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systems is still very limited. Domain knowledge is generally 
acquired ad hoc from an expert and applied to stove-piped solu-
tions that can hardly scale or adapt to new conditions. However, 
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he distributed computing world eventually per-meated in the world 
he current strategies and techniques, and hinting possible future 
s can represent context at different levels (structural and physical 

 scenario, a priori known operational rules between entities and 
mic relationships modelled to interpret the system output, etc.). In 
vey, several novel context exploita-tion dynamics and architectural 
the fusion domain are presented and discussed.
1. Introduction

Terms like ‘‘context-awareness’’, ‘‘context-aware application’’
and ‘‘context-aware computing’’ have been the subject of an 
increasing research interest in the past twenty years. The impor-
tance of Contextual Information (CI) for improving system perfor-
mance has been widely recognized and applied to successive 
generations of distributed computing models [1]. Notwithstanding 
this growing popularity, the context-awareness concept, namely 
considering, representing, and exploiting information and knowl-
edge that does not characterize the focal element(s) of interest 
but the surrounding environment or current situation, had not 
crossed the borders of the aforementioned computing domain until 
the past few years. An area that has lately shown a rapidly escalat-
ing interest in CI is Information Fusion (IF). IF systems are tradi-
tionally designed to exploit observational data and a priori 
models and to work well in what can be defined as well-behaved 
conditions. However, they cannot be expected to work in problems 
where the ‘‘world-behaviour’’ is very complex and unpredictable 
without hard-coded knowledge, or in problems where contextual 
influences are important or even critical. The development of con-
text-based fusion systems is an opportunity to improve the quality 
of the fused output and provide domain-adapted solutions. The 
understanding and principled exploitation of context in fusion
context should play a vital role at any level of a modern fusion sys-
tem (taking as reference the JDL–Joint Directors of Laboratories-
framework): from object recognition through physical context 
exploitation, to intention estimation through linguistic communi-
cation analysis. It would be the key element to gain adaptability 
and improved performance.

This survey aims to provide a comprehensive status of recent
and current research on context-based IF systems, tracing back
the roots of the original thinking behind the development of the
concept of ‘‘context’’. It shows how its fortune in the distributed
computing world eventually permeated in the world of IF, dis-
cussing the current strategies and techniques, and hinting possible
future trends.

The paper is structured as follows: Section 2 discusses several 
existing definitions of context in the literature, highlighting the 
most relevant aspects for the fusion domain and the perspective 
taken in the analysis. Section 3 provides an overview of the most 
significant works exploiting CI in the fields of mobile and pervasive 
computing, image processing and understanding and Artificial 
Intelligence (AI). Section 4 gives a brief introduction to the termi-
nology used in the JDL fusion model, and Section 5 makes use of 
this terminology to categorize existing works on context in the 
fusion domain according to the fusion processes involved. Section 6 
provides some insights on a few fundamental concepts, discussing 
their meaning in fusion systems for Situation Assessment. Section 7



discusses some novel architectural design concepts that can be 
taken into account for developing context-aware fusion systems. 
Concluding remarks can be found in Section 8.
2. Definition of context

As difficult as it is to be very precise in defining ‘‘fusion’’ bound-
aries, we will see that the definitions of ‘‘context’’ and ‘‘contextual 
information’’ are equally difficult. Intuitively, CI could be said to be 
that information that ‘‘surrounds’’ a situation of interest in the 
world. It is information that aids in understanding the (estimated) 
situation and also aids in reacting to the situation, if a reaction is 
required. Devlin [2] takes this view, defining context as follows: ‘‘a 
feature F is contextual for an action A if F constrains A, and may 
affect the outcome of A, but is not a constituent of A’’. Contex-tual 
premises can thus be seen as a set of constraints to a reasoning 
process about a situation; Kandefer and Shapiro also define it in a 
constraint-based sense [3]: ‘‘the structured set of variables, exter-
nal constraints to some (natural or artificial) cognitive process that 
influences the behavior of that process in the agent(s) under con-
sideration’’. There are of course other definitions of this somewhat 
slippery term, such as that offered by Dey and Abowd [4], who state 
that context is ‘‘any information (either implicit or explicit) that 
can be used to characterize the situation of an entity’’. These 
definitions imply that these contextual premises are constraints 
to other premises that could be called ‘‘focal’’ to the formation of 
our ‘‘argument’’ or conclusion. For example, Kent writes that ‘‘It 
is the context of the situation alone which gives point and meaning 
to the subsequent elements of the speculation,’’ implying that 
there is a situational premise that is separate from the contextual-
ly-augmented (or constrained) premises. Heuer, in the well-known 
work of [5] writes, ‘‘The significance of information is always a joint 
function of the nature of the information and the context in which 
it is interpreted’’, where he distinguishes ‘‘the (focal) infor-mation’’ 
and ‘‘the context’’ of it.

Here, we will use these viewpoints to develop a perspective as
follows: In many problems involving interpretation and the devel-
opment of meaning, there is often some focal data that is purposely
collected to help in developing such understanding – in a surveil-
lance application these are the sensor data and possibly human-
based observational data. Through analysis, these data can support
the formation of what we will call ‘‘focal premises’’ – statements
(propositions) about some aspect of the ‘‘condition or situation’’
of interest. To the extent that separate contextual data or informa-
tion are available, they too can be analyzed to form additional
premises – propositions that we will call ‘‘contextual premises’’ –
that, together with the focal premises, can lead to the formation
of an ‘‘argument’’ – a conclusion traceable to the foundations of
the joint set of these premises.
3. Origins and development of context representation
and exploitation approaches

There is a vast literature on context in many diverse fields out-
side computer science spanning fields such as cognitive sciences, 
psychology, linguistics, social sciences. The beginning of years 
1990s marks the start of a significant interest in the topic by 
researchers in computer science, even if a few pioneering works 
existed even before. At the end of that decade, the CONTEXT con-
ference was started to gather researchers from diverse fields with 
the common binding interest in understating, modelling and 
exploiting CI. The reader is referred to Brézillon’s survey [6] for an 
account of early works in many diverse fields and to [7] for a 
dedicated survey on works in AI.
Here we provide an overview of the selected works in the fields
of mobile and pervasive computing, image processing and under-
standing and AI, highlighting the most relevant concepts and pro-
viding pointers for further reading. These fields have produced a
significant amount of works on context, addressing and developing
concepts that are now permeating in the fusion domain as will be
discussed later.

3.1. Mobile and pervasive computing

The area of mobile and pervasive computing is probably the 
most prolific in terms of works dealing with CI. Starting at the 
beginning of the 1990s, and taking inspiration from earlier works in 
the domain of cognitive and social sciences, researchers in this field 
have never stopped to investigate ways of representing and 
reasoning about context. In this area, all revolves around the user 
and the services that can be provided to her/him. One fundamental 
contextual element here is location and the environment sur-
rounding the user [8], even though it was clear from the beginning 
that context is much more than that [9]. A later and classic work by 
Dey, in addition to external features such as location, environment 
and time, included the emotional state of the user as part of the 
contextual elements (this aspect will be discussed in detail in Sec-
tion 6). More recent works recognize the fact that context is also far 
from being static but is considered an ‘‘ever-changing environ-
ment composed of reconfigurable, migratory, distributed, and mul-
tiscale resources’’ as in [10], even though this work seems to focus 
more on the relations with surrounding computing resources.

The research in this field is so vast that a number of surveys 
exist. In addition to providing several seminal papers on the sub-
ject, in 2000 Dey surveyed the literature [4] for context-aware 
computing approaches according to the type of CI used (location, 
identity, activity and time) and the way it is exploited (for presen-
tation, execution of a service, or tagging for later retrieval). Later, 
the often cited paper of Strang and Linnhoff-Popien [1] provided a 
survey of the most relevant current approaches to modelling con-
text for ubiquitous computing. Without attempting to providing a 
definition of context, the paper reviews the approaches in the lit-
erature that could be categorized as: key-valued models, markup 
scheme models, graphical models, object oriented models, logic 
based models, and ontology based models.

The excellent survey by Baldauf et al. [11] is probably the most 
well-structured, reviewing in detail the existing architecture types, 
sensors types, context models and discussing several framework 
approaches.

An extensive review of all the papers published between 2000 
and 2007 can be found in [12] where all the approaches are classi-
fied according to five layers: concept and research, network, mid-
dleware, application, and user infrastructure. The middleware 
approach, addressed by many papers in this survey, provides a con-
venient way of designing an interface level between the sen-sor/
data source level and the application level, brokering all relevant 
contextual data sources to the correct data sinks. This type of 
solution is proposed in Section 7.2 as a new approach to design in a 
general way context-aided IF systems.

