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Abstract

Record Linkage is used to link records of two different files corresponding to
the same individuals. These algorithms are used for database integration.
In data privacy, these algorithms are used to evaluate the disclosure risk of
a protected data set by linking records that belong to the same individual.
The degree of success when linking the original (unprotected data) with the
protected data gives an estimation of the disclosure risk.

In this paper we propose a new parameterized aggregation operator and
a supervised learning method for disclosure risk assessment. The parame-
terized operator is a symmetric bilinear form and the supervised learning
method is formalized as an optimization problem. The target of the opti-
mization problem is to find the values of the aggregation parameters that
maximize the number of re-identification (or correct links). We evaluate
and compare our proposal with other non-parametrized variations of record
linkage, such as those using the Mahalanobis distance and the Euclidean dis-
tance (one of the most used approaches for this purpose). Additionally, we
also compare it with other previously presented parameterized aggregation
operators for record linkage such as the weighted mean and the Choquet
integral. From these comparisons we show how the proposed aggregation
operator is able to overcome or at least achieve similar results than the other
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parameterized operators. We also study which are the necessary optimiza-
tion problem conditions to consider the described aggregation functions as
metric functions.

Keywords: record linkage, data privacy, disclosure risk, supervised
learning, bilinear form, fuzzy measure, Choquet integral

1. Introduction

In this paper we introduce a new variation of the supervised learning ap-
proach for record linkage. This consists of a symmetric bilinear form and a
supervised learning approach. This aggregation function relies on a symmet-
ric weighting matrix and it can be considered a Mahalanobis-based distance
when the weighting matrix is positive semi-definite. We also present a couple
of supervised learning approaches adapted to this symmetric bilinear func-
tion. Both are different approximations to obtain a semi-definite weighting
matrix. Additionally, we study the previously proposed aggregators, the
weighted mean and the Choquet integral, and propose different problem for-
malizations to use them as distances. Finally, we present a comparison in
terms of accuracy and time between all disclosure risk approaches. Those
are the non-parameterized functions such as the Euclidean distance and the
Mahalanobis distance, the literature parameterized aggregators with their
corresponding proposed modifications and finally the proposed symmetric
bilinear approach.

The outline of this paper is as follows. Section 2 briefly introduces the
state-of-the-art and related work. In Section 3, we review some concepts
needed in the rest of the paper. Then, in Section 4, we review some standard
distances used in record linkage, two parametrized aggregation operators
used in previous works and finally the proposed bilinear function. In Section
5, we describe the optimization problem. That is, the supervised learning
approach for distance-based record linkage. The evaluation of the method in
the context of data privacy is done in Section 6. Finally, Section 7 presents
the conclusions of the paper.

2. Related work

Record linkage is the process of finding quickly and accurately two or
more records distributed in different databases (or data sources in general)

2



that make reference to the same entity or individual. This term was initially
introduced in the public health area in [1], when files of individual patients
were brought together using name, date-of-birth, and some other informa-
tion. In the following years, this idea was deeply developed in [2, 3, 4], and
nowadays it is a popular technique.

Record linkage is one of the existing preprocessing techniques used for
data cleaning [5, 6], and for improving data quality [7]. For example, record
linkage can be used to scrutinize databases to improve dirty data removing
duplicate records [8], correcting data entry mistakes, transcription errors,
and solving problems due to lack of standards for recording data fields, etc.

In addition, it is also a popular technique employed to integrate different
data sets that provide information regarding the same entities [9, 10]. For
instance, consider the linkability of a census dataset with health records. A
step forward in this direction is the merging of very large databases. A clear
example of this database integration is the initiative recently launched by the
UK government to make all its data available as RDF (Resource Description
Framework) with the purpose of enabling data to be linked together [11].
Similar initiatives also have been applied in the USA [12].

In the last years, record linkage techniques have also emerged in the data
privacy context. Many government agencies and companies are collecting
massive amounts of confidential data, such as medical records, income credit
rating or even several types of test scores. In order to perform different kind
of studies these datasets are analyzed by their owners or more commonly
by third parties, creating a conflict between individual’s right to privacy
and the society’s need to know. So, it is fundamental to provide privacy to
databases against disclosure of confidential information. Privacy Preserving
Data Mining [13] and Statistical Disclosure Control [14] research on methods
and tools for ensuring the privacy of these data. The idea behind all of
these developed methods is to modify statistical data, also called microdata,
so that they can be published without giving away confidential information
that can be linked to specific respondents and also achieve it with minimum
loss of detail. Record linkage permits the evaluation of the disclosure risk
of protected data [15, 16]. In this context record linkage could be applied
by an attacker, who tries to link his own information (original) with the
protected one to obtain some new and unknown information. If the links can
be established, the attacker can re-identify individuals from the protected
data, and the protection is said to be broken. This is also applicable to model
the worst-case scenario, where the attack attempts to link all records from the
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original data (the most comprehensive information an attacker can use) to
the protected data. This gives an estimation of the chances that an attacker
will be able to re-identify records in the protected data. The estimation is
usually used as a disclosure risk measure of the protection method applied to
protect the data. That is, the percentage of correctly linked records between
the protected dataset and the original dataset is taken as a measure for
the disclosure risk of the data. Thus, the higher the percentage of correctly
linked records, the higher the risk of disclosure. This approach to measure the
disclosure risk of protected data was initially introduced in [17] and adopted
in much of the subsequent literature such as [18, 16, 15]. Note also that
sampling is not taken into account in this approach, which means assuming
that the intruder knows the sampled individuals in the data set. This is a
common practice in the previously cited works.

In addition, Domingo-Ferrer and Torra [18] defined a general score to
qualitatively rank protection methods. This score is the combination of dis-
closure risk techniques, to evaluate the risk of re-identification, and other
techniques, which readily quantifies the information loss of a protected data
set using analytical measures (either generic or data-use-specific).

