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aFaculty of Information Technology, University of Jyväskylä, POBox 35 (Agora),
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Abstract

We propose an ensemble clustering approach using group diffusion to reveal

community structures in data. We represent data points as a directed graph

and assume each data point belong to single cluster membership instead of mul-

tiple memberships. The method is based on the concept of ensemble group

diffusion with a parameter to represent diffusion depth in clustering. The abil-

ity to modulate the diffusion-depth parameter by varying it within a certain

interval allows for more accurate construction of clusters. Depending on the

value of the diffusion-depth parameter, the presented approach can determine

very well both local clusters and global structure of data. At the same time,

the ability to combine single outcomes of the method results in better cluster

segmentation. Due to this property, the proposed method performs well on data

sets where other conventional clustering methods fail. We test the method with

both simulated and real-world data sets. The results support our theoretical

conjectures on improved accuracy compared to other selected methods.
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skylee@hanyang.ac.kr (Kichun Lee)

Preprint submitted to Elsevier December 15, 2017



1. Introduction

Interest in the analysis of complex networks has rapidly grown over the past

few years. Network models have been used in different areas including eco-

nomics, biology, social sciences, and computer science, where systems are often

represented as graphs. Analyzing network models in practice is a challenging

task due to the complexity of the networks, particularly when the underlying

community structure is unknown. There are two general approaches to reveal

the community structure of networks. The first approach is graph partitioning

when the number of clusters is known. The second approach, called community

structure detection, is more challenging, as it divides a network into clusters or

groups graph nodes when the number of clusters is unknown beforehand. For

community structure detection, both identifying clusters and determining the

number of clusters must be solved simultaneously.

The detection of community structures in an arbitrary graph is a challeng-

ing task. In recent years, several methods have been developed and applied,

including min-cut based approaches, clique based approaches, modularity based

approaches, clustering approaches, and so forth [1]. These approaches share an

essential tool, clustering, in a sense to find good clusters of nodes in a graph

that improve a certain criterion. Clustering, indeed, is a universal tool applied

in many different fields of data analysis, such as data mining, statistics, market-

ing, and others [2]. The goal of cluster analysis is to partition data into groups

or clusters based on pairwise similarity so that observations inside one cluster

are more similar than the ones belonging to different clusters [3]. The dimen-

sionality of the data set has a strong influence on the performance of clustering

algorithms. Some methods work well for low-dimensional data, whereas they

are unable to find structure in high-dimensional data sets. High-dimensional

data pose a number of challenges for researchers and practitioners. First of

all, high-dimensional data are more likely to be sparse, which makes it difficult

for algorithms to find structures in the data. Moreover, in high-dimensional

2



data sets, points may belong to diverse clusters in different subspaces. Cap-

turing the geometric structure of the manifold from the data, whether low- or

high-dimensional, plays an essential role in reliable clustering results. Cluster-

ing methods without considering such geometric structures can fail to produce

accurate results and find mere local structures in sparse high-dimensional data.

In addition to geometric structures of real-world data, another challenge

for clustering in community detection tasks is that the results cannot be vali-

dated as there is no ground truth available for the data sets, as in supervised

learning. Furthermore, various clustering methods often generate different and

biased structures in a data set due to different optimization criteria they adopt.

To overcome these issues in different clustering results, combining multiple par-

titions can improve the quality of clustering results significantly. In this sense,

a collective approach called clustering ensemble aims to provide more robust,

stable, and novel solutions by leveraging a consensus of multiple clustering runs.

The main goal of clustering ensemble algorithms is to define a clustering solu-

tion that maximizes a consensus function and to select a partition generation

procedure. Partitioning can be performed using (1) data resampling [4, 5],

(2) different parameter values or initializations [6, 7], and (3) different cluster-

ing algorithms such as k-means, density-based, graph-partitioning-based, and

statistics-based [8].

In this paper, we propose an ensemble clustering algorithm based on the con-

cept of ensemble group diffusion, denoted by Ensemble Group Diffusion, EGD.

