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Abstract

In this paper we propose an algorithm to solve group decision making problems

using n-dimensional fuzzy sets, namely, sets in which the membership degree of

each element to the set is given by an increasing tuple of n elements. The use

of these sets has naturally led us to define admissible orders for n-dimensional

fuzzy sets, to present a construction method for those orders and to study OWA

operators for aggregating the tuples used to represent the membership degrees

of the elements. In these conditions, we present an algorithm and apply it to

a case study, in which we show that the exploitation phase which appears in

many decision making methods can be omitted by just considering linear orders

between tuples.

Keywords: fuzzy multisets, n-dimensional fuzzy sets, OWA operator,

decision-making

1. Introduction

A multiple criteria group decision making problem consists in choosing a

solution Ai out of a set of p (p ≥ 2) alternatives according to the evaluations,

Email addresses: laura.demiguel@unavarra.es (L. De Miguel),
mikel.sesma@unavarra.es (M. Sesma-Sara), mikel.elkano@unavarra.es (M. Elkano),
asiain@unavarra.es (M. Asiain), bustince@unavarra.es (H. Bustince)

Preprint submitted to Information Fusion January 19, 2017

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



given by n decision makers ek (k ∈ {1, . . . , n}), to each alternative with respect

to q criteria. Thus, we have that:5

1. The evaluations for the alternative Ai (1 ≤ i ≤ p) with respect to the

criterion C1 are given by the tuple (de1i1 , d
e2
i1 , . . . , d

en
i1 ), where deki1 ∈ [0, 1]

represents the evaluation of the decision maker ek for the alternative Ai

(1 ≤ i ≤ p) with respect to the criterion C1.

2. The evaluations for the alternative Ai (1 ≤ i ≤ p) with respect to the10

criterion C2 are given by the tuple (de1i2 , d
e2
i2 , . . . , d

en
i2 ), where deki2 ∈ [0, 1]

represents the evaluation of the decision maker ek for the alternative Ai

(1 ≤ i ≤ p) with respect to the criterion C2.

3. We proceed analogously for every criteria.

In this manner, we can represent the problem using multisets (see [1, 2]),

i.e., sets of this form:

D = {Dij = (de1ij , d
e2
ij , . . . , d

en
ij ) | i ∈ {1, . . . , p}, j ∈ {1, . . . , q}},

where each element is a tuple Dij of n elements consisting of the evaluations of15

the criteria.

The use of different generalizations of fuzzy sets is frequent to model the

uncertainty inherent in many decision making and consensus problems [3, 4,

5, 6, 7]. Moreover, in most of these problems, the order in which the decision

makers provide their evaluation does not have an impact in the election of the20

solution. Bearing that in mind, for our problem we can consider a particular case

of multisets, the so-called n-dimensional fuzzy sets [8], where the membership

of each element is given by a tuple of n numbers in [0, 1] increasingly ordered.

When solving decision making problems, a numerical value is usually as-

sociated to each alternative and the solution is taken as the alternative with25

the greatest value [9, 10, 11, 12, 13, 14, 15]. However, in the cases where the

resolution uses interval-valued fuzzy sets or Atanassov’s intuitionistic fuzzy sets

[16, 17, 18], each alternative is associated to an interval or to a pair of numbers,

respectively. In these cases, we are compelled to use linear orders for intervals
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or pairs of numbers (see [19, 20]), so that the solution is given by the greatest30

interval or pair of numbers. Since, in the selected context, n-tuples are used,

we need to define a linear order to compare n-tuples.

With all previous considerations, our objectives for this work are:

1. To present the concept of admissible order for n-dimensional fuzzy sets.

2. To give a construction method for admissible orders using aggregation35

functions [21, 22, 23].

3. To extend to n-dimensional fuzzy sets the concept of OWA operators

(which are always associated to a linear order).

4. To design a decision making algorithm using n-dimensional fuzzy sets and

n-tuple OWA operators.40

5. To justify our theoretical developments with an illustrative example ap-

plying the proposed algorithm.

Some of the most widely used methods for solving multiple criteria decision

making problems consist of two phases [9, 10, 12, 13]: the aggregation phase

and the exploitation phase. In these methods, each decision maker represents45

his/her evaluations by means of preference relations (matrices) whose inputs are

the dijvalues. So we have as many preference relations as decision makers.