We introduce a new optimization problem for distance-based record link-
age and its application to data privacy. The performance of this approach
depends critically on a given distance. The choice of a distance over an input
space always has been a key issue in many machine learning algorithms. Due
to the problems of the commonly used Euclidean distance, which assumes
that each feature is equally important and independent from the others, dis-
tance metric learning has emerged as a research topic [19]. Although the
origins of metric learning can be traced in earlier works, Xing et al. [20] were
pioneers within this research area. Similar to our proposal, they parameter-
ize the Euclidean distance using a symmetric positive semi-definite matrix
Σ � 0 to ensure the non-negativity of the metric. Their algorithm maximizes
the sum of distances between dissimilar points, while keeping closer the set of
distances between similar points. However, despite its simplicity, the method
is scalable, because it has to perform many eigenvalue decompositions. [21]
proposed a method for learning distance metrics from relative comparisons
such as a is closer to b than a is to c. This relies on a less general Mahalanobis
distance learning in which for a given matrix a, only a diagonal matrix W is
learnt such that Σ = A′WA. More recently, [22] proposed a framework for
learning the weighted Euclidean subspace based on pairwise constrains and
cluster validity, where the best clustering can be achieved. Beliakov et al.
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[23] considered the problem of metric learning in semi-supervised clustering
defining the Choquet integral with respect to a fuzzy measure as an aggrega-
tion distance. The authors investigate necessary and sufficient conditions for
the discrete Choquet integral to define a metric. Weinberger et al. [24] pro-
posed a new classification algorithm, the Large Margin k-nearest neighbour
(LMNN), in which is learned a Mahalanobis distance. This metric is trained
with the goal that the k-nearest neighbors always belong to the same class
while examples from different classes are separated by a large margin. How-
ever, Sun and Chen [25] show that LMNN cannot satisfactorily represent the
local metrics which are respectively optimal in different regions of the input
space and they propose a local distance metric learning method, a hierarchi-
cal distance metric learning for LMNN, which first groups data points in a
hierarchical structure and then learns the distance metric for each hierarchy.
The authors use a classification algorithm, Large Margin Nearest Neighbor
(LMNN) to classify points in the hierarchical structure. The paper concludes
that hierarchical distance works well when the number of classes is large but
that it does not improve the results of LMNN when the number of classes is
small.

One of the most important challenges associated with supervised metric
learning approaches, specially in Mahalanobis-based distances is the satis-
faction of the positive semi-definiteness. In the literature there are different
approximations, from several matrix simplifications to modern semi-definite
programming methods within the operations research field. Some Σ simpli-
fications force it to be diagonal and so Σ is positive semi-definite if and only
if all diagonal entries are non-negative. This simplification reduces the num-
ber of parameters drastically and makes the optimization problem a linear
program. Higham [26] proposed an algorithm to find the nearest correla-
tion matrix, symmetric positive semi-definite matrix with unit diagonal, to a
given symmetric matrix by means of a projection from the symmetric matri-
ces onto the correlation matrices, with respect to a weighted Frobenius form.
Semi-definite programming (SDP), is a kind of convex programming which
evolved from linear programming. While, a linear programming problem is
defined as the problem of maximizing or minimizing a linear function subject
to a set of linear constraints, semidefinite programming is defined as the prob-
lem of maximizing or minimizing a linear function subject to a set of linear
constraints and a “semi-definite” constraint, a special form of non-linear con-
straints. Therefore, the semi-definite constraint is what differentiates SDPs
from LPs.
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Motivated by this research line some researchers started to work on su-
pervised metric learning approaches for disclosure risk assessment. These
methods rely on distance-based record linkage techniques and so, by means
of introducing must-link and cannot-link constraints and an aggregator op-
erator they are able to formalize an optimization problem. Thus, by using
global optimization mechanisms they are able to solve the optimization prob-
lem and get the aggregator parameters that maximize the number of correct
re-identification between records (individuals) from two datasets. This re-
search continues the line started by Torra et al. [27] where two different opti-
mization problems were presented: one relies on a weighted arithmetic mean
and other on the Ordered Weighted Aggregation (OWA) operator. Later on,
Abril et al. [28] improved the previous weighted mean supervised learning
approach and compared it with the current distance-based record linkage
technique. They also made an extensive disclosure risk comparison between
a large set of well-known protection methods. Besides, they show the rel-
evance of knowing the aggregation parameters for protection practitioners.
Afterwards, Abril et al. [29] proposed a similar supervised metric learning
approach, but this time using a fuzzy integral. That is, the Choquet inte-
gral as an aggregation operator, which permits the integration of a function
with respect to a fuzzy measure. They improved the re-identification accu-
racies achieved by standard distance-based record linkage methods as well
as by the previous presented approaches. Moreover, thanks to fuzzy mea-
sures they could extract much more information about the linkage process
than using the weighted mean. However, using the Choquet integral makes
the optimization problem much more complex, specially for the number of
problem constraints and the number of parameters to be found.

3. Preliminaries

In this section we review some ideas and definitions that are needed to
follow the rest of the paper. We explain the notation we use as well as how
the record linkage is applied in the data privacy area.

3.1. Record Linkage

As stated in the introduction, record linkage is a re-identification method
that links records in one file with records in another file that correspond to
the same individuals. There are two extensively used approaches of record
linkage.
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• Distance based record linkage (DBRL). This approach [30] links
each record a of a file X to the closest record b in a file X ′. The closest
record is defined in terms of a distance function.

• Probabilistic record linkage (PRL). In this case, the matching al-
gorithm uses the linear sum assignment model to choose which pairs
of records must be matched. In order to compute this model, the
EM (Expectation - Maximization) algorithm [31, 32] is normally used.
Informally, we consider records a and b of files X and X ′, respec-
tively, represented in terms of a set of variables V 1, . . . , Vn. That is,
a = (V1(a), . . . , Vn(a)) and b = (V1(b), . . . , Vn(b)). Then, we define a co-
incidence vector γ(a, b) = (γ1(a, b) . . . γn(a, b)), where γi(a, b) is defined
as 1 if Vi(a) = Vi(b) and as 0 if Vi(a) 6= Vi(b). According to some crite-
rion defined over these coincidence vectors, pairs are classified as linked
pairs (LP) or non-linked pairs (NP). This concrete method was intro-
duced in [33], although probabilistic record linkage was first presented
in [4].

The work in this paper is focused on distance based record linkage, which
is further described in Section 4.

3.2. Record linkage in data privacy

Record linkage is a common approach to disclosure risk assessment in
data privacy. It is used to model how an attacker links his information with
a published (protected) data set. We give a summary of this problem below.
See e.g., [16, 28] for details.

