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Abstract

This paper develops an analytical method of truncating inequality con-
strained Gaussian distributed variables where the constraints are themselves
described by Gaussian distributions. FExisting truncation methods either
assume hard constraints, or use numerical methods to handle uncertain con-
straints. The proposed approach introduces moment-based Gaussian ap-
proximations of the truncated distribution. This method can be applied
to numerous problems, with the motivating problem being Kalman filtering
with uncertain constraints. In a simulation example, the developed method
is shown to outperform unconstrained Kalman filtering by over 40% and
hard-constrained Kalman filtering by over 17%. E|
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1. Introduction

Gaussian distributed variables are widely used to represent the state of
a system in many problems ranging from state estimation [I] to scheduling
[2, B]. In practice, the state vectors in many systems are known to sat-
isfy inequality constraints. Examples of state-constrained systems include
health monitoring [4], vision systems [5], robotics [6], binary sensor networks
[7], and object tracking [8]. This paper deals specifically with systems that
are subject to inequality constraints where the constraints themselves have
uncertainty described by Gaussian distributions. Constraints described by

*Email address: {a.palmer;a.hill;s.scheding}@acfr.usyd.edu.au
1@©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0
license |http://creativecommons.org/licenses/by-nc-nd/4.0/

Preprint submitted to Information Fusion February 5, 2018


http://creativecommons.org/licenses/by-nc-nd/4.0/

P(x|M) P(x|M, 0) P(x|M,0,0)
|—> Prediction Measurement update Truncation —

Figure 1: The Kalman filter is run independent of the truncation method,
with the truncation being applied to the state estimate that is the output of
the Kalman filter. The prediction step of the Kalman filter results in a prob-
ability distribution describing the state, x, conditioned on the system model,
M. The measurement update step further conditions the state estimate on
the observations, O. Finally, the truncation step conditions the estimate on
the constraints acting on the state, C.

Gaussian distributions can arise from many sources in state estimation prob-
lems including discrete sensors, such as position or level switches, that have
uncertainty on their activation point, obstacles whose positions are uncer-
tain, and other physical and model-derived bounds such as maximum fuel
levels based on historical fuel burn rates. Constrained Gaussian distributed
variables also appear in scheduling applications where the distribution de-
scribing the time at which an event is predicted to occur is constrained by
the time distributions of other events.

Hard inequality constraints are well studied [1], where the main ap-
proaches are estimate projection [4], gain projection [9], and Probability
Density Function (PDF) truncation [10]. Estimate and gain projection ap-
proaches incorporate the constraints into the derivation of the Kalman filter,
resulting in a constrained optimisation problem that can be solved using
quadratic programming, least squares approaches, amongst others [I], [I1].
Truncation methods, on the other hand, are applied directly to the PDF
resulting from a Kalman filter, as outlined in Figure[1, This approach trun-
cates the PDF at the constraints and calculates the mean and covariance
of the truncated PDF, which become the constrained state estimate and its
covariance. The PDF truncation approach was shown in [I0] to, in general,
outperform the estimate projection method. The truncation approach has
been applied to probabilistic collision checking for robots [12], and has been
extended to non-linear systems [13], [14].

Soft constraints correspond to uncertain or noisy constraints, and are less
studied than hard constraints. Soft equality constraints are typically incor-
porated as noisy measurements [I], [15]. However, soft inequality constraints



are significantly more difficult to deal with, and numerical filters such as a
Particle Filter (PF) are typically used for these problems [16]. Several nu-
merical methods have been examined for incorporating soft constraints into
the Kalman filter. A numerical PDF truncation method was used in [6] for
robot localisation using Radio Frequency IDentification (RFID) tags, where
the noise on the inequality constraints was highly non-Gaussian. Compared
with a PF approach, the numerical PDF truncation method was 2 to 3 or-
ders of magnitude faster while, in general, providing similar results. A similar
RFID problem was examined in [7] where aspects of the Unscented Kalman
Filter (UKF) and PF were combined—the prediction step used the standard
UKF step, while the correction step was modified to weight the sigma-points
of the UKF in a similar manner to the weighting process in a PF. It was
shown to outperform a PF as well as the Quantised Extended Kalman Filter
(QEKF') presented in [17].

