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Abstract

In this work we introduce a method for constructing linear orders between pairs of intervals by using
aggregation functions. We adapt this method to the case of interval-valued Atanassov intuitionistic
fuzzy sets and we apply these sets and the considered orders to a decision making problem.
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1. Introduction

In decision making problems it may happen that, after the exploitation phase, the best alterna-
tives are equally ranked and it is not possible to decide which one is the best. It has been noticed
[1] that these troubles often appear when the entries of the considered fuzzy preference matrix are
close to 0.5, that is, when the experts have doubts about their preferences of some alternatives
over the others. In this situation, the systematic use of extensions of fuzzy sets has been shown
to be a really useful tool [2]. Among those fuzzy sets, interval-valued fuzzy sets(IVFSs) [3–5] or,
equivalently, Atanassov intuitionistic fuzzy sets(AIFs) [6] play indeed a crucial role.

In some special cases, despite the fact of using IVFSs and AIFs, still remain problems that are
similar to those encountered in the previous ones. For these new last situations we may use the
interval-valued Atanassov intuitionistic fuzzy sets (IVAIFSs) [7]. Besides, the use of intervals to
represent membership and non-membership has, from our point of view, a double advantage:

1. If we want to model environments where there exist non-comparable elements, it will be
enough to use classical partial orders between intervals. This is not the case in this work.
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anna.kolesarova@stuba.sk (A. Kolesárová), mesiar@math.sk (R. Mesiar)
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2. If we must represent ignorance [8] associated to the datum given by an expert, we can under-
stand the length of the intervals as a representation of such ignorance. If, in these cases, we
need to be able to compare any two data, then we can use any of the linear orders we consider
here.

Once the decision of using IVAIFSs to deal with a decision making problem has been reached,
we should choose, accordingly, a linear order between pairs of intervals. In this way, we will select
as the best option the alternative which is associated to the largest pair of intervals, with respect
to the considered linear order.

Moreover, in decision making problems we must also aggregate the information furnished by the
experts by means of aggregation functions [9–11].

All these considerations have led us to aim the following objectives:

(1) To use aggregation functions for building linear orders for pairs of intervals whose end-points
belong to the unit interval;

(2) To study methods for constructing linear orders on the set of IVAIFSs;

(3) To deal with the exploitation phase of decision making problems through IVAIFSs, by using
the previously built linear orders.

The structure of this paper is the following. In Section 2 we introduce the notation and recall
some well-known notions. In Sections 3-4, we construct two classes of linear orders between pairs of
intervals. Section 5 contains an application of our theoretical results to group decision making. In
particular, we provide two algorithms. Some concluding remarks as well as suggestions for further
research close the paper.

2. Previous concepts and results

We start by recalling some well-known concepts that will be useful for subsequent developments
throughout the paper.

2.1. On orders and partially ordered sets

Given a partially ordered set (poset) (P,�), we say that

a) 1P is the top of the poset if for all x ∈ P it holds x � 1P .

b) 0P is the bottom of the poset if for all x ∈ P it holds 0P � x.

In case they exist, 1P and 0P are unique.
Let K([0, 1]) ⊂ R2 be given by

K([0, 1]) = {(x, x) ∈ [0, 1]× [0, 1]|x ≤ x}

and let L([0, 1]) be the set of all closed subintervals of the unit interval, that is

L([0, 1]) = {x|x = [x, x] such that 0 ≤ x ≤ x ≤ 1} .

There is a straightforward bijection i : K([0, 1]) −→ L([0, 1]) given by i((x, x)) = [x, x] = x.
Through this bijection, the partial order on R2, (a, b) ≤2 (c, d) if and only if a ≤ c and b ≤ d
induces an equivalent partial order on L([0, 1]), namely,

x �2 y iff x ≤ y and x ≤ y . (1)
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In this way, (L([0, 1]),�2) is a poset whose bottom and top are, respectively, 0 = [0, 0] and 1 = [1, 1].
In fact, the bijection above is a lattice isomorphism 1.

We refer as (L([0, 1]))2, to the universe of pairs of intervals, that is,

(L([0, 1]))2 = {(x,y) = ([x, x], [y, y]) with x, x, y, y ∈ [0, 1]} .

Similarly to what happens in the case of R2 and L([0, 1]), the partial order on R4, given by
(a1, b1, c1, d1) ≤4 (a2, b2, c2, d2) if and only if a1 ≤ a2 and b1 ≤ b2 and c1 ≤ c2 and d1 ≤ d2,
also induces an equivalent partial order �4 on (L([0, 1]))2, given by

(x1,y1) �4 (x2,y2) if and only if x1 ≤ x2 and x1 ≤ x2 and y
1
≤ y

2
and y1 ≤ y2 . (2)

In this way, ((L([0, 1]))2,�4) becomes a poset whose bottom and top are, respectively, (0,0) =
([0, 0], [0, 0]) and (1,1) = ([1, 1], [1, 1]).