The proposed method takes into account not only the geometric structure of

data using group distances, but also the diffusion of group distances across

connectivity scales. Moreover, the presented method is able to produce more

robust clustering results by collectively integrating views from individual diffu-

sion scales. The method is also capable of reasonably regulating cluster sizes

by an admitted group dependence level. In addition, it nicely handles directed

graphs as opposed to other approaches. Further, we present a detailed analysis

of the degree of the collective integration and propose a guideline for parameter

settings. We demonstrate the efficacy of the proposed method using not only
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an illustrative simple example, demonstration test cases and simulation studies,

but also real-world data sets such as the researcher collaboration network in a

healthcare system from the National Institute of Health (NIH) in the U.S., a

consumer behavioral pattern captured by the co-purchasing network from Ama-

zon, a leading consumer online shopping place in the U.S. and a gene-expression

microarray data sets.

The rest of the paper is organized as follows. Section 2 reviews clustering

techniques used in community detection. Section 3 describes preliminary con-

cepts for the proposed algorithm. Section 4 provides theoretical justification

for the proposed clustering method. Section 5 compares the performance of

the proposed method to popular and state-of-the-art clustering algorithms un-

der different settings and data sets. Section 6 discusses the implications of our

development of the algorithm and concludes the paper.

2. Related work

Many clustering algorithms have been proposed in the literature of com-

munity structure detection and clustering analysis. Modularity-based methods

established by Newman [9] have shown exceptional performance in many cases

[10, 11, 12]. These methods are nonparametric and are designed to maximize

the modularity as an objective function. These methods, however, fail to de-

tect smaller communities in some cases where such granular identification is

desirable. It is hard to say whether the detected clusters are indeed single

communities or clusters of smaller communities. For example, Fortunato and

Barthélemy [13] analyzed modularity-based methods and their applicability in

the area of community detection. Their research points out that the modularity

function has a resolution limit. Communities that are smaller than a thresh-

old in a certain criterion may not be revealed, even when the whole graph is

identified as a single community. In addition, working with pairwise similar-

ity between nodes, modularity-based methods are inherently unable to handle

directional relationships commonly observed in reality.
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Other clustering methods for community detection also exist. Hierarchical

clustering [3], agglomerative or divisive, is another technique commonly used

for community detection. Hierarchical clustering [3] first defines a similarity

measure between clusters and computes a similarity matrix between vertices of

a graph. Among the most critical disadvantages of hierarchical clustering is that

the results can be different depending on the similarity measure used, although

it is a universal phenomenon in most clustering methods. Besides, agglomer-

ative hierarchical clustering does not scale well, which is crucial for clustering

graphs [14]. In essence, approaches based on a predefined number of clusters

require an additional important step that involves a decision criterion for the

optimal number of clusters. Spectral clustering [3] refers to the group of meth-

ods based on eigenvalue decomposition of the similarity matrix or its derivative

matrices for clustering data sets. This approach is good at finding non-convex

clusters, able to take into account geometric structures of the data [3]. However,

it works with similarity matrices, which reflect only bidirectional relationships

among the nodes in a graph. The result depends on the number of selected

eigenvectors. Along with spectral and density-based methods considering ge-

ometric structures of data, Park and Lee [15] proposed a group-dependence

clustering approach. This approach is based on the idea of maximizing a mea-

sure called group dependence. The central idea of the method is that any two

nodes in the graph can be considered as being connected through Markovian

transitions. This conceptualization allows for the calculation of ‘dependence dis-

tance’ [16] between graph nodes in a certain evolution step, which can adjust the

level of connectivity scale in group assignment. Though the method supports

the ability to adjust the level of the connectivity scale in clustering, it fails to

present a collective view of clusters according to the connectivity scale and was

insufficient in coping with directional structures between nodes. Density-based

methods detect clusters according to the local density of data points. Based

on a density threshold, the points from disconnected regions of high density

are assigned to different clusters when the rest are marked as noise. However,

such methods, computationally expensive, are suitable only for data defined by
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a set of coordinates. To overcome these drawbacks, an alternative approach,

called clustering by ‘fast search and find of density peaks’ (FSFDP) [17], defines

the cluster centers as local density maxima that are relatively distant from any

point of higher local density. After that, each remaining point is assigned to the

same cluster as its nearest neighbor of higher density.

