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Abstract

We consider a simple, yet widely studied, set-up in which a Fusion Center

(FC) is asked to make a binary decision about a sequence of system states by

relying on the possibly corrupted decisions provided by byzantine nodes, i.e.

nodes which deliberately alter the result of the local decision to induce an error

at the fusion center. When independent states are considered, the optimum

fusion rule over a batch of observations has already been derived, however its

complexity prevents its use in conjunction with large observation windows.

In this paper, we propose a near-optimal algorithm based on message pass-

ing that greatly reduces the computational burden of the optimum fusion rule.

In addition, the proposed algorithm retains very good performance also in the

case of dependent system states. By first focusing on the case of small observa-

tion windows, we use numerical simulations to show that the proposed scheme

introduces a negligible increase of the decision error probability compared to

the optimum fusion rule. We then analyse the performance of the new scheme

when the FC make its decision by relying on long observation windows. We do

so by considering both the case of independent and Markovian system states and

show that the obtained performance are superior to those obtained with prior

suboptimal schemes. As an additional result, we confirm the previous finding

that, in some cases, it is preferable for the byzantine nodes to minimise the mu-

tual information between the sequence system states and the reports submitted

to the FC, rather than always flipping the local decision.
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setting, Decision fusion in the presence of Byzantines, Message passing

algorithm, Factor graph.

1. Introduction

Decision fusion for distributed detection has received an increasing attention

for its importance in several applications, including wireless networks, cognitive

radio, multimedia forensics and many others. One of the most common scenarios

is the parallel distributed fusion model. According to this model, the n nodes

of a multi-sensor network gather information about a system and make a local

decision about the system status. Then the nodes send the local decisions to

a Fusion Center (FC), which is in charge of making a final decision about the

state of the system. [1]

In this paper, we focus on an adversarial version of the above problem, in

which a number of malicious nodes, often referred to as Byzantines [1], aims at

inducing a decision error at the FC [2]. This is a recurrent problem in many

situations wherein the nodes may make a profit from a decision error. As an

example, consider a cognitive radio system [3, 4, 5, 6] in which secondary users

cooperate in sensing the frequency spectrum to decide about its occupancy

and the possibility to use the available spectrum to transmit their own data.

While cooperation among secondary users allows to make a better decision, it

is possible that one or more users deliberately alter their measurements to let

the system think that the spectrum is busy, when in fact it is not, in order to

gain an exclusive opportunity to use the spectrum. Online reputation systems

offer another example [7]. Here a fusion center must make a final decision about

the reputation of an item like a good or a service by relying on user’s feedback.

Even in this case, it is possible that malevolent users provide a fake feedback to

alter the reputation of the item under inspection. Similar examples are found in

many other applications, including wireless sensor networks [2], [3], distributed

detection [8], [9], multimedia forensics [10] and adversarial signal processing [11].

In this paper we focus on a binary version of the fusion problem, wherein
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the system can assume only two states. Specifically, the nodes observe the

system over m time instants and make a local decision about the sequence of

system states. Local decisions are not error-free and hence they may be wrong

with a certain error probability. Honest nodes send their decision to the fusion

center, while byzantine nodes try to induce a decision error and hence flip the

local decision with probability Pmal before sending it to the FC. The fusion

center knows that some of the nodes are Byzantines with a certain probability

distribution, but it does not know their position.

1.1. Prior Work

In a simplified version of the problem, the FC makes its decision on the

status of the system at instant j by relying only on the corresponding reports,

and ignoring the node reports relative to different instants. In this case, and in

the absence of Byzantines, the Bayesian optimal fusion rule has been derived

in [12],[13] and it is known as Chair-Varshney rule. If local error probabilities

are symmetric and equal across the network, Chair-Varshney rule boils down to

simple majority-based decision. In the presence of Byzantines, Chair-Varshney

rule requires the knowledge of Byzantines’ positions along with the flipping

probability Pmal. Since this information is rarely available, the FC may resort

to a suboptimal fusion strategy.

In [8], by adopting a Neyman-Pearson setup and assuming that the byzantine

nodes know the true state of the system, the asymptotic performance obtain-

able by the FC are analysed as a function of the percentage of Byzantines in

the network. By formalising the attack problem as the minimisation of the

Kullback-Leibler distance between the reports received by the FC under the

two hypotheses, the blinding percentage, that is, the percentage of Byzantines

irremediably compromising the possibility of making a correct decision, is de-

termined.