A dataset X can be viewed as a matrix with N rows (records) and V
columns (variables), where each row refers to a single individual. The vari-
ables in a dataset can be classified in two different categories:

• Identifiers : variables that can identify an individual unambiguously,
e.g., the passport number. Let Xid denote these variables in X.

• Quasi-identifiers : variables that are not able to identify a single indi-
vidual when they are used alone, but that can unequivocally identify an
individual when combining several of them. Among the quasi-identifier
variables, we distinguish between confidential (Xc) and non-confidential
(Xnc), depending on the kind of information they contain. For exam-
ple, the zip code is a non-confidential quasi-identifier and the salary is
an example of a confidential quasi-identifier.
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To avoid disclosure, when we want to publish a data set X, where X =
Xid||Xnc||Xc, a protection method should be applied to X, leading to a pro-
tected data set X ′ = ρ(X). This protection process is usually as follows;
first, a protection method ρ is used to protect the non-confidential quasi-
identifiers, i.e., X ′nc = ρ(Xnc). Second, to ensure the privacy of the individ-
uals the identifiers are either removed or encrypted and, their confidential
quasi-identifiers are not modified because they are the data of interest for
third parties. Therefore, the protected data set consists of X ′ = X ′nc||Xc.

In order to evaluate the disclosure risk of releasing ρ(X), we model the
behaviour of an attacker applying record linkage to the pair (X, ρ(X)). The
more records are re-identified, the larger the disclosure risk. This scenario,
which was first used in [18] to compare several protection methods, has been
adopted in other works like [15].

4. Distance-Based Record Linkage

The main point in distance-based record linkage is the definition of the
distance function used to match the records. Different distances can be found
in the literature, each obtaining different results. In this section we start re-
viewing two of the most frequently used distances on record linkage, the Eu-
clidean and the Mahalanobis distances. Then, we introduce the parametrized
distances, which we will use together with a supervised learning process to
obtain the parameters yielding the highest number of re-identifications. Ex-
amples of these parametrized distances are those based on the weighted mean
and the Choquet integral. In this vein we introduce a parametrized symmet-
ric bilinear function in which the parameters are represented by a weighting
matrix.

We adopt the definition of distance function and metric from [34], where
a distance function is defined in a less restrictive way than a metric.

Definition 1. Let X be a set. A function d : X × X → R is called a
distance (or dissimilarity) on X if, for all a, b,∈ X, there holds:

1. d(a, b) ≥ 0 (non-negativity)

2. d(a, a) = 0 (reflexivity)

3. d(a, b) = d(b, a) (symmetry)

Definition 2. Let X be a set. A function d : X×X → R is called a metric
on X if, for all a, b, c ∈ X, there holds:
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1. d(a, b) ≥ 0 (non-negativity)

2. d(a, b) = 0 iff a = b (identity of indiscernibles)

3. d(a, b) = d(b, a) (symmetry)

4. d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality)

Note that other works may consider the terms metric and distance func-
tion as the same concept (Definition 2). Then, those works are using terms
such as pseudo-metric or pre-metric in order to denote Definition 1.

Now that we have reviewed the properties required by a metric and a
distance function, we are going to survey some metrics used in record linkage.

We will use V X
1 , . . . , V X

n and V Y
1 , . . . , V

Y
n to denote the set of variables

of file X and Y , respectively. Using this notation, we express the values of
each variable of a record a in X as a = (V X

1 (a), . . . , V X
n (a)) and of a record

b in Y as b = (V Y
1 (b), . . . , V Y

n (b)). V X
i corresponds to the mean of the values

of variable V X
i .

Definition 3. Given two datasets X and Y , the square of the Euclidean
distance between two records a ∈ X and b ∈ Y for variable-standardized data
is defined by:

d2ED(a, b) =
n∑
i=1

(
V X
i (a)− V X

i

σ(V X
i )

− V Y
i (b)− V Y

i

σ(V Y
i )

)2

where σ(V X
i ) and V X

i are the standard deviation and the mean of all the
values of variable Vi in the dataset X, respectively.

It is well known that in the Euclidean distance all the variables contribute
equally to the computation of the distance. Because of that all points with
the same Euclidean distance to the origin define a sphere. There are other
metrics were this property does not hold. For example, the Mahalanobis
distance [35] allows us to calculate distances taking into account a different
variable contribution by means of weighting these variables. These weights
are obtained from the covariances between data variables. Because of this
rescaling, points at the same Mahalanobis distance define an ellipse around
the mean of the set of variables.

Definition 4. Given two datasets X and Y , the square of the Mahalanobis
distance between two records a ∈ X and b ∈ Y is defined by:

d2MDΣ(a, b) = (a− b)′Σ−1(a− b)
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where (a − b)′ is the transpose of (a − b) and Σ is the covariance matrix,
computed by [V ar(V X) + V ar(V Y ) − 2Cov(V X , V Y )], where V ar(V X) is
the variance of variables V X , V ar(V Y ) is the variance of variables V Y and
Cov(V X , V Y ) is the covariance between variables V X and V Y .

Any covariance matrix is a symmetric positive semi-definite1 matrix, so
d2MD satisfies the first metric requirement (Definition 2), because all co-
variance matrices are always positive semi-definite and it is known that the
inverse of a positive definite matrix is always positive definite too. That is,
for any vector v and a n×n positive definite matrix Σ the following inequality
v′Σ−1v > 0 is always satisfied.

Notice that from this definition it follows that when the covariance matrix
is the identity matrix, the Mahalanobis distance is reduced to the Euclidean
distance.

Let us now focus on the parametrized distances. We first introduce a
generic definition of a distance based on aggregation operators [36] and then
consider two particularizations of this generic distance.

The generic distance is based on the fact that the Euclidean distance has
the same results when it is multiplied it by a constant. Then, we express the
Euclidean distance (d2ED(a, b)) given in Definition 3 as a weighted mean of
the distances for the variables. For the sake of simplicity we consider the
square of the distances although it is clear that it is not a distance itself,
because it does not satisfy the triangle inequality.