The literature on soft inequality constraints has focused on constraints
with non-Gaussian distributions, where the constrained state estimates are,
by necessity, calculated using numerical methods. The main contribution of
this paper is an analytical method for PDF truncation with soft constraints
where the soft constraints are described by Gaussian distributions. This re-
duces the computational requirement compared to numerical methods, and
it is shown to provide superior estimation performance compared to uncon-
strained and hard-constrained state estimation methods. The truncation
approach presented in this paper is not limited to Kalman filters and can be
applied to any constrained system using Gaussian distributions to represent
the state and constraints.

The rest of this paper is structured as follows: Section [2] introduces the
constrained Kalman filtering problem, Section (3| shows how the state and
constraints can be transformed such that each state has only one constraint
acting on it, Section {| presents the truncation method for a one-sided con-
straint, and Section [5]extends this to an interval constraint. The performance
of the methods are evaluated in Section [6] and the paper is concluded in Sec-
tion [7} [Appendix A] and [Appendix B] provide in-depth derivations of the
integrals used in this paper.

2. Problem definition

This paper adapts the notation used in [I0]. A discrete linear time-
invariant system is described by:



z (k)= Fa(k—1)+ Gu (k) + w (k)
y (k) = Hz (k) + v (k) (1)

where k is the time index, x is the state vector with n states, w is the vector
of known control inputs, and y is the vector of measurements. The vectors w
and v contain the process and measurement noise respectively. The process
noise, w, is assumed to be zero mean Gaussian white noise with a covariance
matrix of Q. The measurement noise, v, is similarly assumed to be zero
mean Gaussian white noise with a covariance matrix of R. The noises at
each time-step are assumed to be independent.
For the given system, the Kalman filter prediction equations are [18§]:

&(klk —1) = F&(k — 1]k — 1) + Gu(k — 1)
Pklk—1)=FPk-1k-1DF" +Q (2)

and the measurement update equations are:

-1

k—1)H" (HP(klk—1)H" + R) "
&(klk — 1)+ K (y(k) — Hz(k|k — 1)) (3)
)=Pklk—1) - KHP(k|k — 1)

P(k
:e(zfuf) -
P(k|k

where &(k|k) is the state estimate, and P(k|k) is the covariance of the state
estimate. The state estimate is initialised with &(0) = E[x(0)], where E|] is
the expectation operator. The covariance matrix is initialised with P(0) =

E[((0) — (0))(z(0) — £(0))"].
Now consider the following s linearly independent constraints on the sys-
tem:

A (k) < @l (k) (k) < By, (k) m=1,..,s (4)
where the constraints are uncertain and normally distributed:

Am(k) ~ N(pam, 0am) — Bu(k) ~ N(ty.m, 0 ) (5)

Equation describes a two-sided constraint on the linear function of the
state described by ¢, (k)z(k). One sided constraints can be represented by
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setting ftg,, = —00, or Uy, = 00, and hard constraints can be implemented
by setting 04, = 0 or 03, ~ 0 as required.

Given an estimate &(k) with covariance P(k) at time k, the problem is to
truncate the Gaussian PDF N (&(k), P(k)) using the s constraints described
above, and then find the mean &(k) and covariance P(k) of the truncated
PDF'. The calculated mean and covariance represent the constrained estimate
of the state.

3. Transforming the state vector and constraints

To apply the constraints via the truncation method, the state vector
must be transformed so that the constraints are decoupled. This will result
in s transformed constraints that each involve only one element of the trans-
formed state, allowing the constraints to be enforced individually on each
element of the transformed state. It should be noted that the order in which
constraints are applied can change the final state estimate. However, if the
initial constraints are decoupled, the order of constraint application does not
change the result [10].

