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A fusion framework to estimate plantar ground force
distributions and ankle dynamics
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Abstract

Gait analysis plays an important role in several conditions, including the re-

habilitation of patients with orthopaedic and the monitoring of neurological

conditions, mental health problems and the well-being of elderly subjects. It

also constitutes an index of good posture and thus it can be used to prevent

injuries in athletes and monitor mental health in typical subjects. Usually, ac-

curate gait analysis is based on the measurement of ankle dynamics and ground

reaction forces . Therefore, it requires expensive multi-camera systems and pres-

sure sensors, which cannot be easily employed in a free-living environment. We

propose a fusion framework that uses an ear worn activity recognition (e-AR)

sensor and a single video camera to estimate foot angle during key gait events.

To this end we use canonical correlation analysis with a fused-lasso penalty in

a two-steps approach that firstly learns a model of the timing distribution of

ground reaction forces based on e-AR signal only and subsequently models the

eversion/inversion as well as the dorsiflexion of the ankle based on the combined

features of e-AR sensor and the video. The results show that incorporating in-

variant features of angular ankle information from the video recordings improves

the estimation of the foot progression angle, substantially.

Keywords: Gait analysis, e-AR, fusion of sensors gait data and video

2010 MSC: 00-01, 99-00

∗Corresponding Author
Email address: g.z.yang@imperial.ac.uk (Guang-Zhong Yang )
URL: http://www.imperial.ac.uk/hamlyn-centre/ (Guang-Zhong Yang )

Preprint submitted to Journal of LATEX Templates September 12, 2017



1. Introduction

Gait analysis is a well-established method for analysing the biomechanics

of gait, and a means to capture effective and quantitative assessments for or-

thopaedic and neurological rehabilitation. Motion capture with topical tracking

systems, force plates, instrumented treadmills and pressure sensing insoles are5

instruments for measuring the heel, subtalar, ankle and knee joint angles, and

analysing the force exerted on the ground for accurate analysis of the biomechan-

ical indices of subjects. Although such instrumentations are widely available,

the high cost and long set up times typically required have restricted the use of

such instruments in major hospitals for routine measurement of certain patients.10

Pathological gait is difficult to describe, since it involves atypical ankle kine-

matics. Nevertheless, it is characterized by the periodic movement of each leg

from one position to the next and the corresponding ground reaction forces that

support the motion of the body. The ankle is the lower joint and the first to

respond to the impact of the foot with the ground. In particular, the subtalar15

joint, which is lateral to the ankle, is responsible for most of the inversion and

eversion of the foot, which plays a significant role in the toe-off phase of the gait

as it provides the propulsion to lift the foot. In other words, ground reaction

forces along with ankle eversion/inversion and dorsiflexion play a key role in

the biomechanical dynamics. Several recent studies have shown that certain20

gait characteristics can be related to abnormal posture, the development of os-

teoarthritis and sports related injuries [1, 2, 3, 4, 5]. For example, Kuhman et al.

has shown that lower leg and foot dynamics are related to the development of

injuries in runners [2]. Furthermore, greater rear-foot pronation has been asso-

ciated with greater pressure on the medial portions of the plantar surface during25

walking and it has been observed in individuals with poor postural control [5].

To measure the lower limb kinematics accurately expensive multi-camera

configuration systems are used to detect and track reflective skin markers. How-

ever, the confined spaces typically available in clinics or at home means these

methods cannot easily be applied in these scenarios. The use of monocular vi-30
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sion has also been proposed for a number of gait analysis applications, such as

biometric authentication [6], diagnosis of Parkinson’s disease [7], and identifi-

cation of abnormalities for assisted living [8, 9]. Some of these works map the

2D extracted trajectories to 3D word coordinate system based on deep neural

networks and require several labeled training sets. Furthermore, they assume35

large distances between the subject and the camera and assumptions that the

body mass is planar. This does not allow an accurate estimation of the ankle

dynamics and the foot progression angle. Furthermore, estimation of ground

reaction forces are also important to determine the health risks over time due

to excessive joint loading rates and stress. Accurate measurements of ground40

reaction forces normally require pressure insoles, which are placed inside the

shoes.

Recently, wearable wireless body worn sensors have been proposed for de-

tailed gait analysis [10, 11]. Our previous work has shown the feasibility and

accuracy of using the ear-worn activity recognition (e-AR) sensor for detailed45

gait analysis and activity recognition [12, 13]. This lightweight and miniatur-

ized sensor, e-AR, enables pervasive and continuous monitoring of user with

negligible distraction to their normal daily activities. In previous work, we

have demonstrated the feasibility of using the e-AR sensor with a hierarchical

Bayesian Network framework for estimation of GRFs for normal gait [14]. This50

hierarchical model allowed characterisation of the plantar force timing distribu-

tion based on e-AR measurements only. In a recent article, Clark et al. showed

that it is possible to predict vertical ground reaction forces in runners based

on the body mass, the contact time between steps and the swing time only [15].

[16, 17] compare the advantages of inertial and vision for gait analysis. Al-55

though the wearable sensor can estimate the temporal distribution accurately,

other detailed gait parameters, such as subtalar joint angle are more difficult to

be determined based on inertial sensors only.

In this paper, we propose a novel integrated approach of using the e-AR

sensor together with a single video camera, and introduce a framework to fuse60

the sensing and visual features to reveal the interaction of ground reaction
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forces and ankle dynamics during normal and abnormal walking. In particular,

we utilize Canonical Correlation Analysis with a fused-lasso penalty (fCCA) to

extract features across steps that reveal correlations between the e-AR signal

and the timing distribution of key gait events. These events occur when ground65

reaction forces are maximized in the plantar foot areas, such as heel , mid-foot

, front-foot and toes . In a two-steps approach, we use fCCA again to fuse

the e-AR signal with features derived from the video analysis of a single camera

that reflect an angular interaction between the two legs during walking. In

this way, we are able to create a prediction framework of the dorsiflexion and70

inversion/aversion foot angles during heel, mid-foot, front-foot and toe contacts

with the ground.