Attempts to improve the quality of clustering results brought forth develop-

ing a number of ensemble clustering approaches during recent years. Zheng et

al. used aggregated distance matrices and combined both partitional clustering

and hierarchical clustering results [18]. Wang et al. used a Bayesian graphical

model to aggregate mixed cluster results and maximized an approximation of

the posterior distribution [19]. The clustering approach, proposed in [8] as one

of the state-of-the art approaches, addresses the problem of combining multiple

partitions of a set of objects using the knowledge-reuse framework [20]. It for-

mulates the cluster ensemble problem by introducing an objective function for

combining multiple clustering solutions and by solving the corresponding opti-

mization problem. This way the final consensus solution is obtained without

accessing original features. The authors propose the following three consen-

sus functions: cluster-based similarity partitioning algorithm (CSPA) based on

a measure of pairwise similarity, HyperGraph Partitioning Algorithm (HGPA)

based on approximation of the maximum mutual information objective, and

meta-cLustering algorithm (MCLA) based on solving a cluster correspondence

problem. The final solution is selected among the three consensus clusterings

as the one with the highest average mutual information.

3. Preliminary Concepts

In this section, we briefly summarize the concept of group dependence that

links data points by a Markov random walk and the concept of a clustering

ensemble that combines several division outcomes. Then, in the next section,

we propose the concept of ensemble group diffusion to measure a multiscale

cohesion level for a group division in an integrative fashion. Ensemble group
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diffusion gives rise to a new clustering method for community detection, which

will be discussed in detail in regards to its characteristics and parameters.

3.1. Group Dependence

The concept of group dependence is closely related to the Markov random

walk and provides a general foundation for a distance measure between data

points that considers the geometrical structure [21]. Group dependence pro-

posed by Park and Lee [15] is a measure that quantifies the goodness-of-division

of an undirected graph. In this paper let us suppose that a directed graph of

data points (nodes) x1, · · · , xn ∈ Rb is given. Denote the set of data points by

Ω = {x1, . . . , xn}. We view the graph as a Markov chain, assuming the whole

chain is ergodic and all transitions follow the Markovian property.

We start with a simple case of bisecting the graph, then providing instruc-

tions on how to divide it into more than two groups in the following section.

Let si = 1, a decision variable, if data point i belongs to group 1 and si = −1

if it belongs to group 2. Observe that the quantity (sisj + 1)/2 is 1 if i and j

are in the same group and 0 otherwise. Denote the group assignment vector by

s = [s1, . . . , sn]. Group dependence is defined as follows:

Definition 1. Group dependence Dt for a given group assignment s and con-

nectivity scale parameter t is

Dt =
∑

xi,xj∈Ω

(
Dep(X0 = j,Xt = i)− 1

) (sisj + 1)

2
,

in which Dep(X0 = j,Xt = i), as dependence, is defined by P (X0=j,Xt=i)
P (X0=j)P (Xt=i)

and t, as an exogenously given parameter, means the t-step-wide neighborhood

evolution in Ω.

Dependence is closely linked to the point-wise mutual information in in-

formation theory and the lift measure in association rule learning. Intuitively

speaking, dependence captures how xj in the initial state is inter-dependent

with xi at the t-th step: Dep(X0 = j,Xt = i) < 1 means that j and i are
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negatively dependent; Dep(X0 = j,Xt = i) = 1 means that they are indepen-

dent; Dep(X0 = j,Xt = i) > 1 means that they are positively dependent. The

term, Dep(X0 = j,Xt = i) − 1, represents the degree of relative dependence

in comparison to the level of independence as the reference point. Accordingly,

group dependence Dt measures the overall coherence of group assignment s in

terms of dependence for the whole data set at the t-step transition. Based on

group dependence, we propose another measure of ensemble group diffusion to

reflect the multiscale dependence structure in a directed graph. We then look

for a good group assignment s of all n points to maximize the measure.