The transformation process is outlined in [I] and [10], and is summarised
here in equations (6)—(12) and (24)—(26]). For ease of notation, the (k) after
each variable will be dropped. Let the vector &; be the truncated state
estimate, and the matrix P, be the covariance of x;, after the first + — 1
constraints have been enforced. To initialise the process:

i=1 &=& P,=P (6)
The transformed state vector is given by:

Zi= piWi_1/2TzT(w - ;) (7)

where the matrices T; and W, are derived from the Jordan canonical de-
composition of P;:

T'; is an orthogonal matrix, and W, is a diagonal matrix. The matrix
p; is derived by the Gram-Schmidt orthogonalisation [19] which finds the
orthogonal p, that satisfies:



pW !PT ), = (61 P.9)> 0 . 0] )

Now only one element of z; is constrained, and the states in the trans-
formed state vector z; are independent standard normal distributions. Let e;
be the ith column of an n x n identity matrix. Transforming the constraints
results in:

where
Ci ~ N(MCJ? Uii)
AT )
fle; = w Oei = Lvi (11)
\ &1 Pig; \ &1 Pio,
and

Di ~ N(:ud,h 02,2’)

Ob

i — B
Hdi = — e O4; = — e
\ @i Pig; \ @i Pig;

The equations for calculating the standard deviation of each constraint
are not present in [1} [10], but they are a trivial extension from the equations
provided for calculating the mean.

(12)

4. One-sided constraint

First, consider the case where there is only one constraint on the trans-
formed state, in this case a lower constraint:

C; < el'z; (13)

Applying a lower constraint to the transformed state is equivalent to
finding the conditional probability distribution of the transformed state given
that it is higher than the constraint. Using Bayes’ theorem, the conditional
probability distribution, pe;_l‘zz(C |C; < (), as a function of ( is given by:



peTzi (C) X P<Cl < <>
pe.Tzi(dC‘ < C) = - T
v P(CZ S €, Zi)
where p,r, (¢) is the PDF of e] z;, P(C; < ¢) is the probability that a point
( is greater than the constraint, and P(C; < e] z;) is the probability that
the transformed state is greater than the constraint. P(C; < () is given by:

(14)

¢
P(C < () = / PDF¢, (¢) de

—00

= CDF¢,(¢) (15)

where PDF ¢, (¢) is the PDF of the constraint C; evaluated at ¢, and CDF¢, (¢)
is the Cumulative Distribution Function (CDF) of C; evaluated at . P(C; <
el z;) is given by:

0

— / PDF¢, _.r,,(¢) d¢

—00

= CDFC,‘erTzi (O> (16>

where C; — €] z; ~ N (i, 07+ 1) since €] z; is a standard normal distribu-
tion. The conditional probability distribution of the transformed state given
that it is higher than the constraint is then given by:

el z; C)XPC%SC
g€l <) = P =0

PDF,r,,(¢) x CDF¢,(¢)
~ CDFger.,(0)

(17)

The denominator of can be thought of as a normalising factor—it is
the area of the numerator and ensures that the CDF of p.r, (¢|C; < () is
bound between 0 and 1. For states and constraints described by Gaussian
distributions, p.r,, (C|C; < () is given by:
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\/LQ? exp(*Tf”Q)% [1 + erf (—g_“céﬂ

-t ()|

where erf(.) is the error function, defined as:

erf(t =7 / exp (—77) dr (19)

Pers, (CICs <€) =

Let:
1

T )

b (610 £ Q) = avexp (~¢2/2) 1 et (L) oy

To approximate p,r,.(¢|C; < () with a Gaussian distribution, the mean
and variance are calculated as follows:

oy =

then

i = & / Cexp (_CQ/Q) |:1 + erf (C‘O__\/j%l)} d¢
_ 20[1 :uz,z
o'gi—|—16 P ( 2(03,1‘"‘1)) (22)
o} = o / (¢ — ) exp (—¢*/2) {1 +f(if 55)} d¢
= |V2r (1+p]) | 1—erf (23)

,/0—{—1

2 i i
+—exp( pe ) ( o —2,ui>
0‘24—{—1 ch+1 Ucz+1

(X




The derivations of the mean and variance can be found in

and respectively. The transformed state estimate, after the ¢th
constraint has been applied, has the following mean and covariance:

Zi+1 = i€

éi+1 = In + (0',L2 - ].) eie? (24)

where I, is an n xn identity matrix. Taking the inverse of the transformation
in gives the mean and variance of the state estimate after the truncation
of the ith constraint:

~ 1/2 T~ ~
%
i+1 7 Pl i+1 )

151;+1 = Tz‘W:/QPiTéiHPZ‘W}/ZTiT (25>

This process (from to ) is repeated for the s constraints, incre-
menting ¢ each time and using the constrained state estimate after constraint
7 has been applied as the input state estimate for constraint 7 + 1. After the
s constraints have been applied, the constrained state estimate is:

