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On building ensembles of stacked denoising auto-
encoding classifiers and their further improvement

Ricardo F. Alvear-Sandoval ∗, Aníbal R. Figueiras-Vidal
GAMMA-L+/DTSC, Universidad Carlos III de Madrid, Spain

a b s t r a c t

To aggregate diverse learners and to train deep architectures are the two principal avenues towards in- creasing the expressive capabilities of

neural networks. Therefore, their combinations merit attention. I n this contribution, we study how to apply some conventional diversity 
methods –bagging and label switching– to a general deep machine, the stacked denoising auto-encoding classifier, in order to solve a number 
of appropriately selected image recognition problems. The main conclusion of our work is that binarizing multi-class problems is the key to 
obtain benefit from those diversity methods.

Additionally, we check that adding other kinds of performance improvement procedures, such as pre- emphasizing training samples and 
elastic distortion mechanisms, further increases the quality of the re- sults. In particular, an appropriate combination of all the above methods

leads us to reach a new absolute record in classifying MNIST handwritten digits.

These facts reveal that there are clear opportunities for designing more powerful classifiers by means of combining different improvement

techniques.

Keywords: Augmentation; Classification; Deep; Diversity; Learning; Pre-emphasis
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. Introduction

The number of available training samples limits the expressive

apability of traditional one-hidden layer perceptrons, or shallow

ulti-Layer Perceptrons (MLPs), for practical applications, in spite

f their theoretically unbounded approximation capacities [1,2] .

onsequently, a lot of attention is being paid to architecture and

arameterization procedures that allow to improve their perfor-

ance when solving practical problems. The most relevant proce-

ures increase the number of the trainable weights following two

ain avenues: Building ensembles of learning machines, or con-

tructing Deep Neural Networks (DNNs). 

Most of the advances in DNN design correspond to the last

ecade. In fact, prior to 2006 the only successfully used DNNs were

he Convolutional Neural Network (CNN) classifiers [3] , whose sig-

ificantly simplified structure makes possible their training by

eans of conventional algorithms such as Back Propagation (BP).

his architecture is appropriate for some kinds of applications,

hose in which the samples show translation-invariant character-

stics, for example, image processing. But direct training of gen-

ral form DNNs remained without solution because the appearance

f vanishing or exploding derivatives [4,5] . In 2006 Hinton et al.

6] proposed a deep classifier indirect design that involved the
∗ Corresponding author.
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D  
tacking of Reduced Boltzmann Machines (RBMs) [7] . A top layer

ask-oriented training and overall refining complete these classi-

ers, that have come to be called Deep Belief Machines (DBMs).

ontrastive divergence algorithms allow for the training of the

BMs without a huge computational effort [8] . 

Some years later, Vincent et al. [9] introduced a similar pro-

edure consisting of an expansive, denoising auto-encoder layer-

ise training plus the final top classification and refining. These

re the Stacked Denoising Auto-Encoder (SDAE) classifiers. It is

orth mentioning that both DBMs and SDAEs are representation

achines [10] , i.e., their hidden layers provide more and more so-

histicated high-level feature representations of the input vectors.

hese representations can be useful for analysis purposes [11] , and,

ven more, the representation process induces a disentangling of

he sub-spaces in which the samples appear [12] . On the other

and, another sequentially trainable deep architecture, the Deep

tacking Networks (DSNs), was introduced in [13,14] , following the

dea of training shallow MLPs and adding their outputs to the in-

ut vector for training further units. Finally, a number of modifi-

ations that reduce the difficulties with the derivatives have been

roposed for training directly DNNs, such as data conscious initial-

zations [15] , Hessian-free search [16] , mini-batch iterations [17] ,

on-sigmoidal activations [18] , and adding scale and location train-

ble parameters [19] . 

There are also proofs of universal approximation capabilities for

NNs [20,21] , as well as of some interesting characteristics of them
1
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[22] . The analyses in [23,24] show that by adding layers to a net-

work, it is possible to reduce the effort to establish input-output

correspondences. In practice, DNNs have offered excellent perfor-

mance results in many applications, therefore, one can conclude

they are important in spite of the large number of parameters that

need to be learned. There is not room here to give more details, so,

the interested reader is referred to excellent tutorials [4,5,25] for

more extensive reviews and bibliography, as well as to [26] for a

bibliography of applications. 

Ensembles are the second option to effectively increase the ex-

pressive capability of learning machines, including MLPs. They are

built by means of training learners that consider the problem to

be solved from different perspectives, i.e., under a principle of di-

versity, and aggregating their outputs to obtain an improved solu-

tion. We present a very concise overview of ensembles, emphasiz-

ing just the design methods that we will use in our experiments,

in Section 2 , for the sake of continuity in this Introduction. 

Since both diversity and depth increase the expressive power of

MLPs but through very different mechanisms, it seems reasonable

to expect that a combination of them would lead to an even bet-

ter performance. However, there are a moderate number of contri-

butions along this research direction. We will briefly revise them

in Section 4 , but we anticipate that some difficulties appear when

trying to apply the usual ensemble building methods to multi-class

problems, and, consequently, most of the DNN ensembles are con-

structed by means of “ad hoc” procedures. 

In this paper, we explore and discuss in detail how and why di-

versification can be applied to DNNs, as well as if including other

improvement techniques gives additional advantage. The objective

is to evaluate if it is possible to get significant advantages by com-

bining diversification and deep learning, as well as other tech-

niques. 

Of course, we have to select both DNN architectures and clas-

sification problems for our experiments and subsequent analysis.

Although most of the previous studies with the databases we will

use have considered CNNs, we have decided to work with a less

specific architecture to exclude the possibility of obtaining conclu-

sions only valid for this particular form of DNN and the kind of

problems that are appropriate for it. So, we select SDAE classifiers,

and in particular the SDAE-3 design that is introduced in [9] . How-

ever, at the same time and just to show the potential of combin-

ing diversity and depth, we will address some traditional image

classification tasks –also included in [9] ,– that are more appropri-

ate for CNN architectures. The selected problems for our experi-

ments will be the well-known 10-class handwritten digit MNIST

database [3] , its version with a smaller training set MNIST-BASIC

[9] , in order to analyze the relevance of the weak or strong char-

acter of the SDAE-3 classifiers, and also the binary database RECT-

ANGLES [9] , with the objective of studying the origin of the diffi-

culties for creating ensembles of multi-class DNNs. We emphasize

that these selections are not arbitrary: There are many published

results for MNIST, for example in [27,28] , and clearly established

records for representation DNNs, a 0.86% error rate [10] , and for

CNN ensembles [29] , a 0.21% error rate. We anticipate from now

that, with the help of a boosting-type training reinforcement or

pre-emphasis, and a simple data augmentation besides of the bi-

narization and training diversification we will apply, we arrive to

a new absolute performance record, a 0.19% error rate. We repeat

that this record was not our objective, but we looked for a better

understanding of how to combine diversity and depth, and to avoid

conclusions only valid for particular situations –using CNNs for im-

age problems,– we select both SDAEs and the databases. Thus, in

our opinion, there is no reason to think that our conclusions are

problem- or architecture-dependent. 

