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Abstract

This paper presents eight PAC-Bayes bounds to analyze the generalization performance of
multi-view classifiers. These bounds adopt data dependent Gaussian priors which empha-
size classifiers with high view agreements. The center of the prior for the first two bounds
is the origin, while the center of the prior for the third and fourth bounds is given by a data
dependent vector. An important technique to obtain these bounds is two derived logarith-
mic determinant inequalities whose difference lies in whether the dimensionality of data
is involved. The centers of the fifth and sixth bounds are calculated on a separate subset
of the training set. The last two bounds use unlabeled data to represent view agreements
and are thus applicable to semi-supervised multi-view learning. We evaluate all the pre-
sented multi-view PAC-Bayes bounds on benchmark data and compare them with previous
single-view PAC-Bayes bounds. The usefulness and performance of the multi-view bounds
are discussed.

Keywords: PAC-Bayes bound, statistical learning theory, support vector machine, multi-
view learning

1. Introduction

Multi-view learning is a promising research direction with prevalent applicability (Sunl,
2013). For instance, in multimedia content understanding, multimedia segments can be
described by both their video and audio signals, and the video and audio signals are regarded
as the two views. Learning from data relies on collecting data that contain a sufficient
signal and encoding our prior knowledge in increasingly sophisticated regularization schemes
that enable the signal to be extracted. With certain co-regularization schemes, multi-view
learning performs well on various learning tasks.
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Statistical learning theory (SLT) provides a general framework to analyze the gener-
alization performance of machine learning algorithms. The theoretical outcomes can be
used to motivate algorithm design, select models or give insights on the effects and be-
haviors of some interesting quantities. For example, the well-known large margin principle
in support vector machines (SVMs) is well supported by various SLT bounds (Vapnik,
1998; Bartlett and Mendelson, 2002; [Sun and Shawe-Taylo, 2010). Different from early
bounds that often rely on the complexity measures of the considered function classes,
the recent PAC-Bayes bounds (McAllester, 1999; [Seeger, 2002; [Langford, 2005) give the
tightest predictions of the generalization performance, for which the prior and posterior
distributions of learners are involved on top of the PAC (Probably Approximately Cor-
rect) learning setting (Catoni, 2007; (Germain et al), |2009). Beyond the common super-
vised learning, PAC-Bayes analysis has also been applied to other tasks, e.g., density esti-
mation (Seldin and Tishby, 2010; Higgs and Shawe-Taylor, 2010) and reinforcement learn-
ing (Seldin et all, 2012).

Although the field of multi-view learning has enjoyed a great success with algorithms and
applications and is provided with some theoretical results, PAC-Bayes analysis of multi-view
learning is still absent. In this paper, we attempt to fill the gap between the developments
in theory and practice by proposing new PAC-Bayes bounds for multi-view learning.

An earlier attempt to analyze the generalization of two-view learning was made using
Rademacher complexity (Farquhar et all, 2006; [Rosenberg and Bartlett, [2007). The bound
relied on estimating the empirical Rademacher complexity of the class of pairs of functions
from the two views that are matched in expectation under the data generating distribution.
Hence, this approach also implicitly relied on the data generating distribution to define the
function class (and hence prior). The current paper makes the definition of the prior in
terms of the data generating distribution explicit through the PAC-Bayes framework and
provides several bounds. However, the main advantage is that it defines a framework that
makes explicit the definition of the prior in terms of the data generating distribution, setting
a template for other related approaches to encoding complex prior knowledge that relies on
the data generating distribution.

Kakade and Foster (2007) characterized the expected regret of a semi-supervised multi-
view regression algorithm. The results given by [Sridharan and Kakade (2008) take an
information theoretic approach that involves a number of assumptions that may be difficult
to check in practice. With these assumptions theoretical results including PAC-style analysis
to bound expected losses were given, which involve some Bayes optimal predictor and but
cannot provide computable classification error bounds since the data generating distribution
is usually unknown. These results therefore represent a related but distinct approach.

We adopt a PAC-Bayes analysis where we encode our assumptions through priors defined
in terms of the data generating distribution. Such priors have been studied by [Catoni
(2007) under the name of localized priors and more recently by [Lever et al. (2013) as data
distribution dependent priors. Both papers considered schemes for placing a prior over
classifiers defined through their true generalization errors. In contrast, the prior that we
consider is mainly used to encode the assumption about the relationship between the two
views in the data generating distribution. Such data distribution dependent priors cannot
be subjected to traditional Bayesian analysis since we do not have an explicit form for the



prior, making inference impossible. Hence, this paper illustrates one of the advantages that
arise from the PAC-Bayes framework.

The PAC-Bayes theorem bounds the true error of the distribution of classifiers in terms
of a term from the sample complexity and the KL divergence between the posterior and
the prior distributions of classifiers. The key technical innovations of the paper enable the
bounding of the KL divergence term in terms of empirical quantities despite involving priors
that cannot be computed. This approach was adopted in Parrado-Herndndez et all (2012)
for some simple priors such as the Gaussian centered at E[y$(x)]. The current paper treats
a significantly more sophisticated case where the priors encode our expectation that good
weight vectors can be found that give similar outputs from both views.

Specifically, we first provide four PAC-Bayes bounds using priors that reflect how well
the two views agree on average over all examples. The first two bounds use a Gaussian prior
centered at the origin, while the third and fourth ones adopt a different prior whose center is
not the origin. However, the formulations of the priors involve mathematical expectations
with respect to the unknown data distributions. We manage to bound the expectation
related terms with their empirical estimations on a finite sample of data. Then, we further
provide two PAC-Bayes bounds using a part of the training data to determine priors, and
two PAC-Bayes bounds for semi-supervised multi-view learning where unlabeled data are
involved in the definition of the priors.

When a natural feature split does not exist, multi-view learning could still obtain per-
formance improvements with manufactured splits, provided that each of the views contains
not only enough information for the learning task itself, but some knowledge that other
views do not have. It is therefore important that people should split features into views
satisfying the assumptions. However, data split is still an open question and beyond the
scope of this paper.

The rest of this paper is organized as follows. After briefly reviewing the PAC-Bayes
bound for SVMs in Section 2] we give and derive four multi-view PAC-Bayes bounds involv-
ing only empirical quantities in Section [8] and Section [ Then we give two bounds whose
centers are calculated on a separate subset of the training data in Section Bl After that, we
present two semi-supervised multi-view PAC-Bayes bounds in Section 6l The optimization
formulations of the related single-view and multi-view SVMs as well as semi-supervised
multi-view SVMs are given in Section [7l After evaluating the usefulness and performance
of the bounds in Section [8] we give concluding remarks in Section [9l

2. PAC-Bayes Bound and Specialization to SVMs

Consider a binary classification problem. Let D be the distribution of feature x lying in
an input space X’ and the corresponding output label y where y € {—1,1}. Suppose @ is
a posterior distribution over the parameters of the classifier ¢. Define the true error and
empirical error of a classifier as

€p = PT(xyND(( )#y)

. 1
€s = PT(x,y)NS(C( = E Z Xz 7& yz



where S is a sample including m examples, and I(-) is the indicator function. With the
distribution @), we can then define the average true error Fg p = E.wgep, and the average
empirical error EAQ7S = Ecwgés. The following lemma provides the PAC-Bayes bound on
Eg p in the current context of binary classification.

Theorem 1 (PAC-Bayes Bound (Langford, 2005)) For any data distribution D, for
any prior P(c) over the classifier ¢, for any § € (0,1]:

KL(QHP)Hn(mT“)) 1

(1)

Prgpm (VQ(C) : KLy (Eqsl|Eqp) < o~

where KL(Q||P) = Ecwgln ggg is the KL divergence between @QQ and P, and KL, (q||p) =

qln% +(1—¢q)ln % for p > q and 0 otherwise.

Suppose from the m training examples we learn an SVM classifier represented by
cu(x) = sign(u' ¢(x)), where ¢(x) is a projection of the original feature to a certain feature
space induced by some kernel function. Define the prior and the posterior of the classifier to
be Gaussian with u ~ N(0,I) and u ~ N (uw, I), respectively. Note that here ||w| = 1, and
thus the distance between the center of the posterior and the origin is u. With this special-
ization, we give the PAC-Bayes bound for SVMs (Langford, 2005; Parrado-Hernandez et all,
2012) below.