Definition 2.1. [18] An order � on L([0, 1]) is said to be admissible if it is linear and refines the
order �2, i.e., it is a linear order satisfying that for all x,y ∈ L([0, 1]) such that x �2 y it holds
x � y.

Example 2.1. The lexicographic orders on L([0, 1]), given by

• x �lex1 y if and only if (x < y) or (x = y and x ≤ y) (lexicographic-1 order), and

• x �lex2 y if and only if (x < y) or (x = y and x ≤ y) (lexicographic-2 order),

are admissible.

2.2. Extensions of fuzzy sets

Definition 2.2. [6] Let U be a nonempty set usually called a universe. An Atanassov’s Intuition-
istic Fuzzy Set (AIFS) F over U is given by

F = {〈u, µF (u), νF (u)〉|u ∈ U}

where µF : U → [0, 1] defines the membership degree of the element u ∈ U to F and νF : U → [0, 1]
defines its nonmembership degree to the same set F . Besides, the functions µF and νF satisfy that,
for all u ∈ U , µF (u) + νF (u) ≤ 1.

The pair (µF (u), νF (u)) is called an intuitionistic pair, L([0, 1]) being the set of all possible
intuitionistic pairs, i.e.,

L([0, 1]) = {a | a = (a1, a2), a1, a2 ∈ [0, 1] and a1 + a2 ≤ 1}.

In [6], Atanassov introduced a partial order in the universe of AIFSs.

1This kind of sets, namely K([0, 1]) and L([0, 1]) have already been used, suitably equipped with some order and
latticial structure [12, 13], to construct some universal codomain where it was possible to represent different kinds
of orderings as, e.g., total preorders, interval-orders and semiorders by means of a single function that preserves the
ordinal structure. The bijection i : K([0, 1]) −→ L([0, 1]) has also been considered in those approaches, and some
other similar bijections and/or latticial isomorphims as well as order isotonies have also been introduced accordingly.
By the way, another universal codomain to represent different kinds of orderings, which is essentially equivalent to
K([0, 1]), consists of triangular and symmetric fuzzy numbers. For further information see [14–17].
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Definition 2.3. Let F1, F2 be two AIFSs. According to the order given by Atanassov in [6]

F1 ≤ F2 if and only if for all u ∈ U, µF1
(u) ≤ µF2

(u) and νF1
(u) ≥ νF2

(u) .

Definition 2.4. [7] Let U be a universe. An Interval-Valued Atanassov Intuitionistic Fuzzy Set
(IVAIFS) G over U is given by

G = {〈u,mG(u),nG(u)〉|u ∈ U}

where mG : U → L([0, 1]) defines the membership degree of the element u ∈ U to F and nG : U →
L([0, 1]) defines its nonmembership degree to the same universe U . Moreover, for all u ∈ U , the
sum of the upper boundary values of mG(u) and nG(u) must be lower than or equal to 1.

The pair (mG(u),nG(u)) is called an interval-valued intuitionistic pair, being LIV ([0, 1]) the set
of all possible interval-valued intuitionistic pairs, i.e.,

LIV ([0, 1]) = {(x,y), with x,y ∈ L([0, 1]) and x+ y ≤ 1}.

Remark 1. Note that LIV ([0, 1]) consists of special types of intervals, while (L([0, 1]))2 is a set of
all possible intuitionistic pairs.

Definition 2.5. Let G1, G2 be two IVAIFSs. According to the order given by Atanassov in [7],
G1 � G2 if and only if, for all u ∈ U ,

mG1(u) �2 mG2(u) and nG2(u) �2 nG1(u) ,

where �2 is the partial order on L([0, 1]) given in Equation (1).

2.3. Aggregation functions

Definition 2.6. Given a poset (P,�P ) with bottom 0P and top 1P , an aggregation function M
on P w.r.t the order �P (also known as an �P -aggregation function) is a mapping M : Pn → P
satisfying

• M(0P , . . . , 0P ) = 0P , M(1P , . . . , 1P ) = 1P , and

• M(x1, . . . , xn) �P M(y1, . . . , yn) for (x1, . . . , xn) �P (y1, . . . , yn)

where (x1, . . . , xn) �P (y1, . . . , yn) holds if and only if xi �P yi for all i ∈ {1, . . . , n}.

This definition extends the usual one for the unit interval [0, 1]. For further information see [19].

Proposition 2.1. [18] Let B1, B2 : [0, 1]2 → [0, 1] be two continuous aggregation functions, such
that for all (p1, p2), (q1, q2) ∈ K([0, 1]), the equalities B1(p1, p2) = B1(q1, q2) and B2(p1, p2) =
B2(q1, q2) only hold provided that (p1, p2) = (q1, q2).

The order �B1,B2
on L([0, 1]), given by

x �B1,B2
y if and only if B1(x, x) < B1(y, y) or else (B1(x, x) = B1(y, y) and B2(x, x) ≤ B2(y, y)),

is an admissible order on L([0, 1]).

The following results can be found in [9, 11, 20, 21].
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Definition 2.7. A function T : [0, 1]2 → [0, 1] is called a t-norm if it is symmetric, associative,
increasing with respect to the order ≤ and T (x, 1) = x for all x ∈ [0, 1].