2. Methods

2.1. Data fusion framework

Both normal and pathological gait exhibit repetitive patterns of motion of75

the lower limbs. In this paper, we utilize this to construct a fusion framework

that samples across steps of e-AR signal and video recordings to extract features

that predict well ground reaction forces timing distributions and subsequently

foot angles in key gait events. Therefore, the framework has two main compo-

nents that are constructed independently but they interact to provide detailed80

gait characteristics. The proposed fusion framework requires time-series derived

from e-AR sensor, insole sensors and video features to be segmented into gait

steps, independently. This is also important as it alleviate the need for accurate

synchronization between different modalities. An overview of the framework is

presented in Figure 1.85

We are interested in learning a relationship between the e-AR acceleration

data and the plantar force timing distributions across steps. The e-AR measures

acceleration in three axes that are aligned to the body: Medial-Lateral (ML)

axis, Superior-Inferior (SI) axis and Anterior-Posterior (AP) axes. On the other

hand, ground reaction forces can be measured with foot pressure insoles that90
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record the pressure between the planar surface of the foot and the sole of the

shoes. In order to estimate the plantar force distributions, we hierarchically

subdivide the foot into the Heel, Mid-foot, Front-foot and Toe regions as well

as Medial and Lateral regions. This results in eight sub-regions similar to our

previous work [14]. The insole data are pre-processed to detect gait steps based95

on the pressure difference between left and right foot. Subsequently, for each

step the timings of the maximums of the sub-plantar force distributions are

defined within each region. These timings represent key gait events and they

are important in identifying abnormal gait.

Once both insole and e-AR data are segmented into steps, we normalize

the e-AR signal at each step with respect to the time axis based on linear in-

terpolation so that all steps are equally sampled. Note that we concatenate

horizontally the combined SI and AP signal along with the ML signal. Subse-

quently, these vectors are concatenated vertically to form a matrix, X, m× 2n,

where m is the number of steps and n is the number of time samples. On the

other hand, the response data Y is a m× k matrix that reflects the timings of

the peaks of the plantar force distribution estimated based on the insole data.

k is the number of plantar sub-regions defined. fCCA is used to relate the

e-AR waveform data for each step with the GRFs timing distributions obtained

from insole data. Canonical correlation analysis is a powerful tool of modelling

the correlation between multivariate variables. The projection of X and Y on

the derived canonical vectors result in maximally linearly correlated variables.

Thus, it allows bi-direction predictive modelling of the associated variables and

it has been used in high-dimensional spaces of multi-view gait recognition and

numerous other applications [18, 19, 20]. fCCA is a variant of canonical corre-

lation analysis that applies a fused lasso penalty, which penalizes the L1 norm

of both the coefficients and their successive differences. This enforces both spar-

sity and smoothness, which is important since the fCCA variables are time-series

segments and ordered variables [21]. The implementation of fCCA is based on a

penalized matrix decomposition framework, which obeys the following criterion
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[22, 23]:

maximiseu,vu
TXTYv

subject to :‖u‖2 ≤ 1, ‖v‖2 ≤ 1, f1 ≤ c1, f2(v) ≤ c2
(1)

Here, f1, f2 are convex penalty functions that both impose a fused lasso

penalty:

f(w) =
∑

j ‖wj‖+
∑

j ‖wj − wj−1‖ (2)

Note that with u fixed, the criterion in eq. 1 is convex in v , and with v fixed,100

it is convex in u . Therefore, the objective function of this biconvex criterion

increases in each step of an iterative algorithm [23]:

u← argmaxuu
TXTYv subject to : ‖u‖2 ≤ 1, f1(u) ≤ c1

v ← argmaxvu
TXTYv subject to : ‖v‖2 ≤ 1, f2(v) ≤ c2

(3)

Once the fCCA model has been trained it can be used for prediction:

Ŷs = (uXs)
+Dv+ (4)

Where, D is the diagonal matrix with the canonical correlation scores and

+ denotes the pseudo-inverse.105

The second major component of the fusion framework is the incorporation

of video features derived from a single camera. This provides us with the ability

not only to delineate important timing gait events but also estimate the angles

between the foot and leg that reflect dorsiflexion and inversion/aversion in these

key gait points independently of the camera view point. To this end fCCA is110

applied again to find a relationship between the combined data derived from

e-AR and video features, Z, and foot angles, W estimated in key gait events,

such as when GRFs are maximized during heel, mid-foot, frontal-foot and toe

contacts with the ground. Therefore, Z is an m × 2n matrix, where m is the

number of steps and n reflects the number of time samples. To form Z we con-115

catenate horizontally the sum of the AP and SI eAR signal and an index based

on cross ratio estimated extracted from single video recordings. W is a m× 2k

matrix that encodes information about the foot angles (inversion/aversion and
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dorsiflexion) in both the left and right foot when the GRFs are maximized in

the key foot subregions Heel (H), Mid-foot (M), Front-foot (F) and Toe (T),120

Figure 3b. fCCA takes similar form as in equation 1. However, we have replaced

f2 fussed lasso penalty with a lasso penalty to reflect the fact that W does not

encode ordered variables.

2.2. Processing of video data

To complement the inertial motion data captured using the ear-worn e-AR125

sensor, video is used to determine gait features that cannot be obtained through

wearable devices. To capture the characteristics of the subject’s gait from video,

visual tracking and image segmentation steps are performed. Here, we have

recorded the front and back views of the subjects. Our main assumption is that

the camera has up-right orientation with respect to the ground.130

Tracking. To ensure that the subjects’ gait is evaluated consistently, a state-

of-the-art tracking-by-detection method, kernelized correlation filter (Joao F

Henriques, Caseiro, Martins, Batista, 2012; Joo F Henriques, Caseiro, Martins,

Batista, 2015), is used to locate the lower limbs in each video frame. Histogram

of oriented gradients and colour-space features are used to perform multi-scale135

tracking of the subject.

Image Segmentation. A clustering algorithm, K-means clustering, is then em-

ployed to segment the tracked region of the image into separate classes of fore-

ground and background. The foreground clusters of interest in this work are

the lower parts of the legs and feet. To improve the robustness of the method

against non-uniform colours in the subject’s footwear, GrabCut [24] is used to

further refine the contours of the segmented body parts. GrabCut is based on

the ’Graph Cut’ algorithm, which uses a k-Gaussian mixture models to segment

the target object from the background [25]. In an indirected graph, the Graph

Cut aims to find a subset of edges C such that the two terminal nodes are sepa-

rated in the induced graph. The algorithm minimizes an energy cost function E
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that measures how well a colour distribution model h fits the data and imposes

smoothness constraints.

E(α, θ, z) =
∑
n

− log h(zn;αn)+γ
∑

(m,n∈C)

dis(m,n)−1[αn 6= αm] exp−β(zm − zn)2

(5)

where α is the pixels’ label, z encodes the colour information and θ are the

model’s parameters. For each pair of neighbour pixels that do not have the

same label, the energy function is increased according to the parameter β.