Theorem 2 For any data distribution D, for any ¢ € (0, 1], we have

4 In(m£l)

PTSND’” <VW7M : KL+(EAQ7S(W,M)HEQ,D(W,M)) < m

)21—5, (2)

where ||w|| = 1.

All that remains is calculating the empirical stochastic error rate E‘Q,g. It can be shown
that for a posterior Q = N (uw,I) with ||w| = 1, we have

Eq.s = Es [F(uy(x,1))] 3)

where Eg is the average over the m training examples, v(x,y) is the normalized margin of
the example

Y(x%,y) = yw o(x)/[[ ()], (4)

and F(z) is the Gaussian cumulative distribution

F(z) = /OO \/%e_xz/zda:. (5)

The generalization error of the original SVM classifier cy (x) = sign(w ' ¢(x)) can be
bounded by at most twice the average true error Eg p(w, p1) of the corresponding stochastic
classifier (Langford and Shawe-Taylor, 2002). That is, for any p we have

Prixyn (sign(w’ ¢(x)) # ) < 2Bq.p(w, ). (6)



3. Multi-view PAC-Bayes Bounds

We propose a new data dependent prior for PAC-Bayes analysis of multi-view learning. In
particular, we take the distribution on the concatenation of the two weight vectors u; and
uy as their individual product: P([u],uj]") = P;(u;)P2(uz) but then weight it in some
manner associated with how well the two weights agree averagely on all examples. That is,
the prior is

P([uf ,uz]") oc Pr(up) Py(u2)V (ur, uy),

where Pj(u;) and Pj(uz) are Gaussian with zero mean and identity covariance, and

1
V(u1,uz) = exp {_T‘QE(xl,xz)(XIul - X;uz)z} :

To specialize the PAC-Bayes bound for multi-view learning, we consider classifiers of

the form
c(x) = sign(u' ¢(x)), (7)

where u = [u],ug]" is the concatenated weight vector from two views, and #(x) can be
the concatenated x = [x],x ] itself or a concatenation of maps of x to kernel-induced
feature spaces. Note that x; and xo indicate features of one example from the two views,
respectively. For simplicity, here we use the original features to derive our results, though
kernel maps can be implicitly employed as well. Our dimensionality independent bounds
work even when the dimension of the kernelized feature space goes to infinity.

According to our setting, the classifier prior is fixed to be

P(u) x N(0,I) x V(ug,us), (8)

Function V (uj, uz) makes the prior place large probability mass on parameters with which
the classifiers from two views agree well on all examples averagely. The posterior is chosen
to be of the form

Q(u) :N(/val)’ (9)

where ||w]| = 1.

Define X = [x, —x4]". We have

( )O(NO I XV(ul,u2)

1

ocexp{ 5 }xexp{—zﬂE(XLXZ)(xl u x2u2)2}

1 a’u 1 TaxT
=expy —5u X exp —@E;{(u XX ' u)

1.7 [ S
= { Ju }xexp{—ﬁu E(xx )u}

1 E(xx'

o

. . ExxT)) !
That is, P(u) = A’(0, %) with ¥ = (I + T) .
Suppose dim(u) = d. Given the above prior and posterior, we have the following theorem
to characterize their divergence.



Theorem 3

KL(Q)|[P(u) = :

22T
5 Exx ) + —2E[§<Ti + 2 (w'x)?) + u2> .
g

; <—ln(‘1+ =

Proof It is easy to show that the KL divergence between two Gaussians (Rasmussen and Williams,
2006) in an N-dimensional space is

() (10)

KL(N (po, X0) |V (pe1,%1))

11

The KL divergence between the posterior and prior is thus

KL(Q(u)||P(w)) = % (— In(|T+ E(i—’f) )+ tr(I+ E(}E—Z‘T)) +ptw (14 E(i—’f))w - d)
=3 (s EE BB T BB )
=3 (e EE + D) + i 0747
~ 5 (-m(r+ EEE )+ Lmms+ LBl 507 + )
=3 (e B S 7 ).

which completes the proof. |

The problem with this expression is that it contains expectations over the input distribu-
tion that we are unable to compute. This is because we have defined the prior distribution
in terms of the input distribution via the V function. Such priors are referred to as lo-
calized by |Catoni (2007). While his work considered specific examples of such priors that
satisfy certain optimality conditions, the definition we consider here is encoding natural
prior assumptions about the link between the input distribution and the classification func-
tion, namely that it will have a simple representation in both views. This is an example
of luckiness (Shawe-Taylor et all, [1998), where generalization is estimated making assump-
tions that if proven true lead to tighter bounds, as for example in the case of a large margin
classifier.

We now develop methods that estimate the relevant quantities in (I0) from empirical
data, so that there will be additional empirical estimations involved in the final bounds
besides the usual empirical error.

We proceed to provide and prove two inequalities on the involved logarithmic determi-
nant function, which are very important for the subsequent multi-view PAC-Bayes bounds.

Theorem 4

odl 2% T (1/d
—1n(1+E(X’2‘ >(g—dlnEH1+%‘ ] (12)
o g
=T T
—1n(I+E(X7§)(g—E1n‘I+% (13)
o g

6



Proof According to the Minkowski determinant theorem, for n x n positive semi-definite
matrices A and B, the following inequality holds

|A+ B|'™ > A"+ | BV, (14)

which implies that the function A — |A|1/ " is concave on the set of n x n positive semi-
definite matrices. Therefore, with Jensen’s inequality we have

E(xx" xx | (1/d
~ [T+ (& )‘:—dln‘E(H%
o o
1/d
< dlnEHI L |
Since the natural logarithm is concave, we further have
T 1/d 1/d %!
—dlnEHIJr E dE[ln‘I+ | =-Em :
and thereby
2T T
—1n‘1+%(g—131n‘1+%. (15)
o

Denote R = supg ||X||. From inequality (I2]), we can finally prove the following theorem,
as detailed in Appendix [Al

Theorem 5 (Multi-view PAC-Bayes bound 1) Consider a classifier prior given in (8)
and a classifier posterior given in (9). For any data distribution D, for any § € (0,1], with
probability at least 1 — § over S ~ D™, the following inequality holds

vw, s KLy (Eqs||Eqp) <
—§n |:fm_(d (R/o)Z+1—1)y/5-In3 L+ fy ¢ Lo [l d 4+ & 4 n (25

)

m
where
1 — %% 1/d
fm = m Z ‘I — ’
i=1
1 m
Hm = E Z[X Xz +u (W X2)2]7
i=1
and ||w|| = 1.

From the bound formulation, we see that if (w'%;)? is small, that is, if the two view
outputs tend to agree, the bound will be tight.



Note that, although the formulation of f,, involves the outer product of feature vectors,
it can actually be represented by the inner product, which is obvious through the following
determinant equality

~ ~T ~T~

XX X, X;
I =27 41 16
i+ e = B (16)

where we have used the fact that matrix i,ij has rank 1 and has only one nonzero eigen-
value.

We can use inequality (I3]) instead of (I2]) to derive a d-independent bound (see The-
orem [0 below), which is independent of the dimensionality of the feature representation
space.

Theorem 6 (Multi-view PAC-Bayes bound 2) Consider a classifier prior given in (3)
and a classifier posterior given in (@). For any data distribution D, for any § € (0,1], with
probability at least 1 — § over S ~ D™, the following inequality holds

o KBl gy < T2 B 0 50) i + 5 4 ()
W, [ +(Eg.s||Egp) < : |

where
m ~ -~
%%

i X
o2

f= (é[xTx + 12 (w'%;)?] — In (1 +

: I
=1

and ||w|| = 1.
The proof of this theorem is given in Appendix

%,
o2

Since this bound is independent with d and the term ‘I + ‘ involving the outer

product can be represented by the inner product through (I6l), this bound can be employed
when the dimension of the kernelized feature space goes to infinity.

4. Another Two Multi-view PAC-Bayes Bounds

We further propose a new prior whose center is not located at the origin, inspired by
Parrado-Herndndez et al. (2012). The new classifier prior is

P(u) occ N(wp, I) x V(ag, uz), (18)
and the posterior is still
Qu) = N(pw,I), (19)
where 7 > 0, [[w| = 1 and w), = E(x )~p[yx] (or Ex,)plyé(x)] in a predefined kernel
space) with x = [x{ ,xq]".

We have
P(u) x N (nwy,I) x V(ug, uz)
X exp {—%(u —nw,) " (u— nwp)} X exp {—%uTE(iiT)u} .

o2

8



22Ty —1
That is, P(u) = N (up, X) with ¥ = <I + E(’;—’;T)> and u, = nXwy,,.