= Ls+1

= Ps+1 <26>

eI

The equations for applying an upper constraint of the form:

are as follows:
1
V2 {1 + erf <L)}
2(0(2“4»1)
204 1
o= o op (29)
o, +1 < 2(0, + 1))



Hd i

ol =a; [Vor | (1+uf) | 1+erf
2(02,+1)

_ Lexp _ fa,; Pdi o
/0'377; +1 2(03,1' +1) 0621,1 +1

Several examples of the proposed method with a lower constraint are
shown in Figure[2l As can be seen, the Gaussian approximation is very close
to the actual truncated distribution, with the approximation improving as
0. increases. As o.; — oo, the CDF (C;) approaches a uniform distribu-
tion, which means that the truncated PDF approaches the original PDF. In
Figure 2d the lower constraint is higher than the original distribution, re-
sulting in the truncated distribution moving towards the constraint. In this
case, the truncated distribution is actually still below the majority of the
constraint distribution. Here, the uncertainty of the original and constraint
distributions are balanced against one another—the more certain that one
of the distributions is, the closer the truncated distribution will be to that
distribution. For example, as the uncertainty of the constraint is decreased,
the truncated distribution will move to the right. As the uncertainty of the
constraint approaches 0, the constraint approaches a hard constraint and the
majority of the truncated distribution will be above the constraint.

4.1. Feedback of the truncated estimate

There is disagreement amongst authors as to whether or not the trun-
cated state estimate should be fed back into the Kalman filter, with some
suggesting using feedback [13, 14] as shown in Figure [3aj and others stating
that the truncation process should be kept independent of the unconstrained
Kalman filter [I0] as shown in Figure 3b| In [I0], it is argued that this feed-
back can lead to overconfident estimates as the information provided by the
constraints is used multiple times. In reality, there are two issues to consider
when deciding whether or not to use feedback. The first issue concerns the
uncertainty model of the constraints—if the constraints are noisy, and if that
noise is independent from one time-step to another, then the truncated es-
timate can be fed back into the Kalman filter. Under these conditions, the
constraints are similar to independent noisy measurements. However, many
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Figure 2: Comparison of the actual truncated distributions and Gaussian
approximations of the truncated distributions for several lower constraints.
In , the lower constraint is higher than the original distribution, resulting
in the truncated distribution moving towards the constraint. In this case, the
Gaussian approximation is an almost perfect approximation of the truncated
distribution and the two lines overlap.
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|—> Prediction Measurement update Truncation ]—>

(a) The truncated state estimate is fed back into the Kalman filter.

Prediction Measurement update Truncation (—>

N

(b) The Kalman filter is run independently of the truncation, with the
feedback occuring after the measurement update and before the trunca-
tion.

Figure 3: Feedback of the state estimate into the Kalman filter can occur
either before or after the truncation process. Deciding which feedback ap-
proach to use depends on the uncertainty model of the constraints and the
shape of the truncated distribution.

physical constraints are uncertain rather than noisy—that is, the actual value
of the constraint is constant and is not resampled at each time-step. Feeding
the truncated estimate back into the Kalman filter in this case can result in
overconfident estimates, as will be shown in Section [6]

The second issue arises when the truncated distribution is highly non-
Gaussian, which is commonly the case when the uncertainty of the constraint
is low in comparison to the uncertainty of the estimate. In these cases, the
Gaussian approximation of the truncated distribution introduces error that
can accumulate if it is fed back into the Kalman filter, leading to unrepre-
sentative state estimates. An example of such a situation is given in [10].
Consider a scalar system with no process noise such that xj,; = x;, no mea-
surements, and a hard constraint of x > 0. If the initial state estimate is
a standard normal distribution, then the truncated distribution will have a
Gaussian shape for x > 0 and 0 otherwise. Approximating this as a Gaussian
distribution changes the mean from 0 to /2/7 and the variance from 1 to
(m — 2) /m after the truncation has been applied once. If this were fed back
into the Kalman filter, it would result in a monotonically increasing estimate
mean and a monotonically decreasing estimate variance for successive appli-
cations of the truncation approach. The authors of [I0] argue that this is a
result of incorporating the information from the constraints multiple times.
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However, it is actually the Gaussian approximation of the truncated distri-
bution that causes this behaviour. If it were possible to feed the truncated
distribution back into the filter without approximating it as a Gaussian dis-
tribution, then applying the constraint at the next time step would result in
the exact same truncated distribution.