3.2. Clustering Ensemble

As the idea of ensemble group diffusion closely relates to clustering ensem-

bles, we briefly introduce the basic concept of a clustering ensemble. Cluster

ensembles basically address the problem of combining multiple base clustering

results for the same data set into a final consensus solution. Depending on

how to reach a consensus solution, several approaches (such as graph-based,

matrix-based, and probabilistic models [22]) exist in the literature. However,

the problem formation in cluster ensembles is universal as follows. We start

with a base clustering algorithm that generates the group assignment s of the

data points in Ω. We prepare M base clustering results by supplying different

parameters to one base algorithm. From them, we obtain M different group

assignments s(1), · · · , s(M). The results from the M base clustering algorithms

can be stacked together to form an overall clustering matrix. Given the overall

clustering matrix, the cluster ensemble problem is to combine the M base clus-

tering results for the n data points to generate a consensus clustering, which

should be more accurate and stable than the individual base clusterings.

In this paper, we calculate diffusion matrices of dependence for each parame-

ter value of connectivity level t and aggregate the diffusion matrices. Specifically,

we similarly start with a directed graph of n data points in Ω with probability

matrix P . Having a set of possible parameters, denoted by T , we calculate

[Dep(X0 = j,Xt = i)]i,j=1,··· ,n for every t ∈ T and then obtain a cumula-
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tive matrix, the ensemble group diffusion, as the sum of the individual group

diffusion results:

D(s) =
∑
t∈T

Dt =
∑
t∈T

∑
xi,xj∈Ω

(
Dep(X0 = j,Xt = i)− 1

) (sisj + 1)

2
. (1)

The final clustering is obtained through solving the maximization problem for

the cumulative matrix D(s). Combining individual diffusion matrices to ensem-

ble group diffusion can be viewed as a peer regularization. Diffusion matrices

obtained with a small t value pull the overall solution towards having smaller

clusters. Similarly, diffusion matrices from a large t value shift the optimal

solution towards coarser and larger scale representations. The construction of

ensemble group diffusion brings stable clustering results under various degrees

of resolution and heterogeneous structures in the data set. Thus, it aims to

solve the resolution limit issue in which an obvious small-sized community is

rarely detected when the whole graph is sufficiently large.

4. Clustering with Ensemble Group Diffusion

We incorporate group dependence and ensemble clustering to present a new

approach of ensemble group diffusion that finds the community structure in a

directed graph. Given a transition matrix P , we denote the one-step backward

transition matrix by PB , which is calculated from P . Then by backward Marko-

vian transitions, the t-step transition matrix is P t
B : P t

B;i,j = P (X0 = j|Xt = i).

We observe that if xi and xj are close in the geometric structure of the data,

the backward transition probability should be large. The posterior transition

probability involves a backward Markov chain, representing the probability of

the initial state j after reaching state i at the t-th step transition as a measure

of the difference between the two states i and j in the directed graph.

In particular, the backward transition probability P t
B;i,j should be at least

greater than the probability that xi and xj are connected by chance among all

data points. Thus, the greater P t
B;i,j is among the data points in a cluster, the

better the cluster is. Also, a partition of the data set is meaningful when a
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whole connectivity level by the partition should increase more than that by a

random configuration. The quantity
∑

i,j(P
t
B;i,j−1/n) should be great for all xi

and xj pairs in the same cluster, where the threshold probability 1/n represents

the random probability among n data points. If one seeks a tight configuration,

one may use a value larger than 1/n. In quantifying the connectivity level in

detail, we use not only the concept of geometric diffusion, but also modulate the

diffusion depth parameter t by varying t in a certain interval. Thus, we define

the collective geometric diffusion to be∑
t∈T

∑
i,j

(P t
B;i,j − 1/n),

where T is the set of diffusion depth values.