The rest of the paper is structured as follows. In Section 2 , we

present brief overviews of machine ensembles, both general forms
nd those that come from binarizing multi-class problems. We

edicate Section 4 to list and comment previously published works

n designing DNN ensembles. Section 5 describes the additional

echniques –pre-emphasis and data augmentation– we will use

n the second part of our experiments. The experimental frame-

ork is detailed in Section 6 : Databases, deep learning units, di-

ersification and binarization techniques, and pre-emphasis and

ata augmentation forms. The results of the experiments appear

n Section 7 following a sequential order, plus the corresponding

iscussions. Finally, the main conclusions of this work and some

irections for further research close the paper. 

. Ensembles

To build an ensemble of diverse machines and aggregate their

utputs is a way to increase expressive power. Although the first

deas on it were published half a century ago [30] , they have been

ainly developed along the last two decades. In the following,

e briefly review some ensemble techniques, including those we

ill use to diversify SDAEs. We dedicate separate sub-sections to

esigns that introduce diversification by means of architecture or

raining differences, that we will call conventional ensembles, and

o ensembles that come from transforming a multi-class problem

n a number of binary classifications from which the resulting class

an be obtained. Since a complete review of ensembles is beyond

he scope of this paper, the reader is referred to monographs [31–

4] , as well as to tutorial article [35] , which includes interesting

erspectives on ensemble applications.

2.1. Conventional ensembles 

Conventional diversification methods may be broadly classified

nto two categories. The first are those approaches that indepen-

ently train a number of machines, usually with different train-

ng sets. These machines, or learners, can also have different struc-

ures. After it, learners’ outputs are aggregated –typically with sim-

le, non-trainable procedures– to come up with the final classifi-

ation. These ensembles are called committees. 

Among committees, Random Forests (RFs) [36] are very pop-

lar because they offer a remarkable performance. They diver-

ify a number of tree classifiers by means of probabilistic branch-

ng, which can be combined with sub-space projections. There are

ther committees that can be applied to general types of learn-

rs, requiring only that they are unstable: Bagging [37] and label

witching [38,39] . We will include both of them in our experi-

ents because they are simple to implement and provide high ex-

ressive power, clearly improving the performance of a single ma-

hine. Yet we announce that the first experimental results will lead

s to focus on the second. 

Bagging (“B ootstrap and agg regat ing ”) produces diversity by

raining the ensemble learners with bootstraping re-sampled ver-

ions of the original training set and, then, aggregating these learn-

rs’ outputs, usually by averaging them or with a majority vote.

ootstrap is a random sampling mechanism which includes re-

lacement to permit arbitrary sizes of the re-sampled population.

lthough its primitive form used bootstrapped sets of the same

ize as the true training set, to explore the size of these boot-

trapped sets is important to find a good balance between compu-

ational effort and number of learners and ensemble performance,

ecause in some cases the reduction of the true samples that each

earner sees can provoke losses. On the other hand, label switch-

ng changes the labels of a given portion of the training samples

ccording to some stochastic mechanism. We will employ the sim-

lest version, for which these changes appear purely at random.

he switching rate must be explored when designing these com-

ittees. 
2



 

s  

t  

i  

p  

I  

t  

l  

e  

i  

[  

t  

g  

i  

i  

e

 

r  

E  

D  

s  

[

n

 

g  

n  

c

2

 

m  

t  

t  

s  

o  

p  

m  

t

 

(  

O  

p  

e  

t  

w  

r  

s  

t  

s  

b  

t  

w  

d  

t

 

t  

O  

o  

n  

m  

t  

d  

n  

t  

b  

0  

c  

t  

H  

a  

o  

1  

e

 

s  

d  

T  

a  

d  

t

3

 

i  

t  

e  

r  

h  

i  

b  

g  

p  

i  

t  

S  

s  

h  

s  

p  

c

 

c  

a  

d  

T  

o  

t  

t

 

c

l  

s  

a  

d  

c  

f  

t  

o  

t  

o

 

v  

n  

D  

s  

q  

S  

s  

n  

d  
The second type of conventional ensembles, which we call con-

ortia, are algorithms that train both the learners and the aggrega-

ion in a related manner. The best known method in this category

s boosting, which has proven to provide excellent classification

erformances by combining the outputs of weak learners [40,41] .

ts principle is to sequentially design and aggregate weak learners

hat, at each stage, pay more attention to the examples that have

arger classification error according to the previously built partial

nsemble. Many extensions and generalizations of the basic boost-

ng algorithms have been proposed [34] . Among them, we mention

42,43] because they also consider the proximity to the classifica-

ion boundary of the training examples, and this idea is in the ori-

in of the formulas for the pre-emphasis techniques we will apply

n this paper, that will be introduced in Section 5 . But, since boost-

ng methods require weak learners, we do not include them in our

xperiments to diversify SDAE classifiers. 

Other consortia algorithms are those known as Negative Cor-

elation Learning (NCL) ensembles [44,45] and the Mixtures of

xperts (MoEs) [46] . Both of them could be applied to diversify

NNs, but their performance improvements are moderate for clas-

ification, and their many modifications to get more advantage

47,48] demand higher computational effort, which, in principle, is 

ot ideal when looking for methods to diversify DNNs. 

According to the above, we will adopt in our experiments bag-

ing and label switching as conventional diversification mecha-

isms, although we will also apply pre-emphasis forms that are

onceptually equivalent to generalized boosting weighting. 

.2. Ensembles of binary classifiers for multi-class problems 

A different type of ensemble is that formed by decomposing a

ulti-class problem into a number of binary problems [33] . Al-

hough of different origin and constructed in a different manner

hat conventional ensembles, binarization techniques are true en-

embles since they consist of a collection of binary machines, each

ne having a different function or task that is related to the overall

roblem of multi-class classification, and the outputs of the binary

achines are aggregated to produce a classification that is better

han any one machine used alone. 