In order to improve the estimation of the sequence of system states, the

FC can gather a number of reports provided by the nodes before making a

global decision (multiple observation fusion). In cooperative spectrum sensing,
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for instance, this corresponds to collectively decide about the white holes over a

time window, or, more realistically, at different frequency slots. The advantage

of deciding over a sequence of states rather than on each single state separately,

is that in such a way it is possible for the FC to understand which are the

byzantine nodes and discard the corresponding observations (such an operation

is usually referred to as Byzantine isolation). Such a scenario has also been

studied in [8], showing that - at least asymptotically - the blinding percentage

is always equal to 50%. In [14], the analysis of [8] is extended to a situation

in which the Byzantines do not know the true state of the system. Byzantine

isolation is achieved by counting the mismatches between the reports received

from each node and the global decision made by the FC. The performance of the

proposed scheme are evaluated in a cognitive-radio scenario for finite values of n.

In order to cope with the lack of knowledge about the strategy adopted by the

attacker, the decision fusion problem is casted into a game-theoretic formulation,

where each party makes the best choice without knowing the strategy adopted

by the other party.

A slightly different approach is adopted in [15]. By assuming that the FC is

able to derive the statistics of the reports submitted by honest nodes, Byzantine

isolation is carried out whenever the reports received from a node deviate from

the expected statistics. In this way, a correct decision can be made also when

the percentage of Byzantines exceeds 50%. The limit of the approach proposed

in [15], is that it does not work when the reports sent by the Byzantines have

the same statistics of those transmitted by the honest nodes. This is the case,

for instance, in a perfectly symmetric setup with equiprobable system states,

symmetric local error probabilities, and an attack strategy consisting of simple

decision flipping.

A soft isolation scheme is proposed in [16], where the reports from sus-

pect byzantine nodes are given a lower importance rather being immediately

discarded. Even in [16], the lack of knowledge at the FC about the strategy

adopted by the attacker (and viceversa) is coped with by adopting a game-

theoretic formulation. A rather different approach is adopted in [17], where a
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tolerant scheme that mitigates the impact of Byzantines on the global decision

is used rather that removing the reports submitted by suspect nodes from the

fusion procedure.

When the value of Pmal and the probability that a node is Byzantine are

known, the optimum fusion rule under multiple observation can be derived [18].

Since Pmal is usually not known to the FC, in [18] the value of Pmal used to

define the optimum fusion rule and the value actually used by the Byzantines

are strategically chosen in a game-theoretic context. Different priors about

the distribution of Byzantines in the network are considered ranging from an

extreme case in which the exact number of Byzantines in the network is known

to a maximum entropy case. One of the main results in [18] is that the best

option for the Byzantines is not to always flip the local decision (corresponding

to Pmal = 1), since this would ease the isolation of malicious nodes. In fact,

for certain combinations of the distribution of Byzantines within the network

and the length of the observation window, it is better for the Byzantines to

minimise the mutual information between the reports submitted to the FC and

the system states.

1.2. Contribution

The main problem of the optimum decision fusion scheme proposed in [18] is

its computational complexity, which grows exponentially with the length of the

observation window. Such a complexity prevents the adoption of the optimum

decision fusion rule in many practical situations. Also the results regarding the

optimum strategies of the Byzantines and the FC derived in [18] refer only to

the case of small observation windows.

In the attempt to diminish the computational complexity while minimising

the loss of performance with respect to the optimum fusion rule, we propose

a new, nearly-optimum, fusion scheme based on message passing and factor

graphs. Message passing algorithms, based on the so called Generalised Dis-

tributive Law (GLD, [19],[20]), have been widely applied to solve a large range of

optimisation problems, including decoding of Low Density Parity Check (LDPC)
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codes [21] and BCJR codes [19], dynamic programming [22], solution of prob-

abilistic inference problems on Bayesian networks [23] (in this case message

passing algorithms are known as belief propagation). Here we use message pass-

ing to introduce a near-optimal solution of the decision fusion problem with

multiple observation whose complexity grows only linearly with the size of the

observation window, thus marking a dramatic improvement with respect to the

exponential complexity of the optimal scheme proposed in [18].

Using numerical simulations and by first focusing on the case of small obser-

vation windows, for which the optimum solution can still be applied, we prove

that the new scheme gives near-optimal performance at a much lower complex-

ity than the optimum scheme. We then use numerical simulations to evaluate

the performance of the proposed method for long observation windows. As a

result, we show that, even in this case, the proposed solution maintains the per-

formance improvement over the simple majority rule, the hard isolation scheme

in [14] and the soft isolation scheme in [16].

As opposed to previous works, we do not limit our analysis to the case of

independent system states, but we extend it to a more realistic scenario where

the sequence of states obey a Markovian distribution [24] as depicted in Figure 2.

The Markovian model is rather common in the case of cognitive radio networks

[25, 26, 27] where the primary user occupancy of the spectrum is often modelled

as a Hidden Markov Model (HMM). The Markovian case is found to be more

favourable for the FC with respect to the case of independent states, due the

additional a-priori information available to the FC in this case.

Last but not the least, we confirm that the dual optimum behaviour of

the Byzantines observed in [18] is also present in the case of large observation

windows, even if in the Markovian case, the Byzantines may continue using the

maximum attack power (Pmal = 1) for larger observation windows.