A more recent survey of context modelling and reasoning tech-
niques for context-aware applications can be found in [13] where, 
after listing a set of requirements that context models and context 
management system should have, several techniques belonging to 
the three most prominent models that satisfy the requirements are 
reviewed: object-role based, spatial models, and ontology-based. 
Hybrid models, which combine different formalisms in an attempt 
to better fulfill the requirements, are then discussed and presented 
as promising direction.

Multi-agent systems have been identified as basic technology
for software development in Ambient Intelligence (AmI) and
2



pervasive computing [14,15] to develop context-based services. So, 
in [16], the key technologies in AI for AmI are planning, learning, 
temporal reasoning and agent-oriented technologies. Another term 
usually associated to AmI is smart environments [17], generally 
involving the implementation of intelligent agents and multi-agent 
interactions. An example, in the assisted living domain can be seen 
in [18]. In other cases, as [19], the interactions and reasoning with 
CI in AmI environments are implemented with blackboard para-
digm to increase the communication efficiency among different 
nodes sharing their context information to provide the services to 
the users.

Regarding knowledge representation and communication, rea-
soning with ontologies has proved to be a powerful process with 
advantages over classical multiagent content languages, such as 
FIPA Semantic Language (SL). So, ontologies have been proposed 
to be the knowledge representation of agent systems [20]. So, in 
[21] authors develop an ontology to represent the basic ideas of 
the contextual knowledge domain used in the communication of 
agents: instances or individuals which are concrete occurrences 
of concepts; relations, roles, or properties resulting from the inner 
reasoning processes developed in the agents.

A recent work [22] presents a network architecture where con-
text elements are managed at abstract level by containers and 
observers, with mechanisms to subscribe and release them, and 
blackboard interactions to connect the nodes working complemen-
tarily on the same context elements. A case study demonstrates 
that the framework can deal with contextual information in an 
Ambient Intelligence environment, with an exemplifying scenario 
in a teaching environment for guiding meetings attendees.
3.2. Image processing and understanding

Lately, there has been much interest in the image processing 
and computer vision fields to incorporate CI in order to improve 
detection, classification, and understanding tasks on images and 
videos. The studies on the effects of context on perception and cog-
nition in the 1970s (e.g. [23]) have attracted the interest of image 
processing researchers that have begun to actively turn the atten-
tion from the individual objects in the scene, to the scene itself and 
the relations with the objects and among the objects. In particular, 
among the others, the work of Torralba [24] should be mentioned 
as being able to convincingly stoke the interest on the subject after 
the initial attempts in the 1970s [25] and 1990s. In the following, 
we provide a concise account of some relevant works showing the 
exploitation of CI for different image processing tasks.

Torralba et al. presented in 2004 a work that exploits context for 
both scene segmentation and object detection [26]. In 2006, Avidan 
proposed an extension to the AdaBoost algorithm to incor-porate 
spatial reasoning for pixel classification [27].

In [28], Jiang et al. propose a context-based concept fusion 
method for semantic concept detection aiming at detecting con-
cepts in whole images/videos. The proposed approach is based on a 
boosted conditional random fields structure able to model inter-
conceptual relationships. These relationships improve the results 
obtained by the independent detectors by taking into account the 
correlations among concepts. Starting from the idea that semantic 
concepts do not occur in isolation, the model allows to incorporate 
contextual dependencies to improve concept detection.

While [28] is an example of high-level concept detection, the 
majority of the works focus on object detection as in [29], also 
exploiting 3D scene constraints [30]. A 2007 account of on state 
of the art by Oliva and Torralba can be found in [31] discussing 
the effects of context on object recognition. For the same purpose, 
the ‘‘auto-context’’ model is proposed in [32] to automatically
learn an effective context model, by computing the marginals of
the posterior as classifications maps.

Even though most of the papers exploit geometric and semantic 
relations, an effort in categorization of the types of CI used for 
image processing and understating can be found in [33] citing: pix-
el, geometric, semantic, photogrammetric, illumination, weather, 
geographic, temporal and cultural context. While [34] provides a 
review of the different ways of using CI for object categorization 
in still images.

Coming to more recent works, pedestrian detection by means of 
a multi-scale context descriptor and iterative boosted classification 
algorithm is presented in [35]. New category discovery by means of 
Object-Graphs are proposed in [36]. The approach considers mod-
elling the interaction between an image’s known and unknown 
objects. The approach combines the appearances of focal objects 
together with context information by learning a series of classi-
fiers. The approach is tested on object segmentation, human body 
configuration, and scene region labelling. A study of the tradeoffs of 
appearance and CI using both low and high resolution images in 
human and machine studies can be found in [37]. The work by 
Zheng et al. [38] proposes a context modelling framework without 
the need for prior scene segmentation or context annotation. The 
approach makes use of a mechanism to evaluate the usefulness of 
context called Maximum Margin Context and transfer learning to 
address the problem of limited data for training the classifiers into 
distinguishing focal and contextual elements.

In the distributed vision domain, multi-agent solutions have 
been proposed to exploit the coordination capability to manage 
multiple sensing nodes and improve the tracking results [39]. Here, 
the context of each vision node needs to be shared with the other 
ones perceiving the same scene (from differents point of view). For 
instance, the Cooperative Surveillance Multi-Agent System (CS-
MAS) [40] consists of agent-based platform to support the forma-
tion of smart camera coalitions; i.e., groups of sensors able to carry 
out complex processing tasks and cooperate with their neighbors 
to build fused results of the monitored environment and improve 
the estimation algorithms.
3.3. Context in artificial intelligence

The concept of context has been studied from abstract perspec-
tive in computer science too. One of the first approximations to the 
formalization of the notion of context in AI is due to McCarthy [41], 
who proposed the extensions of logic relations to explicitly include 
context. So, the istðc; pÞ relation (‘‘is true’’) relates the proposition p 
with context c, being p true only if context c is given. Sowa [42] 
extended this idea with other logical relations to connect abstract 
context with entities, as dscrðx; pÞ relation, to state that p ‘‘de-
scribes’’ entity x. Therefore, if x is a situation, dscr semantics include 
the relation ist. Giunchiglia [43] defines an analogous framework 
where the context is a subset of the complete state of an entity, and 
it is employed to solve a task. Some theoretical ana-lyses have been 
carried out to prove that these multi-context logics are more 
general than original ‘‘ist’’-based formalisms [44]. These 
approaches have been investigated later to address context model-
ing with ontologies in the semantic web [45–47], although the cur-
rent standard languages do not provide support yet.
4. JDL model

Of the many possible ways of differentiating among types of IF
functions, that of the Joint Directors of Laboratories (JDL) Data
Fusion Sub-Panel has gained the greatest popularity. This ‘‘JDL
Model’’ differentiates functions into fusion ‘‘levels’’ that provide
an often useful distinction among IF processes that relate to the
3



refinement of estimates for parameters of interest related to ‘‘ob-
jects’’, ‘‘situations’’, ‘‘threats’’ and ‘‘processes’’ as shown in Fig. 1. 
Note that the figure is meant to depict either a single IF node or the 
aggregate processing of a suite of IF nodes that would each have 
similar structure; the figure is strictly a discussion aid and not an 
architecture or processing diagram. In 1998, revisions of the 
number of and definitions for the ‘‘levels’’ were proposed in [49] to 
(a) provide a useful categorization representing logically different 
types of problems, which are generally (though not nec-essarily) 
solved by different techniques and (b) maintain a degree of 
consistency with the mainstream of technical usage. The pro-posed 
new definitions are as follows [48]:

� Level 0 – Sub-Object Data Assessment: estimation and predic-
tion of signal/object observable states on the basis of pixel/sig-
nal level data association and characterization (this is a new
level which was added to the original process model).
� Level 1 – Object Assessment: estimation and prediction of enti-

ty states on the basis of inferences from observations.
� Level 2 – Situation Assessment: estimation and prediction of

entity states on the basis of inferred relations among entities.
� Level 3 – Impact Assessment: estimation and prediction of

effects on situations of planned or estimated/predicted actions
by the participants.
� Level 4 – Process Refinement (an element of Resource

Management): adaptive data acquisition and processing to
support mission objectives.

