x).

To train each base learner, the RAB algorithm makes learning to pay

attention to the patterns according to an emphasis function over training

samples, Dt(l). The first learner considers equal weights for all data, D1(l) =

1/L 8l, and, iteratively, these weights are updated in such a way that the

emphasis value assigned to high erroneous samples is increased, whereas it

8

is decreased for low error examples. Specifically, the weights are updated in

accordance to the emphasis function

Dt+1(l) =
Dt(l)exp[�↵tft(x(l))y(l)]

Zt
, (3)

where Zt is a normalization factor to ensure
PL

l=1 Dt+1(l) = 1.

The combination parameter associated to the output of the t-th base

classifier is calculated by minimizing a bound of the exponential margin cost,

obtaining

↵t =
1

2
ln

1 + rt

1� rt
, (4)

rt being the edge of the base classifier, whose expression is

rt =
LX

l=1

Dt(l)ft(x
(l))y(l). (5)

[26, 27] provide further details.

3. Training SVMs as RAB learners

3.1. Linear Programming SVM

The LPSVM [3, 17–20] is a modified version of the SVM formulation

where the L2 penalty over the solution vector w is replaced by a L1 norm

over its dual variables. To do so, we consider that the dual form solution

which appears using the Representer Theorem [4]

w =
LX

l=1

a
(l)�(x(l)), (6)

9

where �(·) is the corresponding mapping function <d ! RKHS, has the

form

o (x) =
LX

l0=1

a
(l0)

K(x(l0)
,x) + b. (7)

where K is the kernel �(x(l))>�(x), and we minimize the sum of the corre-

sponding slack variables and a regularization term which is the L1 norm of

the variables
�
a
(l0)

, arriving to the LPSVM formulation

min
a,b,⇠

(
kak1 + C

LX

l=1

⇠
(l)

)

s.t. y
(l)

"
LX

l0=1

a
(l0)

K(x(l0)
,x(l)) + b

#
� 1� ⇠

(l)
, 8l,

⇠
(l) � 0, 8l.

(8)

From this optimization problem, we obtain the optimum values of the

parameters a and b and, then, compute the LPSVM output for any pattern

according to

f (x) =
LX

l0=1

a
(l0)

K(x(l0)
,x) + b. (9)

It is important to note that, here, the role of parameter C has changed,

being now a trade-o↵ between the sum of slack variables and the level of

sparsity in a. Thus, it provides an easy mechanism to control the complexity

of discriminant function (9).

3.2. The proposed subsampling procedure

As previously mentioned, to adopt an appropriate subsample procedure

is a critical aspect in order to obtain high performance RAB designs when

using SVM base learners.

10

According to [60], when the emphasis criterion is included in the subsam-

pling procedure, there are three commonly used strategies: (1) Trimming,

which selects only samples with a high emphasis weight; (2) Unique Uniform

Sampling (UUS), where all samples have equal probability to be selected;

and (3) Weighted Sampling (WS), which assigns each sample a di↵erent

probability of being selected (depending on its emphasis weight), allowing

replacement process.

Considering the emphasis e↵ect during the subsampling process, trim-

ming and WS are clearly inappropriate for our purposes, because samples

that are far from the classification border will dominate. With respect to

UUS, it would guarantee diversity, but not a compact final machine; besides,

forgetting emphasized samples does not seem reasonable. But a combination

of WS and UUS appears as an appropriate strategy: It will take into account

compactness and, simultaneously, it can provide heterogeneous sample sub-

sets including samples that are easy for labeling correctly, and others that are

di�cult to assign to the right class. Consequently, we propose the following

new subsampling procedure.

Let L0 be the number of samples to be selected. At each training epoch,

samples are ordered according to their emphasis, and L
0 groups of the same

(or similar) number of samples are created according to that order. For

the next training epoch, one sample of each group is selected with equal

probability. Obviously, the resulting subset of examples is an appropriate

representation of the problem to be solved, because both correctly classified

and misclassified samples are included.

11

3.3. Training subsampled LPSVM base learners

Once we apply the above subsampling procedure, the set of samples that

are candidates to become SVs is accordingly indexed by IL0
, where L0 (< L)

is the number of samples in the subset. The subsampled LPSVM (SLPSVM)

is trained by solving the following optimization problem:

min
a,b,⇠

8
<

:
X

l02IL0
t

���a(l
0)
���+ C

LX

l=1

Dt(l)⇠
(l)

9
=

;

s.t. :

y
(l)

2

4
X

l02IL0
t

a
(l0)

K(x(l0)
,x(l)) + b

3

5 � 1� ⇠
(l)
, 8l,

⇠
(l) � 0, 8l.

(10)

We have included the emphasis term Dt(l) as a factor of the slack variable

⇠
(l), and IL0

t is the set of subsampled examples in round t.

Note that the vector of dual variables, a, can only have components in

the subset indexed by IL0
(not all the data are allowed to be SVs). How-

ever, the classification constraints are evaluated for all the training data,

i.e., optimization problem (10) tries to correctly classify all the data. As

we will check in the experimental section, the improved performance of the

proposed SLPSVM boosting ensemble, compared to other attempts of using

SVM learners with subsampled data sets [51, 52], relies on this new subsam-

pling procedure.

Finally, there are two issues to be clarified from a practical point of

view. First, the presence of absolute values of a
l0
t in (10) precludes the

use of standard toolboxes. Fortunately, this drawback can be easily over-

12

come by redefining dual variables as a
(l0)
t = a

(l0)
t+ � a

(l0)
t� , with a

(l0)
t+ , a

(l0)
t� � 0.