To make it simple, we first define the difference between two variables
from two records taking into account the normalization of the data. That is,

diffi(a, b) =
V X
i (a)− V X

i

σ(V X
i )

− V Y
i (b)− V Y

i

σ(V Y
i )

In a formal way, we redefine d2ED(a, b) as follows:

d2(a, b) =
n∑
i=1

1

n
(diffi(a, b))

2

In addition, we will refer to each squared term of this distance as

d2
i (a, b) = (diffi(a, b))

2

1A symmetric matrix M is said to be a positive definite if x′Mx > 0 for all non zero
vectors x, and positive semi-definite if x′Mx ≥ 0 for all vectors x.

10



Using these expressions we can define the square of the Euclidean distance
as follows.

Definition 5. Given two datasets X and Y the square of the Euclidean
distance for variable-standardized data is defined by:

d2AM(a, b) = AM(d2
1(a, b), . . . , d2

n(a, b)),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n.

In general, any aggregation operator C [36] might be used in the place of
arithmetic mean. It is important to note that not all aggregation operators
will satisfy all the metric/distance properties. However, as we will show, most
of the parametrized distances presented in this paper satisfy the distance
properties explained in Definition 1, so we call them distances.

We can consider the following generic function.

d2C(a, b) = C(d2
1(a, b), . . . , d2

n(a, b))

From this definition, it is straightforward to consider weighted versions
of the d2ED(a, b). We briefly revise two of them below.

Definition 6. Let p = (p1, . . . , pn) be a weighting vector (i.e., pi ≥ 0 and∑
i pi = 1). Then, square of the weighted mean is defined as:

d2WMp(a, b) = WMp(d
2
1(a, b), . . . , d2

n(a, b)),

where WMp = (c1, . . . , cn) =
∑

i pi · ci.

In the context of supervised learning approaches for disclosure risk evalua-
tion this was first used in [27, 28]. The interest of this definition is that it does
not assume that all attributes are equally important in the re-identification
process, since there is a weight for each attribute expressing its relevance
in the re-identification process. However, it is easy to see that when null
weights (pi = 0) and the square of the function are considered, the identity
of indiscernibles and the triangle inequality (Definition 2) are not satisfied.

Another type of distance is based on the Choquet integral (Definition 7,
see below). This was first introduced in the context of data privacy in [29].
From a definitional point of view, its main difference with respect to the
weighted distance is the use of fuzzy measures. Choquet integrals, with
fuzzy measures permit us to represent, in the computation of the distance,
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information like redundancy, complementariness, and interactions among the
variables, which are not used in the weighted mean. Therefore, tools that
use fuzzy measures to represent background knowledge permit us to consider
variables that, for example, are not independent.

Definition 7. Let µ be an unconstrained fuzzy measure on the set of variables
V , i.e. µ(∅) = 0, µ(V ) = 1, and µ(A) ≤ µ(B) when A ⊆ B for A ⊆ V , and
B ⊆ V . Then, the square of the Choquet integral distance is defined as:

d2CIµ(a, b) = CIµ(d2
1(a, b), . . . , d2

n(a, b)),

where CIµ(c1, . . . , cn) =
∑n

i=1(cs(i)− cs(i−1))µ(As(i)), given that cs(i) indicates
a permutation of the indices so that 0 ≤ cs(1) ≤ . . . ≤ cs(i−1), cs(0) = 0, and
As(i) = {cs(i), . . . , cs(n)}.

As in Definition 6, the Choquet integral based distance cannot be con-
sidered a metric because it does not satisfy the triangle inequality and the
identity of indiscernibles properties. Nevertheless, it is shown in [37] that
the Choquet integral, with respect to a submodular measure, can be used to
define a metric. That is, it is possible to use the Choquet integral as a metric
just adding the following condition (submodularity) to the fuzzy measure:

µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B)

for all A,B ⊆ V.
In Section 5.2 are presented the necessary problem constraints in order

to consider the weighted mean (d2WM) and the Choquet integral (d2CI) as
two distance functions.

Now, we present the symmetric bilinear form. Given a vector space V
over a field F , a bilinear form is a function B : V × V → F which satisfies
the following axioms for all w, v, u ∈ V :

1. B(v + u,w) = B(v, w) +B(u,w)

2. B(w, v + u) = B(w, v) +B(w, u)

3. B(αv, w) = B(v, αw) = αB(v, w)

4. B(v, w) = B(w, v)

Given a square matrix Σ, we define a bilinear form for all v, w ∈ V as
B(v, w) = v′Σw. This form satisfies the axioms because of the distributive
laws and the ability to pull out a scalar in matrix multiplication. Note
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that the matrix Σ of a symmetric bilinear form must be itself symmetric.
The symmetric bilinear functions can be considered a generalization of the
Mahalanobis distance.

Then, we can use this symmetric bilinear form on the light of previous
definitions as:

Definition 8. Let Σ be a n × n symmetric weighting matrix. Then, the
square of a symmetric bilinear form is defined as:

d2SB(a, b) = SBΣ(diff1(a, b), ..., diffn(a, b))

where SBΣ(c1, ..., cn) = (c1, ..., cn)′Σ(c1, ..., cn).

Learning the symmetric weighting matrix Σ allows us to find which are
the attributes and tuples of attributes that are more relevant in the re-
identification process. That is, the diagonal expresses the relevance of each
single attribute, while the upper or lower values of the weighting matrix cor-
respond to the weights that evaluate all the interactions between each pair
of attributes in the re-identification process.

If the matrix Σ satisfies the symmetry and the positive definiteness prop-
erty all the distance properties of Definition 1 are satisfied. On the contrary,
if this matrix restriction is weaker, the matrix is positive semi-definite, the
identity of indiscernibles is not fulfilled. Thus, there will be situations where
d(a, b) = 0 for all a 6= b, and then, the defined operator cannot be consid-
ered a distance anymore, it is a pseudo-distance. A clear example is when
Σ is completely null. Finally, if Σ is neither positive definite neither positive
semi-definite, i.e. negative definite, only one metric property is satisfied, the
symmetry.

As we do not want negative distance values, the only requirement on Σ we
have considered is that it should be at least a positive semi-definite matrix.

Unlike the standard methods, such us the arithmetic mean (Definition
5), the interest of using Definitions 6, 7 and 8 is that they give different
degrees of importance to variables in the re-identification process. This would
be the case if one of the variables is a key-variable, e.g. a variable where
V X
i = V Y

i . In this case, all the variable weights should be zero except for
the key-variable weight which should be assigned to one. Such an approach
would lead to 100% of re-identifications. This is a clear example that justifies
our decision to considered null weights. Taking into account null weights it
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is possible to analyze which of the variables are completely useless in the re-
identification process. However, this choice forces us to renounce the identity
of indiscernibles metric property.