In the aggregation phase, an aggregation function is chosen in order to ag-

gregate the n preference relations (matrices) to produce a single matrix: the

collective matrix. This collective matrix has as many rows as alternatives and50

as many columns as considered criteria. In the exploitation phase, an aggre-

gation function is also selected for aggregating the elements of the collective

matrix row by row to get one single number for each row. In the final step of

the exploitation phase, we get as many numbers as alternatives and we take as

solution the alternative associated to the greatest of these numbers.55

One advantage of the method that we propose in this work is that we may

omit the exploitation phase. This is due to the fact that the aggregation of

the collective matrix produces a tuple for each alternative, so it is enough to

order these tuples in a decreasing way according to a linear order so that we can
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choose as solution the first ranked tuple, i.e., the greatest tuple with respect to60

the linear order.

The possibility of omitting the exploitation phase is very relevant due to the

fact that we do not need to reduce the elements of each row of the collective ma-

trix to a single value and, hence, we do not modify the original data provided by

the decision makers. This means that our results are obtained more straightfor-65

wardly from the evaluations of the decision makers than in those methods where

the two phases are considered. These considerations are further developed in

the last section, devoted to the application of our algorithm.

The structure of the work is as follows: in Section 2 we recall some prelimi-

nary notions about admissible orders and the extensions of fuzzy sets. In Section70

3 we study the theoretical concepts that are required for the development of our

model. Firstly, we generalize the concept of admissible order for n-dimensional

fuzzy sets and present a construction method. Secondly, we introduce the con-

cept of MOWA operator, studying its monotonicity with respect to a certain

admissible order. An algorithm for decision making problems that makes use75

of all previous concepts is presented in Section 4, while in Section 5, we apply

this algorithm in an illustrative example in the context of a multiple criteria

group decision making problem. We finish in Section 6 with some conclusions

and directions for future research.

2. Preliminaries80

We first introduce some theoretical notions in order to fix the notation for the

subsequent sections. Let On be the set of increasing n-tuples on [0, 1], namely,

the set

On = {x = (x1, . . . , xn) ∈ [0, 1]n | x1 ≤ x2 ≤ . . . ≤ xn}.

We recall that there is a natural partial order � on On ⊆ Rn given by

(x1, . . . , xn) � (y1, . . . , yn) if and only if xi ≤ yi, 1 ≤ i ≤ n. In this way,

(On,�) is a complete lattice and (0, . . . , 0) and (1, . . . , 1) are the bottom and

top elements of the partial order, respectively.
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Fuzzy multisets are a generalization of fuzzy sets which were defined in [2]85

by Yager. Like many other generalizations, the aim of these sets lies on the for-

malization of a representation to deal with imprecision, inexactness, ambiguity,

or uncertainty intrinsic to many problems. In particular, in the case of fuzzy

multisets, a fixed number n of membership values is assigned to each element.

Taking into account that in a group decision making problem we have as many90

evaluations as decision makers, fuzzy multisets are suitable models for these

problems. In the case of fuzzy multisets, the different membership values are

considered as a set, not as an n-tuple, since they are not necessarily ordered. If

the values of the membership degree of each element are ordered in an increasing

way, fuzzy multisets are called n-dimensional fuzzy sets.95

Definition 1. [8] Let U be a nonempty set usually called a universe. A n-

dimensional fuzzy set A over U is given by

A : U 7→ On

where A(u) denotes the membership degree of the element u ∈ U to A.

Note that usual fuzzy sets are a specific example of a n-dimensional fuzzy

set with n = 1. Analogously, interval-valued fuzzy sets [24] can be seen as an

example of 2-dimensional fuzzy sets.

Given an element u ∈ U , we denote the n-dimensional membership tuple of100

the element u to the n-dimensional fuzzy set A by A(u) ∈ On. Moreover, it

is worth mentioning that we recover fuzzy multisets when [0, 1]n is considered

instead of On.

In this work, due to the selected context, anonymity is a key point in the

implemented algorithm. We consider a multiple criteria group decision making105

problem where each decision maker gives a evaluation about each alternative

with respect to each criterion in terms of a fuzzy membership degree. We

select a context where all the decision makers’ evaluations are valued equally,

independently of their identity. In this way, the n decision maker’s values are

sorted producing a single n-dimensional fuzzy set.110
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As we have mentioned before, our construction method is underpinned in

aggregation functions. These functions, which play a crucial role in both applied

and theoretical fields, were originally defined in the unit interval [0, 1]. However,

they can be readily extended to any poset [25].