There are two basic binarization techniques, One versus One

OvO) and One versus Rest (OvR) [49,50] . For a C -class problem,

vO is an ensemble of C(C − 1) / 2 binary classifiers that perform

air-wise classifications of one class C j versus another class C k for

ach j � = k . The class that has the most votes is then determined

o be the correct class. OvR is an ensemble of C binary classifiers

here each classifier makes a decision between one class and the

est. The advantages of OvR are that the number of learners is

maller (obviously, C ) –although it may be argued that this leads

o less diversity– and that each classifier sees all of the training

amples. However, its disadvantage is that the learner data sets

ecome imbalanced and this fact tends to produce a decrease in

he performance of individual classifiers and, consequently, of the

hole ensemble. Although this can be alleviated by using carefully

esigned re-balancing mechanisms, we decide to use OvO to avoid

he corresponding risks. 

Another approach to the binarization of a multi-class problem

hat is more effective than OvO and OvR are the Error Correcting

utput Codes (ECOCs) [51] . ECOCs are typically better than OvO

r OvR because a wrong decision requires a number of wrong bi-

ary classifications –see the details below,– and not just a wrong

ajority (OvO) or a wrong high output level (OvR). However, effec-

ive ECOC designs are very difficult for many class problems. More

etails can be found in [33] . An ECOC binarization associates a bi-

ary codeword to each class, and the resulting binary problems are

hose represented by the columns, each dichotomy being formed

y grouping the true classes according to their correspondence to
 or 1 bits. The overall classification is performed by finding the

lass whose codeword is the closest to the one that is produces by

he ensemble of classifiers. This implies that codewords with high

amming distances must be selected, and, consequently, there is

 clear compromise with the length of the codeword, i.e., the size

f the ECOC ensemble. In our experiments, we will use the 15-bit,

0-class ECOC which was introduced in [51] just for MNIST consid-

ring different characteristics of handwritten digits.

We must say that, when the number of classes is high, OvO

chemes become impractical, and ECOC ensembles are difficult to

esign. Monograph [33] provides some details about how to do it.

o consistently re-balance OvR dichotomies is a good alternative,

nd the same is useful for big ECOC ensembles. Since we do not

eal here with such a kind of problems, we do not further discuss

his subject. 

. A concise overview of previous approaches to diversify DNNs

The first CNN ensemble was presented in [52] , with different

mage sizing as the diversification technique. Simple data augmen-

ation mechanisms allowed a record performance for MNIST, an

xcellent 0.21% error rate, using again a CNN ensemble [29] . Di-

ect averaging of classification outputs obtained from consecutive

idden layers and/or of the top output at different training epochs

s proposed in [53] , with moderate advantages. In GoogLeNet [54] ,

agging is applied together with different weight initializations to

et a very deep and powerful CNN machine. In [55] , trainable sim-

le aggregation schemes are applied to CNN ensembles to further

mprove their performance. Optical flow obtained from consecu-

ive video frames is used in [56] to construct CNN ensembles.

imilarly, multiple triphone states are the source of diversity for

peech recognition purposes in [57] , using learners that include

idden Markov model units. The authors of [58] use spectral diver-

ity [59] to train some DNNs whose outputs are aggregated, while

artial training of learners with distorted data sets in the diversifi-

ation applied in [60] . 

From our point of view, the studies carried out in [61] are spe-

ially relevant. Their authors found that there are difficulties to

pply bagging to CNNs: In fact, average performances for several

atabases become worse than applying only random initializations.

hey also found that to diversify layers that are near to the final

utput is more effective, a fact that we also observed at the some

ime for SDAE-3 learners [62] . These were the starting points for

he research we present in this paper. 

We conclude this concise review mentioning two very recent

ontributions: Simultaneously training aggregation weights and 

earners for several DNN architectures, including CNNs [63] , and

electively combining CNNs that have been trained with powerful

ugmentation procedures [28] . Finally, let us clarify that we do not

iscuss here important methods such as drop-out [64] and drop-

onnect [65] because, although some researchers consider them as

orms of diversification, we firmly support that they are probabilis-

ic regularization methods (that subsequently produce some kind

f elementary diversification), since their main effect is to reduce

he possibility of overfitting by randomly limiting the active units

r weights at each learning algorithm step. 

An important conclusion can be extracted from the above re-

iew: To apply conventional diversification techniques to DNNs is

ot an easy task, and this seems to be the reason why most of the

NN ensembles are built using other diversification mechanisms,

uch as “ad hoc” image augmentation pre-processing, speech se-

uential features, or even partial training or manual selection.

ince our experience indicates that the case is similar to that of

hallow MLPs applied to multi-class problems, where binarization

ot only provides a direct advantage but it also makes conventional

iversification more effective, we oriented the first phase of our re-
3
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a

search to check if this is also true for DNNs, in particular, for SDAE

classifiers, that we selected by the reasons we indicated in the In-

troduction. After obtaining good results, we decided to continue by

adding other complementary procedure that also much improves

the classification performance of several kinds of shallow machines

(including shallow MLPs), pre-emphasis, under a general formula-

tion we will introduce in the next section. And, finally, given the

success that the application of data augmentation pre-processing

has demonstrated in many experiments, we added a simple form

of it –also described in Section 5 – to the combination of bina-

rization, conventional diversification, and pre-emphasis. The results

have been excellent, including, as announced above, a new abso-

lute record for the MNIST database, a 0.19% average error rate, in

spite of using a non-convolutional basic learner, the SDAE-3 classi-

fier. But we think that it is even more important to have checked

that binarization helps to effectively apply conventional diversi-

fication mechanisms, as well as to have experimentally demon-

strated that combining other techniques with them (namely pre-

emphasis and data augmentation) further increases the ensemble

performance. 

4. Pre-emphasis and data augmentation

4.1. The concept of pre-emphasis and our selected formulations for it 

Training sample selection techniques and their evolution, train-

ing sample weighting, called also pre-emphasis, are efficient and

effective methods to improve the performance of classification ma-

chines. Conceptually, they are mechanisms that indicate to the ma-

chine the degree of attention which must be paid to each sam-

ple, by means of weighting the corresponding training cost com-

ponent. If weights are restricted to {0, 1}, we have a sample se-

lection scheme, which was the form applied in the seminal work

of Hart with nearest neighbor classifiers fifty years ago [66] . Many

other forms have been subsequently proposed, among which [67–

70] include interesting alternatives and discussions. Pre-emphasis

methods have recently been used for selecting samples as kernel

centroids [71] and also for allowing a direct training of Gaussian

Process classifiers by defining an appropriate form of soft targets

[72] .