We denote the group assignment vector by s = [s1, . . . , sn]. Let si = 1 if

data point i belongs to group 1 and si = −1 if it belongs to group 2. To obtain

a good partition in terms of collective geometric diffusion, we solve the following

programming:

arg max
s

∑
t∈T

∑
i,j

(P t
B;i,j − 1/n)

(sisj + 1)

2
. (2)

We show that collective geometric diffusion is in proportion to ensemble group

diffusion when all initial states have equal probability as non-informative prior

because∑
t∈T

∑
i,j

(P t
B;i,j − 1/n) = 1/n

∑
t∈T

∑
i,j

(P (X0 = j|Xt = i)n− 1)

= 1/n
∑
t∈T

∑
i,j

(
P (X0 = j,Xt = i)

P (Xt = i) 1
n

− 1

)

= 1/n
∑
t∈T

∑
i,j

(
P (X0 = j,Xt = i)

P (Xt = i)P (X0 = j)
− 1

)
= 1/n

∑
t∈T

∑
i,j

(Dep(X0 = j,Xt = i)− 1).

Thus, the programming in (2) is equivalent to maximizing the ensemble group

diffusion

arg max
s

∑
t∈T

∑
i,j

(Dep(X0 = j,Xt = i)− 1)
(sisj + 1)

2
.
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Note again that the quantity (sisj +1)/2 is 1 if i and j are in the same group

and 0 otherwise. Thus, an optimal clustering scheme is achievable through

maximizing the collective geometric diffusion measure by varying the group

assignment s of all n points. To express the level of closeness to a group, the

group identity si is extended from discrete to continuous with the norm of s

fixed. By the set of diffusion depths T , we can effectively adjust the level of the

connectivity scale for which two points are associated. When infinite diffusion

steps are taken, for the infinite value of t, the Markov chain converges to the

stationary distribution and the collective geometric connectivity becomes trivial.

For instance, one can set T to be {1, 2} as a short-range scale or {5, 6, 7, 8} as a

mid-range scale. In practice, one could start with T as a long-range scale such

as {1, · · · , 8} and, depending on the result, shrink it, or vice versa (start with T

as a short-range scale and expand it). We will see the effect of T by varying it

in the experiment section. We express the maximization of the ensemble group

diffusion with respect to s subject to ‖s‖ = 1 as follows:

arg max
s

s>
∑
t∈T

(
P t
B − 1/n11>

)
s := arg max

s
s>Gs, (3)

where

G =
∑
t∈T

(
P t
B − 1/n11>

)
. (4)

We numerically find the eigenvalues and eigenvectors of G. The existence of the

largest and positive eigenvalue and its eigenvector s1 implies that the ensemble

group diffusion is maximally increased by adjusting a division of the data set

on the direction of the corresponding eigenvector s1. We mention the computa-

tional hurdle is computing eigenvalues and eigenvectors of G, and we compare

its running times in the experiment section. Moreover, the division of the data

points is based on the signs of s1. In fact, s1 is a one-dimensional representation

of the data points, which can be used for a general purpose such as visualiza-

tion and classification because the sign and magnitude of s1 relate to the degree

of closeness to one group against the other. We note that the eigenvector as-

sociated with the zero eigenvalue represents assigning all data points to just
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one group. On the contrary, nonexistence of a positive eigenvalue implies any

further division of the data yields no gain.

4.1. Detecting More Than Two Groups

The procedure explained so far either divides a graph into two groups or

decides not to divide further. It is natural to consider a network with more

than two groups latent in its community structure. To obtain more than two

clusters, we adopt a standard approach to subsequently divide the groups found

[9, 15]. We look for a possible division for each group found in the previous step

by constructing a new backward transition matrix PB|g for a detected group g

as a subset of the data set: PB|g with size |g| × |g|, defined by

P t
B|g;i,j = {P (X0 = j|Xt = i)|∀i, j ∈ g}.