Definition 2.8. A function S : [0, 1]2 → [0, 1] is called a t-conorm if it is symmetric, associative,
increasing with respect to the order ≤ and S(x, 0) = x for all x ∈ [0, 1].

A strictly decreasing and continuous function n : [0, 1]→ [0, 1] such that n(0) = 1 and n(1) = 0
is called a strict negation. If, in addition, it is involutive (that is, n(n(x)) = x for all x ∈ [0, 1]),
then n is said to be a strong negation. A t-norm T is dual to a t-conorm S (and vice-versa) with
respect to a strong negation n if T (x, y) = n(S(n(x), n(y))) for all x, y ∈ [0, 1].

3. Admissible orders on (L([0, 1]))2

Although a partial order is enough to define aggregation functions, some special classes of
aggregations actually require to have at hand a linear order. Examples of such classes are Choquet
integrals and Sugeno integrals. The order given by Atanassov for IVAIFSs is partial, which is a
undeniable handicap in the adaptation of such classes of aggregation operators to the IVAI setup.
In this section we define the admissible linear orders on (L([0, 1]))2, generalizing the concept of
admissible orders on L([0, 1]).

Definition 3.1. An order � on (L([0, 1]))2 is said to be admissible if it is a linear and refines the
order �4 in Eq. (2), i.e., it is linear order satisfying that for all (x1,y1), (x2,y2) ∈ (L([0, 1]))2,
(x1,y1) �4 (x2,y2) implies (x1,y1) � (x2,y2).

The elements zi = (xi,yi) ∈ (L([0, 1]))2 can be visualized in a straightforward manner. Since
xi,yi ∈ L([0, 1]), each pair of intervals can be drawn as a rectangle for which the first interval lies
in the horizontal axis and the second interval lies in the vertical one. In such a representation, the
following statements hold true:

• The wider the first interval, the wider the rectangle.

• The wider the second interval, the higher the rectangle.

As a consequence, the area of the rectangle will be directly proportional to the width of the intervals.
Furthermore, for any z1, z2 ∈ (L([0, 1]))2, z1 �4 z2 if and only if each corner of the rectangle of z2
is located above and on the right side of its corresponding corner in the rectangle z1.

Example 3.1. Let z1 = ([0.3, 0.6], [0.2, 0.7]), z2 = ([0.5, 0.8], [0.55, 0.9]), z3 = ([0.4, 0.5], [0.3, 0.35]),
z4 = ([0.1, 0.4], [0.4, 0.6]). The intervals can be represented in the unit square [0, 1]2 as in Fig. 1. In
that figure some visual interpretations can be drawn. For example, we have that the intervals of z1
are wider than those of any other zi, since its area is significantly greater. Alternatively, we have
that zi �4 z2 for i ∈ {1, 3, 4}, since the corners of z2 are located above and on the right side w.r.t
the other rectangles. Similarly, we can deduce that z1, z3 and z4 are incomparable in terms of �4.

In [18], Bustince et al. introduced a construction method of admissible orders on L([0, 1])
by using two aggregation functions. Such method can also be generalized to handle elements in
(L([0, 1]))2.
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Figure 1: Pairs of intervals

Proposition 3.1. Let A =< A1, A2, A3, A4 > be four aggregation functions 2, Ai : [0, 1]4 → [0, 1]
such that for all (p, q), (r, s) ∈ (L([0, 1]))2 the equalities Ai(p, p, q, q) = Ai(r, r, s, s) for all i =
{1, . . . 4} only hold if (p, q) = (r, s).

An admissible order �A on (L([0, 1]))2 can be defined as follows
(x1,y1) �A (x2,y2) if and only if one of the (mutually exclusive) following conditions is satisfied.

i) A1(x1, x1, y1, y1) < A1(x2, x2, y2, y2);

ii) A1(x1, x1, y1, y1) = A1(x2, x2, y2, y2) and A2(x1, x1, y1, y1) < A2(x2, x2, y2, y2);

iii) A1(x1, x1, y1, y1) = A1(x2, x2, y2, y2) and A2(x1, x1, y1, y1) = A2(x2, x2, y2, y2) and
A3(x1, x1, y1, y1) < A3(x2, x2, y2, y2);

iv) A1(x1, x1, y1, y1) = A1(x2, x2, y2, y2) and A2(x1, x1, y1, y1) = A2(x2, x2, y2, y2) and
A3(x1, x1, y1, y1) = A3(x2, x2, y2, y2) and A4(x1, x1, y1, y1) ≤ A4(x2, x2, y2, y2).

Proof. The order �A refines ≤4 since every Ai is an aggregation function. Moreover, the
linearity is assured since the four equalities of Ai only hold simultaneously if (x1,y1) = (x2,y2).
The transitivity follows from the transitivity of the standard order on [0, 1].

Remark 2. Notice that any permutation of the aggregation functions Ai also produces an admis-
sible order different from the former one.