When deciding whether or not to use feedback, the above issues should
be carefully considered. Not using feedback is the conservative option—
the resultant estimates will have a higher uncertainty compared to methods
using feedback, but will avoid most of these issues. Provided the constraints
are noisy rather than uncertain, and have a high noise uncertainty, using
feedback is valid and can yield a significant performance benefit over not
using feedback. The difference between uncertain and noisy constraints is
minimal when the uncertainty of the constraints is small in comparison to
the uncertainty of the state estimate, and the main source of error in these
cases is the approximation of the truncated distribution. One possible way of
dealing with this, suggested by [I0], is to only feed back the elements of the
truncated estimate where the elements of the original estimate violate the
constraint. This was suggested in the context of hard constraints, however,
and determining the point at which a soft constraint is violated is ambiguous
and is left to the reader.

5. Interval constraint

Now consider the case where there are two constraints. After transform-
ing the state using Equations @—, the two constraints acting on the
transformed state are:

Using Bayes’ theorem, the conditional probability distribution of the
transformed state satisfying the constraints, p.r, (C|(C; < ¢ < Dy)), as a
function of ( is given by:

peiTzi(C) X P(Cz < C < Dl)
pe;zi(doi < ( < DZ) = P(CZ < BZ-TZi < Dz)
| pera(Q) x P(Ci < 0) x P(C < D))
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Replacing P(C; < ¢ < D;) in (32)) with P(C; < () x P(¢ < D;) in is
possible since C; and D; are independent random variables. Note, however,
that P(C; < el'z; < D;) cannot be split up in this way and requires the
evaluation of a multi-variate CDF, which does not have an analytical solution.
This probability is a normalising factor for the numerator.

This gives the following distribution:

pero,(CICs < ¢ < D)
() X P(C< Q) x P(C< D)
P(C; <elz; <D
PDFeiTZi(C) x CDF¢,(¢) x CDFp,(()
B P(C; <elz; < D)
\/%7 exp(—%)% [1 + erf <f:—“\/§>] % [1 —erf (%)}

N P(C; < efz < D) | (34

The integrals required to calculate the mean and variance of contain
integrals of the form:

o0

/ exp (—z?) erf(az + b)erf(cx + d)dz (35)

which does not have an analytical solution. The following approximation is

proposed:
C = fegi ¢ — Hagi
et ()| e ()
- C—teq\ _  of €= Hai
w2l ()~ () 6

This yields an approximation of the numerator in of:

14



Error function terms for each constraint
T T T T T

Error function term

Lower constraint N

-1 — — - Upper constraint S——
-5 -4 -3 -2 -1 0 1 2 3 4 5
X
Figure 4: Error function terms for a lower constraint with p., = —2 and

o.; = 1 and an upper constraint with p4; = 2 and o4; = 1. In this case, one
of the error function terms is always close to 1.

where Z(e] Z;41) is an unnormalised function describing the truncated dis-
tribution. This approximation relies on the condition that p.; < pg;, and
the assumption that the constraint distributions do not significantly over-
lap. If these are satisfied, it is highly likely that one of the erf terms will be
equal to 1 when the other is not, giving a good approximation of the actual
distribution. This is illustrated in Figure [4]

An overlap metric, 7, is defined as:

 Mdg — Hegi
Odi+ Ocy

(38)

and a shape metric, 4, is defined as:

log (00,1)’ (39)
Od,i

v is a measure of how much the probability distributions of the two con-
straints overlap, and J is a measure of how different the shapes of the prob-
ability distributions of the constraints are. Figure |5 shows examples of the
approximation applied to several different cases of v and d. As can be seen,
the approximation is an almost perfect approximation in Figure [5al, with the
approximation degrading as v decreases in the other examples.
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(&) pei = —2,0ci =05, 14 =2,00; =1, (b) prei = —3,0c; = 1,pa; = 2,04; = 3,
corresponding to v = 2.67 and § = 0.30 corresponding to v = 1.25 and § = 0.48