With d being the dimensionality of u, the KL divergence between the posterior and
prior is

KL(Q)| P(u))

=3 (e EE s B ¢y 1+ 2, — ) )
_ % (‘ In([T+ E(if) )+ %E[fi] + (ap — pw) (T + @)(“” o W)> e
We have
(u, — pw) T (I + E(ii;ﬂ)(up — W)

=1*w, I+ E(ﬁcT) )Wy — 2ppw, W P (T4 E(:Z(T) Jw

w11 E(’;‘_’;‘T) )l w, — 2w w o+ g—zE[(WTi)z] + 4

e (0 2O sy + B TR 4

< w, — 2pEly (0] + BT 4 1)

5=T
where for the last inequality we have used the fact that matrix I— (I+%)_1 is symmetric

and positive semi-definite.
Define W, = E(x y)ws[yx] = = > [yix;]. We have
7w, wy = nw, — pw + pw|?
= lnwy — uw|* + i + 2(pwp — pw) T pw
<lnwy — pwl* + p? + 2ullpw, — pw|
= (lnwp — pw| + p)%. (22)

Moreover, we have
lnwp — pwl| = |lgwp — néry 4+ 0y — pw || < [[gwy, — ndp[| + [[p%p — pwll.  (23)

From (20)), 1)), [22]) and 23)), it follows that

1 E(xx" 1 . .
KEQIPw) < 2+ ZEX)) 4L (o, i+ s, — el 40 +
LI[Z [5&—'—5( — 2uoty(wx) + pi(w' %)% + ,u_2 (24)
202 27

By using inequalities (I2]) and (I3]), we get the following two theorems, whose proofs are
detailed in Appendix [(] and Appendix [D] respectively.



Theorem 7 (Multi-view PAC-Bayes bound 3) Consider a classifier prior given in (18)
and a classifier posterior given in ({I9). For any data distribution D, for any w, positive p,
and positive n, for any 6 € (0, 1], with probability at least 1 — & over S ~ D™ the following
multi-view PAC-Bayes bound holds

~4n [fm— ({/(RJo)>+1—1)y/5t In L
m

2 .
R - m 1 R2+2R2+4nuc®R 2
%("—m<2+w/21n§)+||nwp—uw||+u) + g e [ In g+ b+ In (55

)

Sl

KL4(Eqsl|Eqp) < -

m
where
1 & %%, |1/d
=—S"I1 i
fn== ; 1+ 22
1 m
H, = - Z[i:i, — 2poy;(w ' x;) + pt(w' %),
i=1
and ||wl| = 1.

Besides the term (Wch,-)2 that appears in the previous bounds, we can see that if

|nW, — pw || is small, that is, the centers of the prior and posterior tend to overlap, the
bound will be tight.

Theorem 8 (Multi-view PAC-Bayes bound 4) Consider a classifier prior given in (18)
and a classifier posterior given in (I9). For any data distribution D, for any w, positive L,
and positive n, for any 6 € (0,1], with probability at least 1 — & over S ~ D™ the following
multi-view PAC-Bayes bound holds

2
1 (\’}—%(wr \/2In %) + [[nWr, — pw|| +u)

KLi(Eqs|lEqp) < -~ +
7 R2+dnuo? R+p2R2+0? In(1+ ;) )
m )

where mo ) . o ]

3 L X X = 2npoty(wixg) + pf(w %) %%

L

=1

and ||w|| = 1.

5. Separate Training Data Dependent Multi-view PAC-Bayes Bounds

We attempt to improve our bounds by using a separate set of training data to determine
new priors, inspired by |Ambroladze et al! (2007) and [Parrado-Herndndez et al. (2012). We
consider a spherical Gaussian whose center is calculated on a subset T of training set

10



comprising r training patterns and labels. In the experiments this is taken as a random
subset, but for simplicity of the presentation we will assume 1" comprises the last r examples

{Xk7 yk}?:m_r+1-
The new prior is

P(u) = N(nwp, 1), (26)
and the posterior is again
Q(u) = N (uw, 1), (27)
One reasonable choice of w, is
-1
Wy = (Ei[ii—r]) E(x,y)ND[yX]7 (28)

which is the solution to the following optimization problem

EX17y[?JWIX1] + EX2,y[yW;X2]
max T T ) ’
w Exy o [(W1 X1 — Wy X2)?]

where w = [WlT, W2T ]T. We use the subset T' to approximate wp, that is, let

-1
Wy = (EiNT [iiT]) E(xy)~r[yX]

1 m—r+1 -1 1 m—r+1

k=r

The KL divergence between the posterior and prior is
KL(Q(w)|P(w)) = KLWN (uw, D)|N (nwy, 1)) = |lnw, — pw]||*. (31)

Since we separate r examples to calculate the prior, the actual size of training set that
we apply bound to is m — r. We have the following bound.

Theorem 9 (Multi-view PAC-Bayes bound 5) Consider a classifier prior given in (20)
and a classifier posterior given in (27), with wy given in (30). For any data distribution

D, for any w, positive u, and positive 1, for any § € (0,1], with probability at least 1 —

over S ~ D™ the following multi-view PAC-Bayes bound holds

Slmwy — pwl|2 + In 2=

KL (Egs||Eqp) < (32)

m—r

and ||w|| = 1.

Another choice of w, is to learn a multi-view SVM classifier with the subset 7', leading
to the following bound.

Theorem 10 (Multi-view PAC-Bayes bound 6) Consider a classifier prior given in
(20) and a classifier posterior given in (27). Classifier w, has been learned from a subset
T of r examples a priori separated from a training set S of m samples. For any data

11



distribution D, for any w, positive p, and positive n, for any § € (0,1], with probability at
least 1 — 6 over S ~ D™ the following multi-view PAC-Bayes bound holds
3llnwy — pw|[? + In =t

KL, (Eos||Eop) <
+(EqQsllEqp) < p—

(33)
and ||w|| = 1.

Although the above two bounds look similar, they are essentially different in that the
priors are determined differently. We will see in the experimental results that they also
perform differently when applied in our experiments.

6. Semi-supervised Multi-view PAC-Bayes Bounds

Now we consider PAC-Bayes analysis for semi-supervised multi-view learning, where besides

the m labeled examples we are further provided with « unlabeled examples U = {X; ym ity 1

We replace V (uy,uz) with V(uy, us), which has the form

A 1 -
v<uh1u>:=exp{}—§;§uTEU<xxT>u}, (34)

where Eiy means the empirical average over the unlabeled set U.

6.1 Noninformative Prior Center

Under a similar setting with Section [, that is, P(u) o N(0,I) x V(ui,uy), we have
-1
P(u) = N(0,%) with ¥ = <I + w) . Therefore, according to Theorem [B] we have

Ey(xx")

)+

SRR AR i) (3)

g g

KLQuIPw) = 5 (~n1+

Substituting (35]) into Theorem [I we reach the following semi-supervised multi-view
PAC-Bayes bound.

Theorem 11 (Semi-supervised multi-view PAC-Bayes bound 1) Consider a clas-
sifier prior given in (8) with 1% defined in (34), a classifier posterior given in (9) and an
unlabeled set U = {X]}] 7#“ For any data distribution D, for any § € (0, 1], with proba-
bility at least 1 — § over S ~ D™, the following inequality holds

Vw, i KL (Eqsl|Eqp) <
§(— ([T B0 4 ARG RTR + 2w )+ ) + I ()

)

m

where ||w|| = 1.

12



6.2 Informative Prior Center

Similar to Section [ we take the classifier prior to be

P(u) oc N(qwy, I) x V(uy, u), (36)

where V(uy,up) is given by B4), n > 0 and w, = E(xy)~plyx] with x = [x],x5]T. We

-1
have P(u) = N (u,, ¥) with ¥ = (I + M) and u, = nXw,,.