The rest of this paper is organised as follows. In Section 2, we introduce

the notation used in the paper and give a precise formulation of the addressed

problem. In Section 3, we describe the new message passing decision rule based

on factor graph. In Section 4, we first discuss the complexity of the proposed
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Figure 1: Sketch of the adversarial decision fusion scheme.

solution compared to the optimal solution. Then, by considering both indepen-

dent and Markovian system states, we compare the performance of the message

passing algorithm to the majority rule, the hard isolation scheme [14], the soft

isolation scheme described in [16] and the optimal fusion rule. In addition, we

discuss the impact that the length of the observation window has on the op-

timal behaviour of the Byzantines. We conclude the paper in Section 5 with

some final remarks.

2. Notation and Problem Formulation

The problem faced with in this paper, is depicted in Figure 1. We let s =

{s1, s2, . . . , sm} with si ∈ {0, 1} indicate the sequence of system states over

an observation window of length m. The nodes collect information about the

system through the vectors x1,x2 . . .xn, with xj indicating the observations

available at node j. Based on such observations, a node j makes a local decision

ui,j about system state si. We assume that the local error probability, hereafter

indicated as ε, does not depend on either i or j. The state of the nodes in the

network is given by the vector h = {h1, h2, . . . , hn} with hj = 1/0 indicating

that node j is honest or Byzantine, respectively. Finally, the matrix R =
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Figure 2: Markovian model for system states. When ρ = 0.5 subsequent states are indepen-

dent.

{ri,j}, i = 1, . . . ,m, j = 1, . . . , n contains all the reports received by the FC.

Specifically, ri,j is the report sent by node j relative to si. As stated before, for

honest nodes we have ui,j = ri,j while, for Byzantines we have p(ui,j 6= ri,j) =

Pmal. The Byzantines corrupt the local decisions independently of each other.

By assuming that the transmission between nodes and fusion center takes

place over error-free channels, the report is equal to the local decision with prob-

ability 1 for honest nodes and with probability 1−Pmal for Byzantines. Hence,

according to the local decision error model, we can derive the probabilities of

the reports for honest nodes:

p (ri,j |si, hj = 1) = (1− ε)δ(ri,j − si) + ε(1− δ(ri,j − si)), (1)

where δ(a) is defined as:

δ(a) =

1, if a = 0

0, otherwise.

(2)

On the other hand, by introducing η = ε(1 − Pmal) + (1 − ε)Pmal, i.e., the

probability that the fusion center receives a wrong report from a byzantine node,

we have:

p (ri,j |si, hj = 0) = (1− η)δ(ri,j − si) + η(1− δ(ri,j − si)) (3)
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As for the number of Byzantines, we consider a situation in which the states

of the nodes are independent of each other and the state of each node is described

by a Bernoulli random variable with parameter α, that is p(hj = 0) = α,∀j. In

this way, the number of byzantine nodes in the network is a random variable

following a binomial distribution, corresponding to the maximum entropy case

[18] with p (h) =
∏
j

p(hj), where p(hj) = α(1− hj) + (1− α)hj .

Regarding the sequence of states s, we assume a Markov model as shown in

Figure 2 , i.e., p (s) =
∏
i

p(si|si−1). The transition probabilities are given by

p(si|si−1) = 1 − ρ if si = si−1 and p(si|si−1) = ρ when si 6= si−1, whereas for

i = 1 we have p(s1|s0) = p(s1) = 0.5.

In this paper we look for the the bitwise Maximum A Posteriori Probability

(MAP) estimation of the system states {si} which reads as follows:

ŝi = arg max
si∈{0,1}

p (si|R)

= arg max
si∈{0,1}

∑
{s,h}\si

p (s,h|R) (law of total probability)

= arg max
si∈{0,1}

∑
{s,h}\si

p (R|s,h) p(s)p(h) (Bayes)

= arg max
si∈{0,1}

∑
{s,h}\si

∏
i,j

p (ri,j |si, hj)
∏
i

p(si|si−1)
∏
j

p(hj)

(4)

where the notation
∑
\

denotes a summation over all the possible combina-

tions of values that the variables contained in the expression within the summa-

tion may assume by keeping the parameter listed after the operator \ fixed. For

a given h, the matrix of the observations R at the FC follows a HMM [28]. The

optimisation problem in (4) has been solved in [18] for the case of independent

system states. Even in such a simple case, however, the complexity of the op-

timum decision rule is exceedingly large, thus limiting the use of the optimum

decision only in the case of small observation windows (typically m not larger

than 10). In the next section we introduce a sub-optimum solution of (4) based

on message passing, which greatly reduces the computational complexity at the

price of a negligible loss of accuracy.
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3. A Decision Fusion Algorithm Based on Message Passing

3.1. Introduction to Sum-product message passing

In this section we provide a brief introduction to the message passing (MP)

algorithm for marginalization of sum-product problems. Let us start by consid-

ering N binary variables z = {z1, z2, . . . , zN}, zi ∈ {0, 1}. Then, consider the

function f (z) with factorization:

f (z) =
∏
k

fk (Zk) (5)

where fk, k = 1, . . . ,M are functions of a subset Zk of the whole set of variables.