2Warning: notice that here the order of appearence of the A′
is counts. See also Remark 2
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Remark 3. In [18] it was proven that an admissible order on K([0, 1]) can not be induced by a
single function. Clearly, this result also holds true since we are working in a larger space.

Henceforward, we use the order generated by four aggregation functions (in Prop 3.1). Thus,
all the ideas to be introduced till the end of this section refer to such family of admissible orders
named 4-admissible.

Example 3.2. The lexicographic orders can be constructed from the four projections.

1. The standard lexicographic order: let Ai be the aggregation function that maps to the i-th
component (i.e. the i-th projection). In that case, (x1,y1) �A (x2,y2) if and only if

• (x1 < x2), or

• (x1 = x2 and x1 < x2), or

• (x1 = x2, x1 = x2 and y
1
< y2), or

• (x1 = x2, x1 = x2, y
1

= y
2

and y1 ≤ y2).

2. The reversed lexicographic order: let Ai be the aggregation function that maps to the (5− i)-th
component (i.e. the (5− i)-th projection). In that case, (x1,y1) �A (x2,y2) if and only if

• (y1 < y2), or

• (y1 = y2 and y
1
< y

2
), or

• (y1 = y2, y
1

= y
2

and x1 < x2), or

• (y1 = y2, y
1

= y
2
, x1 = x2 and x1 ≤ x2).

3. Any other permutation of the projections gives rise to an admissible order where we compare
the components in a predetermined order.

Proposition 3.2. Let A =< A1, A2, A3, A4 > be four aggregation functions given by

Ai(x1, x1, y1, y1) = aix1 + bix1 + ciy1 + diy1 ,

with ai, bi, ci, di ∈ [0, 1], ai + bi + ci + di = 1 and

|D| =

∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣ 6= 0 .

Then (and only then), the order generated by the aggregation functions Ai is a 4-admissible
order.

Proof.
The functions Ai are weighted arithmetic means. Let ([x1, x1], [y

1
, y1]), ([x2, x2], [y

2
, y2]) ∈

(L([0, 1]))2, such that

aix1 + bix1 + ciy1 + diy1 = aix2 + bix2 + ciy2 + diy2

for i ∈ {1, . . . , 4}. Because of the regularity of D, both linear systems have a unique and common
solution, i.e., (x1, x1, y1, y1) = (x2, x2, y2, y2). The result now follows from Prop. 3.1.
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Example 3.3. Let A contain the following aggregation functions:

• A1(x1, x1, y1, y1) =
3

8
x1 +

3

8
x1 +

1

8
y
1

+
1

8
y1;

• A2(x1, x1, y1, y1) =
10

20
x1 +

5

20
x1 +

3

20
y
1

+
2

20
y1;

• A3(x1, x1, y1, y1) =
1

20
x1 +

10

20
x1 +

8

20
y
1

+
1

20
y1;

• A4(x1, x1, y1, y1) =
1

4
x1 +

1

4
x1 +

1

4
y
1

+
1

4
y1.

Since |D| = −0.0069, the order generated by A, as in Prop. 3.1, is a 4-admissible order.

Remark 4. Notice that the value of the determinant is close to 0 but this is due to the fact that
all the elements of the matrix are smaller than 1.

The construction of admissible orders through a 4-tuple of weighted arithmetic means has an
interesting geometrical interpretation. If we consider A in the form of the corresponding four
weighting vectors which generate A1, . . . , A4, i.e.,

A ≈ R = {< a1, b1, c1, d1 >,< a2, b2, c2, d2 >,< a3, b3, c3, d3 >,< a4, b4, c4, d4 >}

the condition in Prop. 3.2 means that R is a basis of the vector space R4. Hence, to any basis R of
R4 which consists of weighting vectors there is a unique admissible order �A constructed by means
of the corresponding weighted means.

Finally, after changing the basis, the values of interval-valued intuitionistic pairs in the new
basis, (which are now in [0, 1]4), are ordered through the standard lexicographic order.

Proposition 3.3. Let a tuple A = 〈A1, . . . , A4〉 of aggregation functions generate an admissible
order �A. Let Bi : [0, 1]2 −→ [0, 1], i ∈ {1, . . . , 4} be four aggregation functions such that

• Ai(x, x, y, y) = Bi(x, x) for i ∈ {1, 2}, and

• Aj(x, x, y, y) = Bj(y, y) for j ∈ {3, 4}.

Then, (x1,y1) �A (x2,y2) if and only if

i) (x1 ≺B1,B2
x2), or

ii) (x1 = x2 and y1 �B3,B4 y2),

where �Bi,Bj is the order on L([0, 1]) generated in Prop. 2.1.

Proof. It is straightforward.
Notice that, if we use B1 = B3 and B2 = B4, the result is a 4-admissible order where we combine

the standard lexicographic order with the order �B1,B2
. The resulting order acts as follows: first

we compare the intervals using �B1,B2
and, only if they are equal, we compare the second interval

with that same order (�B1,B2
). For instance, the standard lexicographic order can be seen as the

composition of the lexicographic-1 order between intervals combined with itself.
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Alternatively, notice that, if Ai(x, x, y, y) = Bi(y, y) for i ∈ {1, 2}, and Aj(x, x, y, y) = Bj(x, x)
for j ∈ {3, 4}, then the resulting order is also 4-admissible.