By similar reasoning, we get

XXT
KL(QUu)|P(w) <~ tn([r+ LEX ) %(anvp R A R

2

LIEJU [XTX + 12(w'x)?| — nuE [y(WTX):| + 'u—, (37)

202 2

which is analogous to (24)).
Then, we can give the following semi-supervised multi-view PAC-Bayes bound, whose
proof is provided in Appendix [El

Theorem 12 (Semi-supervised multi-view PAC-Bayes bound 2) Consider a clas-
sifier prior given in (38) with 1% defined in (34), a classifier posterior given in (14) and
an unlabeled set U = {xj}m_tgﬂ. For any data distribution D, for any w, positive u, and
positive n, for any 6 € (0,1], with probability at least 1 — & over S ~ D™, the following

inequality holds
1 3 - 2
5( <2+\/2ln3)+||77wp—,uw||+,u>

KL (Eqs||Egp) < —

§(~tn(|T+ 2GED)) 4 LEGRTR + p2(W TR+ 42) + S+ B2 0 d 4 In (255)

9

B

_l’_

m

where
1 m
= —Z —nuyi(w %)),
m :

and ||wl| = 1.

7. Learning Algorithms

Below we provide the optimization formulations for the single-view and multi-view SVMs as
well as semi-supervised multi-view SVMs that are adopted to train classifiers and calculate
PAC-Bayes bounds. Note that the augmented vector representation is used by appending
a scalar 1 at the end of the feature representations, in order to formulate the classifier in a
simple form without the explicit bias term.

13



7.1 SVMs

The optimization problem (Cristianini and Shawe-Taylox, 2000; Shawe-Taylor and Sun,2011/)
is formulated as

L o S
1 c '
min 5 wl* + ;&
stoy(w x)>1-&, i=1,....n,
&>0, i=1,...n, (38)

where scalar C' controls the balance between the margin and empirical loss. This problem
is a differentiable convex problem with affine constraints. The constraint qualification is
satisfied by the refined Slater’s condition.

The Lagrangian of problem (B8] is

L(w,& A7) = %HWH2 +CY &= N [ZJi(WTXi) -1+ &]

i=1 i=1
n
—Z%Em Ai 20, 7 =>0, (39)
i=1
where A = [Ar,...,\,]" and ¥ = [y1,...,7]" are the associated Lagrange multipliers.

From the optimality conditions, we obtain

8WL(VV)kv b*7£*7 )‘*77*) =w" - Z A;kylxl = 07 (40)
i=1
Og, L(W", b*, & X4 ) =C -\ —~/=0, i=1,...,n. (41)

The dual optimization problem is derived as

1
min =A' DX —-A"1
A 2
s.t. A =0,
A=<C1, (42)

where D is a symmetric n x n matrix with entries D;; = yiijiT x;. Once the solution A* is
given, the SVM decision function is given by

c*(x) = sign (Z yi)\fXTxi) . (43)
i=1

Using the kernel trick, the optimization problem for SVMs is still ([@2). However, now
D;j = y;yjK(xi,x;) with the kernel function (-, -), and the solution for the SVM classifier

is formulated as
¢*(x) = sign (Z yiA:fe(xi,x)) . (44)
i=1
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7.2 MvSVMs

Denote the classifier weights from two views by w1 and wo which are not assumed to be unit
vectors at the moment. Inspired by semi-supervised multi-view SVMs (Sindhwani et all,
2005; [Sindhwani and Rosenberg, 2008; [Sun and Shawe-Taylor, [2010), the objective function
of the multi-view SVMs (MvSVMs) can be given by

. 1 n ' ' n ' '
min S (|[wa|® + [w2l?) + C1 Y (€ + &)+ Co Y (Wi x| —wy x5)?
wi,w2,61,€2 2 prt Pt
s.t. yiwfxizl—ﬁ, i=1,---,n,
yznglzzl_f%7 izla"'7n7

If kernel functions are used, the solution of the above optimization problem can be given
by w1 = > atki(x),-), and wo = D1 | abko(xh, ). Since a function defined on view j
only depends on the jth feature set, the solution is given by

wy = Zaikl(xi, ), Wa= Zaékg(xi, ). (46)
i=1 i=1

It can be shown that

[wil> = af K1, |[wa? = o) Kaaz,

n

§ (Wi x; — Wy x;)? = (K1 — Koag) T (K1 — Kaap),
i=1

where K7 and Ko are kernel matrices from two views.
The optimization problem (45]) can be reformulated as the following

. 1
min FO = —(alTKlal + a;—KgaQ) + C’Q(Klal — Kgag)T(Klal — K2a2) +
a17a27£17£2 2

n

C1> (& +&)

i=1
n . '
s.t. yi(Zoﬂlk’l(xj,xi)> >1-&, i=1,---,n,
j=1
n .
yl(Zaék‘Q(X%XZ))Zl_g%? ’L':L"',TL,
j=1

The derivation of the dual optimization formulation is detailed in Appendix [El Table [
summarizes the MvSVM algorithm.
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Table 1: The MvSVM Algorithm

Input:
A training set with n examples {(x;,y;)}_, (each example has two views).
Kernel function ki (-,-) and ko(-,-) for two views, respectively.
Regularization coefficients Cy, Cs.
Algorithm:
1 Calculate Gram matrices K; and K5 from two views.
2 Calculate A, B, D according to (Q0]).
3 Solve the quadratic optimization problem (O2)) to get A1, Aq.
4 Calculate a; and a using (86) and (7).
Output: Classifier parameters a1 and ay used by (46).

7.3 Semi-supervised MvSVMs (SMvSVMs)

Next we give the optimization formulation for semi-supervised MvSVMs (SMvSVMs) (Sindhwani et all,
2005; [Sindhwani and Rosenberg, [2008; [Sun and Shawe-Taylor, 2010), where besides the n
labeled examples we further have u unlabeled examples.
Denote the classifier weights from two views by w; and wo which are not assumed to
be unit vectors. The objective function of SMvSVMs is

n n+u

A D, ) o L
min - S(|lwi "+ [[w2][7) + C 1+&)+C E W, X| — Wq X)
wi® ., 2(|| 117+ [lwel]) 1;(51 £3) 2i:1( 1X] 9 X3)

stoyw x,>1—¢, i=1,---,n,
yingézl—gé, i=1,---,n,

If kernel functions are used, the solution can be expressed by wi = > 7" ol ki (x, ),
and wy = Z?:Jrlu abka(xh,+). Since a function defined on view j only depends on the jth
feature set, the solution is given by

n+u n-+u

W1 = Z Oézik,’l(xi, -), W9 = Z aék@(xi, ) (49)
=1 i=1

It is straightforward to show that

[wil? = of K11, |[w2|? = ag Koo,

n+u

D (wixi = wyx)? = (Kion — Kyan) | (Kion — Kaa),
i=1

where (n + u) X (n + u) matrices K; and Ky are kernel matrices from two views.
The optimization problem (48] can be reformulated as

~ 1
min FO = —(alTKlal + a;—KgaQ) + C’g(Klal — Kgag)T(Klal — K2a2) +

1,02 761 762 2
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n

C1y (¢ +8)

i=1
n—+u )
s.t. yi(Zoﬂlkl(xj,xi)) > 1—52{, i1=1,---,n,
j=1
n+u
(Zak@x],xl)Zl—ﬁé, i=1,---,n,
¢, {220, i=1,---,n. (50)

The derivation of the dual optimization formulation is detailed in Appendix[Gl Table
summarizes the SMvSVM algorithm.

Table 2: The SMvSVM Algorithm

Input:
A training set with n examples {(x;,v;)}!_; (each example has two views)
and u unlabeled examples.
Kernel function ki (-,-) and ko(-,-) for two views, respectively.
Regularization coefficients Cy, Cs.
Algorithm:
1 Calculate Gram matrices K; and K5 from two views.
2 Calculate A, B, D according to ([I04]).
3 Solve the quadratic optimization problem (I06) to get A1, Aq.
4 Calculate a;; and o using (I00) and (I0T)).
Output: Classifier parameters a1 and ay used by (49).

8. Experiments

The new bounds are evaluated on one synthetic and three real-world multi-view data sets
where the learning task is binary classification. Below we first introduce the used data
and the experimental settings. Then we report the test errors of the involved variants
of the SVM algorithms, and evaluate the usefulness and relative performance of the new
PAC-Bayes bounds.

8.1 Data Sets

The four multi-view data sets are introduced as follows.

SYNTHETIC

The synthetic data include 2000 examples half of which belong to the positive class. The
dimensionality for each of the two views is 50. We first generate two random direction
vectors one for each view, and then for each view sample 2000 points to make the inner
products between the direction and the feature vector of half of the points be positive and
the inner products for the other half of the points be negative. For the same point, the
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corresponding inner products calculated from the two views are made identical. Finally, we
add Gaussian white noise to the generated data to form the synthetic data set.