Grabcut requires a pre-estimation of a rectangular box or mask that sur-140

rounds the feet. We pre-estimate a rectangular area based on the position of

the legs and subsequently we refine it iteratively based on the results of Grab-

Cut. Figure 2 shows an example of the contours obtained for the legs and feet

as well as the results for lower limb tracking for the four different types of gait

considered in this paper.145

Contour analysis. Contour analysis on the extracted body parts is then per-

formed to find the orientation of the lower limbs and feet. Localization of

individual body parts allows the distances between the left and right foot to

be estimated in an invariant way with respect to the distance of the person

from the camera. To calculate a view-invariant measure of the lower pose, a

cross-ratio between the directions of the legs and feet is used, Fig. 1e):

CR =
cos(LL, FL) ∗ cos(LR, FR)

cos(LL, LL) ∗ cos(FR, FR)
(6)

LL FL,LR FR correspond to fitted lines at the left leg, left foot, right leg and

right foot, respectively, Figure 2.

2.3. Segmentation of multi-modal time-series data into steps

Both e-AR acceleration data and visual features are segmented into steps

based on singular spectrum analysis and peak detection. The preprocessing

of e-AR with singular spectrum analysis is based on the acceleration in the

SI and AP axis, whereas the segmentation of the visual features is based on

the normalized distance between the left and right ankle as it reflected on the
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vertical direction of the image plane. Singular spectrum analysis is mainly

used to denoise the signal and improve the detection of peaks that reflect foot

contacts with the ground [12, 13]. If s is a time-series, a trajectory matrix is

created based on an embedding dimension that reflects the window length of

the sub-sampled time-series grouped together:

S = [s1, s2, ..., sk] =


s0 s1 · · · sk−1

s1 s2 · · · sk
...

...
. . .

...

sl−1 sl · · · sn−1

 (7)

where k = n − l + 1, n is the length of the time-series and l is the embedding

dimension. This is a Hankel matrix with constant skew-diagonal elements. The

singular value decomposition of a Hankel matrix is related to the state-space

realization of a Hidden Markov model and it is appropriate for the decomposition

of non-stationary signals. The covariance matrix of S, C = SST is decomposed

into the eigenvectors ui and the corresponding eigenvalues λi (Jarchi et al.,

2014). Therefore, the trajectory matrix is written as:

S = S1 + S2 + · · ·+ Sd (8)

where d = argmaxi{λi > 0}, Si =
√
λiuiv

T
i and vi = STui/

√
λi. Finally, the

signal is reconstructed based on the diagonal averaging of a subset of the group150

elementary matrices derived from the decomposition.

3. Results

3.1. Data acquisition

We acquired simultaneous recordings of ear-sensor data and insole data

(PAROTEC, Paromed, Germany) from seven healthy volunteers that performed155

four different styles of walking patterns: normal walking (normal), imitat-

ing limping based on unequal time steps (limping), imitating inversion injury

(pronation) and imitating eversion injury (supination). For each condition we
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recorded four sessions of each subject (total 16 sessions across all conditions)

where the subject was asked to walk back and forth in a corridor for a total of160

approximately 11 meters. Visual information of each subject’s gait is simulta-

neously captured using a 2D camera with a resolution of 1080p at 30 frames per

second.

3.2. Training and validation

Figure 3a shows the average e-AR signal across all subjects and e-AR steps165

for normal walking, limping, walking with exaggerate pronation, and walking

with exaggerated supination, respectively. The e-AR signal along IS and AP

and ML axis have been processed based on singular spectrum analysis . Firstly,

singular spectrum analysis is applied in IS, AP and ML axis independently.

Subsequently, IS and AP are added together and the singular spectrum analysis170

is re-applied. The result is concatenated with the ML e-AR signal to form the

predictive variables X. Here, we note that different styles of walking result in a

phase shift of the e-AR signal when steps are normalized to have the same sample

length. Figure 3b depicts a diagram of the insole sensors that shows how the foot

plantar area has been segmented to each region. Firstly, with respect to the AP175

axis the foot is segmented to the Toe, Front-foot, Mid-foot and Heel regions.

With respect to the ML axis, the foot is segmented to Medial and Lateral

regions. Subsequently, sub-regions are defined as Heel-Lateral, Heel-Medial,

Midfoot-Lateral, Midfoot-Medial, Front-foot-Lateral, Front-foot-Medial, Toe-

Lateral, Toe-Medial. The predictive/response variables Y are shown in Figure180

4. This shows the plantar GRFs timing distributions across all subjects for each

condition. Gait events have been identified based on insole data and they have

been normalized with respect to each insole step. Gait events have been sorted

based on their mean value during normal walking.

Due to the difference in shoe size, foot pressure insoles are expensive. With185

the aim of providing a low cost approach for gait analysis, we are interested in

devising a model that encodes the relationship between e-AR and insole data.

Furthermore, we would like to be able to get accurate measurements of the
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events timing in abnormal walking patterns. Therefore, we train and test our

model based on leave-one-out cross validation in the following scenarios:190

• Within subjects and within conditions: To form the training dataset,

the data across three sessions are concatenated in each walking condi-

tion/pattern and each subject independently. The fourth session is used

for testing. The mean errors and mean standard deviations are averaged

across subjects and cross-validation rounds.195

• Across subjects and within conditions: To form the training dataset, the

data across all subjects and within each condition are concatenated. Sub-

sequently, leave-one-out cross validation is used to estimate the mean error

and mean standard deviation, Figure 5a.

• Across subjects and across conditions: Data across subjects and across200

conditions are concatenated and leave-one-out cross validation is used to

estimate the mean error and mean standard deviation, Figure 5b.

We note a significant error reduction when we train the model across sub-

jects and conditions. The results show that training the fCCA model with data

acquired with normal walking as well as pathological variations enhances the205

prediction performance. Perhaps, this reflects that the model is more robust

to outliers. Outliers can originate from both false positive and false negative

detection of foot contacts with the ground. The results also show that the iden-

tification of heel contact is relatively the most accurate across all conditions and

training scenarios. This is expected since heel contacts in normal walking is the210

first foot contact with the ground and therefore the change in the acceleration

is rapid.

In order to evaluate the proposed measure of angular variation based on a

cross ratio, CR, we estimate the correlation between several extracted video

features and the normalized distance between left and right ankle in the vertical215

direction of the image plane . Figure 6a shows an example of the extracted fea-

tures from the analysis of the video when the subject walk towards the camera.
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These features include the dot products between the two legs , the two feet ,

the right leg and right foot and the left leg and left foot . Figure 6b shows that

CR correlates well to the normalised distance between left and right ankle in220

the vertical direction of the image plane across all subjects and conditions.