A well-known class of binary aggregation functions is that of Atanassov’s operators Kα given
by Kα(a, b) = a+ α(b− a) with α ∈ [0, 1].

In our particular case, the inputs being intervals, an Atanassov’s operator acting on the end-
points of the intervals yields a point inside the corresponding intervals.

Example 3.4. Let α1, α2, α3, α4 ∈ [0, 1], with α1 6= α2 and α3 6= α4. Let A =< A1, . . . , A4 > be
four aggregation functions given by

• Ai(x1, x1, y1, y1) = Kαi(x1, x1), for i ∈ {1, 2}, and

• Aj(x1, x1, y1, y1) = Kαj (y1, y1), for j ∈ {3, 4}.

The tuple A generates a 4-admissible order that renders in (x1,y1) �A (x2,y2) if and only if

• (x1 ≺Kα1
,Kα2

x2), or

• (x1 =Kα1
,Kα2

x2 and y1 �Kα3
,Kα4

y2).

From the construction in Example 3.4, we can retrieve some well-known orders. For example,
if {α1, α2} = {0, 1} and {α3, α4} = {0, 1}, we obtain lexicographic orders. Moreover, all these
4-admissible orders are particular examples of the construction in Prop. 3.2, with c = d = 0 for A1,
A2 and a = b = 0 for A3 and A4.

In [18] it was proven that given an α ∈ [0, 1) then all admissible orders �α,β on L([0, 1]) with
β > α coincide. Then, different aggregation functions could generate the same admissible order.
This also affects to admissible orders generated as in Prop. 3.2. For instance,

|D1| =

∣∣∣∣∣∣∣∣
1
2

1
2 0 0

0 1 0 0
0 0 1

2
1
2

0 0 0 1

∣∣∣∣∣∣∣∣ 6= 0 , |D2| =

∣∣∣∣∣∣∣∣
1
2

1
2 0 0

1
3

1
3 0 0

0 0 1
2

1
2

0 0 1
3

2
3

∣∣∣∣∣∣∣∣ 6= 0

generate the same order.

4. IVAIF-admissible order on LIV ([0, 1])

The admissible orders defined in Section 3 refine the partial order �4. However, any of them
could also refine the partial order given by Atanassov for IVAIFS [7]. In this section, we define a
new family of linear orders with a crucial additional feature, namely, they refine Atanassov’s partial
order.

We remind the reader that in Atanassov’s partial order, given two elements (x1,y1), (x2,y2) ∈
LIV ([0, 1]),

(x1,y1) � (x2,y2) if and only if x1 ≤ x2, x1 ≤ x2, y
1
≥ y

2
, and y1 ≥ y2 . (3)

Definition 4.1. An order � on LIV ([0, 1]) is said to be an IVAIF-admissible order if it is a linear
order and refines the partial order given by Atanassov for IVAIFS (Eq.(3)).
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Figure 2: Visual representation of interval-valued intuitionistic pairs. The white zone represents the subset of
LIV ([0, 1]) in which such pairs are allowed.

Notice that, if we have an IVAIF-admissible order on LIV ([0, 1]), as in Def. 4.1, then the bottom
of (LIV ([0, 1]),�) is (0,1) and the top is (1,0).

As in Section 3, we can generate a visualization of the elements in LIV ([0, 1]) ⊂ (L([0, 1]))2

that captures the behaviour of the admissible orders in Def. 4.1. Following the visualization rules in
Fig. 1 we have that, for any two elements z1, z2 in LIV ([0, 1]), z1 � z2 if and only if the corners of z2
are individually located below and to the right of those of z1. For example, in Fig. 2, we have given
z1 = ([0.1, 0.4], [0.1, 0.6]), z2 = ([0.3, 0.55], [0.05, 0.25]), z3 = ([0.05, 0.2], [0.15, 0.25]) ∈ LIV ([0, 1]).
Visually, it is evident that z1 � z2 and z3 � z2, but also that z1 and z3 are not comparable with
the partial order in Def. 4.1. Notice that, in this visualization, no element is allowed to be in the
grey zone of the rectangle in Fig. 2 due to the restrictions in the definitions of the membership and
nonmembership degrees in an interval-valued intuitionistic pair.

In the sequel, two different constructions of IVAIF-admissible orders are introduced.

Proposition 4.1. Let B =< B1, B2, B3, B4 > be four aggregation functions Bi : [0, 1]4 −→ [0, 1]
which generate the orders �B1,B2

and �B3,B4
on L([0, 1]) as in Prop. 2.1. Then the order relation

�IVB given by

(x1,y1) �IVB (x2,y2) if and only if x1 ≺B1,B2
x2 or (x1 = x2 and y2 �B3,B4

y1)

is an IVAIF-admissible order.