Thus, the 1-norm over the dual variables can be expressed as
P

l02IL0
t
|a(l

0)
t | =

P
l02IL0

t
(a(l

0)
t+ + a

(l0)
t�), because the optimization forces that at least one of these

terms, a(l
0)

t+ or a(l
0)

t� , is zero. Then, (10) can be converted to a linear program-

ming (LP) problem:

min
at,bt,⇠

8
<

:
X

l02IL0
t

⇣
a
(l0)
t+ + a

(l0)
t�

⌘
+ C

LX

l=1

Dt(l)⇠
(l)

9
=

;

s.t. :

y
(l)

"
X

l0

⇣
a
(l0)
t+ � a

(l0)
t�

⌘
K(x(l0)

,x(l)) + bt

#
� 1� ⇠

(l)
, 8l,

⇠
(l) � 0, 8l,

a
(l0)
t+ , a

(l0)
t� � 0, l

0 2 IL0

t ,

(11)

and it can be solved by any LP toolbox. After computing the optimal values

of {a(l
0)

t+ }L0
l0=1, {a

(l0)
t� }L0

l0=1, bt, the output of the t-th SLPSVM learner is given

by

ft (x) =
X

l02IL0
t

⇣
a
(l0)
t+ � a

(l0)
t�

⌘
K(x(l0)

,x) + bt. (12)

The output range (over training samples) of the SLPSVM has to be lim-

ited to the interval [�1, 1] in order to allow adding it to the RAB ensemble.

This can be easily achieved by dividing it by the maximum absolute value

over the training samples

f̃t (x) =
ft (x)

maxl=1,...,L |ft (x)|
. (13)

The final RAB-SLPSVM ensemble output is given by

FT (x) =
TX

t=1

↵tf̃t(x), (14)

13

and its sign indicates the decision.

We repeat that, as the experiments will make evident, it is the combi-

nation of our new, carefully designed subsampling scheme in order to force

diversity and weakness in the SVM learners, and their sparsity inducing LP

training the (double) reason for good results in performance and compact-

ness. Our advise is that any other successful approach in the same direction

must include the same kind of ingredients.

4. Experiments

We will compare the accuracy and operation computational load of the

proposed RAB-LPSVM with those of the SVM and LPSVM classifiers when

they are used as single classifiers. Five di↵erent boosting ensembles with

SVM learners are also considered for comparison purposes. The first two en-

sembles are the already mentioned D-ABSVM [50] and AB-WSV [52]. RAB-

SVM and RAB-LPSVM use SVMs and LPSVMs as learners, training them

with the emphasized (but no subsampled) data set. The last approach, RAB-

SSVM, uses subsampled versions of standard SVMs as learners. These last

three methods will permit to check whether the advantages of our method

are due to the use of LPSVM learners, to the subsamplig process, or to their

combination.

4.1. Experimental setup

4.1.1. Datasets

Twelve well-known problems will serve for conducting our experiments

just to permit an easy appreciation of the relevance of the results, but we

14

Table 1: Main Characteristics of the Benchmark Problems

Problem d L1/L�1 Train L1/L�1 Test

Abalone (Ab) 8 1238/1269 843/827

Breast (Br) 9 145/275 96/183

Contraceptive (Co) 9 506/377 338/252

Diabetes (Di) 8 172/296 96/204

Duke breast-cancer (Du) 7128 20/23 25/18

Ionosphere (Io) 34 101/100 124/26

Kwok (Kw) 2 300/200 6120/4080

Madelon (Ma) 500 1000/1000 300/300

Ripley (Ri) 2 125/125 500/500

Thyroid (Th) 5 43/97 22/53

Twonorm (Tw) 20 199/201 3504/3496

Waveform (Wa) 21 124/276 1523/3077

select them corresponding to problem of di↵erent characteristics (dimension,

database size, and di�culty). Ten databases are from the UCI repository [61]:

Abalone, Breast, Contraceptive, Diabetes, Duke Breast-cancer, Ionosphere,

Madelon, Thyroid, Twonorm, and Waveform. Kwok and Ripley are synthetic

problems from [62] and [63], respectively. Table 1 shows their main features

(d: dimension; L1/L�1: number of samples for the training and the test sets).

For the sake of brevity, these problems will be denoted with their first two

letters.

15

4.1.2. Machines

We use Gaussian kernels for all the machines. For all the designs but

D-ABSVM, their width � is the same, and its value and that of parameter

C are established by means of a 10 run, 5-fold cross-validation (CV) process

for subsampling designs and 1 run, 5-fold CV per partition for the rest, ex-

ploring 12 values logarithmically spaced in the ranges [10�2
, 105] for C and

h
10�1

p
d, 102

p
d

i
for �; i.e., C 2 {0.01, 0.04, 0.19, 0.81, 3.51, 15.2, 65.79, 284.8,

1232.85, 5336.7, 23101.3, 100000} and � 2 {0.1, 0.19, 0.35, 0.66, 1.23, 2.31, 4.33,

8.1, 15.2, 28.5, 53.4, 100}
p
d. This is a value grid usually explored in stan-

dard SVM designs, because it covers wide ranges of values that are enough

for most practical cases (note that it can be expanded if necessary: When

the best performance is obtained for extreme values). The same CV process

serves to select L
0 for the subsampling designs, considering as possibilities

5%, 10%, 15%, 25%, 50%, and 75% of the total number of training data L.

Note that L
0 is the only additional parameter which our designs require to

be cross-validated (with C and �). The e↵ects of di↵erent values of L0 are

discussed in detail in Subsection 4.3.