In Figure 7, we demonstrate the performance of fCCA in fusing the e-AR

signal with the derived video features, namely CR, to model the foot angle

progression. Figure 7a show the error in radians based on leave-one-out cross

validation of the proposed method. The fCCA model estimates the dorsiflex-225

ion and the aversion /inversion of the ankle when ground reaction forces at

the heel , mid-foot , front-foot and toes are maximized. Therefore, we show

the mean errors and standard deviation of estimating DF and EI at Heel, Mid-

foot, Front-foot and Toes contact with the ground. Note that the results from

left/right foot have been averaged accordingly. Ground truth data have been230

measured based on the identification of the knee, ankle and toes manually in

each frame and subsequently estimating dorsiflexion as the angle of the foot

with the vertical image plane axis and inversion/eversion as the angle of the

foot with the horizontal image plane axis. Figure 7b-7e shows the difference of

angular error between a model that uses only e-AR to predict foot angle pro-235

gression and the proposed method for each of the conditions: normal walking,

limping, pronation and supination, respectively. Although, we show the results

summarized independently in each condition, the fCCA model has been trained

based on cross-validation across all conditions at once. The proposed fusion

method outperforms the model based on e-AR data only in most of the cases240

by a significant level. In fact, using the e-AR approach to estimate foot angle

information during limping is inaccurate, possibly, due to the asymmetry be-

tween right and left gait steps. Nevertheless, combining e-AR signal and video

features improves the performance in most other walking patterns too. The re-

duction in the performance of the proposed method during pronation may result245

from inaccuracies in segmenting the video features into steps. This could reflect

the fact that the vertical distance between the right and left ankle is smaller in

pronation.
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4. Discussion

A number of approaches based on inertial sensors, cameras and computer250

vision algorithms have been proposed to measure gait characteristics, such as

step length, foot angles and ground reaction forces. Most of them are based

on system configurations that are difficult to be installed in a free-living en-

vironment. For example, these systems involve installing markers on the floor

and or on the shoe [26]. On the other hand, advanced gait recognition systems255

use inertial sensors to assess gait as a biometric trait for security/surveillance

applications [27, 28]. These systems are useful to identify individuals based on

their gait characteristics but analysing gait for clinical assessment requires un-

derstanding the dynamics of the joint loading rates and stress, which are directly

related to ground reaction forces and angles between the lower limp segments.260

These measurements are used to provide objective and reliable estimates of the

progression of diseases in neurological conditions, stroke rehabilitation, ageing

and orthopaedics [29].

The proposed framework exploits fCCA in a two-steps approach. Firstly,

fCCA is used to extract the coefficients that relate the e-AR signal across steps265

to the timing distribution of ground reaction forces estimated based on insole

sensors data. To verify that the proposed model is generalizable to new subjects,

leave-one-out cross validation is used on the concatenated training sets across

subjects and conditions. Subsequently, we use fCCA again to fuse the e-AR sig-

nal with visual features that reflect angular information of the lower limbs. This270

model learns a relationship between the fused information and the foot angle at

key gait events, which reflect maximum ground reaction forces at heel, mid-foot,

front-foot and toes, respectively. fCCA is based on a penalized decomposition

method that imposes a fused lasso penalty on the coefficients that results in

smoothness. We adapted this method because it can handle high dimensional275

data and it takes into account that the fCCA variables are ordered/time-series

data. The extracted coefficients are sparse and they can reveal further which

variables play a critical role in the prediction. Other approaches like deep neural
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networks may be an interesting alternative of fusing information across different

sensors and/or video. However, they require an abundance of training datasets280

that include insole recordings and angle measurements across patients groups.

Our method requires that both the e-AR signal and the extracted visual fea-

tures are segmented into steps. There are several advantages with this approach.

Firstly, the model is less sensitive to over-fitting even with a small number of sub-

jects, since training samples are across steps. Furthermore, it does not require285

accurate synchronization between the multi-modal signals. However, the accu-

racy of the approach depends on the segmentation of multivariate time-series

data, which is not a trivial problem and in abstract biological applications it

involves high computational complexity [30]. Our previous work has shown that

based on singular spectrum analysis, the e-AR signal can be reliably processed290

in a fraction of a second to derive clinically relevant gait parameters such as

timing of initial foot contact, step time, swing time and stance time [12, 13].

Here, we have used singular spectrum analysis and peak detection to segment

both the e-AR signal and the signal derived from the analysis of the video.

It is worth noting that our framework only requires to match steps across295

modalities, which is a significant simplification of the synchronisation problem

[31, 32]. Steps are detected independently in each modality based on peak

detection that correspond to initial foot contacts with the ground. For example,

the peaks of the e-AR signal normally correspond to the initial foot contacts

and they also correspond to the peaks of the ground reaction forces reflected300

in the insole data. The video data was processed to extract the normalised

distance between left and right ankle in the vertical direction of the image plane

and the cross-ratio. All these signals are periodic in nature with peaks that

reflect left and right foot contact. However, the performance of the proposed

algorithm would be affected when peaks are not consistently detected within305

each modality. In our approach is not important whether the peaks reflect

exactly the same gait event across modalities. Furthermore, a large portion of

errors in peak detection can be identified and filtered out based on the step time

duration.
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For the analysis of the video state-of-the art tracking technology is used and310

combined with advanced image segmentation approaches to identify the lower

limb parts. Tracking of each limb segment independently is challenging even

under controlled conditions. For this reason, we used tracking just to identify

the area of legs and subsequently we utilize image segmentation approaches to

segment background from foreground pixels. Subsequently, we applied Grabcut315

iteratively to segment the area of foot. Our results are promising and they can

correctly segment the feet even when the subject is at the far end of the corridor.

To our knowledge there is very little work on gait analysis based on a single

RGB camera. Accurate estimation of the angles between lower limbs, such as

dorsiflexion and inversion/aversion angles based on marker-less motion capture320

is discussed by Sandau et al. [33]. In clinical settings, lower limbs angle es-

timation requires a laboratory environment for the placement of markers and

multi-camera tracking, which is the gold standards for gait analysis. Marker-less

systems have been developed but they also require multi-camera setup and even

then, their accuracy is significantly compromised [33]. RGB-D sensors are able325

to acquire much more information on the scene with just one infrared camera.

Out-of-the-box algorithms that come with devices such as Kinect extract the

joints of the whole human body in real time. However, there is considerable

jitter on the measured 3D location of the joints and their accuracy depends on

the view angle. These factors compromise the use of these devices in estimating330

accurate angular measurements in clinical scenarios [34, 35, 36]. In fact, hip

and knee angle correlations between estimated and multi-camera ground-truth

data were lower than 0.3 and 0.8, respectively[34]. To deal with these problems

Ye et al. [36]used markers and an RGB-D system to extract gait character-

istics. Nevertheless, the error in the knee angle estimation can get up to 10335

degrees during key gait events. Sundau et al. [33]used a marker-less motion

capture system based on eight cameras to recover the joint angles with average

accuracy of −0.7± 1.8 and 0.5± 2.9 degrees for dorsal/plantar flexion and ev-

ersion/inversion, respectively. However, the mean error in key gait events can

go up to −1.0 ± 2.7 and 3.9 ± 2.8 degrees for dorsal/plantar flexion and ever-340
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sion/inversion, respectively. Our results based only on one camera and the e-AR

sensor compare well with dorsal/plantar flexion average error around 4.5± 2.43

degrees and eversion-inversion mean error 2.29± 1.14 degrees at heel strike.