Proof. The linearity of �IVB is straight as LIV ([0, 1]) ⊂ (L([0, 1]))2. In addition, it refines the
partial order given by Atanassov due to the fact that the order relation, �B3,B4

, has been reversed.
In particular, if B1 = B3 and B2 = B4, then �B1,B2

=�B3,B4
and, consequently, the same order

is used to compare both intervals although in the second one the order is reversed.
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Proposition 4.2. Let A =< A1, A2, A3, A4 > be four aggregation functions, Ai : [0, 1]4 → [0, 1]
such that for all (p1, p2, p3, p4), (q1, q2, q3, q4) ∈ [0, 1]4 the equalities Ai(p1, p2, p3, p4) = Ai(q1, q2, q3, q4)
for all i ∈ {1, . . . , 4} only hold if (p1, p2, p3, p4) = (q1, q2, q3, q4).

An IVAIF-admissible order �IVA on LIV ([0, 1]), is defined as follows: (x1,y1) �IVA (x2,y2) if
and only if one of the following (mutually exclusive) conditions is satisfied.

i) A1(x1, x1, 1− y1, 1− y1) < A1(x2, x2, 1− y2, 1− y2),

ii) A1(x1, x1, 1− y1, 1− y1) = A1(x2, x2, 1− y2, 1− y2) and
A2(x1, x1, 1− y1, 1− y1) < A2(x2, x2, 1− y2, 1− y2),

iii) A1(x1, x1, 1− y1, 1− y1) = A1(x2, x2, 1− y2, 1− y2),
A2(x1, x1, 1− y1, 1− y1) = A2(x2, x2, 1− y2, 1− y2), and
A3(x1, x1, 1− y1, 1− y1) < A3(x2, x2, 1− y2, 1− y2),

iv) A1(x1, x1, 1− y1, 1− y1) = A1(x2, x2, 1− y2, 1− y2),
A2(x1, x1, 1− y1, 1− y1) = A2(x2, x2, 1− y2, 1− y2),
A3(x1, x1, 1− y1, 1− y1) = A3(x2, x2, 1− y2, 1− y2), and
A4(x1, x1, 1− y1, 1− y1) ≤ A4(x2, x2, 1− y2, 1− y2).

Proof. The linearity is warranted because the equalities only hold if (x1, x1, 1 − y
1
, 1 − y1) =

(x2, x2, 1− y2, 1− y2).
To check the second condition (that of refining the partial order) in the statement of Def. 4.1,

notice that if
x1 ≤ x2, x1 ≤ x2, y

1
≥ y

2
, and y1 ≥ y2 .

then
x1 ≤ x2, x1 ≤ x2, 1− y

1
≤ 1− y

2
, and 1− y1 ≤ 1− y2,

so consequently Ai(x1, x1, 1− y1, 1− y1) ≤ Ai(x2, x2, 1− y2, 1− y2) for all i ∈ {1, . . . , 4}.
From now on we name the order generated by four aggregation functions (as in Prop. 4.2)

4-IVAIF-admissible order.

Remark 5. Given y ∈ L([0, 1]), it follows that (1− y, 1− y) ∈ L∗([0, 1]), where

L∗([0, 1]) = {s|s = (s1, s2) such that 0 ≤ s2 ≤ s1 ≤ 1}.

Then in Prop. 4.2 it is enough that to see, given (p1,q1) = ([p
1
, p1], (q

1
, q1)), (p2,q2) = ([p

2
, p2], (q

2
, q2)) ∈

L([0, 1])×L∗([0, 1]), the equalities Ai(p1, p1, q1, q1) = Ai(p2, p2, q2, q2) hold if and only if (p1,q1) =
(p2,q2).

However, in order to simplify notation we have imposed a slightly stronger restriction. Anyway,
all the given examples in Section 3 satisfy it.

Let a tuple A = 〈A1, . . . , A4〉 of aggregation functions generate an admissible order. Let Bi :
[0, 1]2 −→ [0, 1] be four aggregations such that

• Ai(x, x, y, y) = Bi(x, x) for i ∈ {1, 2}, and

• Aj(x, x, y, y) = Bj(y, y) for j ∈ {3, 4},
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Then the orders �IVA and �IVB may be different. To guarantee that they are actually different it
is enough that B3(y

1
, y1) < B3(y

2
, y2) and simultaneously B3(1− y

1
, 1− y1) > B3(1− y

2
, 1− y2)

hold true for some y1,y2 ∈ L([0, 1]).
For instance, let B3(y, y) = yy. Here, we have that for y1 = [0.2, 0.2] and y2 = [0.1, 0.9]

B3(0.2, 0.2) = 0.04 < 0.09 = B3(0.1, 0.9)

B3(0.8, 0.8) = 0.64 > 0.09 = B3(0.9, 0.1).

Proposition 4.3. Let α1, α2, α3, α4 ∈ [0, 1], with α1 6= α2 and α3 6= α4. If

• Ai(x, x, y, y) = Kαi(x, x) for i ∈ {1, 2}, and

• Aj(x, x, y, y) = Kαj (y, y) for j ∈ {3, 4},

then the tuple A = 〈A1, . . . , A4〉 generates a 4-IVAIF admissible order that is equal to �IVB being
B =< Kα1

,Kα2
,Kα3

,Kα4
>.