HANDWRITTEN

The handwritten digit data set is taken from the UCI machine learning repository (Bache and Lichman,
2013), which includes features of ten handwritten digits (0 ~ 9) extracted from a collection

of Dutch utility maps. It consists of 2000 examples (200 examples per class) with the first

view being the 76 Fourier coefficients, and the second view being the 64 Karhunen-Loeve
coefficients of each image. Binary classification between digits (1, 2, 3) and (4, 5, 6) is used

for experiments.

ADs

The ads data are used for classifying web images into ads and non-ads (Kushmerick, 1999).
This data set consists of 3279 examples with 459 of them being ads. 1554 binary attributes
(weights of text terms related to an image using Boolean model) are used for classification,
whose values can be 0 and 1. These attributes are divided into two views: one view describes
the image itself (terms in the image’s caption, URL and alt text) and the other view contains
features from other information (terms in the page and destination URLs). The two views
have 587 and 967 features, respectively.

COURSE

The course data set consists of 1051 two-view web pages collected from computer science
department web sites at four universities: Cornell University, University of Washington,
University of Wisconsin, and University of Texas. There are 230 course pages and 821 non-
course pages. The two views are words occurring in a web page and words appearing in the
links pointing to that page (Blum and Mitchell, [1998; [Sun and Shawe-Taylor, 2010). The
document vectors are normalized to tf-idf (term frequency-inverse document frequency)
features and then principal component analysis is used to perform dimensionality reduction.
The dimensions of the two views are 500 and 87, respectively.

8.2 Experimental Settings

Our experiments include algorithm test error evaluation and PAC-Bayes bound evaluation
for single-view learning, multi-view learning, supervised learning and semi-supervised learn-
ing. For single-view learning, SVMs are trained separately on each of the two views and
the third view (concatenating the previous two views to form a long view), providing three
supervised classifiers which are called SVM-1, SVM-2 and SVM-3, respectively. Evaluat-
ing the performance of the third view is interesting to compare single-view and multi-view
learning methods, since single-view learning on the third view can exploit the same data
as the usual multi-view learning algorithms. The MvSVMs and SMvSVMs are supervised
multi-view learning and semi-supervised multi-view learning algorithms, respectively. The
linear kernel is used for all the algorithms.

For each data set, four experimental settings are used. All the settings use 20% of all
the examples as the unlabeled examples. For the remaining examples, the four settings use
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20%, 40%, 60% and 80% of them as the labeled training set, respectively, and the rest forms
the test set. Supervised algorithms will not use the unlabeled training data. For multi-view
PAC-Bayes bound 5 and 6, we use 20% of the labeled training set to calculate the prior,
and evaluate the bounds on the remaining 80% of training set. Each setting involves 10
random partitions of the above subsets. The reported performance is the average test error
and standard deviation over these random partitions.

Model parameters, i.e., C in SVMs, and Ci,Cs in MvSVMs and SMvSVMs, are se-
lected by three-fold cross-validation on each labeled training set, where Cy,Cy are se-
lected from {1076,107%,1072,1,10,100} and C is selected from {1078,5 x 1078,1077,5 x
1077,1076,5 x 1076,107%,5 x 1075,1074,5 x 107%,1073,5 x 1073,1072,5 x 1072,10~ 1,5 x
1071, 1, 5,10, 20, 25, 30, 40, 50, 55, 60, 70, 80, 85, 90, 100, 300, 500, 700, 900, 1000}. All the PAC-
Bayes bounds are evaluated with a confidence of § = 0.05. We normalize w in the posterior
when we calculate the bounds. For multi-view PAC-Bayes bounds, o is fixed to 100, 7 is
set to 1, and R is equal to 1 which is clear from the augmented feature representation and
data normalization preprocessing (all the training examples after feature augmentation are
divided by a common value to make the maximum feature vector length be one).

We evaluate the following eleven PAC-Bayes bounds where the last eight bounds are
presented in this paper.

e PB-1: The PAC-Bayes bound given by Theorem 2] and the SVM algorithm on the
first view.

e PB-2: The PAC-Bayes bound given by Theorem 2] and the SVM algorithm on the
second view.

e PB-3: The PAC-Bayes bound given by Theorem [2] and the SVM algorithm on the
third view.

e MvPB-1: Multi-view PAC-Bayes bound 1 with the MvSVM algorithm.
e MvPB-2: Multi-view PAC-Bayes bound 2 with the MvSVM algorithm.
e MvPB-3: Multi-view PAC-Bayes bound 3 with the MvSVM algorithm.
e MvPB-4: Multi-view PAC-Bayes bound 4 with the MvSVM algorithm.
e MvPB-5: Multi-view PAC-Bayes bound 5 with the MvSVM algorithm.
e MvPB-6: Multi-view PAC-Bayes bound 6 with the MvSVM algorithm.

e SMvPB-1: Semi-supervised multi-view PAC-Bayes bound 1 with the SMvSVM algo-
rithm.

e SMvPB-2: Semi-supervised multi-view PAC-Bayes bound 2 with the SMvSVM algo-
rithm.
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8.3 Test Errors

The prediction performances of SVMs, MvSVMs and SMvSVMs for the four experimental
settings are reported in Table [ Table M Table [ and Table [6] respectively. For each data
set, the best performance is indicated with boldface numbers. From all of these results,
we see that MvSVMS and SMvSVMs have the best overall performance and sometimes
single-view SVMSs can have the best performances. SMvSVMs often perform better than
MvSVMS since additional unlabeled examples are used, especially when the labeled training
data set is small. Moreover, as expected, with more labeled training data the prediction
performance of the algorithms will usually increase.

8.4 PAC-Bayes Bounds

Table [, Table ], Table @ and Table [0 show the values of various PAC-Bayes bounds under
different settings, where for each data set the best bound is indicated in bold and the best
multi-view bound is indicated with underline.

From all the bound results, we find that the best single-view bound is usually tighter
than the best multi-view bound, expect on the synthetic data set. One possible explanation
for this is that, the synthetic data set is ideal and in accordance with the assumptions for
multi-view learning encoded in the prior, while the real world data sets are not. This also
indicates that there is much space and possibility for further developments of multi-view
PAC-Bayes analysis. In addition, with more labeled training data the corresponding bound
will usually become tighter. Last but not least, among the eight presented multi-view PAC-
Bayes bounds on real world data sets, the tightest one is often the first semi-supervised
multi-view bound which exploits unlabeled data to calculate the function V(uy,us) and
needs no further relaxation. The results also show that the second multi-view PAC-Bayes
bound (dimensionality-independent bound with the prior distribution centered at the origin)
is sometimes very good.

9. Conclusion

The paper lays the foundation of a theoretical and practical framework for defining priors
that encode non-trivial interactions between data distributions and classifiers and translat-
ing them into sophisticated regularization schemes and associated generalization bounds.
Specifically, we have presented eight new multi-view PAC-Bayes bounds, which integrate

Test Error Synthetic Handwritten Ads Course
SVM-1 17.204+1.39 | 5.664+0.94 | 584+0.56 | 19.15+1.54
SVM-2 19.98+0.76 | 3.98+0.68 | 5.25+0.79 | 10.15+ 1.60
SVM-3 16.554+2.04 | 1.65+0.53 | 4.624+0.80 | 10.33+1.34
MvSVM 10.54+0.73 | 2.174+0.64 | 4.55+0.66 | 10.55 + 1.47

SMvSVM | 10.30+0.79 | 2.04+0.69 | 4.70+0.70 | 10.28 +1.63

Table 3: Average error rates (%) and standard deviations for different learning algorithms

under the 20% training setting.
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Test Error Synthetic | Handwritten Ads Course
SVM-1 14.494+0.98 | 5.57+0.41 | 5.04+0.83 | 14.23 +1.27
SVM-2 16.884+1.06 | 3.75+0.99 | 4.144+040 | 7.64+0.80
SVM-3 10.31+0.82 | 1.51+0.39 | 3.61+0.54 | 7.68+0.97

MvSVM 7.724+0.78 1.98+0.61 | 3.56+0.54 | 7.00+£0.93

SMvSVM | 7.48 £0.66 | 2.03+0.61 | 3.44+0.54 | 6.81 +0.98

Table 4: Average error rates (%) and standard deviations for different learning algorithms
under the 40% training setting.