Our results show that the accuracy of the estimated ankle angle is affected by

the walking pattern. For example, dorsal/plantar flexion and eversion/inversion345

have been identified more accurately during normal walking and pronation com-

pared to limping and supination. The reason for this is that step identification

is harder during limping and supination. It should be noted that step iden-

tification is independent in each modality. Nevertheless, our approach can be

extended to minimise errors during asymmetric gait such as limping by explic-350

itly accounting for left and right steps in the training procedure of the fCCA

model. Another limitation is that we have identified 2D angles as opposed to 3D

angles. To alleviate this issue we suggested a novel measure based on the cross-

ratio between the foot and the leg, which is relatively invariant to the camera

view. However, this measure is not yet adopted to clinical scenario and it more355

difficult to be interpreted. Finally, our method uses GrabCut and clustering

approaches to segment the foot and leg. Therefore, its success depends on the

contrast between for foreground and background pixels.

We asked healthy volunteers to walk normally as well as to imitate limp-

ing, pronation and supination. Therefore, our population variance and motion360

of the lower limbs may not represent accurately the variance observed in real

pathological cases. We have used leave-one-out cross validation to determine

the out-of-sample mean modelling error and standard deviation. The error is

statistically significant in all cases. However, further work that would involve

validation based on multi-camera tracking and confidence interval estimation is365

required for patient cohorts.

5. Acknowledgements

We would like to thank Dr. Daniele Ravi and acknowledge EPSRC as the

funding body for this study: Smart Sensing for Surgery (EP/L014149/1).

16



References370

[1] D. A. Bruening, T. E. Cooney, M. S. Ray, G. A. Daut, K. M. Cooney,

S. M. Galey, Multisegment foot kinematic and kinetic compensations in

level and uphill walking following tibiotalar arthrodesis, Foot and Ankle

International 37 (10) (2016) 1119–1129. doi:10.1177/1071100716655205.

URL <GotoISI>://WOS:000385345300013375

[2] D. J. Kuhman, M. R. Paquette, S. A. Peel, D. A. Melcher, Comparison of

ankle kinematics and ground reaction forces between prospectively injured

and uninjured collegiate cross country runners, Human Movement Science

47 (2016) 9–15. doi:10.1016/j.humov.2016.01.013.

URL <GotoISI>://WOS:000375167500002380

[3] R. A. Resende, R. N. Kirkwood, K. J. Deluzio, E. A. Hassan, S. T. Fonseca,

Ipsilateral and contralateral foot pronation affect lower limb and trunk

biomechanics of individuals with knee osteoarthritis during gait, Clinical

Biomechanics 34 (2016) 30–37. doi:10.1016/j.clinbiomech.2016.03.

005.385

URL <GotoISI>://WOS:000375808800006

[4] K. E. Roach, B. B. Wang, A. L. Kapron, N. M. Fiorentino, C. L. Saltz-

man, K. B. Foreman, A. E. Anderson, In vivo kinematics of the tibiota-

lar and subtalar joints in asymptomatic subjects: A high-speed dual fluo-

roscopy study, Journal of Biomechanical Engineering-Transactions of the390

Asme 138 (9). doi:Artn09100610.1115/1.4034263.

URL <GotoISI>://WOS:000383260200006

[5] D. D. Silva, F. H. Magalhaes, M. F. Pazzinatto, R. V. Briani, A. S. Ferreira,

F. A. Aragao, F. M. de Azevedo, Contribution of altered hip, knee and foot

kinematics to dynamic postural impairments in females with patellofemoral395

pain during stair ascent, Knee 23 (3) (2016) 376–381. doi:10.1016/j.

knee.2016.01.014.

URL <GotoISI>://WOS:000378963600007

17

<Go to ISI>://WOS:000385345300013
<Go to ISI>://WOS:000385345300013
<Go to ISI>://WOS:000385345300013
http://dx.doi.org/10.1177/1071100716655205
<Go to ISI>://WOS:000385345300013
<Go to ISI>://WOS:000375167500002
<Go to ISI>://WOS:000375167500002
<Go to ISI>://WOS:000375167500002
<Go to ISI>://WOS:000375167500002
<Go to ISI>://WOS:000375167500002
http://dx.doi.org/10.1016/j.humov.2016.01.013
<Go to ISI>://WOS:000375167500002
<Go to ISI>://WOS:000375808800006
<Go to ISI>://WOS:000375808800006
<Go to ISI>://WOS:000375808800006
http://dx.doi.org/10.1016/j.clinbiomech.2016.03.005
http://dx.doi.org/10.1016/j.clinbiomech.2016.03.005
http://dx.doi.org/10.1016/j.clinbiomech.2016.03.005
<Go to ISI>://WOS:000375808800006
<Go to ISI>://WOS:000383260200006
<Go to ISI>://WOS:000383260200006
<Go to ISI>://WOS:000383260200006
<Go to ISI>://WOS:000383260200006
<Go to ISI>://WOS:000383260200006
http://dx.doi.org/Artn 091006 10.1115/1.4034263
<Go to ISI>://WOS:000383260200006
<Go to ISI>://WOS:000378963600007
<Go to ISI>://WOS:000378963600007
<Go to ISI>://WOS:000378963600007
<Go to ISI>://WOS:000378963600007
<Go to ISI>://WOS:000378963600007
http://dx.doi.org/10.1016/j.knee.2016.01.014
http://dx.doi.org/10.1016/j.knee.2016.01.014
http://dx.doi.org/10.1016/j.knee.2016.01.014
<Go to ISI>://WOS:000378963600007


[6] G. Rogez, J. Rihan, J. J. Guerrero, C. Orrite, Monocular 3-d gait tracking

in surveillance scenes, Ieee Transactions on Cybernetics 44 (6) (2014) 894–400

909.