We are interested in computing the marginal of f with respect to a general

variable zi, defined as the sum of f over all possible values of z, i.e.:

µ(zi) =
∑
z\zi

∏
k

fk (Zk) (6)

where notation
∑
z\zi

denotes a sum over all possible combinations of values of

the variables in z by keeping zi fixed. Note that marginalization problem occurs

when we want to compute any arbitrary probability from joint probabilities by

summing out variables that we are not interested in. In this general setting, de-

termining the marginals by exhaustive search requires 2N operations. However,

in many situations it is possible to exploit the distributive law of multiplication

to get a substantial reduction in complexity.

To elaborate, let associate with problem (6) a bipartite factor graph, in which

for each variable we draw a variable node (circle) and for each function we draw

a factor node (square). A variable node is connected to a factor node k by an

edge if and only if the corresponding variable belongs to Zk. This means that

the set of vertices is partitioned into two groups (the set of nodes corresponding

to variables and the set of nodes corresponding to factors) and that an edge

always connects a variable node to a factor node.

Let now assume that the factor graph is a single tree, i.e., a connected graph

where there is an unique path to connect two nodes. In this case, it is straightfor-

ward to derive an algorithm which allows to solve the marginalization problem
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Figure 3: Node-to-factor message passing.

with reduced complexity. The algorithm is the MP algorithm, which has been

broadly used in the last years in channel coding applications [29], [30].

To describe how the MP algorithm works, let us first define messages as

2-dimensional vectors, denoted by m = {m(0),m(1)}. Such messages are ex-

changed between variable nodes and function nodes and viceversa, according to

the following rules. Let us first consider variable-to-function messages (mvf ),

and take the portion of factor graph depicted in Fig. 3 as an illustrative exam-

ple. In this graph, the variable node zi is connected to L factor nodes, namely

f1, f2, . . . , fL. For the MP algorithm to work properly, node zi must deliver the

messages m
(l)
vf , l = 1, . . . , L to all its adjacent nodes. Without loss of generality,

let us focus on message m
(1)
vf . Such a message can be evaluated and delivered

upon receiving messages m
(l)
fv, l = 2, . . . , L, i.e., upon receiving messages from

all function nodes except f1. In particular, m
(1)
vf may be straightforwardly eval-

uated by calculating the element-wise product of the incoming messages, i.e.:

m
(1)
vf (q) =

L∏
j=2

m
(j)
fv (q) (7)

for q = 0, 1. Let us now consider factor-to-variable messages, and refer to the

factor graph of Fig. 4 where P variable nodes are connected to the factor node
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Figure 4: Factor-to-node message passing.

fk, i.e., according to the previous notation, Zk = {z1, . . . , zP }. In this case, the

node fk must deliver the messages m
(l)
fv, l = 1, . . . , P to all its adjacent nodes.

Let us consider again m
(1)
fv : upon receiving the messages m

(l)
vf , l = 2, . . . , P , fk

may evaluate the message m
(1)
fv as:

m
(1)
fv (q) =

∑
z2,...,zP

[
fk (q, z2, . . . , zP )

P∏
p=2

m
(p)
vf (zp)

]
(8)

for q = 0, 1.

Given the message passing rules at each node, it is now possible to derive

the MP algorithm which allows to compute the marginals in (6). The process

starts at the leaf nodes, i.e., those nodes which have only one connecting edge.

In particular, each variable leaf node passes an all-ones message to its adjacent

factor node, whilst each factor leaf node, say fk(zi) passes the messagem
(k)
fv (q) =

fk(zi = q) to its adjacent node zi. After initialization at leaf nodes, for every

edge we can compute the outgoing message as soon as all incoming messages

from all other edges connected to the same node are received (according to the

message passing rules (7) and (8)). When a message has been sent in both

directions along every edge the algorithm stops. This situation is depicted in

Fig. 5: upon receiving messages from all its adjacent factor nodes, node zi can

evaluate the exact marginal as:
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Figure 5: End of message passing for node zi.

µ(zi) =
∏

k=1,...,L

m
(k)
fv (zi). (9)

With regard to complexity, factors to variables message passing can be ac-

complished with 2P operations, P being the number of variables in fk. On the

other hand, variables to nodes message passing’s complexity can be neglected,

and, hence, the MP algorithm allows to noticeably reduce the complexity of

the problem provided that the numerosity of Zk is much lower than N . With

regard to the optimization, Equation (9) evaluates the marginal for both zi = 0

and zi = 1, which represent the approximated computation of the sum-product

for both hypotheses. Hence, the optimization is obtained by choosing the value

of zi which maximizes it.