Comparison of actual and approximate functions
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(C) Me,i = _1a0-0,i = 27/’[’(1,1' = 270d,i = 357
corresponding to v = 0.55 and § = 0.24

Figure 5: Comparison of the actual and approximate functions from for
several values of v and 4. In @, the approximation is an almost perfect
approximation of the actual distribution and the two lines overlap.
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KL divergence between approximate and actual distribution versus overlap metric, y

KL divergence

0 Ot5 1I 1t5 é 215 .'; 3?5 lll 4.5 5

Overlap metric, y
Figure 6: Comparison of the KL divergence between the actual and approx-
imate probability distributions as a function of the overlap metric, v, where
the lines are constant §. For § > 3, the KL divergence is approximately the
same as for 6 = 3.

Figure [6] shows the Kullback—Leibler (KL) divergence between the actual
and approximate probability distributions for various J and ~. Increasing ~
and decreasing 0 improves the approximation. For v > 3, the approximation
very closely matches the actual distribution, regardless of §.

To normalise Z(el Z; 1) to a PDF, the area of the function is calculated

as:

o0

/ Z(ef Zi1)dC

- [mentcemlp (o) ()]

—00

/’Ldﬂ - erf /”LC,i

B P _ Mei
2 2(0%, +1) 2 (02, +1)

The mean of the PDF is then given by:
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o fcovterm [(on(25) -ar(06)) o

=20; | ———exp| ————
o?. +1 p( 2(03,1“‘1)

where

Qi = (42)
Y/ mai ) _ Hei
27 {erf( 2(”5,1*1)) erf( 2(0(2”“))1
The variance is given by:
Uzzai/ — i) exp (=¢%/2 [(erf(c_'uc’i)—erf(c_ud’i>)]d
i (€ — i) exp (—¢*/2) o2 /2 e
=a; |V2r | (1+pf) | erf L S ey

2 ( ch > ( fhe,i )
+ —F—exp L
o2 +1 0 ;+1 0 i T 1
B #exp _ M Mdi 2
,/aii +1 2(‘73,z‘ +1) ‘72,1‘ +1 '

(43)

The derivations of these integrals are not provided, but can be easily de-
rived using the solutions provided in [Appendix Al and [Appendix Bl for the
one-sided constraint. The truncated state estimate is then obtained by ap-

plying Equations and . This process is repeated for the s constraints,
incrementing ¢ each time.
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Several examples of the proposed method for interval constraints are
shown in Figure []] The Gaussian approximation method produces distri-
butions that are very similar to the actual truncated distributions. Figure
shows an example where soft and hard constraints are combined—the hard
constraint has been modelled as a soft constraint with a very small standard
deviation.

6. Results

Consider a robot moving along a corridor, as shown in Figure The
corridor has a wall 10m in front of the initial position of the robot, and
discrete position sensors placed at 1m intervals. The position sensors can
detect which side of the set-point of the sensor the robot is on, and have
uncertainty on the set-point. The robot has an initial velocity of 10cm/s
and accelerates at 1cm/s? for 20s, then decelerates at 1em/s? for 20s, before
again accelerating at lem/s? until it reaches the far wall. Two types of
robots were considered—one with standard deviations on the acceleration
and initial velocity of o, = lem/s® and o, = 3cm/s respectively (Robot
A), and a less uncertain one with standard deviations on the acceleration
and initial velocity of o, = 0.5cm/s” and ¢, = 1.5cm/s respectively (Robot
B). The standard deviation of the set-point of the sensors was also varied,
with standard deviations (in em) of o4 € {0, 5,10, 15,20, 25,30} tested. The
position of each robot was tracked using the following Kalman filter run at

10Hz:
x . 1 At A
pu— = pu— = 2
x L} u=[i] F [0 1 } G [At} (44)
The covariance of the process noise was given by:
T 2 A A87
Q=GG o, = {% A2t2} o, (45)

The Kalman filter was initialised with:

z = lo(.ﬂ P= [8 002} (46)