The adjustment of the parameters of D-ABSVM is not straightforward:

A CV selection tends to provide underperforming ensembles. We have estab-

lished their values according to [50]: The parameter C is empirically fixed

to 50 (we have experimentally verified that exploring other values does not

improve results); the initial width �ini is set as the dispersion radius of the

samples in the input space; the minimal width �min is calculated as the

average of the minimum distances between samples; the step size �step is

empirically set to 2; and the diversity threshold has been set to 0.7.

16

In the case of the AB-WSV ensembles, a weakness constant � (used to

control the learner weakness) must be additionally fixed together with the

parameter ⌫ for ⌫-SVM learners. Following the advice of [52], both parame-

ters are selected by a CV process with 9 equally spaced values in the range

[0.1, 0.9], together with parameter �, which is explored in the same range

that for the above-mentioned methods.

The ensemble growth is stopped according to the approach proposed in

[38], which selects T as the first value holding

PT
t=T�9 ↵tPT
t=1 ↵t

< Tstop (15)

where Tstop has been empirically set to 0.3 for all the problems and algorithms,

except for problem Tw and AB-WSV ensembles, where 0.4 is the value for

the threshold parameter.

Finally, it is worth to say that all algorithms have been implemented

in MATLAB R2007b and the optimization problems have been solved with

MOSEK [64].

4.2. Performance analysis

Table 2 shows the Classification Error (CE) percentage rates and the

number of learners building up each ensemble (T) for SVM and LPSVM

single classifiers, D-ABSVM and AB-WSV ensembles, and the proposed

RAB-SLPSVM algorithm. RAB-SLPSVM results include averaged values

(together to standard deviations) calculated over 50 independent runs, be-

cause the implicit subsampling mechanism imposes it for a reasonable eval-

uation, while in the rest of the designs the SVM algorithms lead to a single

value (a deterministic solution). So, the comparison consists on checking if

17

the statistics of a distribution indicate if that distribution is located mainly

to the right (bigger) or to the left (smaller) than the single performance value

of the other designs. Note that (sample) mean and standard deviation are

just the parameters to decide about it. The best results are highlighted in

boldface.

Comparing their performances with those of the single classifiers, it is

clear that D-ABSVM and AB-WSV ensembles do not solve in a completely

satisfactory manner the di�culty to introduce diversity but in a few cases

(Ab and Ri for AB-WSV, and, with a slight advantage, Tw and Wa for

D-ABSVM). Later, we will see that these ensembles, and D-ABSVM in par-

ticular because the di↵erent widths of its kernels, have a very high number

of SVs, which is a clear practical disadvantage.

On the contrary, the proposed RAB-SLPSVM method o↵ers a better

performance than the best single SVM machine in all the problems but Tw

and Wa, for which there are ties. RAB-SLPSVM is also better than AB-

WSV in all the cases, and better than D-ABSVM but in Tw and Wa again,

the di↵erences being very small. The advantage of RAB-SLPSVM is really

important for Co, Di, Du, Io, and Ri. Thus, we can conclude that the

proposed algorithm successfully solves the diversity di�culty when working

with SVM learners.

To analyze the causes of the improved performance of the RAB-SLPSVM

ensembles, Table 3 shows the CE and number of learners of its di↵erent sub-

versions. SVM and LPSVM results are also included for easier comparisons.

All subsampling based methods include averaged values (together to standard

deviations) calculated over 50 independent runs. As predictable, Table 3

18

shows that the direct use of SVM machines for boosting (RAB-SVM, RAB-

LPSVM) is not e�cient, because these ensembles have better performance

than their single counterparts (SVM) in few cases (for Br and Ri, and also

for Th when considering the RAB-SVM design). This fact gives evidence of

the limitations that the stable character of SVMs creates. Other well known

properties can also be observed, such as the sparsity advantage of LP designs

and the inferior performance, in general terms, of standard LP formulations.

Now, let us discuss what are the consequences of excluding the use of

each one of the elements we combine in order to design high performance

ensembles. RAB-LPSVM is the scheme which does not include subsampling.

When comparing its results with those of the proposed algorithm, we see

ties just for Br, and worse performances for the rest of the problems we

are dealing with. Applying the conventional design for SVM base learners

(but keeping active the subsampling process), we obtain RAB-SSVM. Note

that these ensembles are always worse than RAB-SLPSVM. These evidences

support our conjecture of the necessity of an adequate combination of both

a sparsity inducing design and an appropriate subsampling to force diversity

and weakness in the base learners. Obviously, the overall results also support

the carefully selected subsampling method we are proposing.

Finally, a few words about other e↵ects of using LP. This not only provides

compact designs, as expected because sparsity is a well-known characteristic

of LP optimization procedures -we will discuss the specific result in the next

subsection,- but also it seems to produce low dispersion in performance, which

is an interesting additional advantageous characteristic.

19

4.3. E↵ects of subsampling intensity

Of course, all the above found advantages of the proposed RAB-SLPSVM

method are not for free. Additionally to the increase of the training com-

putational e↵ort with respect to the basic SVM or LPSVM, this ensemble

design requires CV not only of C and �, but also of the additional parameter

L
0. The e↵ects of failing in finding correct values of C and � are pretty well

known: Increasing C reduces sparsity, and increasing � reduces the general-

ization capabilities of the machine. Many textbooks elaborate on this, see

[5, 15], for example. Here, we will pay attention here to the e↵ect of using

di↵erent values of L0.

For this analysis, we have included in Table 4 the CE rates (averaged over

50 independent runs), as well as the ensemble sizes, T , for di↵erent values

of the subsampling parameter L0. Values selected during the CV process are

pointed out in boldface.