The weight that each sample receives has been related to its

classification error or to a measure of its proximity to the classi-

fication boundary, usually according to the output of an auxiliary

classifier. The effectiveness of both methods is problem-dependent

[73] . Therefore, the pre-emphasis forms that are applied today

include components of the two kinds. These combinations have

demonstrated their effectiveness for designing boosting ensembles

[42,43] .

In this paper, we will adopt the general forms of weighting

functions that we have previously applied just to pre-emphasize

SDAE-3 classifiers with excellent results [74,75] . For binary prob-

lems, the weight for the training cost of the sample { x ( n ) , t ( n ) },

 

(n ) ∈ {−1 , 1 } , is 
p(x (n ) ) = α + (1 − α)[ β(t (n ) − o (n ) a ) 2 + (1 − β)(1 − o (n )2 a )] (1)

where o (n ) a is the output of the auxiliary classifier when x ( n ) is its

input, and the parameters α, β , 0 ≤ α, β ≤ 1, serve to estab-

lish the appropriate proportion of no emphasis (the term α), error

emphasis (the term (1 − α) β(t (n ) − o (n ) a ) 2 ), and proximity empha-

sis (the term (1 − α)(1 − β)(1 − o (n )2 a ) ). In general, values for α,

β can be found by means of cross-validation processes. Note that

form (1) includes many particular cases: α = 0 , full emphasis with

the two components; β = 0 , moderated (by α) emphasis accord-

ing to the proximity to the boundary; β = 1 , moderated emphasis

according to the error; α = 0 and β = 0 , full emphasis according
o the proximity to the boundary; α = 0 and β = 1 , full empha-

is according to the error; and α = 1 , no emphasis at all. Obvi-

usly, there are other possible functional forms for the error and

he proximity to the boundary terms. The different forms are more

r less effective in a problem-dependent manner, but the perfor-

ance differences are always moderate. 

For the (softmax) multi-class machines we will use 

p(x (n ) ) = α + (1 − α)[ β(1 − o (n ) ac ) 
2 + (1 − β)(1 − | o (n ) ac − o (n ) 

ac ′ | )]
(2)

here o (n ) ac is the output of the auxiliary (softmax) machine cor-

esponding to the correct class c for x ( n ) , and o (n ) 
ac′ the output of

hat machine whose value is the nearest to o (n ) ac among the rest of

lasses. 

We remark that the application of pre-emphasis demands an

dditional computational effort in designing classifiers, due to the

eed of validation to find appropriate values for α, β . But there

s no increase in the operation –i.e., the classification of unseen

amples– computational effort, since the classifier architecture re-

ains the same. This was the reason which moved us to include

re-emphasis in a second step of experiments, after checking that

he results offered by binarization and conventional diversity were

atisfactory. 

.2. Data augmentation 

Data augmentation methods pre-process training examples to

reate new samples having similar characteristics to those of the

riginal ones. They allow to increase the number of training sam-

les by adding the augmented versions with labels corresponding

o the original samples from which they have been obtained. If

arefully selected and designed, these methods are effective in or-

er to increase the performance of classification machines. 

Data augmentation has been used along two decades [76] , and

ts forms have significantly evolved. We repeat that the MNIST

lassification absolute record was obtained by means of a CNN

nsemble with data augmentation as the diversification source

29] . There are several data augmentation mechanisms that have

hown effectiveness in improving the performance of image classi-

ers, such as random translations, random rotations, centering, and

lastic deformations. For concise reviews, we recommend [28,77] .

iven the advantage that data augmentation provides and that, as

or pre-emphasis, there is not an increase of the operation com-

utational effort, we also include a form of it, the most frequent

ersion of elastic deformation [78] , in the last step of our experi-

ents, after combining pre-emphasis and diversity. 

The basic aspects of the elastic deformation we will employ are

s follows. First, there is a pixel translation, whose horizontal and

ertical values are obtained by multiplying the elements of two

atrices of the image size with small random values by a scale

actor, �, which must be appropriately selected. Translations are

imited to the image borders, and values that arrive to the same

osition are averaged. After it, a normalized Gaussian filtering is

arried out with the objective of smoothing the results. The pa-

ameter σ of the filter must also be selected with care. Our se-

ection of �, σ , will be discussed in the section dedicated to the

xperiments. 

. Experimental framework

We concentrate here the general aspects of our experiments to

void disorienting the readers with a disperse presentation. 
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Fig. 1. SDAE-3 classifier (based on stacked denoising auto-encoders). x ( n ) : training

sample; r : training noise. The weights of the layers are consecutively obtained by

imposing the noisy-free input samples x ( n ) as targets, and then they are frozen until

inserting the final classifier, CL. o is the overall output.
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.1. Dataset 

As previously announced, we will work with a much studied,

elatively easy dataset of handwritten digits, MNIST [3] , both be-

ause there are many published results for different machine clas-

ifiers and because we want to see if the techniques we propose

n this paper produce enough improvements as to get competitive

esults with those of CNN designs when a general propose basic

eep networks, SDAE-3, is used. MNIST contains 50,0 0 0 / 10,0 0 0 /

0,0 0 0 training / validation / test samples, respectively, of dimen-

ion 784 (28 × 28) with 256-level quantized values normalized

nto [0,1]. 

It seems important to analyze the effect of the strongness of the

earners when building an ensemble. Fortunately, there is a ver-

ion of MNIST, MNIST-BASIC [9] (MNIST-B in the rest of this paper),

hose only difference with MNIST is that its training / validation /

est samples are 10,0 0 0 / 20 0 0 / 50,0 0 0, respectively. Less training

amples will imply weaker learners, and, since MNIST and MNIST-

 have the same nature, this will permit an excellent perspective

or the analysis we mention. 

Finally, we include also a binary database because it is very rel-

vant to appreciate the possible differences between multi-class

nd binary problems in our study. For reasons of similarity, we se-

ected RECTANGLES (RECT in the following), a database with the

utlines of white horizontal or vertical rectangles on a black back-

round of just 28 × 28 pixels. The sizes of the training / validation

 test sets are 10,0 0 0 / 20 0 0 / 50,0 0 0, respectively. 