As we have described the IF process here, we have noted that
the inputs are from a ‘‘multisensor’’ front-end type capability. From
a historical point of view, there is no doubt that IF system and IF
technology concepts were framed around the notion that the input
was sensor data. Such sensor systems were what have rather
recently been called ‘‘physics-based’’ sensors, meaning the usual
type of electromechanical devices that are designed around ideas
that exploit sensory capability in some range of the electromagnet-
ic spectrum. The idea here is to frame the observational capability
of a problem-space of interest around its naturally-occurring ‘‘sig-
nals’’ that result either from passive emanations such as heat sig-
nals from any object or from active or responsive emanations
that come from an object being illuminated by a radiating sensor
such as a radar. Usually, the sensors are in either ‘‘search’’ mode
or a directed mode, pointed to objects and spatiotemporal areas
of interest. Such data of this type are focused on some collective,
multisensory-based spatiotemporal Area of Interest, an AOI, which
can be conceptualized as bounded by the joint spatiotemporal
LEVEL 1
Object 

Refinement

Data/Informa�on 
Sources

LEVEL 0
Signal 

Refinement
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Proces

Refineme

LEVE
Situa�
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Fig. 1. JDL Data Fusion Process Model d
boundaries of the multisensory system resolutional capabilities.
Our point here is that such data are usually focused on items and
activities of interest and do not include any ‘‘surrounding’’ data
or information beyond the AOI (an exception may be the possible
opportunistic inference local ambient conditions with some sen-
sors, for instance detecting meteorological conditions potentially
affecting to the behavior of entities). It is true of course that an
IF system design could also include supportive data base and other
information peculiar to the IF processing, such as a ‘‘Track File’’ that
maintains files on all object kinematic tracks. But at least his-
torically (roughly, pre-year 2000 say), the data and information
in an IF system design have not typically included anything of a
contextual type.

We will use the definitions given here as a basis to categorize
the concepts and the material found in the literature to enhance
the fusion process by inclusion of contextual elements as discussed
in the following sections.

5. Context in fusion

There has been active research on how to represent and exploit
context in fusion processes in the past fifteen years. While recent 
works can be found in the Special Issue [50], and a survey on con-
textual tracking approaches in [51], we provide in Table 1 a break-
down of the most significant works according to JDL levels and the 
fusion process enhanced by CI: sensor characterization, physical 
and procedural constraints, prediction models, data association, 
tracks/algorithms management and high-level fusion.

Regarding the type of information used as context, static physi-
cal context is the most usual, such as geographic data files in Geo-
graphic Information System (GIS) with surface descriptions,
bathymetry records, and road maps. The use of tactical or procedu-
ral information besides physical is also an option, predictions can
be also refined by using tactical rules, and operational domain
knowledge. This is usual in the examples at higher levels. Finally,
dynamic context variables such as meteorological conditions, sea
state, situation variables or inputs coming from an inference
engine have also been considered.

However, Table 1 shows how, save for [112] which presents a 
framework for the inclusion of CI in high-level fusion processes 
(Levels 2–4), all the works focus on a specific fusion process and 
provide a solution which applies only to specific functions. Most 
examples are in fact tailored to the characteristic of the problems 
addressed instead of general processes to design context-integrat-
ed fusion systems. No initiative has been done towards exploiting 
context in the fusion process in a systematic way separating
JDL Model

DBMS
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Impact 

Refinement

Human-Computer 
Interface

erived from the 1999 revision [48].
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Table 1
Survey of some works exploiting context in typical fusion processes according to the JDL model.

High/Low JDL level Function Techniques

Low Level 0 Sensor characterization

Signal fusion

Geographic aspects [52–54] 
Weighting [55,53,56]
Fuzzy systems [57–59] 
Context enhancement [60–63]

Level 1 Data association

Filtering

Track management
Classification

Confidence-based association [64–66] 
JPDA [67,68]
PDAF [67]
MHT [69,70]
Fuzzy association [71–73]
Physical and maps context [57,74,53] 
Road layout [75–79,67,80]
PHD [81,82,78]
Multiple-model [83–87]
Non-linear filters [75,88,89]
Tactical rules [52,90,81,91]
[92,69]
[93]

High Level 2 Knowledge representation
Situation assessment

Decision making

Ontologies [94]
Activity monitoring [95–98]
Situation understanding [99–101]
Natural language understanding and linguistics [102,103]
[104–109]

Level 3 Intent assessment [110–112]

Level 4 Process refinement Context discovery [113] 
Context adaptation [107] 
Context learning [82,114,115]

Context 
Representa�on and 

Access

Context learning processes
(off-line)

T
S

Induc�on- influence 
models

Constrains, models, 
variables

Physical and logical 
models (sta�c/dyanamc)

Direct context info
observa�ons

Human Observers

Fig. 2. Context sources types.
context knowledge as information to be modelled and processed in 
the appropriate way to the fusion functions. For instance, analysis 
of reliability, consistency, relevance to the fusion processes, 
induced uncertainties, etc., aspects which will be in the coming 
sections. As expressed instead in [115], context can play a vital role 
at any level of a modern fusion system: from object recognition 
through physical context exploitation, to intention estimation 
through linguistic communication analysis.

5.1. Context sources and interaction with fusion processes

Context-based fusion approaches can be classified in terms of
the contextual knowledge sources. In many applications, it is avail-
able in static repositories such as maps, GIS databases, representa-
tions of roads, channels, bridges, etc.; in other cases, context comes
through dynamic data, such as meteorological conditions. In this
case we talk about context variables, implying the need of context
access and update processes running in parallel with the core
fusion processes. Finally, sometimes the context information can-
not be observed directly, and only indirectly deduced from other
sources (inferred context).

In any case, static or dynamic, we can distinguish physical and 
logical context. In the first case, we will have physical descriptions 
(like GIS files) or variables (like meteorological phenomena) which 
are measurable objectively. In the case of logical knowledge (such 
as entities engaged in a coordinated trajectory, traffic regulations, 
mission goals, etc.), context can come from knowledge, human 
reports, learned from data or the result of indirect inference pro-
cesses from other pieces of information. This division of context 
sources is illustrated in Fig. 2. Therefore, a first criterion to catego-
rize contextual sources can be in terms of the nature of available 
information, and observation/inference process.

Physical and logical structures

� Static datasets with information: roads, channels, GIS databases,
terrain characterization (navigation), urban environment, pro-
cedural information, normative, etc.
� Contextual variables such as physical fields: weather, wind,
maritime state, clouds, etc. These variables are distribution of
magnitudes, changing in space and time.

Observed relations. Dynamic reports, human messages, and
other documents represent the explicit input to the fusion process
about situation (normal, labor day, anomaly, emergency, etc.), time
of the day or week (working, meeting, etc). These variables usually
take discrete values indicating different contexts, coming from
direct observation. The instantiated relationships are input to the
system as context in some way, such as a human ‘‘observation’’
directly input to system.
5
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Inferred relations. Context can be deducted as dynamic relation-
ships. A possibility is employing an automatic inference process,
which may lead to the idea of a parallel representation of context
process with its own processes and sources available.

Additionally, the information in context sources can be classi-
fied as it interacts with the state variables in the estimation/infer-
ence processes, two main alternatives can be identified [116].

Context as constraints. In many cases context imply constraints, 
as mentioned case of maps, channels, obstacles, routes, formal pro-
cedures, etc. Constraints can be hard physical constraints or proce-
dural (such as forbidden operation, to be confirmed), and can be 
applied in different ways depending on algorithm (projection, 
inference rules, probabilistic conditioning such as Bayesian or 
Markov networks). The closed-world constraint mentioned 
above [117] can be exploited for instance to freeze the number 
of players in certain domains as sport games.

Context as additional features, semantics or situation elements. In
some applications context is not directly a constraint over the esti-
mation space (in the sense of reduction in the uncertainty in the
search space), but brings new problem dimensions as new features.
In this case context adds dimensionality, opening hypothetical or
more detailed ways to interpret the data. An example can be the
knowledge of semantic features, such as presence of high-value
locations, which open hypothesis to explain the trajectories of tar-
gets. In other cases, a source of context can be related with the
situation that is going on, so that the meaning of available data
depends on the context. An example is the detection of anomalous
situations. There, a certain normal situation is defined, S, which is
the normal context under these conditions (rules, characteristics,
etc.). The existence of alternative known contexts would influence
possible interpretations of situation, so the information about
change of context to a different situation would automatically
open new hypotheses.

5.2. Low-level fusion

The number of applications of context-aided fusion systems at 
low level is certainly large. In order to organize the works exploit-
ing context in fusion, it is useful the abstraction of any fusion pro-
cess as a node (Fusion Node, FN) consisting in three main basic 
functions applied to the data [118]. Note that the FN nominally 
accepts either sensor type input from some input source or an esti-
mate (fused or otherwise formed) from some prior FN or process-
ing node. In this characterization, the FN processing operations 
involve three basic functions, complemented with a management 
process (Fig. 3):

� Data alignment (also known as Common Referencing): normal-
ization operations are performed, such as coordinate or units
transformations and uncertainty transformations, to align data
from information sources to be fused.
� Data association: multiple inputs of either estimates or mea-

surements are examined in order to determine which (hypo-
thetical) entity that the system believes to exist they are
associated to or come from.
� State estimation: often about entity attributes (e.g., kinematic

properties, classification attributes such as color, identity, etc.)
exploiting prediction models and estimation/inference
processes.
� Fusion management: actions to control the output of fusion

processes, such as creation, deletion, merging, etc.