At the light of these results, the e↵ectiveness of the CV process, which

selects the optimum L
0 value in all the cases, is completely clear. It can also

be concluded that a coarse exploration, as that used in our experiments, gives

good results with an a↵ordable design computational e↵ort. Furthermore,

these results reveals that we could have reduced the explored range to mod-

erately low values of L0 (from 10% to 50%), even around to 15%, obtaining

similar results with an additional computational saving during the CV pro-

cess. At the limit, a direct selection of 15% seems to be a good rule-of-thumb,

because the results for all the problems but Du are practically optimal.

Regarding the sensitivity of the RAB-SLPSVM algorithm to this param-

eter, Table 4 shows as slights variations from the cross-validated value cause

20

minor CE increases in most of the problems. The only cases where the se-

lection of L0 seems to be critical are Du and Th, causing a CE increase of

around one percent. However, it is important to note that, despite the per-

formance degradation shown in these problems, RAB-SLPSVM would still

beat the CE rate of the remaining methods.

4.4. Computational aspects

To analyze the computational load of the proposed SVM ensembles we

can exploit the fact that they are monolithic structures and compact common

kernels of the di↵erent learners into a single one. In this case, as it is shown

in Table 5, we can compare the resulting number of kernels of AB-WSV

and our RAB-SLPSVM designs with those of single SVM classifiers, because

it indicates what is the relative computational e↵ort for classifying unseen

samples. We do not include in the corresponding Table 5 the D-ABSVM

ensembles in these comparisons because their SVM learners have not kernels

of a unique width and, consequently, cannot be compacted, but we clarify

that the total number of di↵erent centroids in these ensembles is higher than

the corresponding numbers for any of the tabulated cases and, consequently,

D-ABSVM ensembles require the highest classification computational e↵ort

for all the problems we are considering.

The favorable influence of LP based designs appears in RAB-SLPSVM,

whose number of di↵erent kernels is clearly lower than the numbers for AB-

WSV ensembles in all the cases. The increase of NSV in RAB-SLPSVM with

respect to LPSVM is at most of one order of magnitude (with an exception

for Ab, where it is lower). This is an a↵ordable price to obtain the clearly

relevant performance advantages that appear in most the analyzed problems.

21

And specially remarkable is the fact that the number of kernels of the com-

pacted RAB-SLPSVM is lower than that of the single standard SVM (more

powerful than the single LPSVM) for all the problems but Br, Io, and Wa,

for which they are very similar. So, we can say that the combination of the

subsampling procedure and the LPSVM training we are proposing not only

provides higher performance results via boosting, but, in general terms, more

compact arquitectures when compared with the monolithic SVM standard

designs.

For the sake of completeness, we have also run the di↵erent methods over

a 3.0 GHz Intel (R) Xeon (R) E540 computer with 8.0 GB of RAM and

we have measured the training (tr) and operation (to) times (milliseconds).

For comparison reasons, all the methods have been implemented with Mat-

lab using the MOSEK (Mosek, 2010) toolbox as the optimization tool and

the experiment has been repeated over 100 di↵erent runs. Figures 1 and

2 show the boxplot of these times (so that averaged values and their stan-

dard desviations are included) for the di↵erent methods under study in four

representative problems (Ab, Co, Kw, Ma).

On the one hand, classification time conclusions are similar to those re-

vealed by Table 5: RAB-SLPSVM architecture requires computational times

similar to those of standard LP-SVM and SVM classifiers. Furthermore,

we can now check the increased burden of D-ABSVM ensembles due to its

incapacity of fusing kernels.

On the other hand, training times are as expected, i.e., ensemble method

training time increases with the number of learners. However, due to the

fact they are using simplest learners, in some cases (see Kw or Ma) these

22

times are similar or, even, lower than those of LPSVM classifiers. Finally, it

is important to note that these times are in milliseconds, so the training of

any of these approaches is completely a↵ordable, and the di↵erences are not

significant.

(a) Problem Ab b) Problem Co

(c) Problem Kw d) Problem Ma

Figure 1: Boxplot of the averaged operation times (ms), including their standard devia-

tions, in four representative problems for all the ensembles under study.

23

(a) Problem Ab b) Problem Co

(c) Problem Kw d) Problem Ma

Figure 2: Boxplot of the averaged training times (ms), including their standard deviations,

in four representative problems for all the ensembles under study.

5. Conclusions

In order to built high performance and compact SVM designs by means

of Real AdaBoost ensembles, we propose in this paper a combination of a

new and carefully designed iteratively re-stratified subsampling procedure –

to force diverse and weak learners– and a dual domain LP training of learners

24

–to keep sparsity under control–. Experiments conducted with a number of

well-known benchmark databases provide evidence of the advantages of the

proposed method, both in performance when compared with single SVM

classifiers and with selected previous designs of RAB SVM ensembles, and in

compactness with respect to these ensembles and even to the standard single

SVM designs.

The price for getting these advantages is a higher computational demand

for designing the ensemble, which can be qualified of a↵ordable and that can

be further reduced given the relative insensitivity of the proposed designs to

the subsampling intensity.

To explore how to extend the proposed procedure to other kinds of maxi-

mal margin trainable learners and to other boosting algorithms is a promising

avenue for further research.

Acknowledgements

This work was supported in part by the Spanish MICINN under Grants

TEC 2011-22480 and TIN 2011-24533.

References

[1] V. Vapnik, Estimation of Dependences Based on Empirical Data,

Springer-Verlag, Secaucus, NJ, USA, 1982.

[2] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New

York, NY, 1995.

[3] V. Vapnik, Statistical Learning Theory, Wiley, New York, NY, 1998.