.2. The basic deep machine: the SDAE-3 classifier 

Once again, we emphasize that we select a DNN without a con-

olutional structure because we want to check if the procedures

e are introducing are effective enough to lead to high perfor-

ance results using a general propose architecture, and CNNs can

e considered “ad hoc” architectures when dealing with images –

ur datasets in this work– and other translational inputs, such as

peech. Under that condition, there is no reason for expecting that

hings will be different, in general, for other kinds of problems and

NNs. 

We have selected the 3-layer Stacked Denoising Auto-Encoder

SDAE-3) classifier [9] both because it is a representation DNN and

ecause it has been applied to the databases we are working with.

onsequently, we can adopt the architecture and training parame-

ers of [9] for a better appreciation of the effects of our proposed

echniques. 

Fig. 1 shows the structure of an SDAE-3 classifier. It consist of

hree expansive auto-encoding layers with sigmoidal activations,

lus a final classification unit, CL, with a sigmoidal or a softmax

utput for binary or multi-class problems, respectively. The auto-

ncoding layers are sequentially trained using the input samples

 

( n ) as targets for noisy input vectors x (n ) + r . The denoising makes

ossible the expansive architecture, which increases the expres-

ive capacity, and also provides some degree of robustness. Each

uto-encoding hidden layer is frozen before training the next. Fi-

ally, the top classifier is trained and the auto-encoding weights

efined. 

The design parameters used in [9] were 10 0 0 units for the

uto-encoding layers, an 1,0 0 0-hidden layer MLP final classifier, a

ample-by-sample BP training with a 0.01 learning step for the first

uto-encoding layer and 0.02 for the rest and the top MLP and re-

ning, and 40 training epochs, that are enough for convergence.

e checked these values with positive results. However, our re-

ults were better with an added noise variance 10% the variance of

he samples, leading us to the classification results (for 10 differ-

nt initialization runs), % average error rates ± standard deviation,

f 1.58 ± 0.06, 3.42 ± 0.10, and 2.40 ± 0.10 for MNIST, MNIST-B,
nd RECT, respectively. These results are slightly worse than those

f [9] , but the standard deviations are lower. 

.3. Conventional diversification 

We use bagging and switching. The determination of the sizes

f the corresponding ensembles is done according to the best re-

ults for the validation set, using N = 25 , 51 , 101 , for the num-

er of ensemble learners. The same validation set serves to select

he bootstrapping size among B = 60 , 80 , 100 and 120% that of the

riginal train set, and the switching rate among S = 10 , 20 , 30 and

0% of the training samples. All committee’s units are initialized

ith uniformly distributed random values. 

.4. Binarization techniques 

According to the discussion of Section 2.2 , we will apply OvO

inarization and the 15 bit, 10-class ECOC which is proposed in

51] just for handwritten digits.

. Experimental results and their discussions

.1. First level experiments: binarization and conventional diversity 

We repeat that our preliminary experiments with multi-class

roblems MNIST and MNIST-B using only bagging or switching of

DAE-3 classifiers did not provide any performance improvement,

he same negative result that other studies obtained. Thus, we car-

ied out additional experiments including both binarization and

agging or switching. 

Two alternative approaches were considered. The first consists

f diversifying the SDAE-3 auto-encoding parts, that we will indi-
5



Fig. 2. The G model for multiclass problems. DAE3 n are deep expansive denoising

auto-encoders, BE n the binarizing ensembles, and FA the final aggregation (see text

for details). o is the overall output.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The TB model for multiclass problems (for bagging). DAE3 is a single expan- 

sive denoising deep auto-encoder, BE n the binarizing ensembles, and FA the final

aggregation (see text for details). o is the overall output.

Table 1

Part a: performance results (% average error rate ± typical deviation) for 

OvO binarization of multi-class problems. DAE3: single DAE with OvO bi- 

narization; GB: G model with bagging; TB: T model with bagging; TS: T

model with switching. Part b: performance results for the model T with

switching when replacing OvO by ECOC binarization. Validation selected

non-trainable parameter values are also indicated. Of course, RECT de- 

signs do not include binarization. Best results appear in boldface.

MNIST MNIST-B RECT

(no binarization)

SDAE-3 1.58 ± 0.06 3.42 ± 0.10 2.40 ± 0.13 

a

DAE3, OvO 1.40 ± 0.06 2.60 ± 0.08 −
GB, OvO 0.86 ± 0.01 1.76 ± 0.04 1.20 ± 0.04 

( N, B ) (101, 120) (101, 120) (101, 120)

TB, OvO 0.77 ± 0.00 1.68 ± 0.04 1.19 ± 0.01 

( N, B ) (101, 100) (101, 120) (101, 120)

TS, OvO 0.75 ± 0.00 1.67 ± 0.04 1.10 ± 0.02 

( N, S ) (101, 40) (101, 40) (101, 40)

b

TS, ECOC 0.36 ± 0.02 0.75 ± 0.01 –

( N, S ) (101, 30) (101, 30)
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cate as DAE3, and, after it, for multi-class problems, to construct

binarization ensembles with final classifiers for each DAE3 output.

Fig. 2 shows the corresponding model. The final aggregation, FA, is

a vote counting for each ensemble plus a majority vote if OvO is

applied, or a vote counting plus a Hamming distance class selec-

tion for ECOC binarization. Obviously, switching cannot be applied

to build DAE3 ensembles. We will call G (Global) model to this

form of constructing ensembles and binarizing. 

Fig. 3 represents the second alternative, which we call the T

model because its aspect: There is a unique DAE3, bagging or

switching are applied at its output, and then, OvO or ECOC binariz-

ing ensembles of final classifiers are trained with the diverse train-

ing sets. This model is suggested by the experiences indicating that

diversification at higher layers is more effective, such as those pre-

sented in [61] . The final aggregation is identical to that of the G

model. 

As we announced in Section 5.3 , the values of the non-trainable

parameters are selected according to the results for the valida-

tion sets among N = 25 , 51 , and 101 for the ensemble size, B =
60 , 80 , 100 , and 120% for the bootstrap training set sizes, and S =
10 , 20 , 30 , and 40% for the switching rates. No refining is carried

out when training. 