Note that in Definition 7 and 8 the interactions of different variables
are taken into account by means of the fuzzy measure and the matrix Σ
respectively. Otherwise, in Definition 6, the weighting vector can only weight
the variables individually.

Choquet
Integral

Mahalanobis
Distance

Arithmetic
Mean

Weighted

Mean

Figure 1: Distances classifications.

Figure 1 illustrates the classification of the different distances that we have
explained in this section. As you can see the arithmetic mean is a special
case of the weighted mean and at the same time the weighted mean is also
a special case of both the Choquet integral and the Mahalanobis distance.
Some more details about these relationships can be found in [38].

5. Supervised Learning for Record Linkage

In this section we review the general formalization of the stated optimiza-
tion problem for record linkage as well as the three described aggregation
operators. Section 5.1 reviews the general optimization problem which was
first introduced in [28]. Afterwards, in Section 5.2 we present the formal-
ization problems for the weighted mean and the Choquet integral operators,
i.e. Definitions 6 and 7. We also discuss the necessary problem modifica-
tions in order to satisfy all distance properties. Finally, Section 5.3 describes
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the optimization problem formalization for the proposed symmetric bilinear
function.

5.1. General Supervised Learning Approach for Record Linkage

We describe the formalization of the general supervised metric learning
problem for distance-based record linkage. This formalization is presented
as a generalization of the record linkage problem independent of any pa-
rameterized function. Defining the problem in a general form allows us to
create multiple variations of the problem depending on the parameterized
distance function used. This problem variations rely on the specific parame-
terized function requirements that should be added to the problem as a set
of constraints.

The problem is modeled as a Mixed Integer Linear mathematical opti-
mization (MILP). More formally, the stated problem is expressed with a
linear objective function and it is subject to a set of linear equalities and
inequalities constraints. The difference between MILP and Linear Program-
ming (LP) lies in the type of the variables considered. LP just considers
real-valued variables whereas, MILP involves problems in which only some
variables are constrained to be integers and the other variables are allowed
to be non-integers (real). This fact makes MILPs harder problems. That is,
LPs can be solved in polynomial time while, MILPs there are NP-complete
problems [39] and therefore, there is no known polynomial-time algorithm.

Original file X

·
·
·

·
·
·

Masked file Y

·
·
·

·
·
·

Minimum 
Distance

·
·
·

·
·
·

bN

bN�1aN�1

aN

a2 b2

b1a1

ai bi

Figure 2: Distances between aligned records should be minimum.

For the sake of simplicity in the formalization of the process, we assume
that each record bi of Y is the protected version of ai of X. That is, files
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Block Aggregator function Label
Cp(a1, b1) must-link

K1 Cp(a1, bi) cannot-link
Cp(a1, bN) cannot-link

...
...

...
Cp(ai, b1) cannot-link

Ki Cp(ai, bi) must-link
Cp(ai, bN) cannot-link

...
...

...
Cp(aN , b1) cannot-link

KN Cp(aN , bi) cannot-link
Cp(aN , bN) must-link

Table 1: Data to be considered in the learning process.

are aligned. Then, two records are correctly linked using a parameterized
aggregation function, Cp, when the distance between the records ai and bi
is smaller than the distance between the records ai and bj for all other j
different than i. So, records belonging to the same entity are considered less
distant in terms of the aggregation function. Figure 2 shows an illustration of
this scenario. Formally, we have that a record ai is correctly matched when
the following equation holds for all i 6= j.

Cp(ai, bi) < Cp(ai, bj) (1)

In optimal conditions these inequalities should be true for all records ai.
Nevertheless, we cannot expect this to hold because of the errors in the data
caused by the protection method. Then, the learning process is formalized
as an optimization problem with an objective function and some constraints.

Equation (1) should be relaxed so that the solution violates some equa-
tions. The relaxation is based on the concept of blocks. We consider a block
as the set of equations concerning record ai. Therefore, we define a block as
the set of all the distances between one record of the original data and all
the records of the protected data. Then, we assign to each block a variable
Ki. Therefore, we have as many Ki as the number of rows of our original
file. Besides, we need for the formalization a constant C that multiplies Ki

to overcome the inconsistencies and satisfy the constraint.
The rationale of this approach is as follows. The variable Ki indicates, for
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each block, if all the corresponding constraints are accomplished (Ki = 0) or
not (Ki = 1). Then, we want to minimize the number of blocks non compliant
with the constraints. This way, we can find the best weights that minimize
the number of violations, or in other words, we can find the weights that
maximize the number of re-identifications between the original and protected
data. Table 1 shows a graphical example of the problem division and the
information needed for the learning process, i.e., the labels of the correct
links, the ones that correspond to the same individuals.

The rationale of our formalization is that if for a record ai, Equation (1)
is violated for a certain record bj, then, it does not matter that other records
bh, where h 6= j 6= i, also violate the same equation for the same record ai.
This is so because record ai will not be re-identified.

Using these variables Ki and the constant C, we have that all pairs i 6= j
should satisfy

Cp(ai, bj)− Cp(ai, bi) + CKi > 0.

As Ki is only 0 or 1, we use the constant C as the factor needed to really
overcome the constraint. In fact, the constant C expresses the minimum
distance we require between the correct link and the other incorrect links.
The larger it is, the more correct links are distinguished from incorrect links.

Using these constraints we can formalize the optimization problem that
finds the set of parameter values defined for a given aggregation operator C
that minimizes the number of incorrect links. That is,

Minimize
N∑
i=1

Ki (2)

Subject to :

Cp(ai, bj)− Cp(ai, bi) + CKi > 0, ∀i, j = 1, . . . , N, i 6= j (3)

Ki ∈ {0, 1} (4)

This is an optimization problem with a linear objective function and
linear constraints (Equations (3) and (4)). However, depending on which ag-
gregation operator Cp we decide to use, we will have to add some additional
constraints related to that aggregation operator and its parameters. In ad-
dition, we have to pay special attention to which is the polynomial degree of
the aggregation operator we want to use and the parameter constraints, be-
cause it could lead us to deal with non-linear or non-quadratic programming
problem.
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If N is the number of records, and n the number of variables of the two
data sets X and Y . Then, the objective function, Equation (2), consists of
a summation of N control variables, one per each defined distances’ block,
i.e., Ki for all i = 1 . . . N . With respect to the total number of problem
constraints; there are (N(N − 1)) constraints concerning to Equation (3)
and N constraints defining the control variable, Equation (4). Therefore,
there are a total of (N(N − 1)) +N constraints. Note that depending on the
aggregation function Cp used, there will be more constraints in the problem.
We will discuss the number of such constraints in the particular problems
below.