Test Error Synthetic | Handwritten Ads Course
SVM-1 14.234+1.24 | 5.16+0.61 | 4.324+0.50 | 11.28 +1.30
SVM-2 16.11+0.94 | 3.46+0.94 | 3.90+0.58 | 6.53+1.44
SVM-3 9.08£1.07 | 1.77+0.85 | 3.43+0.51 | 6.62+1.33
MvSVM | 7.30+0.85 | 1.67+0.63 | 3.45+0.32 | 5.82+1.73

SMvSVM | 7.314+0.80 1.82+0.70 | 3.36 +0.38 | 5.93+1.63

Table 5: Average error rates (%) and standard deviations for different learning algorithms
under the 60% training setting.

Test Error | Synthetic | Handwritten Ads Course
SVM-1 13.06 £2.00 | 542+1.51 | 4.47+0.60 | 9.70 £ 1.64
SVM-2 16.03+£1.73 | 3.564+1.33 | 3.59+0.66 | 5.62+1.68
SVM-3 8.06+1.11 1.93£0.66 | 2.96+0.51 | 5.56+1.72
MvSVM | 6.28 £1.20 | 1.82+0.75 | 3.19+0.63 | 4.20+1.51

SMvSVM | 6.28 £1.19 | 1.93+0.77 | 3.15+£0.75 | 3.96 + 1.59

Table 6: Average error rates (%) and standard deviations for different learning algorithms
under the 80% training setting.

PAC-Bayes Bound Synthetic Handwritten Ads Course
PB-1 60.58 +0.12 | 54.61 £1.59 | 40.49+2.09 | 58.93 +8.90
PB-2 60.72+0.09 | 45.17+3.74 | 40.44+2.12 | 61.64 +1.49
PB-3 60.49 +0.12 | 47.62+3.42 | 43.75+3.15 | 59.67 +2.32

MvPB-1 61.27 £ 0.07 | 51.63+2.89 | 40.87+2.77 | 63.54+0.45
MvPB-2 61.04+0.07 | 51.45+2.89 | 40.80+2.77 | 63.26 +0.47
MvPB-3 62.35+0.01 | 63.44+0.62 | 56.38+1.49 | 66.37+0.06
MvPB-4 62.17+0.01 | 63.23£0.61 | 56.29+1.48 | 66.14 + 0.06
MvPB-5 61.84 £0.09 | 52.52+3.01 | 43.21+2.94 | 64.36 +0.43
MvPB-6 63.74 £0.08 | 58.65+£7.09 | 54.94+4.68 | 67.75+0.25
SMvPB-1 60.60+0.06 | 49.84 +2.87 | 40.65+3.25 | 62.77+0.49
SMvPB-2 62.17+0.01 | 62.94+0.62 | 56.284+1.30 | 66.14 + 0.06

algorithms under the 20% training setting.
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PAC-Bayes Bound Synthetic Handwritten Ads Course
PB-1 57.204+0.05 | 45.26 £1.48 | 33.11£3.89 | 59.68 4+ 0.52
PB-2 57.40£0.11 | 35.45+3.22 | 28.85£3.26 | 55.26 = 1.97
PB-3 57.154+0.07 | 35.48£2.26 | 32.74+£4.29 | 56.124+0.78

MvPB-1 57.69£0.09 | 40.85+3.23 | 33.36+2.17 | 59.174+0.51
MvPB-2 57.544+0.08 | 40.76 £3.22 | 33.32£2.17 | 58.9940.50
MvPB-3 58.97+£0.02 | 57.26 £1.17 | 51.68+1.38 | 61.91+0.07
MvPB-4 58.854+0.02 | 57.15+1.16 | 51.62+£1.37 | 61.77+0.10
MvPB-5 57.44+£0.13 | 42.56£3.36 | 35.86+2.23 | 59.91+0.48
MvPB-6 52.67 +£2.36 | 42.57+5.93 | 47.34 +£3.05 | 62.86 £ 0.09
SMvPB-1 57.27+£0.06 | 40.76 £3.26 | 34.26 £3.00 | 58.69+0.44
SMvPB-2 58.854+0.01 | 57.22+£1.18 | 52.16 £1.50 | 61.77 +0.09

algorithms under the 40% training setting.

Table 8: Average PAC-Bayes bounds (%) and standard deviations for different learning

PAC-Bayes Bound Synthetic Handwritten Ads Course
PB-1 55.45+0.08 | 42.07+2.35 | 29.654+1.93 | 57.52+0.22
PB-2 55.71+0.08 | 30.70 +£2.05 | 28.59 +3.71 | 53.71 +2.27
PB-3 55.39+0.16 | 30.50+3.31 | 30.49+4.35 | 53.78 +1.01

MvPB-1 55.89 £0.08 | 34.16 £1.88 | 31.72+4.13 | 56.90 4+ 0.46
MvPB-2 55.78 +£0.07 | 34.09+1.88 | 31.69+4.13 | 56.75+0.45
MvPB-3 57.38+£0.01 | 52.82+1.08 | 49.77+2.49 | 59.82+0.07
MvPB-4 57.29+0.01 | 52.73+1.07 | 49.744+2.48 | 59.69 + 0.07
MvPB-5 55.60 +£0.08 | 36.17+1.88 | 34.11+4.26 | 57.56 +0.42
MvPB-6 39.20+5.03 | 31.76 +4.17 | 47.56£3.81 | 60.67 +0.05
SMvPB-1 55.58 £0.06 | 33.93+2.00 | 32.33+3.37 | 56.53+0.43
SMvPB-2 57.28+0.01 | 52.76 £1.15 | 50.51 +1.64 | 59.69 + 0.07

algorithms under the 60% training setting.
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PAC-Bayes Bound Synthetic Handwritten Ads Course
PB-1 54.644+0.77 | 37.52+£1.42 | 28.97+1.51 | 56.21 +0.18
PB-2 54.59 £0.04 | 28.47+£2.07 | 30.28+1.83 | 51.28 +£2.97
PB-3 54.214+0.08 | 26.50 +2.15 | 29.74 £3.42 | 52.00 4+ 0.85

MvPB-1 54.654+0.05 | 30.25+£0.86 | 29.69£0.84 | 55.77+1.09
MvPB-2 54.63+0.05 | 30.19+£0.86 | 29.67£0.84 | 55.38 +£0.50
MvPB-3 56.414+0.00 | 49.51+£0.52 | 48.12+0.94 | 58.55+0.07
MvPB-4 56.324+0.01 | 49.43+£0.54 | 48.09+£0.92 | 58.44 4+ 0.07
MvPB-5 54.36 £0.05 | 32.39+£0.88 | 31.44+0.98 | 56.224+0.41
MvPB-6 26.89 £2.05 | 31.524+3.33 | 46.31 £1.50 | 59.23 £0.18
SMvPB-1 54.41£0.03 | 30.15+0.79 | 30.55+2.28 | 55.24+0.43
SMvPB-2 56.324+0.01 | 49.43+£0.46 | 48.77+£1.38 | 58.44 4+ 0.06

Table 10: Average PAC-Bayes bounds (%) and standard deviations for different learning
algorithms under the 80% training setting.

the view agreement as a key measure to modulate the prior distributions of classifiers. As
extensions of PAC-Bayes analysis to the multi-view learning scenario, the proposed theo-
retical results are promising to fill the gap between the developments in theory and practice
of multi-view learning, and are also possible to serve as the underpinnings to explain the
effectiveness of multi-view learning. We have validated the theoretical superiority of multi-
view learning in the ideal case of synthetic data, though this is not so evident for real world
data which may not well meet our assumptions on the priors for multi-view learning.

The usefulness of the proposed bounds has been shown. Although often the current
bounds are not the tightest, they indeed open the possibility of applying PAC-Bayes analysis
to multi-view learning. We think the set of bounds could be further tightened in the future
by adopting other techniques. It is also possible to study algorithms whose co-regularization
term pushes towards the minimization of the multi-view PAC-Bayes bounds. In addition,
we may use the work in this paper to motivate PAC-Bayes analysis for other learning tasks
such as multi-task learning and domain adaptation, since these tasks are closely related to
the current multi-view learning.
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Appendix A. Proof of Theorem

Define

1/d

G (51)

o2

f(il,...,im):%Z‘IJr
=1
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Since the rank of matrix %;%, /o2 is 1 with the nonzero eigenvalue being ||%;/|?/0? and the
determinant of a positive semi-definite matrix is equal to the product of its eigenvalues, it

follows that

Su~p _ |f(i17 s 7im) - f(ilv s 7)_(7375&75-‘1-17 s 7im)|
X1y Xm,, Xq
:iHI 5225'(: 1/d_‘ +>‘<i>‘<iT 1/d‘
m o2 o2
1

< E( V(R/o)2+1-1).