3.2. Nearly-optimal data fusion by means of message passing

The objective function of the optimal fusion rule expressed in (4) can be seen

as a marginalization of a sum product of functions of binary variables, and, as

such, it falls within the MP framework described in the previous Section. More

specifically, in our problem, the variables are the system states si and the status

of the nodes hj , while the functions are the probabilities of the reports shown in
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Figure 6: Factor graph for the problem at hand.

equations (1) and (3), the conditional probabilities p(si|si−1), and the a-priori

probabilities p(hj). The resulting bipartite graph is shown in Figure 6.

It is worth noting that the graph is a loopy graph, i.e., it contains cycles,

and as such it is not a tree. However, although it was originally designed for

acyclic graphical models, it was found that the MP algorithm can be used for

general graphs, e.g., in channel decoding problems [31]. In general, when the

marginalization problem is associated to a loopy graph, the implementation of

MP requires to establish a scheduling policy to initiate the procedure, so that

variable nodes may receive messages from all the connected factors, thus eval-

uating the marginals. In this case, a single run of the MP algorithm may not

be sufficient to achieve a good approximation of the exact marginals, and pro-

gressive refinements must be obtained through successive iterations. However,

in the presence of loopy graphs, there is no guarantee of either convergence or

optimality of the final solution. In many cases, the performance of the message-

passing algorithms is closely related to the structure of the graph, in general,

and its cycles, in particular. Many previous works in the field of channel cod-
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ing, e.g., see [32], reached the conclusion that, for good performance, the factor

graph should not contain short cycles. In our case, it is possible to see from

Figure 6 that the shortest cycles have order 6, i.e., a message before returning

to the sender must cross at least six different nodes. We speculate that such a

minimum cycles length is sufficient to provide good performance for the problem

at hand. We will prove through simulations that such a conjecture is true.

To elaborate further, based on the graph of Figure 6 and on the general

MP rules reported in the previous Section, we are now capable of deriving the

messages for the scenario at hand. In Figure 7, we display all the exchanged

messages for the graph in Figure 6 that are exchanged to estimate in parallel

each of the states si, i ∈ {0, 1} in the vector s = {s1, s2, . . . , sm}. Specifically,

we have:

τ
(l)
i (si) = ϕ

(l)
i (si)

n∏
j=1

ν
(u)
i,j (si) i = 1, . . . ,m

τ
(r)
i (si) = ϕ

(r)
i (si)

n∏
j=1

ν
(u)
i,j (si) i = 1, . . . ,m

ϕ
(l)
i (si) =

∑
si+1=0,1

p (si+1|si) τ (l)
i+1(si+1) i = 1, . . . ,m− 1

ϕ
(r)
i (si) =

∑
si−1=0,1

p (si|si−1) τ
(r)
i−1(si−1) i = 2, . . . ,m

ϕ
(r)
1 (s1) = p(s1)

ν
(u)
i,j (si) =

∑
hj=0,1

p (ri,j |si, hj )λ
(u)
j,i (hj) i = 1, . . . ,m, j = 1, . . . , n

ν
(d)
i,j (si) = ϕ

(r)
i (si)ϕ

(l)
i (si)

n∏
k=1
k 6=j

ν
(u)
i,k (si) i = 1, . . . ,m− 1, j = 1, . . . , n

ν
(d)
m,j(sm) = ϕ

(r)
i (sm)

n∏
k=1
k 6=j

ν
(u)
m,k(sm) j = 1, . . . , n

λ
(d)
j,i (hj) =

∑
si=0,1

p (ri,j |si, hj ) ν
(d)
i,j (si) i = 1, . . . ,m, j = 1, . . . , n

λ
(u)
j,i (hj) = ω

(u)
j (hj)

m∏
q=1
q 6=i

λ
(d)
j,q (hj) i = 1, . . . ,m, j = 1, . . . , n

ω
(d)
j (hj) =

m∏
i=1

λ
(d)
j,i (hj) j = 1, . . . , n

ω
(u)
j (hj) = p(hj) j = 1, . . . , n

(10)

As for the scheduling policy, we initiate the MP procedure by sending the

messages λ
(u)
j,i (hj) = ω

(u)
j (hj) to all p (ri,j |si, hj ) factor nodes, and by sending
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the message p(s1) to the variable node s1. Hence, the MP proceeds accord-

ing to the general message passing rules, until all variable nodes are able to

compute the respective marginals. When this happens, the first iteration is

concluded. Then, successive iterations are carried out by starting from leaf

nodes and by taking into account the messages received at the previous itera-

tion for the evaluation of new messages. Hence, the algorithm is stopped upon

achieving convergence of messages, or after a maximum number of iterations.