5.2. Learning the Optimal Weights Using d2WM an d2CI

We outline in Table 2 the necessary extra constraints to formalize the
general optimization problem (Equations (2), (3) and (4)) for the weighted
mean and the Choquet integral operators (Definitions 6 and 7 respectively).
The table also includes the number of constraints of the optimization problem
in each case. More details and deeper explanations can be found in the
following works [28, 29].

d2WM d2CI
Additional

∑n
i=1 pi = 1 µ(∅) = 0

Constraints pi ≥ 0 µ(V ) = 1
µ(A) ≤ µ(B) when A ⊆ B

Total Constr. N(N − 1) +N + n+ 1 N(N − 1) +N + 2 +
∑n

k=2

(
n
k

)
k

Table 2: Additional constraints of the weighted mean and Choquet integral.

As was mention in Section 4 none of the aggregators showed in Table 2
satisfy completely the distance properties. Therefore, following the instruc-
tions given in that section we show in Table 3 which are the set of cor-
responding changes that have to be applied to each optimization problem.
Thus, both the weighted mean and the Choquet integral can be considered
distance functions.

Note that in all cases the additional constraints are linear. They are mixed
integer linear problems (MILP), because they are dealing with integers and
real-valued. Note, that we only have considered aggregation operators with
real-valued weights.
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d2WMm d2CIm
Additional

∑n
i=1 pi = 1 µ(∅) = 0

Constraints pi > 0 µ(V ) = 1
µ(A) ≤ µ(B) when A ⊆ B
µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B)

Total Constr. N(N − 1) +N + 1 + n N(N − 1) +N + 2 + (
∑n

k=2

(
n
k

)
k) +

(
n
2

)
Table 3: Additional constraints of the weighted mean and Choquet integral as distances.

5.3. Learning the Optimal Weights Using a Symmetric Bilinear Form

In this section we define the optimization problem and the specific con-
straints when C is based on Definition 8 (a symmetric bilinear function). The
minimization problem is expressed as:

Minimize
N∑
i=1

Ki (5)

Subject to :

d2SBΣ(ai, bj)− d2SBΣ(ai, bi) + CKi > 0, ∀i, j = 1, . . . , N, i 6= j (6)

Σ � 0 (7)

Ki ∈ {0, 1} (8)

where, as before, N is the number of records, and n the number of attributes
of the input files.

One of the required distance properties for the matrix Σ in Definition 8
was its positive semi-definiteness. To ensure this property, we can solve the
problem with Semi-definite programming (SDP) or using other methods that
ensure the symmetry of the matrix and also that the matrix has non-negative
eigenvalues [40]. Nevertheless, none of these approaches are technically fea-
sible with linear constraints (they can only be formalized with non-linear
constraints). To avoid the non-linear constrains we have considered two ap-
proximations.

The first approximation (d2SB) consists in changing Equation (7) of the
previous formalization by the following linear constraint:

d2SBΣ(ai, bj) ≥ 0, ∀i, j = 1, . . . , N (9)

Equation (9) forces the distance to be semi-positive for all pairs of records
(ai, bj) in the input set. Although, the Σ positive semi-definite is not ensured,
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this approximation ensures that non-negativity will be satisfied for the input
dataset.

The second approximation (d2SBNC) does not consider the matrix re-
striction in the formalization of the optimization problem. Thus, the problem
consists of a linear objective function Equation (5) and two linear constraints
Equations (6) and (8). Thus, this approach consists of solving the stated op-
timization problem and then, do a post-processing of the resulting matrix Σ.
We apply the Higham’s algorithm [26] to the matrix Σ. This method com-
putes the nearest positive semi-definite matrix from a non-positive definite.

Both proposed approximations have to determine the same number of
parameters, n(n + 1)/2. They correspond to the diagonal and the upper
(or lower) triangle of the matrix Σ. The first approach consists of a linear
objective function plus N(N − 1) +N +N2 constraints. That is, the general
plus all constraints related to Equation (9). While, the second approach con-
siders the same number of constraints as the general optimization problem:
N(N − 1) +N .

6. Evaluation

Given an original file and its masked version, we pre-process and build
the problem structure by means of a series of R functions, then following this
formalized structure the problem is expressed into MPS (Mathematical Pro-
gramming System) file format. MPS is a file format to represent and store
Linear Programming (LP) and Mixed Integer Programming (MIP) problems.
Then, each file is processed with an optimization solver. We solve our experi-
ments with one of the most used commercial solvers, the IBM ILOG CPLEX
tool [41] (version 12.1). Thus, for each formalized problem this solver finds
the corresponding parameter values that maximize the number of correct
links between the original and the masked data.

The experiments were performed in the Finis Terrae computer from the
supercomputing center of Galicia [42]. Finis Terrae is composed of 142 HP
Integrity rx7640 computing nodes with 16 Itanium Montvale cores and 128
GB of memory each, one HP Integrity Superdome node, with 128 Itanium
Montvale cores and 1, 024GB of memory, and 1 HP Integrity Superdome
node, with 128 Itanium 2 cores and 384GB of memory. From the Finis
Terrae computer we used 16 cores and 32GB of ram memory.
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6.1. Test Set

A data file was protected by a perturbative approach called microaggrega-
tion [9], a well-known microdata protection method, which broadly speaking,
provides privacy by means of clustering the data into small clusters of size
at least k, and then replacing the original data by the centroid of their cor-
responding clusters. This parameter k determines the protection level: the
greater the k, the greater the protection and at the same time the greater
the information loss.

We have considered files with the following protection parameters:

• M4-33 : 4 variables microaggregated in groups of 2 with k = 3.

• M4-28 : 4 variables, first 2 variables with k = 2, and last 2 with k = 8.