So, the abundant literature is organized accordingly to the main
function in the data fusion process where the context is applied:
impact on sensor performance (affecting to data preprocessing),
data association, estimation algorithms and track/algorithm
management. Regarding the type of information used as context,
several possibilities exist, as commented in previous section (-
physical an logical constrains, dynamic context variables, human
observer, input from inference engine, etc.). In the low-level fusion,
the most typical application is the use physical descriptions and
domain operational knowledge, detailed in the filtering subsection.
5.2.1. Sensor characterization
The characterization of sensor performance is often depending 

on geographic context, an aspect that can be considered as ‘‘Level 
0’’ accordingly to the JDL levels presented above. An example is the 
use of context in Vessel Traffic Services (VTS) [52]. In this case, the 
radar knowledge is used to discriminate between the relatively 
steady target returns and other returns from clutter, interference 
and noise. Areas of poor radar coverage and false targets are gener-
ally known. In [53], an analogous strategy is used to predict and 
protect the visual sensor processing with available information 
(for instance prediction of occluded areas).

An approach frequently used by several authors is weighting 
sensor input with quality factors. So, Ref. [57] proposed a method 
to combine symbolic and numerical information, in order to have a 
supervised fusion process [56,55]. The aim is favoring measure-
ments provided by the sensors well-adapted to the context and 
minimizing the impact of those sensors that are not well-adapted. 
For instance, in a GPS sensor the signal quality depends on the 
environment, it is suitable to this approach. The contextual 
analysis supervising tracking is able to detect the sensors, which 
are reliable and those, which are not. The developed algo-
rithm automatically increases the importance of measurements 
of reliable sensors and decreases the importance of unreliable 
ones.

Fuzzy logic has been also used to represent expert knowledge to 
describe the reliability of the sensors [57]. In the same line, Refs.
[58,59] present applications using fuzzy system for GPS data clas-
sification based on the signal and geometry information with fuzzy 
reasoning to properly weigh the observations in the Kalman filter.
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5.2.2. Signal fusion
Signal fusion is also considered as belonging to JDL ‘‘Level 0’’, or

‘‘early fusion’’, since sensor measurements are improved with a
process previous to detecting entities of interest.

Our analysis of the literature, to the best of our knowledge, has 
not shown a significant amount of works on CI exploitation at sig-
nal level in data fusion. At least not in the terms as CI is intended 
here (Section 2). For instance, context is often mentioned in the 
remote sensing field in different processes, from pixel fusion, to 
change detection and region classification. However, most of the 
times the term ‘‘context’’ is used to refer to neighboring (spatially 
or temporally) pixels, with respect to the one under analysis, either 
in the same image or in other ones possibly obtained from different 
sensing modalities.

The closest match can be found in what several works refer to as 
Context Enhancement (CE). CE is intended to be an auxiliary pro-
cess aiming at improving what ‘‘surrounds’’ foreground objects or 
entities of interest. As a matter of fact, CE is used to improve the 
background information for different tasks such as visualization 
and tracking. An example can be found in [60] where the image 
fusion techniques to automatically combine images of a scene cap-
tured under different illumination are employed. As the authors 
state, in addition to generating interesting non-realistic photo-
graphic effects, the technique could be used to enhance the context 
of night-time traffic videos for better visualization and under-
standing. Improvements are discussed in [61], while a multi-
resolution approach is proposed in [62]. A recent comparative 
study on algorithms for objective assessment of multi-resolution 
image fusion for CE can be found in [63]. It should be noted how-
ever, that CE, as it is understood in these works, is essentially an 
image fusion technique and the focus is given to the quality of the 
resulting image [63] rather than the actual help that CE could bring 
to the primary fusion task (e.g. target tracking).

5.2.3. Data association
A key fusion process where context can be applied to improve

performance in low-level fusion is data association. Here, we con-
sider fusion processes involved in tracking individual entities of
interest, and therefore belonging to JDL ‘‘Level 1’’.

At this level, the association of sensor measurements to existing 
entity tracks or the initiation of new ones involves an analysis of 
correspondences among observations and tracked trajectories, and 
the context can be a boundary in the space data association 
process: how many interesting objects, and assignments to obser-
vations, which may take into account confidence levels obtained 
from context [64]. Other example is the situation of closed-world 
knowledge in some applications in which the objects are known to 
follow specific rules [65]. For instance, in sport applications such as 
football tracking the number of player is constrained to a certain 
number, where a body of knowledge is relevant for tracking the 
players, strategies, etc, reducing the uncertainty in the observa-
tions (video input) [66].

For instance, JPDA is a very extended association algorithm 
which can use context as external probabilities in the association 
process. Ref. [68] propose an enhancement of JPDA method based 
on the dynamic estimation of the detection probability of each 
object using a Bayesian network integrating contextual variables. 
Analogously, Ref. [81] use Bayesian Networks for convoy detection 
and improve the efficiency, computing the evolution of the detec-
tion probability (PD) at each time for each tracked object. Convoy 
tracking is based on the hybridization of a labelled GMCPHD 
(Gaussian Mixture Cardinalized Probability Hypothesis Density) 
and the VS-IMMC–MHT (Variable Structure Interacting Multiple 
Model with Constraints – Multiple Hypothesis Tracking): one is 
very efficient to estimate the number of targets and the other for 
the state estimates.
The authors in [67] apply a simple Probabilistic Data Asso-
ciation Filter (PDAF) where a weighted average over all feasible 
plot-target assignments is performed. They do a comparative ana-
lysis of information impact showing the results for a PDAF tracker 
including road-map and sensor information (clutter notch), only 
sensor information, and without any additional information.

Multiple Hypotheses Tracking (MHT) is considered a very robust 
method for data association. Authors in [70] use map infor-mation 
to prevent unnecessary branches and improve the state estimator 
considering the road network information. An analogous strategy is 
applied by [69] to boost the efficiency of the method.

Analogously, Ref. [82] propose exploiting information about 
context-dependent events: target births (i.e., objects entering the 
scene or reappearing after occlusion) and spatially persistent clut-
ter. The information adapts a Probability Hypothesis Density (PHD) 
filter that spatially modulates its strength based on the learned CI.

In maritime domain, Ref. [71,72] describe a fuzzy association 
strategy augmented to accommodate a variable scale target loca-
tion region. Information such as bathymetric data is used to 
describe the influence on location possibilities of a submarine or a 
ship. The approach proposed is to use a weighting scheme that 
maps the operational parameters into the environmental reports to 
create a weight. The heuristic nature of information justifies the use 
of a fuzzy to decide weighting [73].

5.2.4. Context in filtering
Physical and maps context. Physical context can be seen as the 

most direct use of context to refine state estimators, when this 
information is helpful to model the behavior of entities. In the case 
of ground systems, it is quite usual modeling geographic data in the 
format of GIS files [119,54,77,56]. GIS databases contain infor-
mation of elevation usually in DTED format (Digital Terrain Eleva-
tion Database) expressed in geodetic coordinates, the WGS 84 
system.

This has been used in ground target tracking systems [120,57] as 
a priori information. This same information has been also applied in 
the field of navigation [89]. This is the case of or Ter-rain-Aided 
Positioning (TAP). Their base principle is to measure terrain 
variations along the flight path and compare it with the GIS 
database with terrain elevation for given positions. It is a way to 
avoid limitations of GPS and depend on on-board sensors as Inertial 
Navigation Systems (INS) or radio-altimeters. Analogously, in [75], 
the DGPS and INS data are fused considering also map geometry 
stored in a digital map database.

Similar ideas can be found in maritime domain [95,121,64]. The 
geographic knowledge of the coastline, currents, tides, bathymetry, 
weather, sea state and ice, etc., describes the marine environment 
when vessels move, with the addition of navigation knowledge, 
enables better prediction of their behavior. For instance, deep 
draught vessels in shallow channels may be significantly con-
strained by the water depth (calculated from tabulated tidal height 
plus bathymetric depth). The idea of constrained estimation has 
been also used in maritime environment [88]: specifically, ports, 
coastline, sea highways and corridors, interdicted areas are ele-
ments that can be easily represented on a geographic map, provid-
ing a better understanding of the scenario.

Another example in this sea domain is con-tracker [74] which 
uses a representation with a field of attraction/repletion effects 
in each region affecting to the velocity of ships. The representation 
uses a grid-division map of the area of interest, used in the 
propagation stage, ships are affected accordingly to the field effect 
on velocity, using what authors call as trafficability values, based 
on depth information, marked channel information, restricted 
areas, etc.

With respect to maps format, it is usual having the context rep-
resented as a set of waypoints and junctions to describe the road
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layout [79]. A road can be so delimited by sets of linear segments 
between the points [76,77]. The possibility of constraining the esti-
mation process has been approached by different researchers 
[78,67].