25

[4] G. Kimeldorf, G. Wahba, Some results on Tchebyche�an spline func-

tions, J. Mathematical Analysis and Applications 33 (1971) 82–95.

[5] B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond, MIT Press, Cam-

bridge, MA, 2002.

[6] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms, MIT

Press, Cambridge, MA, USA, 2001.

[7] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,

Cambridge University Press, New York, NY, 2004.

[8] L. Wang, Support Vector Machines: Theory and Applications, Springer,

New York, NY, 2005.

[9] I. Steinwart, A. Christmann, Support Vector Machines, Springer, New

York, NY, 2008.

[10] J. Shawe-Taylor, S. Sun, A review of optimization methodologies in

support vector machines, Neurocomputing 74 (17) (2011) 3609–3618.

[11] J. L. Rojo-Álvarez, M. Mart́ınez-Ramón, A. R. Figueiras-Vidal,

A. Garćıa-Armada, A. Artés-Rodŕıguez, A robust support vector al-

gorithm for nonparametric spectral analysis, IEEE Signal Processing

Letters 10 (2003) 320–323.

[12] J. L. Rojo-Álvarez, M. Mart́ınez-Ramón, M. de Prado-Cumplido,

A. Artés-Rodŕıguez, A. R. Figueiras-Vidal, Support vector method for

26

robust ARMA system identification, IEEE Trans. on Signal Processing

52 (2004) 155–164.

[13] J. L. Rojo-Álvarez, G. Camps-Valls, M. Mart́ınez-Ramón, E. Soria-

Olivas, Á. Navia-Vázquez, A. R. Figueiras-Vidal, Support vector ma-

chines framework for linear signal processing, Signal Processing 85 (12)

(2005) 2316–2326.

[14] M. Mart́ınez-Ramón, J. L. Rojo-Álvarez, G. Camps-Valls, J. Muñoz-

Maŕı, Á. Navia-Vázquez, E. Soria-Olivas, A. R. Figueiras-Vidal, Support

vector machines for nonlinear kernel ARMA system identification, IEEE

Trans. on Neural Networks 17 (2006) 1617–1622.

[15] C. M. Bishop, Pattern Recognition and Machine Learning (p. 332),

Springer, New York, NY, 2006.

[16] J. A. Suykens, J. Vandewalle, Least squares support vector machine

classifiers, Neural Processing Letters 9 (1999) 293–300.

[17] P. S. Bradley, O. L. Mangasarian, Feature selection via concave min-

imization and support vector machines, in: Proc. 15th Intl. Conf. on

Machine Learning, Morgan Kaufmann, San Francisco, CA, 1998, pp.

82–90.

[18] V. Kecman, I. Hadzic, Support vectors selection by linear programming,

in: Proc. Intl. Joint Conf. on Neural Networks, Vol. 5, Como, Italy, 2000,

pp. 193–198.

[19] W. Zhou, L. Zhang, L. Jiao, Linear programming support vector ma-

chines, Pattern Recognition 35 (2002) 2927 – 2936.

27

[20] J. Zhu, S. Rosset, T. Hastie, R. Tibshirani, 1-norm support vector ma-

chines, in: S. Thrun, L. Saul, B. Schölkopf (Eds.), Advances in Neural

Information Proc. Sys. 16, MIT Press, Cambridge, MA, 2004, pp. 49–56.

[21] S. Zhou, Which is better? Regularization in RKHS vs R
m on reduced

SVMs, Statistics, Optimization and Information Computing 1 (2013)

82–106.

[22] S. El Jelali, A. Lyhyaoui, A. R. Figueiras-Vidal, Designing model based

classifiers by emphasizing soft targets, Fundam. Inf. 96 (2009) 419–433.

[23] Y. Liu, X. Yao, Ensemble learning via negative correlation, Neural Net-

works 12 (1999) 1399–1404.

[24] Y. Liu, X. Yao, Simultaneous training of negatively correlated neural

networks in an ensemble, IEEE Trans. on Systems, Man, and Cybernet-

ics, Part B: Cybernetics 29 (1999) 716–725.

[25] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting, J. Computer Sys. Sciences 55

(1997) 119 – 139.

[26] R. E. Schapire, Y. Singer, Improved boosting algorithms using

confidence-rated predictions, Machine Learning 37 (1999) 297–336.

[27] R. E. Schapire, Y. Freund, Boosting: Foundations and Algorithms, MIT

Press, Cambridge, MA, 2012.

[28] H. Drucker, R. E. Schapire, P. Simard, Boosting performance in neural

28

networks, Intl. J. of Pattern Recognition and Artificial Intelligence 7

(1993) 705–719.

[29] Y. LeCun, L. D. Jackel, H. A. Eduard, N. Bottou, C. Cortes, J. S.

Denker, H. Drucker, E. Sackinger, P. Simard, V. Vapnik, Learning algo-

rithms for classification: A comparison on handwritten digit recognition,

in: J. H. Oh, C. Kwon, S. Cho (Eds.), Neural Networks: The Statistical

Mechanics Perspective, World Scientific, Singapore, 1995, pp. 261–276.

[30] H. Schwenk, Y. Bengio, Adaboosting neural networks, in: W. Gerstner,

A. Germond, M. Hasler, J. D. Nicoud (Eds.), Proc. 7th Intl. Conf. on

Artificial Neural Networks (LNCS 1327), Springer, Berlin, 1997, pp.

967–972.

[31] E. Bauer, R. Kohavi, An empirical comparison of voting classification al-

gorithms: Bagging, boosting, and variants, Machine Learning 36 (1999)

105–139.