• M4-82 : 4 variables, first 2 variables with k = 8, and last 2 with k = 2.

• M5-38 : 5 variables, first 3 variables with k = 3, and last 2 with k = 8.

• M6-385 : 6 variables, first 2 variables with k = 3, next 2 variables with
k = 8, and last 2 with k = 5.

• M6-853 : 6 variables, first 2 variables with k = 8, next 2 variables with
k = 5, and last 2 with k = 3.

For each case, we have protected 400 records randomly selected from
the Census dataset [43] from the European CASC project [44], which con-
tains 1080 records and 13 variables, and has been extensively used in other
works [45, 46, 47].

Attr. Mean Std dev (σ)
V1 196,039.8 101,251.417
V2 56,222.76 24,674.843
V3 3,173.135 1,401.832
V4 7,544.656 4,905.200
V5 45,230.84 21,323.470
V6 2,597.184 1,826.436

Table 4: Mean and standard deviation (σ) for each column attribute.

In Table 4 we provide some basic statistical information from the Census
dataset, such as the mean and the standard deviation for the first six columns.
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From it we can see how different are the data attributes in terms of their
means, and also how spread out are the data points over a large range of
values. In addition, in Figure 3 is shown a graphical representation of the
Pearson correlation coefficient, which indicates a degree of linear relationship
between all pairs of attributes.
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Figure 3: Graphical representation of the Census data set correlation matrix.

Note that in our experiments we apply different protection degrees to
different variables of the same file. The values used range between 2 to 8,
i.e., values between the lowest protection value and a good protection degree
in accordance to [18]. This is especially interesting when variables have
different sensitivity. We have used the web application [48], which is based
on [18], to compute standard scores to evaluate all the protected datasets.
These scores are computed by means of a combination of information loss
and disclosure risk values, so the best protection method is the one that
optimizes the trade-off between the information loss and the disclosure risk.
Table 5 shows the average record linkage, the probabilistic information loss
and the overall score for all the protected files. The best score is achieved by
the M5-38 file, though the other files have a very similar score.
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AvRL(%) PIL(%) Score(%)
M4-33 42.127 23.85 32.99
M4-28 33.47 28.40 30.94
M4-82 32.37 31.80 32.09
M5-38 26.01 31.92 28.96
M6-385 35.42 36.91 36.16
M6-853 30.65 37.76 34.21

Table 5: Evaluation of the protected datasets.

6.2. Results

Table 6 shows the linkage percentage using different approaches for record
linkage. These percentages determine the maximum number of correctly
identified records from the total, so a value of 100 means that all records
from the original and the masked data were correctly linked (re-identified).
The maximum number of correctly linked records are determined by the
CPLEX solver for each generated MILP problem.

The approaches considered are the following ones: the standard record
linkage method (d2AM); the Mahalanobis distance (d2MD); two supervised
learning approaches: the weighted mean (d2WM) and the Choquet integral
(d2CI) and their corresponding proposed versions satisfying the distance
properties (d2WMm and d2CIm), which were described in Section 4; and
finally, the new supervised learning approaches, which are based on a sym-
metric bilinear form (d2SB and d2SBNC). Recall that whereas d2SBNC is the
approach formed by Equations (5), (6) an (8), d2SB has an extra constraint,
Equation (9).

Recall that due to the lack of constraints in the d2SBNC problem for-
malization, it is possible the solver finds a matrix that does not satisfy the
positive semi-definiteness property. In these particular problems, we have
applied the Higham’s algorithm [26] to the resulting matrix Σ. Thus, we are
able to compute its nearest positive semi-definite matrix. Then, we check
manually the number of correctly linked records with the symmetric bilinear
function (Definition 8) and the matrix computed by the Higham’s algorithm.
These cases are named d2SBPD.

Before tackling the results obtained by the presented supervised approaches
we focus on the non-supervised approaches. The most noticeable fact be-
tween the standard distance-based record linkage (d2AM) and Mahalanobis
distance (d2MD) is the improvement achieved by the latter method, which
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M4-33 M4-28 M4-82 M5-38 M6-385 M6-853
d2AM 84.00 68.50 71.00 39.75 78.00 84.75
d2MD 94.00 90.00 92.75 88.25 98.50 98.00
d2WM 95.50 93.00 94.25 90.50 99.25 98.75
d2WMm 95.50 93.00 94.25 90.50 99.25 98.75
d2CI 95.75 93.75 94.25 91.25 99.75 99.25
d2CIm 95.75 93.75 94.25 90.50 99.50 98.75
d2SBNC 96.75 94.5 95.25 92.25 99.75 99.50
d2SB 96.75 94.5 95.25 92.25 99.75 99.50
d2SBPD − − − − − 99.25

Table 6: Percentage of the number of correct re-identifications.

in average achieves about 22.6% more correct re-identifications and for the
protected file M5-38 achieves a maximum improvement of 48.5%. This im-
provement and ease computation of Mahalanobis distance makes that d2MD
should be strongly considered for the disclosure risk assessment of protected
datasets. However, as it is also shown in Table 6, these results can still be
overcome by the presented optimization approaches.

We first compare the presented symmetric bilinear function approaches
(d2SB and d2SBNC) with the weighted mean (d2WM) and the Choquet inte-
gral (d2CI) approaches. The results obtained by these supervised approaches
show that almost for all the protected files the optimization problem with
respect to the symmetric bilinear function (d2SB and d2SBNC) achieves the
larger number of correct matches. Their results are slightly followed by the
Choquet integral (d2CI) by a maximum difference of exactly 1% (4 correct
matches less) for Mic3-44 and Mic5-38 protections. Improvements obtained
by the Choquet integral are also slightly followed by the ones obtained by
the weighted mean approach (d2WM), which has a maximum difference of
0.75% (3 correct matches less) for Mic4-28 protection. In terms of accuracy
(number of records correctly re-identified) we can conclude that from the
supervised learning approaches the symmetric bilinear, the Choquet integral
and the weighted mean are the best methods. Then, we compare their ac-
curacies in those protected files where the standard record linkage approach
(d2AM) achieve the maximum (M6-853 ) and the minimum (Mic5-38 ) num-
ber of re-identifications. We obtained an improvement of 14.76% (by d2SB),
14.51% (by d2CI) and 14.01% (by d2WM) for the M6-853 file and improve-
ment of 52.5% (by d2SB), 51.5% (by d2CI) and 50.751% (by d2WM) for
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the M5-38 file. However, to evaluate all approaches it is also important to
bear in mind the problem complexity and its computing time, factor that we
analyze below, in Table 7.