URL <GotoISI>://WOS:000337960000014

[7] C. W. Cho, W. H. Chao, S. H. Lin, Y. Y. Chen, A vision-based analysis

system for gait recognition in patients with parkinson’s disease, Expert

Systems with Applications 36 (3) (2009) 7033–7039.405

URL <GotoISI>://WOS:000263817100156

[8] M. Nieto-Hidalgo, F. J. Ferrandez-Pastor, R. J. Valdivieso-Sarabia,

J. Mora-Pascual, J. M. Garcia-Chamizo, A vision based proposal for classi-

fication of normal and abnormal gait using rgb camera, Journal of Biomed-

ical Informatics 63 (2016) 82–89.410

URL <GotoISI>://WOS:000389557000009

[9] E. E. Stone, M. Skubic, Passive in-home measurement of stride-to-stride

gait variability comparing vision and kinect sensing, 2011 Annual Interna-

tional Conference of the Ieee Engineering in Medicine and Biology Society

(Embc) (2011) 6491–6494.415

URL <GotoISI>://WOS:000298810005008

[10] C. Wong, Z. Q. Zhang, B. Lo, G. Z. Yang, Wearable sensing for solid

biomechanics: A review, Ieee Sensors Journal 15 (5) (2015) 2747–2760.

doi:10.1109/Jsen.2015.2393883.

URL <GotoISI>://WOS:000352624500006420

[11] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannan-

tonio, M. Sgroi, R. Jafari, G. Fortino, From modeling to implementation

of virtual sensors in body sensor networks, IEEE Sensors Journal 12 (3)

(2012) 583–593. doi:10.1109/JSEN.2011.2121059.

[12] D. Jarchi, C. Wong, R. M. Kwasnicki, B. Heller, G. A. Tew, G. Z.425

Yang, Gait parameter estimation from a miniaturized ear-worn sensor

18

<Go to ISI>://WOS:000337960000014
<Go to ISI>://WOS:000337960000014
<Go to ISI>://WOS:000337960000014
<Go to ISI>://WOS:000337960000014
<Go to ISI>://WOS:000263817100156
<Go to ISI>://WOS:000263817100156
<Go to ISI>://WOS:000263817100156
<Go to ISI>://WOS:000263817100156
<Go to ISI>://WOS:000389557000009
<Go to ISI>://WOS:000389557000009
<Go to ISI>://WOS:000389557000009
<Go to ISI>://WOS:000389557000009
<Go to ISI>://WOS:000298810005008
<Go to ISI>://WOS:000298810005008
<Go to ISI>://WOS:000298810005008
<Go to ISI>://WOS:000298810005008
<Go to ISI>://WOS:000352624500006
<Go to ISI>://WOS:000352624500006
<Go to ISI>://WOS:000352624500006
http://dx.doi.org/10.1109/Jsen.2015.2393883
<Go to ISI>://WOS:000352624500006
http://dx.doi.org/10.1109/JSEN.2011.2121059
<Go to ISI>://WOS:000337739300024
<Go to ISI>://WOS:000337739300024
<Go to ISI>://WOS:000337739300024


using singular spectrum analysis and longest common subsequence, Ieee

Transactions on Biomedical Engineering 61 (4) (2014) 1261–1273. doi:

10.1109/Tbme.2014.2299772.

URL <GotoISI>://WOS:000337739300024430

[13] D. Jarchi, B. Lo, C. Wong, E. Ieong, D. Nathwani, G. Z. Yang, Gait analy-

sis from a single ear-worn sensor: Reliability and clinical evaluation for or-

thopaedic patients, Ieee Transactions on Neural Systems and Rehabilitation

Engineering 24 (8) (2016) 882–892. doi:10.1109/Tnsre.2015.2477720.

URL <GotoISI>://WOS:000381496500007435

[14] B. Lo, J. Pansiot, G. Z. Yang, Bayesian analysis of sub-plantar ground

reaction force with bsn, Sixth International Workshop on Wearable and

Implantable Body Sensor Networks, Proceedings (2009) 133–137doi:10.

1109/P3644.37.

URL <GotoISI>://WOS:000275810500023440

[15] K. P. Clark, L. J. Ryan, P. G. Weyand, A general relationship links gait

mechanics and running ground reaction forces, Journal of Experimental

Biology 220 (2) (2017) 247–258. doi:10.1242/jeb.138057.

URL <GotoISI>://WOS:000392154200018

[16] I. H. Lpez-Nava, I. Gonzlez, A. Muoz-Melndez, J. Bravo, Comparison445

of a Vision-Based System and a Wearable Inertial-Based System for a

Quantitative Analysis and Calculation of Spatio-Temporal Parameters,

Springer International Publishing, Cham, 2015, pp. 116–122. doi:10.

1007/978-3-319-26508-7_12.

URL http://dx.doi.org/10.1007/978-3-319-26508-7_12450

[17] I. Gonzalez, I. H. Lopez-Nava, J. Fontecha, A. Munoz-Melendez, A. I.

Perez-SanPablo, I. Quinones-Uriostegui, Comparison between passive

vision-based system and a wearable inertial-based system for estimating

temporal gait parameters related to the gaitrite electronic walkway, Jour-

19

<Go to ISI>://WOS:000337739300024
<Go to ISI>://WOS:000337739300024
http://dx.doi.org/10.1109/Tbme.2014.2299772
http://dx.doi.org/10.1109/Tbme.2014.2299772
http://dx.doi.org/10.1109/Tbme.2014.2299772
<Go to ISI>://WOS:000337739300024
<Go to ISI>://WOS:000381496500007
<Go to ISI>://WOS:000381496500007
<Go to ISI>://WOS:000381496500007
<Go to ISI>://WOS:000381496500007
<Go to ISI>://WOS:000381496500007
http://dx.doi.org/10.1109/Tnsre.2015.2477720
<Go to ISI>://WOS:000381496500007
<Go to ISI>://WOS:000275810500023
<Go to ISI>://WOS:000275810500023
<Go to ISI>://WOS:000275810500023
http://dx.doi.org/10.1109/P3644.37
http://dx.doi.org/10.1109/P3644.37
http://dx.doi.org/10.1109/P3644.37
<Go to ISI>://WOS:000275810500023
<Go to ISI>://WOS:000392154200018
<Go to ISI>://WOS:000392154200018
<Go to ISI>://WOS:000392154200018
http://dx.doi.org/10.1242/jeb.138057
<Go to ISI>://WOS:000392154200018
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
http://dx.doi.org/10.1007/978-3-319-26508-7_12
<Go to ISI>://WOS:000384703800020
<Go to ISI>://WOS:000384703800020
<Go to ISI>://WOS:000384703800020
<Go to ISI>://WOS:000384703800020
<Go to ISI>://WOS:000384703800020


nal of Biomedical Informatics 62 (2016) 210–223.455

URL <GotoISI>://WOS:000384703800020

[18] F. Deligianni, M. Centeno, D. W. Carmichael, J. D. Clayden, Relating

resting-state fmri and eeg whole-brain connectomes across frequency bands,

Frontiers in Neuroscience 8. doi:ARTN25810.3389/fnins.2014.00258.

URL <GotoISI>://WOS:000346512300001460

[19] F. Deligianni, D. W. Carmichael, G. H. Zhang, C. A. Clark, J. D. Clayden,

Noddi and tensor-based microstructural indices as predictors of functional

connectivity, Plos One 11 (4). doi:ARTNe015340410.1371/journal.pone.