[32] T. G. Dietterich, An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and random-

ization, Machine Learning 40 (2000) 139–157.

[33] L. Breiman, Prediction games and arcing algorithms, Neural Computa-

tion 11 (1999) 1493–1517.

[34] G. Rätsch, T. Onoda, K. R. Müller, Soft margins for AdaBoost, Machine

Learning 42 (2001) 287–320.

[35] G. Rätsch, M. K. Warmuth, E�cient margin maximizing with boosting,

J. Machine Learning Res. 6 (2005) 2131–2152.

29

[36] Y. Sun, S. Todorovic, J. Li, Reducing the overfitting of AdaBoost by

controlling its data distribution skewness, Intl. J. Pattern Recognition

and Artificial Intelligence 20 (2006) 1093–1116.

[37] V. Gómez-Verdejo, M. Ortega-Moral, J. Arenas-Garćıa, A. R. Figueiras-

Vidal, Boosting by weighting critical and erroneous samples, Neurocom-

puting 69 (2006) 679 – 685.

[38] V. Gómez-Verdejo, J. Arenas-Garćıa, A. R. Figueiras-Vidal, A dynami-

cally adjusted mixed emphasis method for building boosting ensembles,

IEEE Trans. Neural Networks 19 (2008) 3 –17.

[39] C.-X. Zhang, J.-S. Zhang, G.-Y. Zhang, An e�cient modified boost-

ing method for solving classification problems, J. Computational and

Applied Mathematics 214 (2008) 381 – 392.

[40] C. Shen, H. Li, Boosting through optimization of margin distributions,

IEEE Trans. Neural Networks 21 (4) (2010) 659–666.

[41] A. Aachad, A. Omari, A. R. Figueiras-Vidal, Neighborhood guided

smoothed emphasis for real adaboost ensembles, submitted for publi-

cation to Neural Proc. Letters.

[42] J. Wickramaratna, S. Holden, B. Buxton, Performance degradation in

boosting, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems

(LNCS 2096), Springer, Berlin, 2001, pp. 11–21.

[43] M. Kawakita, S. Eguchi, Boosting method for local learning in statistical

pattern recognition, Neural Computation 20 (2008) 2792–2838.

30

[44] E. Mayhua-López, V. Gómez-Verdejo, A. R. Figueiras-Vidal, Real Ad-

aBoost with gate controlled fusion, IEEE Trans. Neural Networks and

Learning Sytems 23 (12) (2012) 2003 –2009.

[45] A. Omari, A. R. Figueiras-Vidal, Feature combiners with gate generated

weights for classification, IEEE Trans. Neural Networks and Learning

Systems 24 (2013) 158–163.

[46] A. Omari, A. R. Figueiras-Vidal, Ensemble post-aggregation by means of

a gate-generated functional weight classifiers, Submitted to Information

Fusion.

[47] W. Wu, Z. Yanan, W. Linlin, An AdaBoost algorithm with SVM based

on nonlinear decision function, in: Proc. Intl. Conf. on Computational

Intell. and Natural Computing, Wuhan, China, 2009, pp. 22–25.

[48] N. Lima, A. Neto, J. de Melo, Creating an ensemble of diverse support

vector machines using AdaBoost, in: Proc. Intl. Joint Conf. on Neural

Networks, Atlanta, GA, USA, 2009, pp. 1802 –1806.

[49] T. Wei, Z. Qin, X. Cao, B. Leng, A boosting method based on SVM for

relevance feedback in content-based 3D model retrieval, in: Proc. 2nd

Intl. Conf. on Software Engineering and Data Mining, Chengdu, China,

2010, pp. 517–522.

[50] X. Li, L. Wang, E. Sung, AdaBoost with SVM-based component classi-

fiers, Eng. Appl. Artif. Intell. 21 (2008) 785–795.

[51] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, S. Y. Bang, Constructing support

vector machine ensemble, Pattern Recognition 36 (2003) 2757 – 2767.

31

[52] P. Rangel, F. Lozano, E. Garćıa, Boosting of support vector machines

with application to editing, in: Proc. 4th Intl. Conf. on Machine Learn-

ing and Applications, Los Angeles, CA, USA, 2005, p. 6.

[53] S. Muñoz Romero, J. Arenas-Garćıa, V. Gómez-Verdejo, Real AdaBoost

ensembles with emphasized subsampling, in: J. Cabestany, F. Sandoval,

A. Prieto, J. Corchado (Eds.), Bio-Inspired Systems: Computational

and Ambient Intelligence (LNCS 5517), Springer, Berlin, 2009, pp. 440–

447.

[54] M. Villamizar, J. Andrade-Cetto, A. Sanfeliu, F. Moreno-Noguer, Boot-

strapping boosted random ferns for discriminative and e�cient object

classification, Pattern Recognition 45 (2012) 3141 – 3153.

[55] Y. Lee, Y. Lin, G. Wahba, Multicategory support vector machines. The-

ory and application to the classification of microarray data and satellite

radiance data, J. of the American Statistical Assoc. 99 (2004) 67–81.

[56] Y. Ji, S. Sun, Multitask multiclass support vector machines: Model and

experiments, Pattern Recognition 46 (3) (2013) 914–924.

[57] J. Zhu, H. Zou, S. Rosset, T. Hastie, Multi-class AdaBoost, Statistics

and Its Interface 2 (2009) 349–360.

[58] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-

rithms, Wiley, Hoboken, NJ, 2004.

[59] L. Rokach, Pattern Classification Using Ensemble Methods, World Sci-

entific, Singapore, 2010.