The MP scheme described above can be simplified by observing that mes-

sages can be normalized without affecting the normalized marginals. Hencefor-

ward, let us consider as normalization factors the sum of the elements of the

messages, i.e., if we consider for example τ
(l)
i (si), the normalization factor is

τ
(l)
i (0) + τ

(l)
i (1). In this case, the normalized messages, say τ̄

(l)
i (si) can be con-

veniently represented as scalar terms in the interval (0, 1), e.g., we can consider

τ̄
(l)
i (0) only since τ̄

(l)
i (1) = 1 − τ̄ (l)

i (0). Accordingly, the normalized messages

17



can be evaluated as:

τ̄
(l)
i =

ϕ̄
(l)
i

n∏
j=1

ν̄
(u)
i,j

ϕ̄
(l)
i

n∏
j=1

ν̄
(u)
i,j +(1−ϕ̄(l)

i )
n∏

j=1
(1−ν̄(u)

i,j )
i = 1, . . . ,m

τ̄
(r)
i =

ϕ̄
(r)
i

n∏
j=1

ν̄
(u)
i,j

ϕ̄
(r)
i

n∏
j=1

ν̄
(u)
i,j +(1−ϕ̄(r)

i )
n∏

j=1
(1−ν̄(u)

i,j )
i = 1, . . . ,m

ϕ̄
(l)
i = ρτ̄

(l)
i+1 + (1− ρ)(1− τ̄ (l)

i+1) i = 1, . . . ,m− 1

ϕ̄
(r)
i = ρτ̄

(r)
i−1 + (1− ρ)(1− τ̄ (r)

i−1) i = 2, . . . ,m

ϕ̄
(r)
1 = p(s1 = 0)

ν̄
(u)
i,j =

p(ri,j |0,0 )λ̄
(u)
j,i +p(ri,j |0,1 )(1−λ̄(u)

j,i )

p(ri,j |0,0 )λ̄
(u)
j,i +p(ri,j |0,1 )(1−λ̄(u)

j,i )+p(ri,j |1,0 )λ̄
(u)
j,i +p(ri,j |1,1 )(1−λ̄(u)

j,i )
i = 1, . . . ,m, j = 1, . . . , n

ν̄
(d)
i,j =

ϕ̄
(r)
i ϕ̄

(l)
i

n∏
k=1
k 6=j

ν̄
(u)
i,k

ϕ̄
(r)
i ϕ̄

(l)
i

n∏
k=1
k 6=j

ν̄
(u)
i,k +(1−ϕ̄(r)

i )(1−ϕ̄(l)
i )

n∏
k=1
k 6=j

(1−ν̄(u)
i,k )

i = 1, . . . ,m− 1, j = 1, . . . , n

ν̄
(d)
m,j =

ϕ̄(r)
m

n∏
k=1
k 6=j

ν̄
(u)
m,k

ϕ̄
(r)
m

n∏
k=1
k 6=j

ν̄
(u)
m,k+(1−ϕ̄(r)

m )
n∏

k=1
k 6=j

(1−ν̄(u)
m,k)

j = 1, . . . , n

λ̄
(d)
j,i =

p(ri,j |0,0 )ν̄
(d)
i,j +p(ri,j |1,0 )(1−ν̄(d)

i,j )

p(ri,j |0,0 )ν̄
(d)
i,j +p(ri,j |1,0 )(1−ν̄(d)

i,j )+p(ri,j |0,1 )ν̄
(d)
i,j +p(ri,j |1,1 )(1−ν̄(d)

i,j )
i = 1, . . . ,m, j = 1, . . . , n

λ̄
(u)
j,i =

ω̄
(u)
j

m∏
q=1
q 6=i

λ̄
(d)
j,q

ω̄
(u)
j

m∏
q=1
q 6=i

λ̄
(d)
j,q+(1−ω̄(u)

j )
m∏

q=1
q 6=i

(1−λ̄(d)
j,q )

i = 1, . . . ,m, j = 1, . . . , n

ω̄
(d)
j =

m∏
i=1

λ̄
(d)
j,i

m∏
i=1

λ̄
(d)
j,i +

m∏
i=1

(1−λ̄(d)
j,i )

j = 1, . . . , n

ω̄
(u)
j = p(hj = 0) j = 1, . . . , n

(11)

4. Simulation Results and Discussions

In this section, we analyze the performance of the MP decision fusion algo-

rithm. We first consider the computational complexity, then we pass to evaluate

the performance in terms of error probability. In particular, we compare the

performance of the MP-based scheme to those of the optimum fusion rule [18]

(whenever possible), the soft isolation scheme presented in [16], the hard isola-

tion scheme described in [14] and the simple majority rule. In our comparison,
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we consider both independent and Markovian system states, for both small and

large observation window m.