Proof. The fact that the aggregation functions satisfy the conditions to generate a 4-IVAIF
order is a simple calculation. To prove the equality between the two orders notice that in this case
the conditions i) and ii) of the order �IVA are exactly equal to x1 �Kα1 ,Kα2

x2. Then, it is enough
to prove that for all γ,

Kγ(1− a1, 1− b1) < Kγ(1− a2, 1− b2)

is equivalent to Kγ(a1, b1) > Kγ(a2, b2).
But

Kγ(1− a1, 1− b1) < Kγ(1− a2, 1− b2)

⇔ 1− a1 + γ(1− b1 − (1− a1)) < 1− a2 + γ(1− b2 − (1− a2))

⇔ 1− a1 + γ(a1 − b1) < 1− a2 + γ(a2 − b2)

⇔ a2 − γ(a2 − b2) < a1 − γ(a1 − b1)

⇔ a2 + γ(b2 − a2) < a1 + γ(b1 − a1)

⇔ Kγ(a2, b2) < Kγ(a1, b1),

so the proof is complete.

Example 4.1. Let �IVA be the order generated by A =< K0.25,K0.75,K0.25,K0.75 >. Consider
the elements z1 = ([0.15, 0.35], [0.2, 0.5]) and z2 = ([0.15, 0.35], [0.1, 0.9]) ∈ LIV ([0, 1]). Since their
membership degrees are identical we only need to compare their nonmembership degrees.

In fact,

K0.25(0.2, 0.5) = 0.2 + 0.25 · (0.5− 0.2) = 0.275 < 0.3 = 0.1 + 0.25 · (0.9− 0.1) = K0.25(0.1, 0.9)

and ([0.15, 0.35], [0.1, 0.9]) �IVA ([0.15, 0.35], [0.2, 0.5]).
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5. Application to Decision Making

Decision making problems may be summarized as follows. We have a set of p alternatives:

Z = {z1, · · · , zp}

and a set of n > 2 experts:
E = {e1, · · · , en}.

Each of the latter provides her/his preferences on the former set of alternatives by means of a
preference relation in the following way:

rel =


− r(el)12 ··· r(el)1p

r(el)21 − ··· r(el)2p
··· ··· − ···

r(el)p1 ··· ··· −

 . (4)

Here r(el)ij , with i 6= j, expresses to what extent the expert l (with l ∈ {1, · · · , n}) prefers the
alternative zi over the alternative zj .

We must reach a decision of selecting either an alternative or a set of alternatives, which is (are)
optimal as regards the experts assessments.

In [20], it is stated that the resolution of a group decision making problem consists of two steps:

(1) Uniform representation of information. In this phase, the heterogeneous information for
the problem (the information can be represented by means of preference orderings or utility
functions or fuzzy preference relations) is translated into homogeneous information by means
of different transformation functions (see [22]).

(2) Application of a selection procedure. This procedure consists of two phases:

(2.1) Aggregation phase. A collective preference structure is built from the set of individual
homogeneous preference structures.

(2.2) Exploitation phase. A given method is applied to the collective preference structure to
obtain a selection of alternatives.

We use the theoretical developments in previous sections in the exploitation phase of the group
decision making problem considered by Nayagam [23]. In particular, we consider the adaptation
of this problem done by Zhang et al in [24]. In this adptation, authors consider that there exists a
panel with four possible alternatives for investment:

(1) z1 is a car company,

(2) z2 is a food company,

(3) z3 is a computer company,

(4) z4 is an arms company.
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It is necessary to choose the best company for investment.
Let the data in [24] be our collective preference matrix. In the exploitation phase we use the

voting method which consists in aggregating the values in each row of the collective matrix Rc in
such a way that, at the end, we have as many values (pairs of intervals) as rows. Since these latter
values are not comparable through the partial order, we will select the alternative associated to the
largest pair, according to a considered linear order.

Rc =


− ([0.4, 0.5], [0.3, 0.4]) ([0.4, 0.6], [0.2, 0.4]) ([0.1, 0.3], [0.5, 0.6])

([0.6, 0.7], [0.2, 0.3]) − ([0.6, 0.7], [0.2, 0.3]) ([0.4, 0.8], [0.1, 0.2])
([0.3, 0.6], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4]) − ([0.4, 0.5], [0.1, 0.3])
([0.7, 0.8], [0.1, 0.2]) ([0.6, 0.7], [0.1, 0.3]) ([0.3, 0.4], [0.1, 0.2]) −

 .

To aggregate the values of each row of Rc we use the concept of interval-valued intuitionistic
t-norms.

Definition 5.1. A mapping T : (LIV ([0, 1]))2 → LIV ([0, 1]) is an interval-valued intuitionistic t-
norm if it is symmetric, associative, increasing with respect to the partial order � given by Atanassov
(also called monotone) and T((x,y), (1,0)) = (x,y).