32

[60] Z. Kalal, J. Matas, K. Mikolajczyk, Weighted sampling for large-scale

boosting, in: M. Everingham, C. J. Needham, R. Fraile (Eds.), Proc. of

the British Machine Vision Conference, British Machine Vision Assoc.,

Leeds, UK, 2008, pp. 42.1–42.10.

[61] A. Frank, A. Asuncion, UCI machine learning repository, University of

California, Irvine, School of Information and Computer Sciences (2010).

URL http://archive.ics.uci.edu/ml

[62] J. Y. Kwok, Moderating the outputs of support vector machine classi-

fiers, IEEE Trans. Neural Networks 10 (1999) 1018–1031.

[63] B. D. Ripley, Neural networks and related methods for classification, J.

Royal Statistical Society 56 (1994) 409–456.

[64] Mosek, The MOSEK Optimization Tools Manual Version 6.0 (Revision

66), MOSEK ApS, Copenhagen, Denmark, 2010.

33

Table 2: Classification Error (CE) percentage rates and number of learners (T) provided

by the algorithms SVM, LPSVM, D-ABSVM, AB-WSV, and RAB-SLPSVM.

SVM LPSVM D-ABSVM AB-WSV RAB-SLPSVM

Ab
CE(%) 20.1 20.0 22.4 19.4 19.1 ± 0.1

T � � 51.0 3.0 13.9 ± 1.8

Br
CE(%) 2.5 2.5 2.5 4.3 2.2 ± 0.2

T � � 69.0 7.0 10.1 ± 0.8

Co
CE(%) 28.3 28.6 33.9 35.3 27.9 ± 0.1

T � � 65.0 9.0 15.1 ± 0.5

Di
CE(%) 19.3 22.3 20.7 20.3 18.2 ± 0.3

T � � 95.0 7.0 21.0 ± 0.0

Du
CE(%) 13.9 14.0 15.3 14.0 12.0 ± 1.2

T � � 73.0 4.0 17.3 ± 0.6

Io
CE(%) 2.0 2.0 4.7 9.3 2.0 ± 0.7

T � � 191 8.0 23.5 ± 4.0

Kw
CE(%) 11.8 11.7 13.1 12.2 11.5 ± 0.0

T � � 10.0 2.0 16.9 ± 0.6

Ma
CE(%) 42.2 43.5 44.2 41.8 40.8 ± 0.6

T � � 73.0 14.0 9.0 ± 0.8

Ri
CE(%) 9.5 9.4 10.8 9.2 8.8 ± 0.2

T � � 22.0 8.0 13.9 ± 0.7

Th
CE(%) 5.3 6.7 12.0 5.3 4.5 ± 0.8

T � � 91.0 2.0 14.8 ± 2.3

Tw
CE(%) 2.5 2.8 2.4 3.2 2.5 ± 0.1

T � � 2.0 3.0 6.6 ± 0.5

Wa
CE(%) 10.5 11.2 10.4 13.1 10.5 ± 0.1

T � � 99.0 6.0 25.0 ± 0.1

34

Table 3: Performance analysis of the proposed RAB-SLPSVM method together to its

intermediate versions: RAB-SVM, RAB-SSVM and RAB-LPSVM, and the single SVM

and LPSVM classifiers. CE(%): Classification error percentage rates (average ± standard

deviation); T : Number of learners (average ± standard deviation)

SVM LPSVM
RAB- RAB- RAB- RAB-

SVM LPSVM SSVM SLPSVM

Ab
CE(%) 20.1 20.0 21.4 21.7 20.9± 0.4 19.1± 0.1

T � � 12.0 18.0 8.5± 1.0 13.9± 1.8

Br
CE(%) 2.5 2.5 2.2 2.2 3.2± 0.5 2.2± 0.2

T � � 8.0 10.0 9.6± 2.4 10.1± 0.8

Co
CE(%) 28.3 28.6 30.2 28.8 30.5± 1.4 27.8± 0.1

T � � 15.0 14.0 12.0± 1.3 10.2± 0.5

Di
CE(%) 19.3 22.3 20.7 26.0 22.3± 1.4 18.2± 0.3

T � � 9.0 16.0 7.9± 1.4 21.0± 0.0

Du
CE(%) 13.9 14.0 14.5 14.2 14.1± 1.1 12.0± 1.2

T � � 16 19 17.8± 1.2 17.3± 0.6

Io
CE(%) 2.0 2.0 2.0 2.7 3.5± 1.2 2.0± 0.7

T � � 18.0 18.0 11.4± 1.0 23.5± 4.0

Kw
CE(%) 11.8 11.7 11.8 11.8 13.2± 1.1 11.5± 0.0

T � � 13.0 15.0 7.6± 1.4 16.9± 0.6

Ma
CE(%) 42.2 43.5 43.6 44.7 42.3± 0.9 40.8± 0.6

T � � 20 21 17.1± 1.2 9.0± 0.8

Ri
CE(%) 9.5 9.4 8.8 9.2 11.8± 2.4 8.8± 0.2

T � � 7.0 12.0 9.6± 2.1 13.9± 0.7

Th
CE(%) 5.3 6.7 5.0 6.7 4.7± 1.1 4.5± 0.8

T � � 20.0 13.0 22.2± 1.6 14.8± 2.3

Tw
CE(%) 2.5 2.8 2.5 3.5 4.3± 1.4 2.5± 0.1

T � � 7.0 11.0 18.9± 2.9 6.6± 0.5

Wa
CE(%) 10.5 11.2 10.4 11.3 11.2± 0.2 10.5± 0.1

T � � 14.0 16.0 14.5± 0.6 25.0± 0.1

35

Table 4: Classification Error (CE) percentage rates and number of learners (T) provided

by the RAB-SLPSVM algorithm when di↵erent values of L0 are used.