A representative example is map exploitation in airport domain, 
a classical example in cooperative environments where the targets 
have available equipment (GPS or multilateration systems) to be 
fused with primary sources as surface movement radar 
[122,123]. Targets on airport surface (aircraft, vehicles) move along 
the road and runway network. So, target kinematics is constrained 
depending on the target state: i.e. when the target is on the airport 
surface, its position has associated kinematic clues, such as maneu-
vering areas, stop and go, and runway acceleration.

The paradigm has been extended from ground to en-route com-
mercial air traffic, where airways routes information are exploited, 
knowing that aircraft follow air routes and change their flight mod-
es to maneuver at waypoints or Navaids. This routing information 
can be incorporated into the estimation process [91]. An interest-
ing aspect, which raises theoretical considerations, concerns 
uncertainties, the flight mode changes usually happen around 
but not exactly at the waypoints. The algorithm must take into 
account both deterministic and stochastic factors.

Multiple-model filters. The Kalman filter is the basic estimation 
algorithm to provide optimum solution if linear dynamics and 
Gaussian processes can be assumed. There have been different 
lines extending the Kalman filter to avoid this limitation, beginning 
with the Extended Kalman Filter (EKF), the Interacting Multiple 
Model Filter (IMM), the Unscented Kalman Filter (UKF), and Parti-
cle Filters (PF). IMM is recognized as a very efficient strategy to 
approximate optimum performance with maneuvering targets 
since it uses several models in parallel. With respect to the specific 
alternatives to integrate the ground knowledge in estimation algo-
rithms (roads, channels, airways, etc.), they can be divided into two 
groups [86]: post-processing correction techniques, which run 
conventional tracking algorithms first and then apply corrections 
to the estimates to adapt them to the road knowledge; and pre-
processing tracking algorithms, which incorporate the road infor-
mation directly into tracking algorithms. There are several 
approaches in the last case: model target motion adaptively by 
tuning the process noise’s according to the road map, project the 
measurements in the map, extrapolate accordingly to expected 
directions, etc. So, utilization of a priori knowledge requires 
hard-wiring the knowledge into the tracker, if possible, in order 
to improve the prediction model applied in the estimation process.

To include constraints, the IMM approach has been one of the 
most extended approaches. In this line, Variable Structure Multiple 
Model (VS)-IMM, has been widely used in ground target tracking 
[85,83].The basic idea is that the active model set varies in an 
adaptive manner and thus only a small number of active models 
are needed to be maintained at each time. The logic manages 
dynamically the set of feasible dynamic models that each track 
can follow based on each local track context.

In an analogous way, in maritime domain, vessel route informa-
tion is also used to refine dynamic models. Ships are constrained to 
follow the assigned channels accordingly to deep draught category 
and water depth. In [87] a set of motion models, and the force dic-
tates the actuation of the specific MM. In each modeled state the 
force has a different effect, since the ship is likely to actuate a given 
motion (still anchored, navigation, approaching, etc.). In [84] the 
state vector of the considered model is extended to include the 
ship state, heading, rate of turn, drift angle and velocity; etc. 
Among the alternatives we can mention fixed/variable structure 
augmented IMM Algorithm for Ship Tracking, and hybrid algo-
rithms doing simultaneous parameter and state estimation. The 
hydrodynamic coefficients depend on the ship geometry, length, 
etc.
Predictions with tactical rules. Using tactical or procedural infor-
mation (not only physical), target prediction can be also refined, 
accordingly to the operational domain. This is the case in some 
ground military scenarios such as convoy targets following certain 
tactical rules [90]. A convoy is defined in this way as a set of vehi-
cles moving with the same dynamics during a long time. For 
instance, motion on the road under a limited velocity and keeping 
almost constant distances between them [90,81].

The incorporation of background information allows a better 
discrimination and analysis of complex targets with coordinated 
motion. This is also usual in maritime traffic, where navigation 
knowledge allows accurately predict how vessels will maneuver 
as they move along shipping channels, meet other vessels and 
encounter. Most vessels under VTS supervision follow a known sail-
ing plan, stay within established shipping routes and make pre-
dictable maneuvers where channels turn or diverge. Even at a 
higher level, context from human reports may be also exploited 
[52]. Radio communications between the VTS center and 
participat-ing vessels provides information to the MTR on changes 
to the filed sailing plan or Estimated Time of Arrival (ETA) are 
similarly com-municated. The MTR can also listen as vessels plan 
maneuvers in response to special conditions (vessel intentions as to 
collision avoidance, pilot boat rendezvous, anchoring and docking).

With an analogous strategy, in air traffic domain, Liu et al. [91] 
model aircraft dynamics by a Stochastic Linear Hybrid System 
(SLHS) using a multiple-model set to describe an aircrafts dynam-
ics with changing flight modes. Aircraft usually follow air routes 
and change their flight modes to maneuver at waypoints or 
Navaids. This routing information can be incorporated into the 
SLHS by the Stochastic Linear Guard Conditions (SLGC). An inter-
esting aspect raising theoretical considerations about fusion 
exploitation concerns uncertainties, the flight mode changes usual-
ly happen around but not exactly at the waypoints. The SLGC can 
accurately account for these deterministic and stochastic factors.

Context in non-linear filters. Other algorithmic approach to 
exploit context is the particle filter in which the samples of the tar-
get state can be restricted and thus drawn exclusively from the 
subspace generated by the context constraints. It may follow a 
Bayesian strategy applied over the constrained subspace, as in [88]. 
PF has become very popular because of its generality keeping 
Bayesian approach, although its implementation opens important 
issues to work properly in practice. UKF also allows non-linear pro-
cesses with a more efficient transformation. In order to exploit 
context with PF or UKF methods, hard constraints externally 
known are naturally integrated on the state vector or the measure-
ment process during the estimation process [75,89]. For instance, in 
[75], a constrained unscented Kalman filter is used in GPS/INS 
fusion integrating state constraints from the surface geometry.

Combined with multiple-mode approach, particle filters lets the 
different modes within the MM estimator framework be represent-
ed by constrained likelihood models, whereas the state dynamics is 
the same for all models. So, In [89] the Gaussian sums considered in 
the jump Markov systems framework solved by VS-IMM algorithms 
mentioned above is one important alternative in this respect.

5.2.5. Track/algorithm management
Track management can be used to exploit context in order to 

adapt and improve the fusion process accordingly to the situation. 
For instance, feedback strategies, i.e. commands flowing from con-
textual situation level to the data fusion node, can yield improve-
ment in adverse conditions, such as high traffic or heavy clutter 
scenarios with small probability of target detection. Other option 
is the automatic tuning or selection of algorithms (multi-algorithm 
fusion) based on external input [69].

As mentioned above, a decision process following a KBS
approach captures the human criteria and embed this capability
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into the system so that it may operate autonomously. As basic 
capability, the inference engines carry out forward–backward 
chaining and truth maintenance. Data about the sensors, con-
figuration, and environment where the entities are moving are the 
input to configure the KBS [92].

In [69], a rule-based Inference Engine operates with the KBS 
exploit knowledge bases about navigational rules, target behaviors, 
collision avoidance maneuvers and interface with the tracking 
algorithms. An expert system is aimed at increasing robustness 
of sensor data fusion from disturbed sensors by adaptation of their 
parameters. This reaction on algorithm parameters can be quick 
and can correct the local anomalies as soon as they appear.

5.2.6. Classification
An example of CI exploitation for classification can be found in 

[93]. In the paper, CI is exploited to improve the classification of 
images in the medical domain by encoding context in a Bayesian 
framework. The authors analyse both a ‘‘compound Bayesian’’ 
approach that fuses CI for all elements in a set together and a less 
computationally demanding alternative that fuses only the mea-
surements related to an object and its relevant CI. For the latter 
case, the authors correctly mention that CI has to be directly 
extracted (manually in the paper) or some form of relevance func-
tion would have to be devised in order to select the relevant 
context.

5.3. High-level fusion

This subsection reviews the state of the art of architectures, 
algorithms, and techniques developed to integrate CI in high-level 
fusion processes. In JDL model fusion terminology and according to 
the general acceptance of the term with the fusion community, the 
term ‘‘high’’ here refers to fusion levels above level 1. At these 
levels the fusion of data and information is largely (but not exclu-
sively) conducted at the symbolic level [124].

5.3.1. Knowledge representation
Ontologies. An attempt in formalizing an instrument for context 

representation can be found in [94] where an extension to the OWL 
language called Context OWL (C-OWL) is presented. The enriched 
language allows to contextualize ontologies in the sense that con-
textual knowledge is not shared by default but kept local and thus 
not visible to the outside. C-OWL allows then for explicit mappings 
(bridge rules) between ontologies that enable controlled forms of 
global visibility. However, it must be noted that in this work the 
term contexts refers to ‘‘local models that encode a party’s view 
of a domain’’ thus representing non shared models and interpreta-
tions. The work then focuses on how to establish domain relations 
as mappings between elements in one domain to elements in 
another domain. This ontology alignment is thus used to map glob-
al knowledge in local domains and vice versa.