To reduce the huge computational load for the design of G

models, we apply a frequently used simplification: We build M >

N bagging units for each value of the bootstrap sample sizes, and

then take N at random. Our experience with this trick indicates

that the performance degradation (due to a loss in diversity) is

very moderate. 
.1.1. Results for OvO binarization and their discussion 

Part a of Table 1 shows the performance results for the G and T

rchitectures with N and B / S values selected by validation and for

 DAE3 plus an OvO binarization (without conventional diversifica-

ion). 

Before discussing these performance results, a few words about

he selected values for non-trainable parameters. In all the cases

ut one (model T with bagging), these selected values are the high-
6



Fig. 4. The average error rate for the validation and test sets versus N and S for the MNIST data set using the T model and OvO binarization.

e  

f  

t  

1  

T  

i  

s  

t  

i  

v  

p

 

c  

c  

l  

t  

c  

i  

p  

a  

t

 

p  

i  

c  

m  

t  

o  

a

 

c  

s  

S  

t  

n  

R  

e

6

 

m  

o  

e  

1

 

fi  

c  

d  

s

 

p  

S  

o  

d  

1  

b  

f  

c  

b  

S  

E  

s  

w  

t  

t  

a

6

 

p  

n  

a

6

 

t  

f  

a

 

r  

f  

b  

s  

A  

c  

i  

i  

b  

e  

c  

h  

fi

 

i  

t  

fi  

i

st among those explored. But analysis of the performance for dif-

erent pairs of values makes evident that there is a clear satura-

ion effect just appearing for these extreme values ( N = 101 , B =
20% , S = 40% ). This can be seen for the MNIST database in Fig. 4 .

herefore, the best is just to adopt these values, because increas-

ng them will only increase the computational load to classify un-

een samples, but not the performance. It must also be remarked

hat the parallelism between the performance surfaces for the val-

dation and the test sets is nearly perfect. This means that the

alidation process will provide good values for the non-trainable

arameters. 

From the performance results in Part a of Table 1 it can be con-

luded that bagging and switching diversification are effective if

ombined with binarization when dealing with multi-class prob-

ems (MNIST and MNIST-B), and that binarization by itself is not

he main reason for these improvements, because binarizing the

lassifiers of a simple DAE3 only provides modest performance

ncreases. Thus, it appears that conventional diversification with

owerful classifiers when dealing with multi-class problems is not

ble of improving the corresponding classification boundaries due

o the complexity of these boundaries. 

It is also evident that performance improvements are more im-

ortant for model T than for model G approaches. This seems to

ndicate that the auto-encoding layers of the SDAE-3 classifiers

arry out their disentangling function in an effective and efficient

anner. Consequently, model T designs must be preferred, because

heir computational design and operation costs are lower. On the

ther hand, there are not significant differences between bagging

nd switching model T results. 

To close this discussion, let us remark that the performance in-

reases in an important amount: The average error rates for the

witching model T cases are 47%, 49%, and 46% of those of single

DAE-3 classifiers for MNIST, MNIST-B, and RECT, respectively, and

ypical deviations become lower. Note that in this case there are

ot qualitative differences between the multi-class problems and

ECT, nor between MNIST and MNIST-B (‘strong’ and ‘weak’ learn-

rs). 

.1.2. Results for the ECOC binarization and their discussion 

According to the conclusions of the OvO binarization experi-

ents, we will restrict our ECOC design to model T forms and just

ne of the conventional diversification techniques, switching. The

xplored non-trainable parameter values are N = 21 , 51 , 101 , and

21, and S = 10 , 20 , 30 , and 40%. 

Part b of Table 1 shows the experimental results. Performance

gures are much better than those with OvO binarization, which

onfirms the advantage of well-designed ECOC binarization proce-

ures. An average error rate of 0.36% for MNIST is a very good re-

ult using non-convolutional deep machines. 
Of course, all these improvements do not come by free: Com-

utational costs are much more important than those of a single

DAE-3, both for training and for classifying unseen samples, or

peration. Considering the ECOC T case for the MNIST problem, a

irect count gives a total of around 1.5 × 10 9 weights and around

.5 × 10 6 sigmoids, that are approximately 4 × 10 2 times the num-

ers for a single SDAE-3 classifier. This is a reasonable estimate

or the operation computational load increase. And a detailed ac-

ounting of the operations per training step for the diversified and

inarized final classifier compared with those required for a single

DAE-3 gives a similar order of magnitude for the load increase:

ven considering that these classifiers will become trained in less

teps, this is also a large computational effort. But, as when dealing

ith shallow machines, this is the price to be paid to get advan-

age from binarization and conventional diversification. Obviously,

o justify their application, the problem to be solved has to show

 high overall misclassification cost. 

.2. Including pre-emphasis 

As an introduction, we will resume the results of applying only

re-emphasis to SDAE-3 classifiers [74,75] before adding this tech-

ique to binarization and conventional diversity. This will serve to

ppreciate if the combination is better than all of its components. 

.2.1. Pre-emphasizing SDAE-3 classifiers 

We adopt the same SDAE-3 classifier architecture and parame-

ers that above and we apply multi-class or binary pre-emphasis

ormulas (1), (2) . The parameters α, β , are explored in 0.1 steps

long the interval [0, 1]. 

With respect to the auxiliary classifiers, or guides, our expe-

ience working with shallow classifiers is that pre-emphasis ef-

ects are better when using better guides. This can be expected,

ecause better auxiliary classifiers provide better classification re-

ults, and, consequently, more appropriate pre-emphasis weights.

dditionally, pre-emphasis effects are also better if the guide ar-

hitecture is similar to that of the pre-emphasized machine. This

s also reasonable, because both classifiers are able of construct-

ng similar boundaries, and this fact implies that more benefit can

e obtained from the pre-emphasis process. However, we consid-

red appropriate to check if these findings can be extended to deep

lassifiers. So, we applied two kinds of auxiliary machines: One-

idden layer with 10 0 0 units MLPs, and the single SDAE-3 classi-

er without pre-emphasis. 

On the other hand, when pre-emphasizing SDAE-3 classifiers, it

s unclear if it will be better to apply the pre-emphasis to both

he auto-encoding layers and the final classification or only to the

nal classification step. We tried both alternatives, and here will

ndicate them as “initial” and “final” designs. 
7



Table 2

Test error rate in percent plus or minus the standard deviation for the three

databases using pre-emphasized SDAE-3 classifiers. The values for α, β obtained

by validation are given in parentheses. A star ( ∗) indicates suboptimal results (see 

the text for a discussion). Best results appear in boldface.