0153404.

URL <GotoISI>://WOS:000374131700051465

[20] X. L. Xing, K. J. Wang, T. Yan, Z. W. Lv, Complete canonical correlation

analysis with application to multi-view gait recognition, Pattern Recogni-

tion 50 (2016) 107–117. doi:10.1016/j.patcog.2015.08.011.

URL <GotoISI>://WOS:000364893700008

[21] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and470

smoothness via the fused lasso, Journal of the Royal Statistical Society

Series B-Statistical Methodology 67 (2005) 91–108.

URL <GotoISI>://WOS:000225686900006

[22] D. M. Witten, R. Tibshirani, T. Hastie, A penalized matrix decomposition,

with applications to sparse principal components and canonical correlation475

analysis, Biostatistics 10 (3) (2009) 515–534.

URL <GotoISI>://WOS:000267213700010

[23] D. M. Witten, R. J. Tibshirani, Extensions of sparse canonical correlation

analysis with applications to genomic data, Statistical Applications in Ge-

netics and Molecular Biology 8 (1).480

URL <GotoISI>://WOS:000267601500008

20

<Go to ISI>://WOS:000384703800020
<Go to ISI>://WOS:000346512300001
<Go to ISI>://WOS:000346512300001
<Go to ISI>://WOS:000346512300001
http://dx.doi.org/ARTN 258 10.3389/fnins.2014.00258
<Go to ISI>://WOS:000346512300001
<Go to ISI>://WOS:000374131700051
<Go to ISI>://WOS:000374131700051
<Go to ISI>://WOS:000374131700051
http://dx.doi.org/ARTN e0153404 10.1371/journal.pone.0153404
http://dx.doi.org/ARTN e0153404 10.1371/journal.pone.0153404
http://dx.doi.org/ARTN e0153404 10.1371/journal.pone.0153404
<Go to ISI>://WOS:000374131700051
<Go to ISI>://WOS:000364893700008
<Go to ISI>://WOS:000364893700008
<Go to ISI>://WOS:000364893700008
http://dx.doi.org/10.1016/j.patcog.2015.08.011
<Go to ISI>://WOS:000364893700008
<Go to ISI>://WOS:000225686900006
<Go to ISI>://WOS:000225686900006
<Go to ISI>://WOS:000225686900006
<Go to ISI>://WOS:000225686900006
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267213700010
<Go to ISI>://WOS:000267601500008
<Go to ISI>://WOS:000267601500008
<Go to ISI>://WOS:000267601500008
<Go to ISI>://WOS:000267601500008


[24] C. Rother, V. Kolmogorov, A. Blake, ”grabcut”: interactive foreground

extraction using iterated graph cuts, ACM Trans. Graph. 23 (3) (2004)

309–314. doi:10.1145/1015706.1015720.

[25] Y. Y. Boykov, M. P. Jolly, Interactive graph cuts for optimal boundary and485

region segmentation of objects in n-d images, Eighth IEEE International

Conference on Computer Vision, Vol I, Proceedings (2001) 105–112.

URL <GotoISI>://WOS:000170817100014

[26] T. N. Do, Y. S. Suh, Gait analysis using floor markers and inertial sensors,

Sensors 12 (2) (2012) 1594–1611. doi:10.3390/s120201594.490

URL <GotoISI>://WOS:000300720300025

[27] G. Panahandeh, N. Mohammadiha, A. Leijon, P. Handel, Continuous hid-

den markov model for pedestrian activity classification and gait analysis,

Ieee Transactions on Instrumentation and Measurement 62 (5) (2013) 1073–

1083. doi:10.1109/Tim.2012.2236792.495

URL <GotoISI>://WOS:000317361500023

[28] S. Sprager, M. B. Juric, Inertial sensor-based gait recognition: A review,

Sensors 15 (9) (2015) 22089–22127. doi:10.3390/s150922089.

URL <GotoISI>://WOS:000362512200056

[29] A. Muro-de-la Herran, B. Garcia-Zapirain, A. Mendez-Zorrilla, Gait analy-500

sis methods: An overview of wearable and non-wearable systems, high-

lighting clinical applications, Sensors 14 (2) (2014) 3362–3394. doi:

10.3390/s140203362.

URL <GotoISI>://WOS:000335887900072

[30] N. Omranian, B. Mueller-Roeber, Z. Nikoloski, Segmentation of biological505

multivariate time-series data, Scientific Reports 5. doi:ARTN893710.1038/

srep08937.

URL <GotoISI>://WOS:000351137000005

21

http://dx.doi.org/10.1145/1015706.1015720
<Go to ISI>://WOS:000170817100014
<Go to ISI>://WOS:000170817100014
<Go to ISI>://WOS:000170817100014
<Go to ISI>://WOS:000170817100014
<Go to ISI>://WOS:000300720300025
http://dx.doi.org/10.3390/s120201594
<Go to ISI>://WOS:000300720300025
<Go to ISI>://WOS:000317361500023
<Go to ISI>://WOS:000317361500023
<Go to ISI>://WOS:000317361500023
http://dx.doi.org/10.1109/Tim.2012.2236792
<Go to ISI>://WOS:000317361500023
<Go to ISI>://WOS:000362512200056
http://dx.doi.org/10.3390/s150922089
<Go to ISI>://WOS:000362512200056
<Go to ISI>://WOS:000335887900072
<Go to ISI>://WOS:000335887900072
<Go to ISI>://WOS:000335887900072
<Go to ISI>://WOS:000335887900072
<Go to ISI>://WOS:000335887900072
http://dx.doi.org/10.3390/s140203362
http://dx.doi.org/10.3390/s140203362
http://dx.doi.org/10.3390/s140203362
<Go to ISI>://WOS:000335887900072
<Go to ISI>://WOS:000351137000005
<Go to ISI>://WOS:000351137000005
<Go to ISI>://WOS:000351137000005
http://dx.doi.org/ARTN 8937 10.1038/srep08937
http://dx.doi.org/ARTN 8937 10.1038/srep08937
http://dx.doi.org/ARTN 8937 10.1038/srep08937
<Go to ISI>://WOS:000351137000005


[31] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, R. Jafari, Enabling

effective programming and flexible management of efficient body sensor net-510

work applications, IEEE Transactions on Human-Machine Systems 43 (1)

(2013) 115–133. doi:10.1109/TSMCC.2012.2215852.

[32] R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor

fusion in body sensor networks: State-of-the-art and research

challenges, Information Fusion 35 (2017) 68 – 80. doi:https:515

//doi.org/10.1016/j.inffus.2016.09.005.