4.1. Complexity Discussion

In order to evaluate the complexity of the message passing algorithm and

compare it to that of the optimum fusion scheme, we consider both the number

of operations and the running time. By number of operations we mean the

number of additions, substractions, multiplications and divisions performed by

the algorithm to estimate the vector of system states s.

By looking at equation (11), we see that running the message passing algo-

rithm requires the following number of operations:

• 3n+ 5 operations for each of τ̄
(l)
i and τ̄

(r)
i .

• 3 operations for each of ϕ̄
(l)
i and ϕ̄

(r)
i .

• 11 operations for ν̄
(u)
i,j .

• 3n+ 5 operations for ν̄
(d)
i,j .

• 3n+ 2 operations for ν̄
(d)
m,j .

• 11 operations for λ̄
(d)
j,i .

• 3m+ 2 operations for each of λ̄
(u)
j,i and ω̄

(d)
j .

summing up to 12n+6m+49 operations for each iteration over the factor graph.

On the other hand, in the case of independent node states, the optimal scheme

in [18] requires 2m(m + n) operations. Therefore, the MP algorithm is much

less computationally expensive since it passes from an exponential to a linear

complexity in m. An example of the difference in computational complexity

between the optimum and the MP algorithms is depicted in Figure 8.

With regard to time complexity, Table 1 reports the running time of the

MP and the optimal schemes. For n = 20, the optimal scheme running time is

17.547 times larger than that of the message passing algorithm. On the other
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Figure 8: Number of operations required for different n, m = 10 and 5 message passing local

iterations for message passing and optimal schemes.

Table 1: Running Time (in seconds) for the Optimal and the Message Passing algorithms for:

m = 10, ε = 0.15, Number of Trials = 105 and Message Passing Iterations = 5.

Setting/Scheme Message Passing Optimal

n = 20,α = 0.45 943.807114 1.6561e+04

n = 100,α = 0.49 4888.821497 2.0817e+04

hand, for the case of n = 100, the optimal scheme needs around 4.258 times

more than the message passing scheme. The tests have been conducted using

Matlab 2014b running on a machine with 64-bit windows 7 OS with 16,0 GB of

installed RAM and Intel Core i7-2600 CPU @ 3.40GHz.

4.2. Performance Evaluation

In this section, we use numerical simulations to evaluate the performance of

the message passing algorithm and compare them to the state of the art schemes.

The results are divided into four parts. The first two parts consider, respectively,

simulations performed with small and large observation windows m. Then, in

the third part, we investigate the optimum behaviour of the Byzantines over
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Figure 9: Error probability as a function of α for the following setting: n = 20, independent

Sequence of States ρ = 0.5, ε = 0.15, m = 10 and Pmal = 1.0.

a range of observation windows size. Finally, in the last part, we compare the

case of independent and Markovian system states.

The simulations were carried out according to the following setup. We con-

sidered a network with n = 20 nodes, ε = 0.15, ρ = {0.95, 0.5} corresponding to

Markovian and independent sequence of system states, respectively. The prob-

ability α that a node is Byzantine is in the range [0, 0.45] corresponding to a

number of Byzantines between 0 and 9. As to Pmal we set it to either 0.5 or 11.

The number of message passing iterations is 5. For each setting, we estimated

the error probability over 105 trials.

4.2.1. Small m

To start with, we considered a small observation window, namely m = 10.

With such a small value of m, in fact, it is possible to compare the performance

of the message passing algorithm to that of the optimum decision fusion rule.

The results we obtained are reported in Figure 9. Upon inspection of the figure,

the superior performance of the message passing algorithm over the Majority,

1It is know from [18] that for the Byzantines the optimum choice of Pmal is either 0.5 or

1 depending on the considered setup.
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Figure 10: Error probability as a function of α for the following setting: n = 20, Markovian

Sequence of States ρ = 0.95, ε = 0.15, m = 10 and Pmal = 1.0

Soft and Hard isolation schemes is confirmed. More interestingly, the message

passing algorithm gives nearly optimal performance, with only a negligible per-

formance loss with respect to the optimum scheme.

Figure 10 confirms the results shown in Figure 9 for Markovian system states

(ρ = 0.95).

4.2.2. Large m

Having shown the near optimality of the message passing scheme for small

values of m; we now leverage on the small computational complexity of such a

scheme to evaluate its performance for large values of m (m = 30). As shown

in Figure 11, by increasing the observation window all the schemes give better

performance, with the message passing algorithm always providing the best

performance. Interestingly, in this case, when the attacker uses Pmal = 1.0, the

message passing algorithm permits to almost nullify the attack of the Byzantines

for all the values of α. Concerning the residual error probability, it is due to

the fact that, even when there are no Byzantines in the network (α = 0), there

is still an error floor caused by the local errors at the nodes ε. For the case

of independent states, such an error floor is around 10−4. In Figure 11 and
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Figure 11: Error probability as a function of α for the following setting: n = 20, Markovian

Sequence of States ρ = 0.95, ε = 0.15, m = 30 and Pmal = 1.0.