A position sensor changing its reading was incorporated as a noisy mea-
surement of the position:
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Figure 7: Comparison of the actual and approximate distributions for several
values of v and 9. In @, the Gaussian approximation is an almost perfect
approximation of the truncated distribution and the two lines overlap.
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Figure 8: The robot (circle) is moving along the corridor. Positioned at 1m
intervals are sensors with uncertain positions that can detect which side of the
sensor the robot is on. These sensor readings are used as both measurements
(when the sensor reading changes) and constraints. In the image, the position
estimate of the robot would be constrained between the sensors at 3m and 4m
(shaded area). The uncertainty of the constraints is shown by the shading.
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At each time-step, position sensors whose reading did not change were
not incorporated into the Kalman filter. The aim of the constrained Kalman
filtering approach here was to use the absence of measurements to improve
the state estimate. While the robot was in between sensors, the sensors were
treated as constraints on the state of the system. The truncation method pro-
posed in this paper (which will be referred to as the soft-constrained Kalman
filter) was compared with an unconstrained Kalman filter, and a constrained
Kalman filter using the truncation method that ignored the uncertainty of
the constraints and treated them as hard constraints (referred to as the hard-
constrained Kalman filter). Each combination of robot, sensor uncertainty,
and Kalman filter method was tested 1000 times.

The time-average Root Mean Square Error (RMSE) and percentage im-
provement between methods for Robot A are shown in Figure [0 and the
results for Robot B are shown in Figure [I0] For Robot A, both the hard-
constrained and soft-constrained methods provided a significant benefit over
the unconstrained Kalman filter, with an improvement of over 40% in track-
ing performance when the sensors have no uncertainty. As the uncertainty of
the sensors was increased, the soft-constrained method slightly outperformed
the hard-constrained method. The process noise for Robot B was signifi-
cantly less than Robot A. As a result, the uncertainty of the sensors played
a larger role in determining the performance of the methods. As can be seen
in Figure the hard-constrained Kalman filter was significantly outper-
formed by the unconstrained Kalman filter once the sensor uncertainty was
above 10cm. In these cases, the estimate produced by the hard-constrained
Kalman filter was overconfident, and the proposed method outperformed the
hard-constrained Kalman filter by over 17%. An example of the overconfi-
dent estimates produced by the hard-constrained method is shown in Figure
11} The proposed method strikes a balance between the high uncertainty
of the unconstrained Kalman filter and the overconfident estimates of the
hard-constrained Kalman filter.

As discussed at the end of Section [d, under certain conditions the trun-
cated state distribution can be fed back into the Kalman filter. For the
scenario considered, the discrete position sensors are uncertain rather than
noisy, and thus using feedback is not valid. Figure shows the effects of
using feedback in the example scenario, with the result that the estimate is
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RMSE versus sensor uncertainty
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Figure 9: RMSE and percentage improvement between methods for Robot
A as the sensor uncertainty is varied. The soft-constrained approach is equal
to or better than the unconstrained and hard-constrained approaches in all
cases.
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RMSE versus sensor uncertainty
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Figure 10: RMSE and percentage improvement between methods for Robot
B as the sensor uncertainty is varied. The soft-constrained approach is equal
to or better than the unconstrained and hard-constrained approaches in all
cases. The hard-constrained approach is outperformed by the unconstrained
approach when the sensor uncertainty is large.
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Position versus time for unconstrained Kalman filter Position versus time for hard-constrained Kalman filter
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Position versus time for soft-constrained Kalman filter
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Figure 11: Comparison of the actual and estimated positions with uncer-
tainty for Robot B with sensor uncertainty of 15cm. This illustrates a
case where the hard-constrained approach is outperformed by the uncon-
strained and soft-constrained approaches. The unconstrained estimate has
large uncertainty, while the hard-constrained estimate is overconfident. The
soft-constrained approach has a lower uncertainty compared to the uncon-
strained approach without producing the overconfident estimates of the hard-
constrained method.
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more confident. However, in some cases this estimate can become overconfi-
dent and fail to accurately represent the actual state. The method without
feedback (Figure[12a]) has less confident estimates, but they are not overcon-
fident.