We now focus on the results obtained by the weighted mean (d2WM),
the Choquet integral (d2CI) and their respectively modified versions which
satisfy all or almost all the metric properties (d2WMm and d2CIm). Ta-
ble 6 shows how similar they are. Comparing the d2WM and d2WMm re-
identification percentages we appreciate that both approaches obtain exactly
the same values. With respect to the Choquet integral approaches we see the
not modified version (d2CI) achieves slightly better results in some of the
datasets tested than d2CIm. Therefore, despite of adding new constraints to
the problem there is a slight decrease (or none decrease) in the number of
re-identifications.

Finally, we focus on both symmetric bilinear approximations. Let us
underline that all matrices by d2SB and d2SBNC satisfy the positive defi-
niteness property, except for the last dataset (M6-853 ), which in either of
the two approaches this property was not satisfied. The Higham’s algorithm
was applied to the matrix obtained by the solver for the d2SBNC approach
achieving a new positive definite matrix. d2SBPD in Table 6 shows the per-
centage results for this test case. We note that the percentage of correct
re-identifications is slightly lower than for d2SBNC but is still higher than
the rest of the analyzed methods. Recall that when the obtained matrix is
positive definite all distance properties are satisfied as well as the identity of
indiscernibles. Using the symmetric bilinear approach with a positive semi-
definite matrix achieves better results that the Mahalanobis distance using
the covariance matrix compute from the data.

M4-33 M4-28 M4-82 M5-38 M6-385 M6-853
d2WM 29.83 41.37 24.33 718.43 11.81 17.77
d2WMm 3.43 6.26 2.26 190.75 4.34 6.72
d2CI 280.24 427.75 242.86 42, 731.22 24.17 87.43
d2CIm 155.07 441.99 294.98 4, 017.16 79.43 829.81
d2SBNC 32.04 2, 793.81 150.66 10, 592.99 13.65 14.11
d2SB 13.67 3, 479.06 139.59 169, 049.55 13.93 13.70

Table 7: Computation time comparison (in seconds).

The computation time taken to learn the optimal weights for each dataset
and learning approach can be seen below, in Table 7.
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Moreover, we have compared the covariance matrices used in d2MD and
the inverses of the weighting matrices obtained by the supervised approach
using the symmetric bilinear function d2SBNC for the first five datasets and
the matrix obtained by d2SBPD for the last case (because of the positive semi-
definiteness. These are supposed to be similar than the covariance matrices
or a scaled variation of those. However, when we compare both matrices by
means of the mean square error (Equation 10), the results show that both
matrices are different. See Table 8.

MSE(V, V ′) =

∑n
j=1

∑
1≤i≤j(vij − v′ij)2

n(n+1)
2

(10)

Mean square error
M4-33 18.49
M4-28 48.75
M4-82 2, 784.81
M5-38 7.26
M6-385 15.91× 106

M6-853 12.77× 1016

Table 8: Mean square error between covariance matrices and the positive definite matrices
obtained.

7. Conclusions

In this paper we introduced a new supervised learning approach and a pa-
rameterized aggregator, a symmetric bilinear function, to solve record linkage
problems. This approach is formalized as an optimization problem defined by
a set of cannot-link and must-link constraints. Thus, the problem is solved
by finding the parameter values of the symmetric bilinear function that max-
imizes the number of correct links between two datasets. We have compared
this supervised learning method with other supervised and non-supervised
ones.

Our experiments have been done in the area of data privacy. In this area,
record linkage is used to evaluate disclosure risk. It is used to link records of
the original and the protected file, modeling the attack of an intruder that
wants to disclose information from the protected file. We have focused on
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the worst case. This is the case in which the person who wants to do the
re-identification has the entire original database. Note that as the original
data is confidential this scenario is only applicable by the data owner to
evaluate the risk of the protected file. The parameterized distance based
record linkage is a very useful tool for the data owner, not only to evaluate
the disclosure risk of the protected database before its release, but also to
know which are the variables or sets of variables that maximize the number
of re-identifications and make weaker the protected data. This estimation is
based on the number of correct links between the original and the protected
data.

The experiments show that the proposed approach is the one that achieves
the best results. Although, the improvement is not very high, especially
when we compare it with the other parametrized variations, it is relevant
for the evaluation of risk of a protected dataset. Moreover, by means of
analyzing the weights obtained it is possible to identify the variables and
sets of variables that clearly provide more information for an attacker of
the database. This is useful in the data protection process. For instance,
when a variable provides more information than the others, we would apply
a higher degree of protection or even another protection method to make it
more secure.

In this paper we also introduced two variations for the weighted mean
and Choquet problems in order to be considered metrics (d2WMm, d2CIm).
We can conclude that for our problem, the record linkage for disclosure risk
evaluation, they are not promising, so the number of re-identifications slightly
decrease when are compared with their original approaches (d2WM , d2CI).
Besides, in the case of d2WMm null weights are not considered and so there
is a lack of information for those variable which are not relevant in the re-
identification process.

As future work we consider developing optimization problems that are
non-linear programming ones. For example, to consider the case in which
the weighting matrix satisfies the positive semi-definiteness property of the
covariance matrix. We need them to compare the results and computational
time of such approach with the other presented methods. Furthermore, it
would be interesting a comparison between the described supervised learn-
ing approach relying on the Choquet integral and a similar semi-supervised
metric learning research approach proposed by Beliakov et al. in [23].

27



Acknowledgments

Partial supports by the Spanish MICINN (projects ARES-CONSOLIDER
INGENIO 2010 CSD2007-00004, TIN2010-15764 and TIN2011-27076-C03-
03) and by the EC (FP7/2007-2013) Data without Boundaries (grant agree-
ment number 262608) are acknowledged. Some results described in this pa-
per have been obtained using the Centro de Supercomputación de Galicia
(CESGA). This partial support is gratefully acknowledged. The work con-
tributed by the first author was carried out as part of the Computer Science
Ph.D. program of the Universitat Autònoma de Barcelona (UAB).
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