Definition 2. An aggregation function M is a mapping M : [0, 1]n → [0, 1]115

satisfying

• M(0, . . . , 0) = 0, M(1, . . . , 1) = 1, and

• for all n-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi ≤ yi, for all

1 ≤ i ≤ n then M(x1, . . . , xn) ≤M(y1, . . . , yn).

The aim of this study is to generalize the concept of OWA operators to deal120

with n-dimensional fuzzy sets. Let us first recall their definition in [0, 1].

Definition 3. [26] Let w be a weighting vector, i.e., w = (w1, . . . , wm) ∈ [0, 1]m

such that w1 + . . .+wm = 1. The Ordered Weighted Averaging (OWA) operator

associated to w is a mapping OWAw : [0, 1]m −→ [0, 1] given by

OWAw(x1, . . . , xm) =

m∑
i=1

wix(i) ,

where x(i), denotes the i-th greatest component of the vector (x1, . . . , xm).

Note that although aggregation functions can be defined on a strict partially

ordered set, OWA operators require all the elements to be comparable, i.e.,

OWA operators require a linear order to be properly defined. Nevertheless,125

recent studies in the literature have proposed definitions for these operators in

more general lattices [27].

3. Admissible orders and OWA operators on fuzzy multisets

The notion of admissible order was first introduced in [16] for interval-valued

fuzzy sets and later on in [28] for interval-valued Atanassov’s intuitionistic fuzzy130

sets. In this section, we first generalize the notion of admissible order to the
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setting of n-dimensional fuzzy sets showing some particular examples. We also

provide a construction method for these orders which makes use of appropriate

aggregation functions on On.

We start defining admissible orders on On.135

Definition 4. A linear order ≤L on On is called admissible if for all x,y ∈ On

satisfying xi ≤ yi for all 1 ≤ i ≤ n then x ≤L y.

Example 1.

• As a first example of admissible order on On for every n ≥ 1 we consider

the first lexicographical order (with respect to the first variable), x ≤L y140

if the i-th component of x is strictly less than the i-th component of y

(i ∈ {1, . . . , n}), whereas xj = yj for every j < i.

• For n = 2 the Xu and Yager order ([29]) is defined by

(x1, x2) ≤ (y1, y2) if and only if
x1 + x2

2
<
y1 + y2

2
or(

x1 + x2
2

=
y1 + y2

2
and x2 − x1 < y2 − y1

)
We are interested in those admissible orders which can be obtained by means

of appropriate aggregation functions. In particular, we consider the following

result.145

Definition 5. Let M = (M1, . . . ,Mn) be a sequence of n aggregation functions

Mi : [0, 1]n → [0, 1]. Given x,y ∈ On,

• x <M y if and only if there exists k with 1 ≤ k ≤ n such that Mj(x) =

Mj(y) for all 1 ≤ j ≤ k − 1 and Mk(x) < Mk(y).

• x ≤M y if and only if x <M y or x = y.150

Proposition 1. Let M = (M1, . . . ,Mn) be a sequence of n aggregation func-

tions Mi : [0, 1]n → [0, 1]. The order relation x ≤M y is an admissible order on

On if and only if the functions Mi satisfy

(Mi(x) = Mi(y), for all 1 ≤ i ≤ n)⇔ x = y. (1)
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Proof. It is a straightforward calculation.

Example 2. The lexicographic orders can be constructed as before from the n155

projections given by πi(x1, . . . , xn) = xi.

For example, the first lexicographical order is generated taking Mi = πi. But

observe that, if we consider any permutation σ : {1, . . . , n} → {1, . . . , n} and

we take Mi = πσ(i), then we get different examples of lexicographic orders which

are different from each other.160

In order to get examples of admissible orders on On we consider aggregation

functions which are defined in terms of linear expressions, and, more specifically,

in terms of weighted arithmetic means.