5.3.2. Situation assessment
Activity monitoring. Padovitz et al. propose in [99] an approach 

for situation classification based on Multi-Attribute Utility Theory 
(MAUT) sensor fusion. The technique computes a degree of support 
to the situation to be inferred according to the condition of the 
context state. The proposed method is applied to context-aware 
smart-spaces where readings from both environmental and user-
carried devices are combined to infer situations related to the user.

The paper of Steinberg and Rogova [102] addresses the concepts 
of situation and context in the fields of data fusion and natural lan-
guage understanding. In addition to pitching the natural language 
understanding problem as a Situation Assessment (SA) problem 
(well-known in the data fusion community), the paper has the 
merit of exposing the importance of contextual data in typical
fusion tasks such as refining ambiguous estimates, explaining
observations, and constraining processing. Also, the concepts of
context of and context for are discussed with references to impacts
on the interpretation and use of CI in the fusion process.

In [100], Steinberg models contexts as situations and suggests 
the use of Structural Equation Modeling (SEM) techniques for 
evaluating dependencies between problem and context variables. 
Both types of variables can be latent or observable even though, 
according to Steinberg, high level fusion processes for SA mostly 
aim to estimate latent variables governing the situation being 
assessed. The concept of utility of context variables in solving a 
given problem is also discussed.

Rogova discusses in [101] how context plays a central role in 
threat assessment and crisis management by providing decision 
makers important information regarding the situation and its 
dynamics with respect to their goals. Methods and issues in con-
text representation and discovery are described in addition to 
designing a processing flow for context-aware crisis management 
systems.

The recent work of Suarez-Tangil et al. [96] discusses typical 
problems in the domain of Security Information, addressed with 
an Event Management paradigm (SIEM) for intrusion detection 
with self-adaptive systems. Machine learning is applied for rule 
extraction to classify reported events accordingly to a context-
based pattern definition of attacks. The focus is on integrating 
security events reported from heterogeneous sources, where con-
text assists to the correlation process to identify related events in 
a complex multi-steps attack scenario.

Jenkins et al. propose in [97] a framework for aligning the 
uncertainty of human observations (soft data) for intelligence data 
analysis. The authors postulate how the error characteristics of 
human-generated data are significantly affected by contextual 
effects. Notably, the paper develops a classification scheme of 
human observations as relevant to the counterinsurgency domain 
and proposes a way to quantify the benefit of the uncertainty 
alignment process to the fusion tasks of data association and situa-
tion assessment.

A proposal to dynamically represent context knowledge with 
ontologies and evaluate anomalous situations is presented by 
Gomez-Romero et al. in [125]. In a harbor surveillance scenario, it 
arranges the architecture of the system in two processing levels. 
The first includes rule-based reasoning to extend tracking data and 
classify objects according to pre-defined categories, while in the 
second a belief-argumentation system (BAS) is used to determine 
the threat level of situations which are non-compliant to the nor-
mality model.

The recent approach of Snidaro et al. [98] discusses the fusion of 
uncertain sensory and contextual information for maritime 
situational awareness. Starting from the premise that events and 
anomalies are key elements in the process of assessing and under-
standing the observed environment, the paper arguments how 
building an effective situational picture for a surveillance system 
in the maritime domain involves combining high-level information 
with sensory data. The Markov Logic Networks framework is 
employed to both encode a priori and contextual knowledge and 
to fuse evidence from multiple sources, possibly reasoning over 
incomplete data. Knowledge is expressed by formulas in first-order 
logic with the possibility of associating to each of them a level of 
uncertainty encoded by a weight factor.

Situation understanding. Agent technologies have been applied 
to build fusion systems at different levels [126]. At the higher 
levels there are many examples, such as agents dealing with situa-
tion management or event analysis [127]. So, in [128] situation 
awareness is implemented with peer-to-peer multiagent system 
to overcome the limitations and localized knowledge of each agent 
platform. Since the cooperation and sharing interactions may not
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be predefined a priori, this leads to requirements for semantic-
based agent discovery, with a service overlay approach. Sycara et al. 
[129] propose the HiLIFE (High-Level Information Fusion 
Environment) fusion model for battlefield management. To these 
authors, context is defined as significant features that influence a 
situation, or expectations on what is to be observed and the inter-
pretation of what has been observed. In order to simulate uncer-
tain effects of actions they used the multiagent platform RETSINA 
(Reusable Environment for Task Structured Intelligent Networked 
Agents) [130].

Natural language understanding and linguistics. Ferrin et al. [103] 
reviews the two main contrasting paradigms on linguistic context: 
one considers context as a mere collection of features of the world, 
the other sees context as a representation of features of the world. 
These two main concepts represent the basis for three definitions 
that can be found in linguistics: objective context, pragmatic con-
text, and discourse context. The work then proposes the use of the 
term Context to indicate a set of features at a real world physical 
level able to answer questions such as Who, Where, When, What, 
How and Why. The authors then define as Co-text the set of fea-
tures at representational level that can be used to bind variables 
such as those introduced by pronouns. The term Situation is then 
used to indicate any cognitive form of link between the real world 
physical level and the representational one. Even though the dis-
cussion is mainly grounded in linguistic territories, the distinction 
between contextual elements in the real world and at representa-
tional level is seen as a significant one, worth of further analysis for 
the development of context-aware fusion processes.
5.3.3. Decision making
The development of Information Fusion systems usually imply a 

need for processes in support of decision making, particularly at 
higher levels dealing with situations and reasoning mechanisms. 
So, a challenge identified within the high-level fusion is related to 
the  need to incorporate the  human in the  decision  process   [105]: 
‘‘how should we design Information Fusion systems formed from 
combinations of people and machines?’’. This challenge reflects the 
concern of what is the impact of HLIF to decision support.

This aspect is proposed by some authors as ‘‘Level 5 – User 
Refinement’’ [105], the set of processes aimed at adaptive interac-
tion and queries for data retrieval and display to support decision 
making and actions. Various user refinement decision support 
techniques have been proposed to improve decision-making, with 
the challenge of integrating context and culture to enrich the pro-
cess. The paradigm of autonomous agents have been related with 
this objective [104].

Rogova et al. [106] further discuss the problem of decision mak-
ing when incorporating context-dependant information in the 
fusion process. In particular, the paper highlights how the quality 
of information can, depending on the context, relate to different 
combinations of quality attributes. A model for sequential decision 
making for pattern recognition is then discussed. Quality attributes 
such as credibility, reliability and timeliness are considered.

Following Steinberg et al. [107], the use of context for predict-
ing and understanding situations can be oriented to establishing 
expectations about the states of individuals, events or situations 
of interest in decision-making. The use of context in data fusion 
can be generalized to decision-making in general to establish 
expectations and resolve ambiguity. Following this approach, the 
decision system must meet predefined mission-specific informa-
tion needs in terms of user-defined Essential Elements of Informa-
tion (EEIs): their current, historical and predicted location, track, 
identity, classification, attributes, activities, and courses of actions; 
interactions and other relationships.
An architecture to integrate contextual information in the 
fusion process for decision systems is discussed by Solaiman et al. 
in [108]. The framework explicitly considers the role of con-text as 
something that can produce effects on the proposed Holon 
functional model, the latter capturing the relationship between 
input and output values. To this end, and with a different meaning 
with respect to what is described later in Section 6, ‘‘Internal Con-
text’’ is intended as intrinsic characteristics and constraints about 
the input–output relation (e.g. capabilities of a sensor), while ‘‘Ex-
ternal Context’’ is intended as all exogenous information that can 
influence the relation. The application of the proposed framework 
is discussed with a walk-though example in the remote-sensing 
domain.

The work by Smirnov et al. [109] describes from a general per-
spective context-based knowledge fusion processes and proposes a 
classification related to their use in Decision Support Systems 
(DSS). Some general patterns are identified, analyzing the effects 
that knowledge fusion process produces in the system for the 
preservation of internal structures representing the knowledge 
and their autonomies.

5.3.4. Intent assessment
Intent assessment is the process of estimating the intentions of 

an entity of interest. The fusion functions and processes devoted to 
this goal are pertinent to JDL level 3. Little and Rogova [111] claim 
that a formal structure of domain-specific types of entities, attri-
butes, situations, and their relations are needed for reasoning 
about situations, intent and threats. To this end, they postulate 
the use of formal ontologies in order to capture the complexity 
of domain-specific knowledge so to be able to understand issues 
related to change over time, CI, and identity.