12, this error floor decreases to about 10−5 because of the additional a-priori

information available in the Markovian case.

4.2.3. Optimal choice of Pmal for the Byzantines

One of the main results proven in [18], is that setting Pmal = 1 is not

necessarily the optimal choice for the Byzantines. In fact, when the FC manages

to identify which are the malicious nodes, it can exploit the fact the malicious

nodes always flip the result of the local decision to get useful information about

the system state. In such cases, it is preferable for the Byzantines to use Pmal =

0.5 since in this way the reports send to the FC does not convey any information

about the status of the system. However, in [18], it was not possible to derive

exactly the limits determining the two different behaviours for the Byzantines

due to the impossibility of applying the optimum algorithm in conjunction with

large observation windows. By exploiting the low complexity of the message

passing scheme, we are now able to overcome the limits of the analysis carried

out in [18].

Specifically, we carried out an additional set of experiments by fixing α =

0.45 and varying the observation window in the interval [5,20]. The results we
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Figure 12: Error probability as a function of α for the following setting: n = 20, Markovian

Sequence of States ρ = 0.95, ε = 0.15, m = 30 and Pmal = 0.5.

obtained confirm the general behaviour observed in [18]. For instance, in Figure

13, Pmal = 1.0 remains the Byzantines’ optimal choice up to m = 13, while for

m > 13, it is preferable for them to use Pmal = 0.5. Similar results are obtained

for independent system states as shown in Figure 14.

4.2.4. Comparison between independent and Markovian System States

In this subsection, we provide a comparison between the cases of Markovian

and independent system states.

By looking at Figure 13 and 14, we see that the Byzantines switch their

strategy from Pmal = 1 to Pmal = 0.5 for a smaller observation window (m = 10)

in the case of independent states (the switching value for the Markovian case

is m = 13). We can explain this behaviour by observing that in the case

of Markovian states, using Pmal = 0.5 results in a strong deviation from the

Markovianity assumption of the reports sent to the FC thus making it easier

the isolation of byzantine nodes. This is not the case with Pmal = 1, since, due

to the symmetry of the adopted Markov model, such a value does not alter the

expected statistics of the reports.

As a last result, in Figure 15, we compare the error probability for the case

24



m
8 10 12 14 16 18 20

lo
g(

P
e)

10-5

10-4

10-3

10-2

10-1

100

Hard Isolation P
mal

=0.5

Hard Isolation P
mal

=1.0

Soft Isolation P
mal

=0.5

Soft Isolation P
mal

=1.0

Message Passing P
mal

=0.5

Message Passing P
mal

=1.0
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ρ = {0.5, 0.95}, ε = 0.15, m = 10, Pmal = 1.0).

of independent and Markov sources. Since we are interested in comparing the

achievable performance for the two cases, we consider only the performance

obtained by the optimum and the message passing algorithms. Upon inspection

of the figure, it turns out that the case of independent states is more favourable

to the Byzantines than the Markov case. The reason is that the FC may exploit

the additional a-priori information available in the Markov case to identify the

Byzantines and hence make a better decision. Such effect disappears when α

approaches 0.5, since in this case the Byzantines tend to dominate the network.

In that case, the Byzantines’ reports prevail the pool of reports at the FC

and hence, the FC becomes nearly blind so that even the additional a-priori

information about the Markov model does not offer a great help.

5. Conclusions

In this paper, we proposed a near-optimal message passing algorithm based

on factor graph for decision fusion in multi-sensor networks in the presence of

Byzantines. The effectiveness of the proposed scheme is evaluated by means of

extensive numerical simulations both for the case of independent and Markov

sequence of states. Experiments showed that, when compared to the optimum
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fusion scheme, the proposed scheme permits to achieve near-optimal perfor-

mance at a much lower computational cost: specifically, by adopting the new

algorithm based on message passing we were able to reduce the complexity from

exponential to linear. Such reduction of the complexity permits to deal with

large observation windows, thus further improving the performance of the deci-

sion. Results on large observation windows confirmed the dual behavior in the

attacking strategy of the Byzantines, looking for a trade-off between pushing the

FC to make a wrong decision on one hand and reducing the mutual information

between the reports and the system state on the other hand. In addition, the

experiments showed that the case of independent states is more favorable to

Byzantines than the Markovian case, due to the additional a-priori information

available at the FC in the Markovian case.

As future work, we plan to focus on a scenario more favorable to the Byzan-

tines, by giving them the possibility to access the observation vectors. In this

way, they can focus their attack on the most profitable cases and avoid to flip

the local decision when it is very likely that their action will have no effect on

the FC decision. Considering the case where the nodes can send to the FC more

extensive reports (multi-bit case) [33] is another interesting extension.
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