Proposition 2. Let M = (M1, . . . ,Mn) be a sequence of n aggregation functions

given by165

Mi(x1, . . . , xn) = αi1x1 + αi2x2 + . . .+ αinxn , 1 ≤ i ≤ n , (2)

such that αi1 +αi2 + . . .+αin = 1 with αij ∈ [0, 1] for all 1 ≤ j ≤ n. The order

≤M is an admissible order on On if and only if the n× n matrix A given by

A =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
...

. . .
...

αn1 α2n . . . αnn


is regular.

Proof. Notice that Eq. (1) can be rewritten as A(x−y) = 0 if and only if x = y,

which is equivalent to A being regular.

Example 3. Let ≤M be the order generated by the following functions Mi:

• M1(x1, . . . x5) = 1
10x1 + 1

5x2 + 1
5x3 + 1

4x4 + 1
4x5,170

• M2(x1, . . . x5) = 3
10x1 + 1

5x2 + 1
2x5,

• M3(x1, . . . x5) = 3
5x1 + 1

10x2 + 1
10x3 + 1

10x4 + 1
10x5,
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• M4(x1, . . . x5) = 1
5x2 + 3

10x3 + 3
10x4 + 1

5x5,

• M5(x1, . . . x5) = 1
4x1 + 1

4x2 + 1
4x4 + 1

4x5 .

It is a simple calculation to see that the matrix A generated by the coefficients175

of the aggregation function is a regular matrix. Hence, the order relation ≤M

is an admissible order and we can compare, for instance, x = (0.2, 0.4, 0.9, 1, 1)

and y = (0, 0.6, 0.8, 1, 1). In fact, y <M x since M1(y) = 0.78 = M1(x) and

M2(y) = 0.62 < 0.64 = M2(x).

Once we have introduced the concept of admissible orders on On, we can de-180

fine OWA operators on this set. Firstly, we generalize the concept of aggregation

function on On.

Definition 6. Let ≤L be an admissible order on On. An aggregation function

M on On, is a mapping M : (On)m → On satisfying

• M(0, . . . ,0) = 0, M(1, . . . ,1) = 1, and185

• for all (x1, . . . ,xm), (y1, . . . ,ym) ∈ (On)m such that x1 ≤L y1, . . .,

xm ≤L ym then M(x1, . . . ,xm) ≤L M(y1, . . . ,ym).

Definition 7. Let w be a weighting vector and let ≤L be an admissible order.

The OWA operator associated to w and ≤L is a mapping (On)m 7→ On defined

by

MOWA[w,≤L](x1, . . . ,xm) =

m∑
i=1

wix(i)

where x(i) denotes the i-th greatest n-dimensional fuzzy value of the inputs

(x1 . . . ,xm) with respect to the order ≤L on On and wix = (wix1, . . . , wixn).

Example 4.190

• If we take w = (1, 0, . . . , 0), then we recover the maximum operator.

• If we take w = (0, 0, . . . , 0, 1), then we recover the minimum operator.

Notice that the MOWA operator is well defined, namely, the image of m

elements in On is a new element in On due to the increasingness of the weighted

arithmetic mean.195
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In the usual fuzzy setting, OWA operators play a crucial role since their

monotonicity enables to classify OWA operators as a particular class of ag-

gregation functions. In the following, we study the monotonicity of MOWA

operators with respect to an order generated as in Prop. 2.

Theorem 1. Let w = (w1, . . . , wm) be a weighting vector such that wi > 0 for200

all 1 ≤ i ≤ m and let ≤M be an admissible order on On generated as in Prop. 2.

Then the MOWA operator is an increasing function.

Proof. Let us show that if xi ≤M x′i then MOWA[w,≤M](x1, . . . ,xi, . . . ,xm) ≤

MOWA[w,≤M](x1, . . . ,x
′
i, . . . ,xm). It holds trivially if xi = x′i so we only need

to prove the case xi <M x′i.205

If xi <M x′i then there is an index 1 ≤ j ≤ n such that

Mk(xi) = Mk(x′i) for all k ≤ j − 1 and Mj(xi) < Mj(x
′
i). (3)

Notice that if j = 1 the condition is reduced to M1(xi) < M1(x′i).

Moreover, due to the fact that the functions which generate the order ≤M

are weighted arithmetic means, it holds that

Mk(MOWA[w,≤M](x1, . . . ,x
′
i, . . . ,xm)) =

m∑
h=1

whMk(x(h)) .