URL http://www.sciencedirect.com/science/article/pii/

S156625351630077X

[33] M. Sandau, H. Koblauch, T. B. Moeslund, H. Aanaes, T. Alk-

jaer, E. B. Simonsen, Markerless motion capture can provide re-520

liable 3d gait kinematics in the sagittal and frontal plane, Medi-

cal Engineering and Physics 36 (9) (2014) 1168–1175. doi:http:

//dx.doi.org/10.1016/j.medengphy.2014.07.007.

URL http://www.sciencedirect.com/science/article/pii/

S1350453314001775525

[34] E. Auvinet, F. Multon, J. Meunier, New lower-limb gait asymmetry indices

based on a depth camera, Sensors 15 (3) (2015) 4605–4623. doi:10.3390/

s150304605.

URL http://www.mdpi.com/1424-8220/15/3/4605

[35] B. Muller, W. Ilg, M. A. Giese, N. Ludolph, Validation of enhanced kinect530

sensor based motion capturing for gait assessment, PLOS ONE 12 (4)

(2017) 1–18. doi:10.1371/journal.pone.0175813.

URL https://doi.org/10.1371/journal.pone.0175813

[36] M. Ye, C. Yang, V. Stankovic, L. Stankovic, A. Kerr, A depth camera mo-

tion analysis framework for tele-rehabilitation: Motion capture and person-535

centric kinematics analysis, IEEE Journal of Selected Topics in Signal Pro-

cessing 10 (5) (2016) 877–887. doi:10.1109/JSTSP.2016.2559446.

22

http://dx.doi.org/10.1109/TSMCC.2012.2215852
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2016.09.005
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2016.09.005
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2016.09.005
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S156625351630077X
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://dx.doi.org/http://dx.doi.org/10.1016/j.medengphy.2014.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.medengphy.2014.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.medengphy.2014.07.007
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://www.sciencedirect.com/science/article/pii/S1350453314001775
http://www.mdpi.com/1424-8220/15/3/4605
http://www.mdpi.com/1424-8220/15/3/4605
http://www.mdpi.com/1424-8220/15/3/4605
http://dx.doi.org/10.3390/s150304605
http://dx.doi.org/10.3390/s150304605
http://dx.doi.org/10.3390/s150304605
http://www.mdpi.com/1424-8220/15/3/4605
https://doi.org/10.1371/journal.pone.0175813
https://doi.org/10.1371/journal.pone.0175813
https://doi.org/10.1371/journal.pone.0175813
http://dx.doi.org/10.1371/journal.pone.0175813
https://doi.org/10.1371/journal.pone.0175813
http://dx.doi.org/10.1109/JSTSP.2016.2559446


fCCA

H M F T

Camera

st
ep

s

samples

st
ep

s

fCCA

Foot angles

st
ep

s

samples

st
ep

s

Foot Pressure Insole

Dorso-flexion
Inversion at

H M F T

e-AR

Inputs Features

Tracking/ imager 
segmentation

SSA-Peak Detection 

Gait events

Video features

Time-Series segmentation

Fusion

Figure 1. Data fusion framework for gait analysis. fCCA is used in a two

steps approach to firstly model the timing distribution of GRFs that reflect

key gait events such as when GRFs are maximized in plantar foot areas, such

as the heel (H), midfoot (M), frontfoot (F) and toes (T). Subsequently,

angular features derived from video tracking and image segmentation

approaches are incorporated in another fCCA framework to model foot

progression angle during these key gait events.
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a) b) c) d)

Figure 2. Examples of the lower limb visual tracking (blue), predicted foot

regions (green), and leg and foot contours (red) obtained using K-means

clustering and GrabCut are shown for the four types of gait considered in this

paper; (a) normal, (b)supination, (c) limping and (d) pronation. A diagram of

the fitted lines estimated based on image segmentation of the lower limbs has

been overlayed on b) .
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(a) e-AR training data

To
e

Fo
re
fo
o
t

M
id
fo
o
t

H
e
e
l

Medial Lateral

(b) plantar foot subregions

Figure 3. a) Average e-AR signal across all subjects for normal walking,

limping, walking with exaggerate pronation, and walking with exaggerated

supination, respectively. The solid lines represent the summation of the e-AR

signal along IS and AP after applying singular spectrum analysis . The dashed

lines represent the e-AR signal in ML axis after the application of singular

spectrum analysis. b) Plantar foot area subdivision into total eight areas. The

plantar foot area is firstly subdivided into four regions across the

anterios-posterior axis, namely Heel, Midffot, Frontfoot and Toes and in two

regions across the medial-lateral axis, namely, Medial and Lateral.
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Figure 4. Plantar ground reaction forces timing distributions across all

subjects for each conditions. Gait events have been identified based on insole

data and they have been normalized with respect to each insole step.

Sub-regions are defined as Heel-Lateral (HL), Heel-Medial (HM),

Midfoot-Lateral (ML), Midfoot-Medial (MM), Frontfoot-Lateral (FL),

FrontFoot-Medial (FM), Toe-Lateral (TL), Toe-Medial (TM) based on the

subdivision of the plantar foot area shown in Figure 3b.
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(a) Across subjects and within conditions
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(b) Across subjects and across conditions

Figure 5. Leave-on-out cross validation results of the fCCA model in

predicting the ground reaction forces timing distributions. a) Across subjects

and within conditions: To form the training dataset, the data across all

subjects and within each condition are concatenated. b) Across subjects and

across conditions: Data across subjects and across conditions are

concatenated.
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(a) Video features (b) Correlation

Figure 6. a) An example of the extracted features from the analysis of the

video when the subject walks towards the camera. Yimag is the scale invariant

distance in the vertical direction of the image plane between left and right

ankle. LL is the dot product between the two legs, FF is the dot product

between the feet, LF(R) is the dot product between the right leg and right foot

and LF(L) is the dot product between the left leg and left foot. b)Absolute

correlation values between Yimg, which reflects the distance between right and

left feet, and the CR, LL, FF, LF(L) and LF(R), respectively.
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(c) Limping
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Figure 7. The performance of fCCA in fusing the e-AR signal with the

derived video features, namely CR, to model the foot angle progression. a)

Error in radians based on leave-one-out cross validation of the proposed

method. The fCCA model estimates the dorsiflexion (DF) and the aversion

/inversion (EI) of the ankle when ground reaction forces at the Heel (H),

Mid-foot (M), Front-foot (F) and Toes (T) are maximized. Therefore, we show

the mean errors and standard deviation of estimating DF and EI at Heel,

Mid-foot, Front-foot and Toes contact with the ground as H-DF, H-EI, M-DF,

M-EI, F-DF, F-EI, T-DF, T-EI, respectively. b-e) Differences of angular error

between a model that uses only e-AR to predict foot angle progression and the

proposed method.
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