Pre-emphasis Aux. classifier MNIST MNIST-B RECT

None (MLP) – 2.66 ± 0.10 4.44 ± 0.23 7.20 ± 0.15 

None (SDAE-3) – 1.58 ± 0.06 3.42 ± 0.10 2.40 ± 0.13 

Initial MLP 0.40 ± 0.04 ∗ 0.82 ± 0.01 0.92 ± 0.10 

(0.3, 0.6) (0.3, 0.5) (0.4, 0.4)

Initial SDAE-3 0.37 ± 0.01 ∗ 0.72 ± 0.01 0.87 ± 0.04 

(0.4, 0.5) (0.3, 0.5) (0.4, 0.3)

Final MLP 0.57 ± 0.00 0.91 ± 0.03 1.26 ± 0.04 

(0.4, 0.6) (0.3, 0.5) (0.6, 0.3)

Final SDAE-3 0.67 ± 0.05 ∗ 0.83 ± 0.02 1.31 ± 0.02 ∗

(0.4, 0.4) (0.3, 0.5) (0.4, 0.3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3

Performance results (% average error rate ± standard deviation) for the 

two ensembles that are trained with initial pre-emphasis. PrE T(ECOC) S

corresponds to the best ensemble of Section 6.1 , and PrE ECOC S corre- 

sponds to an ensemble whose first diversity is the ECOC binarization. The

validated values of α, β are also shown for the first design. Best results

appear in boldface.

MNIST MNIST-B RECT

(no binarization)

PrE T(ECOC)S 0.30 ± 0.01 0.62 ± 0.01 0.76 ± 0.02 

(α = 

0 . 2 , β = 0 . 4) 

(α = 

0 . 2 , β = 0 . 6) 

(α = 0 . 4 , β = 

0 . 3)

PrE ECOC S 0.26 ± 0.04 0.55 ± 0.04 −
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Table 2 shows the results of the corresponding experiments. 

It can be seen that any of the four pre-emphasis mechanisms

improves the performance of the conventional SDAE-3 classifiers,

but also that the initial pre-emphasis with the SDAE-3 classifier

guide is clearly the best option. This confirms our expectatives, and

also reveals that it is important to apply the pre-emphasis even to

the auto-encoding process. This result can be easily explained: A

better representation of the training samples that are more impor-

tant to define the classification boundaries produces performance

benefits. 

As in the diversification process, there appears a clear paral-

lelism between the performance surfaces vs. α, β , for the val-

idation and the test sets. However, these surfaces are not so

smooth, and this produces some sub-optimal results –other

pairs of α, β values would offer better test performance,– that

are indicated by asterisks. Differences are very minor, the most

relevant case being the design with the SDAE-3 classifier guide

and initial emphasis for MNIST: α = 0 . 3 , β = 0 . 5 would give a

0.36% average error rate with a (practically) zero standard devi-

ation. Clearly, a very minor change with respect to the validated

result. 

We can say that results are very good. In particular. 0.37, 0.72,

and 0.87% average error rates for MNIST, MNIST-B, and RECT, re-

spectively, with a single SDAE-3 classifier are excellent: It must

be considered that the operation computational load does not in-

crease, and that the design requires only 11 × 11 = 121 times that

of a conventional single SDAE-3 classifier, due to the validation of

α, β . Note that the above error rates are 0.23, 0.21, and 0.36% those

of the single SDAE-3 classifiers without pre-emphasis for MNIST,

MNIST-B, and RECT, respectively. The higher improvements for the

multi-class problems are easy to understand: Helping to find better

classification boundaries is more important when there are multi-

ple boundaries. 

Let us remark the critical importance of using general and flex-

ible enough weighting formulas such as (1) and (2) : All the val-

idation selected pairs have values of α, β far from 0 and 1, that

correspond to more limited emphasis forms. To show the degrada-

tion that limited weighting schemes produce, it must suffice to list

their performance for the MNIST dataset with an SDAE-3 classifier

guide and initial emphasis (% average error rates): 

• α = 1 (no emphasis): 1.58 (that of the conventional SDAE-3

classifier)
• α = 0 , β = 1 (full error emphasis): 0.85
• α = 0 , β = 0 (full proximity emphasis): 0.71
• α = 0 , β = 0 . 6 (full combined emphasis): 0.58
• α = 0 . 2 , β = 1 (moderated error emphasis): 0.77
• α = 0 . 2 , β = 0 (moderated proximity emphasis): 0.58
g

All the above performances are clearly worse than the average

rror rate which α = 0 . 4 , β = 0 . 5 offers, 0.37%. 

.2.2. Pre-emphasizing binarized and diversified SDAE-3 classifiers 

For the sake of brevity, we will present here the results of ap-

lying initial pre-emphasis with the conventional SDAE-3 classifier

uide only for the best ensembles of those presented in Section 6.1 ,

S with ECOC binarization (simply TS for RECT) –results for the

ther cases are worse,– and, in the cases of multi-class problems,

or an alternative which permits to apply a different pre-emphasis

or each ECOC binary problem: First, the ECOC is applied, and then

he DAE3 auto-encoders plus the final switching ensembles com-

lete each branch, and values of α, β are separately selected for

hose branches. The final aggregation is the same voting plus Ham-

ing distance based selection. We will also keep the non-trainable

arameters previously used, since there is not a significant sensi-

ivity with respect to them. We will indicate these pre-emphasized

nsembles as PrE T(ECOC)S and PrE ECOC-S, respectively. 

The experimental results appear in Table 3 . 

Comparing the first row of these results with those of the last

ow of Table 1 and the fourth row of Table 2 makes evident that

ombining pre-emphasis and diversity (including binarization for

ulti-class problems) produces significant improvements in perfor-

ance. And the results that appear in the last row of Table 3 indi-

ate that separate pre-emphasis is even more effective to increase

he classification performance. Obviously, separate pre-emphases

equire more design computational effort, because their α, β pa-

ameters must be independently selected by means of the corre-

ponding validation processes. However, the operation computa-

ional load for both pre-emphasized ensembles is of the same or-

er of magnitude, around 1.5 × 10 9 multiplications. 

Once more, we insist: Such a huge computational effort is the

rice to be paid to get the exceptional performances of these

nsembles of SDAE-3 classification machines in the image prob-

ems we consider in our experiments, that are, for the PrE ECOC-S

odel, 16% and 16% the error rates of a conventional single SDAE-3

lassifier for MNIST and MNIST-B, respectively. 