By McDiarmid’s inequality (Shawe-Taylor and Cristianini, |2004), we have for all € > 0,

R e e (===

Setting the right hand size equal to 1 — %, we have with probability at least 1 — g,

EHI+%‘1M] > F& e Fn) — (& (R/J)2—|—1—1)\/%ln%,

22T
—ln‘I—l—%‘ < —dln [f(il,...,im)—(d (R/o)Z+1-1) %m% L,

and

where to reach (54) we have used (I2]) and defined [-]+ = max(-,0).
Denote H,, = = 3" [% %, + p?(w'%;)?). It is clear that

E[H,) = E {% SRR+ ;ﬁ(wTii)?]} — B[R+t (w R,
1=1

Recall R = supyg ||X||. By McDiarmid’s inequality, we have for all € > 0,

—2me?

Setting the right hand size equal to 1 — %, we have with probability at least 1 — g,

1.3
E[H,,] < H,, + (1 + p?)R?>\/ —1In =.
[Hp) < +(1+p )R 5 05

In addition, from Lemma [I we have

n (L
KLQIP) + 1 >> S 1

Prg.pm <VQ(C) : KL (Eqgs||Eqgp) <

(52)

(53)

(54)

(58)

According to the union bound (Pr(A or B or C) < Pr(A) + Pr(B) + Pr(C)), the
probability that at least one of the inequalities in (B4]), (57)) and (58] fails is no larger than
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d/3+40/3+ /3 = 4. Hence, the probability that all of the three inequalities hold is no less
than 1 — §. That is, with probability at least 1 — § over S ~ D" the following inequality

holds

Vw,u: KLy (Eqsl|Eqp) <

1 2R2 2 m
—gln [fm—(d (R/o)2+1-1) %IH%L_—F%Z—Fi( +2i2) \/ﬁln%—k%—kln(%)

m

where fp, is a shorthand for f(Xi,...,X;,), and ||w| = 1.

Appendix B. Proof of Theorem

Now the KL divergence between the posterior and prior becomes

Define

~'~T
XiX;

X
o2

F&i,. o &) = %i (%[ijii—kuQ(wTif] —1n(1+ ) (59)
=1

Recall R = supg [|X||. Since the rank of matrix X;%, /o2 is 1 with the nonzero eigenvalue
being ||%X;/|? /0% and the determinant of a positive semi-definite matrix is equal to the product

of its eigenvalues, it follows that

_ Su~p |f(i17 s 7im) - f(ilv s 7)_(7375&75-‘1-17 s 7Xm)|
X1, Xm,Xg

1 1 2 2 2
< = <%+ln(l+%)>.
m g g

By McDiarmid’s inequality, we have for all € > 0,
1 _+. - ol ~ —2me?
P{E<§[XTX+/~L2(WTX)2]_IH‘I_‘_?D Sf—|—€} >1—exp (T) R (60)

where f is short for f(X1,...,%,), and A = (Hifﬁ +1In(1 + %2) Setting the right hand
size of ([60) equal to 1 — g, we have with probability at least 1 — g,

T U
E(%[iTi—kuz(wTif]—ln‘I—F?D Sf—l—A\/ﬁln%. (61)
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Meanwhile, from Lemma [Il we have

KL(QI[P) +In (25))

m

Prg.pm (vcxc) . KL.(Eqs|Eqp) < ) >1-5/2. (62

According to the union bound, we can complete the proof for the dimensionality-
independent PAC-Bayes bound.

Appendix C. Proof of Theorem [7|

It is clear that from R = supg [|X||, we have sup, [[x|| = R and supy ) [lyx[ = R.
From (B4), it follows that with probability at least 1 — %,

%%
) < - G0t ],

—ln‘I—F

With reference to a bounding result on estimating the center of mass (Shawe-Taylor and Cristianini,
2004), it follows that with probability at least 1 — /4 the following inequality holds

- R 4
|wp — Wp| < T <2+ 2In 5) . (64)

Denote H,, = LS &% — 2nuoyi(wTx) + p?(w %)%, It is clear that
B[] = &% — 2npo’y(w'x) + 1 (w'%)?]. (65)

By McDiarmid’s inequality, we have for all € > 0,

) A —2me?
< >1- '
P {E[Hm] < Hyp + 6} 21 —exp ((R2 + dnpo?R + u232)2> 00

Setting the right hand size equal to 1 — %, we have with probability at least 1 — g,

- N 1
E[H,,] < Hp, + (R? + ®R? + 4nuo®R)y/ =—In

o (67)

ST

In addition, according to Lemma [II, we have

KL(Q|IP) +In (25)

m

Prs.pm <VQ(C)  KL+(Bosl|Fgp) < ) >1-5/4 (68)

Therefore, from the union bound, we get the result.
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Appendix D. Proof of Theorem
Applying ([I3) to (24]), we obtain

1 xx"| 1 ) )
KL(Q(u)[|P(u)) < —§Eln (I T |t §(||77Wp — Wyl + 0w, — pwl| + ) +

| 2 T 9 Tova] | W
WE[X X — 2npoy(w' x) + pu*(w x)}—i-?

1 ~ A 2
= §(||77Wp — Wl + |nWp — pwl| + p)° +

1E [iTi —2nuoly(w'x) + p?(w'x xx !

)2 XX N2
e B
n L+ o2 + 5

o2

2

Following |Shawe-Taylor and Cristianini (2004), we have with probability at least 1—4/3

W, — g\/—Rm (2—1—\/2111%). (69)

Denote ﬁm _ % Zz,ll[i;rii—277ua2yi(";;x/i)+u2(waq)2 Cn ‘I I ifgr ] It is clear that
=Tz 2 T 2o T2)2 ST

~ X' X —2nuoty(w'x) + W' X XX
E[f,,] = E| nro”y( 2 )+ ui(w %) —1n(1+—2]. (70)

o o

By McDiarmid’s inequality, we have for all € > 0,
- . —2me?
< >1-— .

P{E[Hm] = Hm+€} = 1 exp <(R2+477UC;22R+N2R2 —|—ln(1—|— %))2> (71)

Setting the right hand size equal to 1 — %, we have with probability at least 1 — g,

~ ~ R? 4 4npo®R + 12 R? R? 1 3
< 5 -~ P
E[H,) < Hp + ( +1In(1+ = A/ 5 In 5 (72)

o2

In addition, from Lemma [I we have

KL(Q|IP) + In (25)

m

Prspm <vcz<c> . KL, (Eqs||Eqp) < ) >1-46/3.  (13)

By applying the union bound, we complete the proof.

Appendix E. Proof of Theorem

We already have sup, ||x|| = R and SUP(x ) lyx|| = R from the definition R = supg ||X]|.
Following |Shawe-Taylor and Cristianini (2004), we have with probability at least 1—4/3

- R 3
|wp — W, || < T <2+ 2In 5) . (74)
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Denote Sy, = = Y- [—nuy;(w'x;)]. It is clear that

E[Si] = —nuE [y(wx)] (75)
By McDiarmid’s inequality, we have for all € > 0,
PA{E[S,] < S+ ¢} > 1—exp (ﬂi) . (76)
(2nuR)
Setting the right hand size equal to 1 — §, we have with probability at least 1 — ,

_ _ 2. 3
< — —.
E[Sy] < Spm + nuRy/ - In 5 (77)

In addition, from Lemma [I we have

P) + 1n (2L
Prspm <vc2<c>:KL+<EQ,sHEQ,D>s @l )m+ (‘5/3))21—5/3. (78)

After applying the union bound, the proof is completed.

Appendix F. Dual Optimization Derivation for MvSVMs

To optimize ([@T), here we derive the Lagrange dual function.