7. Conclusion

This paper developed an analytical method of truncating an inequality
constrained Gaussian distributed variable where the constraints themselves
are described by Gaussian distributions. A key aspect of the approach was
the use of moment-based Gaussian approximations of the truncated distri-
bution. This truncation method was applied to the constrained Kalman
filtering problem where it was shown to outperform unconstrained Kalman
filtering and the existing constrained Kalman filter using hard constraints in
a simulation example. A key benefit of the developed method compared to
hard-constrained Kalman filters is that it is not overconfident near the uncer-
tain constraints. It is an analytical version of existing numerical integration
methods, thus providing a computational benefit over the existing numerical
methods.
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Appendix A. Calculation of the mean
The integral in equation is calculated as follows:
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Position versus time for soft-constrained Kalman filter
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Figure 12: Comparison of the actual and estimated positions with uncer-
tainty for Robot A with sensor uncertainty of 15cm. In @, the truncated
estimate is not fed back into the Kalman filter, while in @, the truncated
estimate is used by the Kalman filter and the resultant estimate is overcon-
fident.
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- 7gexp (—¢2/2) d¢ (A1)
+Z Cexp (—¢?/2) erf (Cg;fg) d¢ (A.2)

The first integral, (A.1), equates to 0. For integral (A.2)), performing
integration by parts with:

u = erf (i;j%? dv = Cexp (—¢*/2) d¢ (A.3)

gives:

/ Cexp (—¢*/2) exf (i_ jﬁ) d¢

_ {_ exp (—C2/2) erf (i : %)] 2 (A4)
o[ P (L) s

Equation (A.4]) equals 0, and completing the square allows (A.5)) to be
calculated as:

OOX —C2/9 9 _ci2 2€Xp —UIQL
[ e (g )" s

To summarise:

28



00 , C — e B 2 Mz,i
R

(A.7)
Appendix B. Calculation of the variance
The integral in equation is calculated as follows:

[ € mresn (<) [1vent (S5 fac
= [ ¢en (- (B.1)

[ 2 2 C = Heyi
—i—_/ (exp (—¢?/2) ert ( O'c,i\/§> d¢ (B.2)
~ [ amcen (¢ 2) ¢ (B.3)

r 2 C — Heyi

_ /QMiCeXp(—C /2) erf< : '\/5>d( (B.4)
+ / pii exp (—¢*/2) d¢ (B.5)
+ / p? exp (—¢?/2) erf (i_\/jg) d¢ (B.6)

Integral (B.1)) equates to v/27. For integral (B.2)), performing integration
by parts with:

u = erf (i;\/jg) dv = *exp (—C2/2) d¢ (B.7)
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gives:

Jomtoma(z)s

) o,

(B.9)

Equation (B.8) is equal to 0, and integral can be split into the
following integrals:

T E () B0
i

Integral (B.10]) does not have an indefinite integral, but a definite integral
is provided in [20]:

T Oci P ( e 2 ZL“) ) exp (—¢*/2)d¢  (B.11)

r NG [ ab — fa ]

exp (—(at + B)?) erf (at + b) dt = Y—erf | ——r B.12

[ v (—lat+ g e (ot byt = Lot | L (Ba2)

Using this formula, integral (B.10)) equates to:
o (C—pic,i)?
oxp (16522) |

/ i ) orf (i) d¢ = V2merf _Hed (B.13)

PR V2 202, +1)
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Integral (B.11]) has the same exponent as in equation (A.6). Completing
the square gives:

o0 2. ex M
2 ¢ (€ — presi)? 5 e p( 2<a3,i+1>)
e (- e e ac= =0

Oci

(B.14)
To summarise, integral (B.2)) simplifies to:

/ ¢*exp (—¢*/2) ext (i_\%) d¢

2 .
c,i

2MC’i eXp <_2( l; +1)) .
’ 9¢,i Heyi
— R —Vo2merf | —=_— | (B.15)
Tes 2(02, + 1)

Integral (B.3)) equates to 0. Integral (B.4) is similar to the integral eval-
uated in and equates to:

! — ey Ap; o

/ 241;C exp (—C2/2) erf (C—,u) d¢ = B exp o Mei
. 0eiV2 o2, +1 \Jori+1

(B.16)

Integral (B.5) is the integral of a Gaussian distribution and equates to

p2+/27. Using the formula provided in [20], integral equates to:

o0

/ 12 exp (—C2/2) erf (C — 'uc’i> d¢ = piv2merf o Hei (B.17)
S 007i\/§ 2(‘73,1‘ +1)
Summarising;:
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