In a framework that encompasses different high-level fusion 
processes (JDL Levels 2–4), a model for inferring adversary intent 
by mapping sensor readings of opponent forces to possible oppo-
nent goals and actions is presented in [112]. In addition to extend-
ing concepts developed earlier for the use of context in intelligence 
processing [110], where context is seen as being able to influence 
the value of a situational feature of interest, context is also consid-
ered ‘‘source of expectations of what is to be observed and inter-
pretation of what has been observed’’. The authors suggest that 
embracing a cognitive approach could benefit high level fusion 
processes such as inferencing and intent assessment. In particular, 
a terrain analysis model is used for reasoning about tactically sig-
nificant operational concepts such as trafficability, engagement 
areas, avenues of approach.

The intent of a given entity will be later discussed in Section 6 to 
be its internal context.

5.3.5. Process refinement
Considered as the fourth level in JDL terminology (see Section 4), 

the fusion process refinement aims at dynamically adjusting and 
improving the fusion processes in order to better fulfill system 
objectives. The dynamic exploitation of context can be a key ele-
ment for optimizing the fusion process as problem variables and 
associated context variables change (see 6). In addition, relevant 
contextual variables might not be known a priori so a form of 
dynamic context discovery should also be carried out as part of 
the optimization process.

A first attempt at proposing an architecture that defines the 
interplay of Data Fusion and Resource Management (DF&RM) func-
tionalities in exploiting contextual information can be found in 
[100].

Steinberg and Bowman discuss in [113] an evidence-accrual 
inference method to select context variables on the basis of their 
utility in refining explicit problem variables, given candidate sys-
tem actions considering also their cost. They develop relations
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between the JDL model and Resource Management functions to
accommodate adaptive decision and include adaptive context
exploitation. The goal is to develop a model and an implementation
scheme for seeking, discovering, selecting and fusing contextual
information as part of a goal-driven decision process. This architec-
ture allows any decision process to be completely characterized in
terms of Data Fusion and Resource Management processes. Fur-
thermore, a formal duality between Data Fusion and Resource
Management functions permits re-use of techniques and consis-
tent co-development between fusion and management processes.

Few works deal with context learning yet. The already men-
tioned work [82], learns targets’ birth and death locations to adjust 
the parameters of the PHD filter. In [114] context is represented by 
a network of situations and the work proposes a framework for 
generic situation acquisition algorithm with an application to 
video surveillance. Learning of complex domain knowledge is dis-
cussed in [115] where also the problem of re-using contextual 
knowledge is addressed. In fact, transfer learning techniques are 
identified as a possible solution for porting the knowledge 
acquired in a (source) domain to another one (target domain).
6. Discussion on context in fusion

After having surveyed the literature outside and inside the
fusion domain, we go back to some fundamental concepts high-
lighting here a few specificities that have to be taken into consid-
eration when developing fusion systems for taking into account CI.
In particular, the concepts of internal and external context can be
found across many domains and we discuss here their implications
in fusion systems for situational awareness.
External context Internal contextInfluences

Condi�ons the percep�on of 

Fig. 4. Relations between external and internal context in cognitive science as 
described in [132].
6.1. External and internal context

Among the different ways in which context has been modelled, 
the partition between external and internal context is a concept 
that appears to be widely accepted, even though there are some 
notable exceptions ([131] for example), as pointed out by Baldauf 
et al. in [11]. The authors report internal and external context as 
being two different dimensions separating the external physically 
measurable world and the internal (unobservable) state of the user 
including goals, tasks, emotional state, etc. This definition appears 
to be an adaptation for the domain of pervasive computing and 
context-aware devices of what was meant by earlier works in the 
field of cognitive science and perception. In particular, Kokinov 
[132] states that ‘‘context is the set of all entities that influence 
human (or system’s) behavior on a particular occasion, i.e. the 
set of elements that produce context effects’’. Then he describes, 
citing quite a few references in cognitive science dating back to 
years 1986, 1988 and 1993, the notions of external and internal 
context where the former refers to ‘‘physical and social environ-
ment or the setting within which the subjects behaviour is gener-
ated’’ while the latter ‘‘subjects current mental state within which 
the subjects behavior is generated’’. In this domain external con-
text is then seen as the sphere of subjective perceptions of the sur-
rounding environment that have an effect on the subject’s mental 
state. According to these definitions, a External context ! Internal 
context relation appears predominant where external factors pro-
duce effects on the internal context of the subject. Although the 
relation is not strictly in that direction only as the internal context 
(e.g. mental state) of the subject can influence the correct or com-
plete perception of the surrounding environment and thus in turn 
its influence can be for example, with different degrees of con-
sciousness, altered or even prevented (Fig. 4).

As already mentioned, these notions of internal and external
context developed in the cognitive sciences domain have been
quickly adopted by the researchers in mobile and pervasive com-
puting where external attributes, most notably location, are sensed 
in order to provide relevant information to the user. Most of the 
papers concentrate on the exploitation of external context since 
some attributes of it can be sensed by low-cost hardware. Even 
though being generally non-observable, there are still some good 
chances of guessing the internal context of the user (of course a 
subset of it). Save for the cases where the user is directly providing 
(part of) it, for example by sharing her/his emotional state explic-
itly or by disclosing interests or intentions by searches in search 
engines, other mechanisms involve for example the analysis of 
web navigation patterns, opened documents, etc. [11].

A more complex situation can be found in the field of autono-
mous-agents. Agents typically represent human cognitive states 
using underlying beliefs and knowledge modelled in a knowledge 
representation language. So, the model of a cognitive state (inter-
nal context) defines the behavior of agents but it strongly influ-
enced by the perceived external context. Besides, the extension 
to shared context appears in a community of agents to be coordi-
nated. For instance, Motus et al. [133,134] describe the team situa-
tion awareness concept in the context of multi-agent systems. 
Here, the situation awareness of an agent needs to be synchronized 
with the other agents, leading to the creation of this collective and 
distributed situation awareness.
6.2. External and internal context for Information Fusion

We have seen ways of sensing or inferring external/internal
context in different domains, from cognitive science to distributed
agents. We would like now to highlight what are the common-
alities and differences in typical tasks in the IF domain.

Uncertainty. Even though almost all of the domains surveyed 
can be seen in terms of IF as soon as multiple sources of data/infor-
mation are present and there is the need to combine their products 
in order to obtain better estimates of a certain variables, typical IF 
systems and applications generally have the common problem of 
lack of direct information from the focal entities of interest. SA sys-
tems, for example, have to go through a number of processing 
steps, also combining heterogeneous data, in order to estimate 
the status and intentions (or purpose) of non-cooperative entities 
(or process/system) [98]. In addition, observations from sensors 
are generally noisy and sources of information can have different 
level of trust and provide outputs with different quality [135], 
therefore making fusion a real necessity [124].

Observed and observable context. In such a scenario, other defini-
tions derived from Coutaz and Rey [136] can come to help. Howev-
er, the definitions of situation, context, observed and observable 
context there provided are given with some bias towards the 
development of context-aware (mobile) devices, where the user 
is at the center and the devices are a proxy of services between 
the user and the environment. We provide here a different account 
of a few key terms as graphically described in Fig. 5.

Here we consider a working definition of a situation as the col-
lection of all the entities, their attributes, the relations among them
and the environment, and the events occurring in a given scenario
at a certain time. The entire real situation, giving a perfect account
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Fig. 6. Typical relations between external and internal context in fusion for SA
where the mission of the system is typically to infer the goals/purpose (internal
context) of a focal entity. The internal context of the focal entity defines what in the
current situation is contextually relevant to it (external context). This external
context can be observed or inferred by the system in order to discover the entity’s
internal context. At the same time the external context (e.g. road network)
conditions the goals of the focal entity.
of what is happening in the scenario, is of course impossible to
observe and represent. A SA system can only observe a subset of
the real underlying situation and this subset is given by the pur-
pose of the system, that is the system’s internal context. This
means that if the system was designed for a specific purpose or
if its current setting is directed to a certain objective, then the sys-
tem is configured for observing a specific subset of the situation.
This is in practice complicated even more by the sensing and inter-
pretation capabilities of the system, the noise corrupting the obser-
vations, uncertainties involved in the processing algorithms, etc.,
making the situation actually observed an even smaller subset of
what the system was intended to perceive and understand. Since
the purpose of the system and its inner workings are known to
the system designer, the internal context of the system is here
understood as totally observable.

External and internal context. An interesting notion is given in 
[136] is the following ‘‘context and situation can only be defined 
with respect to an entity for a given purpose’’. From this premise 
the authors generalize that the Context at time t that relates to a 
set of agents for performing a task is a composition of situations 
in a time interval between a starting time t0 and t. A situation is 
defined as the set of values observed of the variables that relate 
to a given agent for performing the given task.

The specific characteristics of fusion systems for SA so far 
described bring us to a revision of the concepts of external and 
internal context as follows. If a given entity in the scenario is to 
be considered of interest, that is the focal element f, then the exter-
nal context of f is understood here as a subset of the situation that 
can be put in relation with f because of its internal context. That is, 
the current goals and objectives of the focal element f define what 
could be considered as contextual for it at a given time as shown in 
Fig. 6 thus in a sense reversing the direction of the main condition-
ing relation of Fig. 4.