Let A}, A5, vi,v5 > 0 be the Lagrange multipliers associated with the inequality con-
straints of problem (7). The Lagrangian L(a, o, &1, &2, A1, A2, v1,V5) can be written
as

n

L= F() — Z [)\Zl (y,(z a{kl(xj,xi)) -1+ fi) +
i=1 j=1
N (i3 ok, 0)) — 1+ €3) +wie + vigh].
j=1
To obtain the Lagrangian dual function, L has to be minimized with respect to the

primal variables a1, ag, &1, &2. To eliminate these variables, we compute the corresponding
partial derivatives and set them to 0, obtaining the following conditions

(Kl + QCgKlKl)al — 20 K1 Koy = Ay, (79)
(K2 + 202K2K2)a2 — 20 KoK = Ag, (80)
Zi + Vi =, (81)
by =0, (82)

where we have defined
Al Z )‘lyz

Ay = Z NoyikKa(:, 1),

i=1
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with K (:,7) and Ka(:,4) being the ith columns of the corresponding Gram matrices.
Substituting (T9)~(82) into L results in the following expression of the Lagrangian dual
function g(A1, Ao, 1, 10)

g= %(alTKlal + Ot;—Kgag) + Cg(alTKlKlal — 2a1TK1K2a2 +
a;KgKgcQ) — alTAl — agTAz + 2”:( Z1 + )\12)
i=1
:lalAlJr aQAQ—alAl—aQAﬁZ 1+A9)
i=1
—LaTh - TaThe+ 3000 + M), (83

i=1
Define

Kl =K1 +205,K1 K4, Kl = 205K 1Ko,
KQ = Ko +205K5K5, Kg =205K5K;.

Then, ([79) and (80) become
fﬁal — Kiay = Ay, (84)
Kooy — Kooy = As. (85)
From (84]) and (85l), we have
(K1 — K1 Ky ' Ky)ag = K Ky 'Ag + Ay
(Ko — KoK K)o = KoK Ay + As.
Define M; £ K, — I_QKQ_lKQ and My 2 Ky — ngl_ll_fl. It follows that
o1 = M[? [K1K51A2 + Al], (36)
ay = M, {KgfqlAl + Ag]. (87)

Now with a; and a9 substituted into (83]), the Lagrange dual function g(A1, A2, v1,12)
is
. 1 -
= inf L=-—--aA aA—l— —I—)\’
g a1,02,€1,€2 21 e 202 Z
1 ~ ~ LN ~
= —§A1TM1—1 KKy Ay + Al] - §A;M2_1 {KQKl‘lAl + Ag} +) (N + D).
i=1

The Lagrange dual problem is given by

max
A1,A2 g



As Lagrange dual functions are concave, we can formulate the Lagrange dual problem
as a convex optimization problem
min —
A1, A2 g
{ogAi <Ci, i=1,...,n
s.t.

0< N, <y, i=1,...,n. (89)

Define matrix Y = diag(y1,...,yn). Then, A; = K1Y Ay and Ay = K93Y Xy with A\ =
(AL s AT and A = (AL, ..., AB)T. Tt is clear that K and Ko are symmetric matrices,

and K7 = KQT . Therefore, it follows that matrices M7 and My are also symmetric.
We have

1 T o~ 1 17 e - i i
—g= 5AITM1 ! {KlK2 "Ag + Al] + §A2TM2 N AL+ AQ] - Z()‘l +A2)
i=1

| o
- §{>\1T VKM R YA + A [YE M R R VK Y A +

A Y KoMy Fp KT G Y I 4+ A [VIGME KoY P b= 17 (A + Ao)
T

Lo/ A BY(A) (A

(i 2)E) (2

A2YK M{'K\Y, B2YK M 'KIK;'KyY, D2YKyM;'KyY, (90)

where

1o, = (1,..., 1(2n))T, and we have used the fact that

YK M K K KoY = YR My 'K KK YT (91)

. . . A BY. . .
Because of the convexity of function —g, we affirm that matrix < BT D) is positive semidef-
inite.
Hence, the optimization problem in (89]) can be rewritten as

;
1.+ 1. A B\[/ )\ AL
w5000 5) () - () =

0= A1 = 0117
s foZnzen (52

After solving this problem, we can then obtain classifier parameters oy and oo using

([B6)) and (87)), which are finally used by ({46]).

Appendix G. Dual Optimization Derivation for SMvSVMs

To optimize (B0), we first derive the Lagrange dual function following the same line of
optimization derivations for MvSVMs. Although here some of the derivations are similar
to those for MvSVMs, for completeness we include them.
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Let ¢, é,yi,yé > 0 be the Lagrange multipliers associated with the inequality con-
straints of problem (B0)). The Lagrangian L(ov, g, &1, &2, A1, A2, V1, 12) can be formulated
as

n n+u )

L=F— Z [/\21 (yz(z ok (g, i) — 1+ é’i) +
i=1 j=1
n+u

Xy (1Y ekl i) — 1+ 6 ) +vigh +148)).
j=1

To obtain the Lagrangian dual function, L will be minimized with respect to the pri-
mal variables oy, as, €1, &2. To eliminate these variables, setting the corresponding partial
derivatives to 0 results in the following conditions

(K1 + 205 K1 K1)y — 205 K1 Kooy = Ay, (93)
(K + 202K Kp) oy — 202K Ky = Ao, (94)
1 + V1 Ch, (95)
L+ vh = Oy, (96)

where we have defined

A2 N K (5,4),
=1

A2 - Z )‘2yz

with K (:,7) and K»(:,4) being the ith columns of the corresponding Gram matrices.
Substituting (@3)~(@6]) into L results in the Lagrangian dual function g(A1, A2, v1,12)

1
g= §(QIK10£1 + a;—Kgag) + Cg(aIKlKlal — ZQIKlKQOQ +

a;—KgKgag) — alTAl — Oy A2 + Z )\Z + )\Z)
=1

1 1 - i i
= §a1 TAL+ a2 g Ay — 1TA1 - OézTAz + E_l( 1+ A3)
1 Z i
= —§a1 Al a2 A2 + + )\ (97)

Define

Kl =K1 +205,K1 K4, Kl = 205K 1Ko,
KQ = Ko +205K5K5, Kg =205K5K;.

Then, ([@3) and ([@4) become

Kioq — Kiop = Ay, (98)
Kgag — Kgal = Ag. (99)
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From (@8)) and (@9]), we have
(K — K1 Ky ' Ky)og = K1 Ky P Ag + Ay
(Ky — Ko K7 K)o = Ko KA + Ag.
Define M £ K, — f(lffz_lf(g and My £ Ky — f(gf(l_lf(l. It is clear that
oy = M[? [K1K51A2 + Al], (100)
= My [Ko K ' Ar + ). (101)

With a; and ay substituted into ([@7), the Lagrange dual function g(A1, Ag, v, vs) is
then

1 1 LN )
= inf L=—-a]A —-ogAs+ AT+ A8
g ay,a2,£1,82 21 ! 2 2 2 ZZ:;( ! 2)
Lt i 1 Lt —i[m i1 i
— A MK A+ A - 5ATM; [RRT A+ K| + DD+ ).
i=1
The Lagrange dual problem is given by

A Y
0< N <0y, i=1,...,n
8.8 {ogAggcl, i=1,...,n. (102)

As Lagrange dual functions are concave, below we formulate the Lagrange dual problem
as a convex optimization problem

A Y
0< N <0y, i=1,...,n
5.8 {ogAgg(Jl, i=1,...,n. (103)

Define matrix Y 2 diag(yy,...,yn). Then, Ay = K,1YA; and Ay = KoY Ay with
Kni = Ki(:,1:n), Kpg = Ko(5,1:n), Ay = (A, ., AP) T, and Ag = (AL, ..., \5) T, Tt is clear
that K 1 and K'g are symmetric matrices, and K; = KQT . Therefore, it follows that matrices
M7 and My are also symimetric.

We have

1 T o~ 1 1z e - i i
—g=5ATM; BT As + | + A3 My HERT AL+ 8] = 304 + X))
i=1

1 .
= 5{AI[YKLMl—lKMY]Al + A YKL MUK K K e Y A +

A Y KMy Ko KT Ko YIAG + A3 [V K Mg KoY o | =17 (A + A)
T
1o A BY(AY) (A
=3 A )<BT D> <A2> N <>\2 Lon,
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where
AL2YK M'K,.Y, BAYK M 'K\K;'K,2Y, D2YKLM;'K,5Y, (104)
1o, =(1,..., 1(2n))T, and we have used the fact that

YKL M K Ky K Y = YK My 'Ky KT K YT (105)

. . . A BY. . .
Because of the convexity of function —g, we affirm that matrix < BT D> is positive semidef-
inite.

Hence, the optimization problem in (I03]) can be rewritten as

)
Lo A BY (A (A
w5000 (57 5) () - () 2=

{OjAleﬂ,
S.t.

0= Ay < Cy1. (106)

After solving this problem, we can then obtain classifier parameters o and o using

(I00) and (I0I), which are finally used by {@9).
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