Without loss of generality, we suppose the n-dimensional fuzzy values are or-

dered in a decreasing way, i.e., x1 ≥M x2 ≥M . . . ≥M xm.

We distinguish two different cases:210

• If the n-dimensional fuzzy value x′i has not altered the order of the n-

dimensional fuzzy values, namely, xi−1 ≥M x′i ≥M xi+1, then it holds

that

Mk(MOWA[w,≤M](x1, . . . ,xi, . . .xm))−Mk(MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm))

=

m∑
h=1

whMk(xh)−

wiMk(x′i) +
∑
h6=i

whMk(xh)


= wi (Mk(xi)−Mk(x′i)) ,
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which, due to the Eq. (3), equals to 0 for all 1 ≤ k ≤ j−1 and is less than

0 for the index j. Hence,

MOWA[w,≤M](x1, . . . ,xi, . . .xm) < MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm) .

• If the n-dimensional fuzzy value x′i has altered the order of the n-dimensional

fuzzy values in l positions, namely, xi−l−1 ≥M x′i ≥M xi−l ≥M . . . ≥M

xi−1 ≥M xi ≥M xi+1 for some l ≥ 1, we find that

Mk(MOWA[w,≤M](x1, . . . ,xi, . . .xm))−Mk(MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm))

=

m∑
h=1

whMk(xh)−

wi−lMk(x′i) +

i∑
h=i−l+1

whMk(xh−1) +
∑

h≤i−l−1
or

h≥i+1

whMk(xh)


= wi−l (Mk(xi−l)−Mk(x′i)) +

i∑
h=i−l+1

wh (Mk(xh)−Mk(xh−1)) .

(4)

Further, since the n-dimensional fuzzy values are ordered in a decreasing

way, it follows that M1(x′i) ≥ M1(xi−l) ≥ M1(xi−l+1) . . . ≥ M1(xi−1) ≥215

M1(xi). Moreover, due to Eq. (3), it holds that M1(xi) = M1(x′i) and,

hence, M1(x′i) = M1(xi−l) = M1(xi−l+1) = . . . = M1(xi−1) = M1(xi).

Iteratively,

Mk(x′i) = Mk(xi−l) = Mk(xi−l+1) =

. . . = Mk(xi−1) = Mk(xi) for all 1 ≤ k ≤ j − 1. (5)

Besides,

Mj(x
′
i) ≥Mj(xi−l+1) ≥ . . . ≥Mj(xi−1) ≥Mj(xi) (6)

where at least one of the inequalities is strict since, by Eq. (3), it holds

that Mj(x
′
i) > Mj(xi).220
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Using Eqs. (5) and (6) in Eq. (4), we find that

Mk(MOWA[w,≤M](x1, . . . ,xi, . . .xm)) = Mk(MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm))

for all 1 ≤ k ≤ j − 1, and

Mj(MOWA[w,≤M](x1, . . . ,xi, . . .xm)) < Mj(MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm)).

Hence, MOWA[w,≤M](x1, . . . ,xi, . . .xm) < MOWA[w,≤M](x1, . . . ,x
′
i, . . .xm).

Notice that since MOWA[w,≤M](0, . . . ,0) =
∑m
i=1 wi0 = 0 and

MOWA[w,≤M](1, . . . ,1) =
∑m
i=1 wi1 = 1, MOWA operators are aggregation

functions with respect to the order ≤M generated as in Prop. 2.225

4. An algorithm for group decision making using MOWA operators

Multiple criteria group decision making consists in choosing an alternative

out of a given set A = {A1, . . . , Ap} (p ≥ 2) according to the evaluations

given by a group of decision makers E = {e1, . . . , en} (n ≥ 2) with respect

to some criteria C = {C1, . . . , Cq} (q ≥ 2). Thus, we can generate a matrix230

D = (Dij)p×q of memberships of fuzzy multisets, where Dij denotes the n-tuple

of evaluations of the decision makers about alternative Ai under the criterion

Cj .

Once the order and the weighting vector are set, the following algorithm,

which is schematically represented in Figure 1, can be applied. Notice that235

this procedure maintains all the evaluations provided by the decision makers,

as in [30].