Here, the goals of f - unknown and to be discovered - project a 
number of relations to elements of the situation that are relevant 
to f 1) for accomplishing its goals or 2) relevant to the system 
because their contextual effects on f help to understand the behav-
ior of f and infer its goals or purpose. This means that in a fusion 
system for SA both the focal’s goals and CI need to be continuously 
estimated in a iterative process: the initially hypothesized goals of 
f define what is contextual to f that in turns helps to refine/con-
firm/reject the initial hypothesis. This proceeds, in a fashion similar 
to the Expectation Maximization (EM) algorithm, continuously and 
dynamically as f can change its goals over time, also depending on 
the focal’s own contextual knowledge and perception of it that can 
influence/change its own internal context (Fig. 6).

With respect to [136], the context is not intended here as a 
composition of situations since the valid external CI is here under-
stood as being the one that relates to the current goals of the focal. 
CI that has exited the current scope of validity is treated as
En�ty’s
External
contextcontext

Observed situa�on

Situa�on

En�ty’s
internal
context

System’s internal
context

Fig. 5. Situation and context.
historical context that can be used for automatic context learning
purposes.
7. Architectural aspects for context-based fusion systems

Continuing the discussion in the previous section, a fusion sys-
tem may need continuous access to the available sources of exter-
nal context in order to improve the estimation of the state of
entities of interest. From an architectural perspective, the ‘‘middle-
ware’’ concept is appealing to develop a generic, well-founded
approach to connect the fusion process with available context
sources in a dynamic way, adapted to the needs and inferences
being carried out. In this section, we survey the middleware solu-
tions in IF and other domains and then propose it as a solution to
address the design of contex-based fusion systems in a more gen-
eral way.
7.1. Middleware concept in IF and other domains

The idea of middleware is basically an abstraction to intercon-
nect processes operating at different levels and working with
diverse types of information. It is a solution to enable interaction
between software systems, typically applications with different
hardware/operating systems, and make uniform heterogeneous
systems through software abstractions. It is associated to the con-
cept of service-oriented computing: the information workflows are
split into elementary building blocks as independent reusable ser-
vices components with homogenous interfaces. So, middleware is a
common term in several domains to facilitate distributed process-
ing, connecting different applications over a network. Some
examples:

� In simulation technology, middleware is a layer of software that
lies between the application code and the run-time
infrastructure.
� In wireless networks, middleware is the common strategy to

integrate operating systems and hardware with available appli-
cations [137].
� In AmI, it is a common approach to compose context-aware

services [138,139].
� In some operating systems, middleware is used for providing

multimedia services in certain environments such as automo-
biles or aircrafts.

In fusion systems, there have been also approaches to employ mid-
dleware architectures, such as the Network Enabled Capability 
(NEC) [140]. Each Information Fusion process involves two funda-
mental elements: (1) information to be fused and (2) operations
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applied to the information to produce the output. Here, the access
to context knowledge can be implemented as available services:

� Information source services are the sources of primary data to
be fused.
� Information fusion services perform the actual fusion on the

data obtained from previous information source services or
other fusion services working at a lower level.

With this perspective, fusion processes can be viewed as work-
flows composed of different types of services, which are composed 
either manually by a human expert, or automatically by appropri-
ate service composition tools. Examples of adaptive middlewares in 
the IF domain are Adaptive Middleware [141] and MidFusion [142]. 
MidFusion is an architecture to facilitate Information Fusion in 
sensor network applications. It discovers and selects the best set of 
sensors or sensor agents on behalf of applications (transparent-ly), 
depending on the quality of service (QoS) guarantees and the cost 
of information acquisition, with some theoretical analysis to do 
selections. Adaptive Middleware is designed for context-aware 
applications and abstracts the applications from the sensors that 
provide context. The authors propose the use of utility functions 
to choose, given multiple alternatives for providing a specific con-
text, the one maximizing the applications’ total satisfaction. Nexus 
[143] is another middleware for service-oriented Information 
Fusion developed in BTs Pervasive ICT research center. It imple-
ments the three key concepts, i.e. service-oriented computing, 
automated service workflow composition and peer-to-peer 
architecture.

7.2. Middleware proposal to integrate context sources and fusion
processes

Taking this architectural perspective, a way to systematically
address advanced and generic context-based IF design deals with
a context access and management system, in charge of providing
useful context information about the entities as a transversal inde-
pendent module. Context services supporting fusion processes
could include, as examples, access to reference databases,
meteorological information, image repositories, GIS systems, texts,
internet, etc.

The basic mechanism would be a query process (Fig. 7): the 
middleware returns the selected relevant context information 
from the available sources, accordingly to hypotheses raised by 
fusion processes. Following the figure, two basic elements can be 
identified at both sides:

� At the context side, the middleware manager is responsible for
collecting, updating and making contex knowledge usable by
fusion processes.
� At the fusion side, the adaptation logic takes the contextual

inputs and directs them to relevant fusion processes. To this
end, all processes need to be designed as context-aware in order
to properly exploit contextual input.

The transformation operations to be done by the context middle-
ware are sketched in Fig. 8. In order to be useful, context needs to 
be spatially and temporally aligned with the fusion data, adapted 
to the granularity of the information, and the associated uncertainty 
should be available.

The main operations required are enumerated next. First,
regarding the search of applicable context to the fusion query
(‘‘Context Search and Validation’’ in the figure):

� Search of context relevant to the situation: physical (roads,
bridges, channels, etc.), operational rules, etc.
� Compatibility: validate the collected information as appropriate
for the query and check its compatibility (e.g. map, number of
objects, etc.). In some cases, context maybe is not applicable
(e.g. off-road, operational rules not met, etc.)

Regarding the transformations to get the ‘‘Normalized Context’’:

� Context correlation and alignment with the fusion process. This
is especially relevant for the use of real-time ‘‘dynamic’’ contex-
tual sources, i.e. meteorological services:
– Spatial alignment (fundamental for efficiency): search with

appropriate representation and algorithms (maps, GIS, roads,
etc.).

– Time alignment (necessary when context is dynamic): sim-
ple temporal indexing, extrapolation models, etc.

� It must provide up-to-date context. This means that it must
integrate on-line information appropriate and potentially useful
for the fusion processes.
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� Granularity: it implies adaptation to the needs of the fusion
algorithm. Some aggregation or interpolation may be required
to adapt the scales at both sides.
� Characterization of the uncertainty in CI, considering both the

intrinsic uncertainty in CI and the one propagated by the query
(for instance uncertainty in the location to index spatial context).

At the fusion process side, it is needed the development of func-
tions supporting the adaptation mechanisms:

� Library of alternative models that can be selected according to
context (such as on/off road motion models).
� Impact on applicable models, sets of parameters, algorithms,

etc.
� Applicable rules to drive the fusion processes, such as con-

strains and hypotheses applicable.
� Closed-world models depending on situation (number of

objects, appearance/disappearance assumptions, convoy
motion, etc.)

Therefore, a middleware is proposed as the approach to gener-
alize the context access and exploitation by fusion processes, orga-
nized as a set of operations done over the information available in
different sources. The context middleware manager is responsible
for searching and providing the relevant and updated information
in the expected format and scale, considering the needs and
requirements of the fusion node, so that fusion operations can take
into account the context, independently of the specific strategy
adopted. The service-oriented architecture is the key to develop a
general perspective in the design and avoid particular solutions
depending on the specific types and nature of the contextual
sources available.
8. Conclusions

The exploitation of context information in fusion systems is a
very active area which has been receiving increasing attention
from several research communities. The idea of representing and
exploiting context has been motivated in many different areas
such as pervasive computing (user context to improve the services
provided), image processing and AI. In the Information Fusion com-
munity, there is a growing interest in this topic, with a number of
works presenting performance improvements via context exploita-
tion in the underlying models, leading to research on powerful
algorithms to exploit this additional knowledge (from non-linear
filters to logic-based inference systems) and around appropriate
ways to represent context. This paper surveys the state of the art
in this field, taking the JDL perspective to analyse and classify the
literature of existing works.

Based on this survey, the paper introduces an analysis of con-
textual information as determinant element to describe the behav-
ior of any entity. A discrimination between internal and external
context from the entities’ point of view is useful to describe their
behavior, and how the available external context helps in the esti-
mation of focal entities’ internal context. This discussion motivates
also the architectural proposal to develop context-based fusion
systems with a more general approach. Middleware is the struc-
tural element here discussed to unify context access from fusion
processes, taking care of correctness and relevance accordingly to
the needs of fusion tasks requiring it. Research in this architectural
line, from the authors’ point of view, can be an aspect to fertilize
the development of a new generation of fusion systems integrating
the context in a general way with solid and general theoretical
foundations beyond the abundant particular cases in current
literature.
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