5% 10% 15% 25% 50% 75% 100%

CE 21.9 ± 0.3 20.9 ± 0.2 19.1 ± 0.1 19.5 ± 0.1 21.2 ± 0.1 21.5 ± 0.1 22.1 ± 0.1
Ab

T 20.3 ± 0.9 18.3 ± 0.6 13.9 ± 0.1 17.1 ± 0.8 20.1 ± 0.3 21.3 ± 0.4 20.2 ± 0.3

CE 2.4 ± 0.3 2.2 ± 0.2 2.2 ± 0.2 2.3 ± 0.2 2.4 ± 0.2 2.4 ± 0.1 2.5 ± 0.1
Br

T 20.0 ± 0.1 10.1 ± 0.8 14.3 ± 0.7 14.2 ± 0.9 16.3 ± 0.9 14.5 ± 0.7 15.2 ± 0.9

CE 29.1 ± 0.4 28.7 ± 0.4 27.9 ± 0.1 28.8 ± 0.3 29.1 ± 0.1 29.2 ± 0.1 29.2 ± 0.1
Co

T 15.1 ± 1.2 10.3 ± 1.4 15.1 ± 0.5 13.5 ± 1.0 10.2 ± 1.5 11.2 ± 1.3 10.1 ± 1.5

CE 19.3 ± 0.5 18.5 ± 0.4 18.2 ± 0.3 19.1 ± 0.6 19.5 ± 0.2 19.7 ± 0.2 20.3 ± 0.2
Di

T 20.0 ± 0.7 25.1 ± 1.3 21.0 ± 0.0 20.1 ± 0.1 22.3 ± 0.2 21.3 ± 0.1 37.1 ± 1.7

CE 17.3 ± 1.2 17.2 ± 1.2 15.3 ± 1.3 14.2 ± 1.0 12.0 ± 1.2 13.3 ± 1.2 16.9 ± 1.4
Du

T 25.2 ± 0.7 30.5 ± 0.3 29.1 ± 0.9 15.0 ± 1.2 17.3 ± 0.6 18.5 ± 1.7 19.3 ± 1.2

CE 2.3 ± 0.9 2.2 ± 0.9 2.0 ± 0.7 2.1 ± 0.7 2.3 ± 0.8 2.5 ± 0.9 2.7 ± 0.9
Io

T 26.3 ± 4.5 22.1 ± 3.7 23.5 ± 4.0 22.6 ± 3.0 23.0 ± 2.5 22.5 ± 2.3 21.1 ± 3.2

CE 11.9 ± 0.1 11.7 ± 0.0 11.5 ± 0.0 11.7 ± 0.0 11.8 ± 0.0 11.8 ± 0.0 11.9 ± 0.0
Kw

T 17.1 ± 0.9 18.2 ± 0.5 16.9 ± 0.6 20.0 ± 0.5 19.3 ± 0.9 21.4 ± 0.5 20.7 ± 0.3

CE 45.3 ± 0.7 42.4 ± 0.8 40.8 ± 0.6 41.5 ± 0.7 43.2 ± 0.3 44.5 ± 0.2 44.9 ± 0.1
Ma

T 12.3 ± 0.9 14.5 ± 0.7 9.0 ± 0.8 17.3 ± 0.2 10.3 ± 0.3 12.4 ± 0.1 12.1 ± 0.3

CE 9.5 ± 0.4 9.2 ± 0.2 8.9 ± 0.2 8.8 ± 0.2 9.3 ± 0.1 9.5 ± 0.1 9.7 ± 0.1
Ri

T 16.2 ± 0.9 15.3 ± 0.5 14.3 ± 0.85 13.9 ± 0.7 18.0 ± 0.9 19.3 ± 0.5 19.0 ± 0.7

CE 6.7 ± 1.2 5.1 ± 1.2 4.5 ± 0.8 6.2 ± 1.0 5.7 ± 0.8 5.9 ± 0.8 6.3 ± 0.9
Th

T 16.3 ± 2.9 15.4 ± 2.0 14.8 ± 2.3 17.3 ± 2.5 18.4 ± 2.2 17.3 ± 2.1 20.1 ± 4.2

CE 2.7 ± 0.4 2.5 ± 0.1 2.6 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 3.0 ± 0.1 3.2 ± 0.1
Tw

T 7.9 ± 0.3 6.6 ± 0.5 8.3 ± 0.9 7.5 ± 0.3 8.2 ± 0.2 9.0 ± 0.7 9.3 ± 0.2

CE 12.1 ± 0.4 10.9 ± 0.1 10.5 ± 0.1 10.7 ± 0.1 10.9 ± 0.1 11.0 ± 0.1 11.3 ± 0.1
Wa

T 25.0 ± 0.2 26.3 ± 0.4 25.0 ± 0.1 23.4 ± 0.2 24.5 ± 0.5 26.2 ± 0.5 25.2 ± 0.9

36

Table 5: Number of di↵erent kernels (NSV) making up the SVM and LPSVM classifiers

and the AB-WSV and RAB-SLPSVM ensembles.

SVM LPSVM AB-WSV RAB-SLPSVM

Ab 1175 59 1374 16± 3

Br 50 4 278 59± 5

Co 578 27 710 265± 48

Di 264 31 275 94± 6

Du 43 19 36 36± 3

Io 121 26 104 170± 7

Kw 132 14 447 129± 7

Ma 186 77 1249 179± 10

Ri 91 16 183 88± 6

Th 85 20 100 65± 9

Tw 117 12 61 51± 4

Wa 121 16 271 136± 7

37