It is easy to see that, if we take the classical product t-norm, TP (x, y) = x · y, and its dual
t-conorm with respect to the standard negation, SP (x, y) = x+ y − x · y, the following expression
is an interval-valued inuitionistic t-norm: T((x,y), (z, t)) = ([x · z, x · z], [y + t− y · t, y + t− y · t]).

Applying T to each row of Rc we get a new matrix, say Rg, given by:

Rg =


z1 = ([0.016, 0.090], [0.720, 0.856])
z2 = ([0.144, 0.392], [0.424, 0.608])
z3 = ([0.060, 0.180], [0.559, 0.748])
z4 = ([0.126, 0.224], [0.271, 0.552])

 .

In this setting, as regards the partial order �, it follows

z1 � z3 � z2 and z1 � z3 � z4,

but z2 and z4 are not comparable.
For this reason we consider the 4-IVAIF-admissible order �IVA defined through the following

aggregation functions.

• A1(x1, x1, y1, y1) =
2

20
x1 +

2

20
x1 +

8

20
y
1

+
8

20
y1

• A2(x1, x1, y1, y1) =
10

20
x1 +

5

20
x1 +

3

20
y
1

+
2

20
y1

• A3(x1, x1, y1, y1) =
1

20
x1 +

10

20
x1 +

8

20
y
1

+
1

20
y1

• A4(x1, x1, y1, y1) =
1

4
x1 +

1

4
x1 +

1

4
y
1

+
1

4
y1.
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With this order, we have z1 �IVA z3 �IVA z2 �IVA z4 and the selected firm is arms company.
However, as it happened in [18] different 4-IVAIFS-admissible orders can lead to different rank-

ings and hence the selection of the best alternative for a given decision making problem can be
forced. For instance, in our case if we take �IVA with A =< K0.25,K0.75,K0.25,K0.75 > it comes out
that the best alternative is the second one, since z1 �IVA z3 �IVA z4 �IVA z2. Nevertheless, for the
order ([x1, x1], [y

1
, y1]) �IVA ([x2, x2], [y

2
, y2]) if and only if

• (x1 < x2), or

• (x1 = x2 and x1 < x2), or

• (x1 = x2, x1 = x2 and y1 > y2), or else

• (x1 = x2, x1 = x2, y1 = y2 and y
1
≥ y

2
)

we have that z1 �IVA z3 �IVA z4 �IVA z2 and the best alternative is the second one.
To cope with this situation the following algorithm takes different 4-IVAIFS-admissible orders

into account simultaneously.

(1) To select several linear orders built with the methods developed in the previous sections.

(2) For each order, to apply in the exploitation phase the voting method with the same aggrega-
tions. For instance, T = (TP , SP ).

(3) To select the alternative which appears as the best placed in the majority of all the so-obtained
rankings.

In our considered problem, the chosen alternative through this algorithm is the second one.
That is, we must invest our money in a food company. Clearly, the nature of the problem will
impose the number of linear orders to be considered and/or the conditions that will force us to use
alternative methods.

6. Conclusions

In this work we have studied how to construct linear orders between pairs of intervals on L([0, 1])
that can be used to construct linear orders in Atanassov interval-valued intuitionistic fuzzy sets.
We have applied this operator to group decision making problems giving two algorithms, the first
one for a particular linear order and the second one which mixes different linear orders.

As a possible development for future research, somewhat related to the main ideas introduced
throughout the present manuscript, we point out the introduction of different orderings on families
of intervals of the real line could be also analyzed from the point of view of extensions of the
canonical ordering of the real line to a superset (namely, L([0, 1]) ) following a suitable set of
criteria established a priori. The real line can be immediately embedded into L([0, 1]) by just
considering each real number x as the degenerate interval [x, x]).

A similar typical problem corresponds to the extension of linear orders from a finite set to its
power set. Indeed, although it is always possible to extend a linear order from a given finite set U
to its power set, a typical question that gave rise to some classical papers from the 1970’s on (see
e.g. [25–28]), is whether or not it is possible to perform an extension that follows a list of criteria
imposed a priori. Sometimes, the extension is not possible because the criteria used are, so-to-say,
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contradictory. But, in addition, there are other situations in which the extension is not possible
because of a combinatorial explosion which, due to the bigger cardinality of the power set of U, does
not leave room to rank all the terms of the power set in an extended linear order, accomplishing
all the criteria. Perhaps the most famous result in this direction is the so-called Kannai - Peleg
impossibility theorem (see [26]).

However, when the extension does not affect to the whole power set, but to some suitable
superset (smaller than the power set), perhaps it may still happen that an extension accomplishing
aprioristic criteria is possible, after all. As far as we know, an analysis of this kind where we start
with the canonical order of the real line (instead of a linear order on a finite set), and try to extend
it to the set of closed intervals of real numbers, following some list of criteria that have been set
beforehand, is an open problem.

We leave for future works the interpretation of the length of the intervals in a given decision
making problem and its relation with ignorance functions and possibility theory.
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