Step 1. To generate the matrix D whose elements Dij are n-dimensional fuzzy

values; this step consists in generating an ordered tuple with the n evalu-

ations of the decision makers.240
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Figure 1: Schematic representation of Algorithm 1

Step 2. To generate an order ≤M, selecting a sequence of (M1, . . . ,Mn) of aggre-

gation functions that satisfy the conditions in Prop. 2.

Step 3. To select the weighting vector w of q components; one for each criterion.

Step 4. To apply the MOWA operator to each row of the matrix D using the

order ≤M in Step 2 and the weighting vector w in Step 3.245

Step 5. To select as the best alternative the greatest n-dimensional fuzzy value

with respect to the order in Step 2.

Remark. The transformation of fuzzy multisets into n-dimensional fuzzy

values ensures anonymity. In this manner, it does not matter which decision

maker has provided each value of the fuzzy multiset and all of them are treated250

equally.

The output of Algorithm 1 can differ greatly depending upon Steps 2 and 3.

The parameters with influence in such steps (that is, the aggregation functions

used for the linear order and the weighing vector) become very relevant for the

result of the algorithm; hence, their setting ought to be adapted depending on255

the specific problem.

It is worth mentioning that, in real scenarios, the assignment of non homoge-

neous weights to decision makers is rather common, and is simply done in order
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to weight their level of expertise or simply their relevance in the decision making

process. In Algorithm 1, this cannot be directly done, as long as the weights260

are applied to the data according to their sorting, not to the relevance of the

expert that provided them. For example, in a scenario in which experts tend

to be optimistic, it seems appropriate to select weighing vectors empowering

the lowest ranked elements, i.e., the first elements of the tuple. That is, using

weighting vectors with decreasing values, so that the highest ranked (hence,265

more optimistic) evaluations receive less influence in the final decision.

5. Illustrative example

Ye et al. introduced in [31] a multiple criteria group decision making problem

adapted from [13]. In this section, we show that Algorithm 1 is also a suitable

option to solve that problem.270

The practical example consists in determining the best company for invest-

ment. Four possible companies are considered: a car company A1, a food com-

pany A2, a computer company A3 and an arm company A4. Three decision

makers are asked about their opinions with respect to three criteria: the risk

analysis C1, the growth analysis C2 and the environmental impact analysis C3.275

We take the same weighting vector as in [31], namely, w = (0.35, 0.25, 0.4).

The main difference between our approach and Ye’s [31] lies on the use

of a different generalization of fuzzy sets. While in [31] dual hesitant fuzzy

sets are considered, in our framework we make use of 3-dimensional fuzzy sets.

The former have both membership and nonmembership degrees and the latter280

only membership degrees, so, for the practical example, we only consider the

values of the membership degrees from [31]. Another difference is that dual

hesitant fuzzy sets do not permit repeated membership values. Therefore, if

some decision makers’ evaluations coincide, the value is taken into account only

once. Nevertheless, in our method the value can be repeated as many times as285

decision makers coincide.
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We generate the decision makers’ evaluations accordingly to the data in [31]:

e1 e2 e3
0.5 0.4 0.2

0.4 0.7 0.6

0.4 0.5 0.6

0.7 0.6 0.3




0.4 0.6 0.1

0.6 0.6 0.7

0.6 0.5 0.5

0.6 0.6 0.4




0.3 0.4 0.3

0.7 0.7 0.4

0.3 0.6 0.6

0.8 0.7 0.3


We apply our method, described in Algorithm 1, to solve the problem.

Step 1. We generate the matrix D where the elements are 3-dimensional fuzzy

values, namely, increasing 3-tuples:

D =


{0.3, 0.4, 0.5} {0.4, 0.4, 0.6} {0.1, 0.2, 0.3}

{0.4, 0.6, 0.7} {0.6, 0.7, 0.7} {0.4, 0.6, 0.7}

{0.3, 0.4, 0.6} {0.5, 0.5, 0.6} {0.5, 0.6, 0.6}

{0.6, 0.7, 0.8} {0.6, 0.6, 0.7} {0.3, 0.3, 0.4}

 .

Step 2. The order ≤M considered is generated by

• M1(x1, x2, x3) = 1
3x1 + 1

3x2 + 1
3x3;

• M2(x1, x2, x3) = 1
2x1 + 1

2x2;290

• M3(x1, x2, x3) = 1
4x1 + 1

2x2 + 1
4x3;

which satisfy the conditions of Prop. 2.