Although the above results are excellent –note that we get an

rror rate for MNIST which is only 1.24 times the absolute record,

hich was reached with a CNN ensemble [29] ,– the question of

hat are the limits of these kind of approaches with general pur-

ose, computationally expensive DNNs emerges. Direct attempts

f improving the performance, such as a second validation round

ith a finer grid of values for α, β are not the solution: A two

igit second round search for the PrE ECOC S ensemble leads to

only” 0.24 ± 0.08 and 0.52 ± 0.06 average error rates ± stan-

ard deviation for MNIST and MNIST-B, respectively. Yet the an-

wer is to check if other improvement mechanisms can be com-

ined with those we have already applied, as the success of adding

re-emphasis to binarization and conventional diversification sug-

ests. 
8



Table 4

% error average rate ± standard deviations for the 

PrE ECOC S ensemble when training samples are

augmented by using the Elastic Distortion (ED)

process described in the main text.

MNIST MNIST-B

ED PrE ECOC S 0.19 ± 0.01 0.50 ± 0.03 
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Fig. 5. Misclassified MNIST digits in a typical run of the ED PrE ECOC S design. k → 

l: true class → classification result. 
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In the next section, we will explore the additional application

f a data augmentation technique, elastic deformations. 

. Adding elastic deformations

Data augmentation has been a traditional complement of hand-

ritten digit classification algorithms [76] , leading to very good

erformances [28] , in particular when applied for building ensem-

les [29] . Therefore, to add it to the above designs is an interesting

ossibility. 

We presented an overview of the procedure we will apply here,

n elastic distortion [78] , in Section 4.2 . We work with diverse dis-

ortions, selecting five combinations of parameters that produce

isually acceptable results: { �, σ } = { 3 , 30 } , { 4 , 20 } , { 4 , 30 } , { 5 , 10 } ,
nd {5, 20}, where the scale parameter are applied to horizontal

nd vertical displacement matrices that are formed by [ −0 . 1 , 0 . 1]

niform random values. We explore the appropriate generation

ate (of distorted samples with respect to original examples)

mong 10 0, 20 0, 30 0, and 40 0% the number of training samples,

nding that 300% is good for most of the designs. Since we are in-

luding distorted random samples, we also explore the added noise

evel around the 10% value which was previously applied, selecting

% as the appropriate variance. 

Keeping the rest of the non-trainable parameters at their val-

es, except α, β , that are validated as before, we obtain the % er-

or rates ± standard deviations of Table 4 when adding the above

lastic distortions for training the PrE ECOC S designs. As before,

0 runs are considered. 

It can be seen that there are significant further performance

mprovements, and this supports the intuition that combining the

lastic distortion with the previously applied pre-emphasis plus bi-

arization and conventional diversification, is effective. We remark

hat the performance for MNIST is a new absolute record, supe-

ior to the performance of the CNN ensembles of [29] , even CNN

eing more adapted machines for the handwritten digit recogni-

ion task. These facts permit to conjecture that combining diversity

ith other improvement mechanisms having different natures will

ery likely provide performance advantages when working with

NNs. 

To appreciate the effectiveness of our record design, Fig. 5

hows the wrongly classified digits for a typical run. It is easy to

ee that these are difficult samples even for a human expert. 

Once again, a high increase of computational costs is the price

o be paid in order to obtain these important performance im-

rovements. In particular, the record design has an architecture

hat differs from the ECOC T considered in Section 6.1.2 only in

ncluding 15 SDAE-3, one for each ECOC binary problem. Since the

ultiplications and sigmoidal transformations in these SDAE-3 are

wo orders of magnitude lower than those of the conventionally

iversified final classifiers, we have again around 1.5 × 10 9 multi-

lications and 1.5 × 10 6 sigmoidal transformations for the opera-

ion computational cost. We remark that both pre-emphasis and

lastic deformations increase the design effort, but they do not

odify the size of the designed machine and, consequently, they

o not change the operation computational load. 
. Conclusions and further work

Applying a general-purpose representation basic DNN, the

DAE-3 classifier, to a selected numbers of datasets (MNIST, MNIST-

ASIC, and RECTANGLES) that are relatively simple but that we

hoose to allow appreciating the effects of their different charac-

eristics, we have found the following experimental facts: 

∗ Building diverse ensembles (by means of bagging and switch-

ing, in particular) is efficient to increase classification perfor-

mance, but multi-class problems require the simultaneous ap-

plication of binarization techniques, that, by themselves, only

produce modest advantages. 
∗ Conventional diversification is more effective when applied at

the last classification steps. 
∗ Applying pre-emphasis sample weighting is also effective, in

particular when the weighting formulas are general and flex-

ible. These general and flexible forms produce very important

performance improvements, without increasing the computa- 

tional load to classify unseen samples. 
∗ Combining pre-emphasis with binarization and conventional di-

versity further improves the performance results, in a very re-

markable manner when a different pre-emphasis is applied to

each binary problem in multi-class situations. 
∗ Adding to the above combination an elastic distortion process

to create appropriate additional training samples produces once

more an increased performance, by no means trivial: This way

has lead us to a new absolute record in classifying MNIST digits.
∗ All the above techniques are useful when they are combined, if

the appropriate forms are selected. 

Of course, much more work is necessary to check what is

he advantage that these methods and their combinations pro-

ide when addressing other classification problems and/or using

ther DNN classifiers, and we are actively working in this direc-

ion. We advise that CNN is a delicate architecture which opposes

erious difficulties to conventional methods of building ensembles,

ut, even if this approach is not successful, there are many ad-

itional possibilities that can be explored to improve its perfor-

ance –and that of other DNN,– and it is plausible that combin-

ng them will permit higher performance advantage, at least if the

ombined procedures have different character, i.e., different con-

eptual reason to produce performance improvements. And let us
9
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clarify that we are speaking non only of pre-emphasis or elastic

distortion, but also of other data augmentation techniques, more

elaborated methods of noisy learning (considering the problem to

be addressed), and regularization mechanisms, including drop-out

or drop-connect. 

Note 

In http://www.tsc.uc3m.es/ ∼ralvear/Software.htm,  the inter- 

ested reader can access the software blocks we have developed

for our experiments, as well as find links to other blocks we have

used. 
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