Step 3. The selected weighting vector is w = (0.35, 0.25, 0.4) (as in [31]).

Step 4. We apply the MOWA operator associated to ≤M and w whose result is


Company 1 −→ {0.255, 0.32, 0.455}

Company 2 −→ {0.47, 0.635, 0.7}

Company 3 −→ {0.42, 0.495, 0.6}

Company 4 −→ {0.48, 0.515, 0.615}


Step 5. We order the alternatives with respect to the selected order ≤M:295
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Company 2 ≥M Company 4 ≥M Company 3 ≥M Company 1 .

We select Company 2, which means that the best company to invest in is

the car company.

Notice that, since the developed illustrative example is introduced in [31], we

have a fixed weighting vector. We have no extra information about the problem300

and, hence, we set the aggregation functions (which generate the linear order

of Step 2) arbitrarily. In some others studies, such as in [19, 28], a comparison

between the different solutions using some different orders is made. However,

since our sole intention is to show the validity of our proposal, we have only

shown the results corresponding to one order.305

The best alternative according to Algorithm 1 coincides with best alternative

in [31]. However, the treatment of the data is different. Let us highlight the

main advantages of the proposed algorithm.

On the one hand, using n-dimensional fuzzy sets the anonymity between the

decision makers is assured. Values are the only relevant information, without310

taking into account the identities of the decision makers. Moreover, if some de-

cision makers coincide in their evaluations, we are able to consider the repeated

values avoiding the loss of information that some other systems suffer from. Be-

sides, n-dimensional fuzzy sets do not need the duality membership/non mem-

bership degree and consequently, our algorithm derives the same result using315

less information.

On the other hand, most of the works that consider generalizations of fuzzy

sets make use of partial orders. In this direction, novel studies are trying to

generate linear orders in most of the generalizations of fuzzy sets, but they

require a study of the monotonicity with respect to the considered linear order.320

A first study about OWA operators in n-dimensional fuzzy sets as well as the

study of their monotonicity with respect to certain admissible orders is found

as a theoretical base for the proposed algorithm.

Finally, we solve the problem with the standard aggregation and exploitation

phases in order to show that the solutions coincide.325
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Aggregation phase: we take the OWA operator with weighting vector w =

(0.35, 0.25, 0.4) as in [31].

C =


0.395 0.47 0.195

0.55 0.66 0.55

0.43 0.535 0.56

0.695 0.635 0.333


Exploitation phase: we take the OWA operator with weighting vector w =

(0.35, 0.25, 0.4) as in [31].
Company 1 −→ 0.341

Company 2 −→ 0.589

Company 3 −→ 0.502

Company 4 −→ 0.533


Consequently, Company 2 ≥ Company 4 ≥ Company 3 ≥ Company 1 .

It is clear that with our method, we actually do not need to carry the ex-

ploitation phase out so we need to modify the original data less than in the

method which consists of both phases.

6. Conclusions330

In order to resemble the behavior of membership degrees of fuzzy sets, novel

studies generating linear orders for the generalization of fuzzy sets have been

presented. However, the linearity of the orders compel us to revise the concept

of aggregation functions studying their monotonicity.

In this direction, this work introduces the concept of admissible order for335

n-dimensional fuzzy sets as well as a construction method for these orders. It is

worth mentioning that if the considered membership values are not ordered, the

generalizations are also suitable for fuzzy multisets without noteworthy effort.

We also introduce some operators for n-dimensional fuzzy sets, denoted by

MOWA, which resemble OWA operators on fuzzy sets. Moreover, we prove that340
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they are increasing functions with respect to a particular class of admissible

orders generated by weighted arithmetic means.

Finally, we present an algorithm for multiple criteria group decision making

problem using n-dimensional fuzzy sets so that the election of the solution is

made by taking the alternative associated to the greatest tuple with respect to345

the considered admissible order. In order to construct the solution tuple we use

the previously introduced OWA operators. Another advantage of our proposal

is that it allows to omit the exploitation phase in decision making problems, so

the procedure to solve these problems becomes simpler.

For future work, linear orders modify the concept of increasingness in ag-350

gregation functions and, hence, a theoretical effort must be done to define and

generalize this notion in the different generalizations of fuzzy sets.
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