Following the same procedure based on PB|g, the solution of arg max‖s‖=1G
(g)

in (3) enables us to decide whether a division is possible or not.

It is important to note that the new group configuration with a new division

found does not always result in an increase in the ensemble group diffusion of

the whole graph because the new similarity matrix PB|g reflects only a part

of the whole data set without considering connections to the nodes belonging

to other groups. Hence, among the possible divisions, we look for only the

division which causes the ensemble group diffusion in (3) for the whole data set

to increase most when the new division is applied.

Furthermore, we require that the increase is at least by certain margin.

Specifically, for the purpose of regularizing the solution, we introduce a depen-

dence gain parameter δd ∈ [0, 1]. This parameter is used for calculating the

minimal dependence gain value required to split a cluster into two sub-clusters

and is defined as

∆d = δd
∑

gi,j>0

G,

where G = [gi,j ] is defined in (4). For setting the value of δd in practice, we

recommend starting with quite a small value, close to zero, and increasing it
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depending on the results. One can verify that
∑

gi,j>0G is the upper bound for

cumulative collective geometric diffusion. Thus, the division into sub-clusters

proceeds if the difference between the collective geometric diffusion values cor-

responding to the group configurations before and after the division is higher

than the dependence gain:

D(s′)−D(s) > n∆d,

where D is defined in (1), s and s′ denote the group configurations before and

after the division into sub-clusters, respectively, and n stands for the size of the

set of data points Ω. The dependence gain parameter prevents the algorithm

from identifying clusters that are too small or not clear enough, which allows

controlling the desired level of clarity in finding clusters. In summary, we stop

dividing the group when we find no positive eigenvalues from group ensemble

matrix G(g) or the dependence gain fail to exceed n∆d.

4.2. Illustrative Examples

This section demonstrates the performance and steps of the proposed al-

gorithm. For illustration, we construct a simulated similarity matrix, which

is generated as follows. We randomly generate 500 points in two dimensional

space where every point belongs to one of three clusters. One cluster is generated

from a Gaussian distribution with identity covariance matrix I and contains 200

points. The second cluster is formed by a Gaussian distribution with covariance

matrix 0.25 × I and consists of 100 points. It is shifted from the center of the

first cluster by approximately 2.7 units. The third cluster is constructed from a

uniform distribution in the interval (0, 2). It consists of 200 points and is shifted

from the center of the first cluster by approximately 2.8 units. The obtained

data is illustrated in Figure 1(a), where clusters are colored differently. The

data set has quite a visible underlying community structure, although cluster

membership for some of the points on the border is not clear.

We construct a distance matrix using the Euclidean distance. The distance be-

tween two points x and y is calculated as ‖x − y‖ =
√∑

i(xi − yi)2, where i

13
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Figure 1: (a) The original data set and true cluster division from illustrative example, (b)

similarity matrix corresponding to the data in (a).

denotes a dimension. The similarity matrix shown in Figure 1(b) is formed from

the distance matrix using the general form of a Gaussian radial basis function

h(x, y) = exp(−‖x− y‖2/σ2), (5)

where σ > 0. In this example, considering the units of xi−yi, we empirically set

the parameter σ to 0.2 and δd to 0.12. We notice that three standard deviations

of xi − yi, 3σxi−yi , is 0.212 and the choice of δd from the interval [0.05, 0.12]

brings no change in the clustering result. Therefore, we choose the upper limit

of this interval δd = 0.12.

We apply the proposed method (EGD) clustering to the obtained similarity

matrix. We consider the diffusion depth parameter values T = {3}, T = {8}

and their combination T = {3, 8}. Figure 2(a)-(c) shows clustering results with

EGD for the data and parameters described above. Every cluster is marked in

its own color. The clusters corresponding to original data clusters are displayed

in similar colors. The algorithm with T = {3} fails to find the underlying

data structure and assigns nearly all points to one cluster (see Figure 2(a)).

For T = {8}, the method successfully determines one cluster marked green

(see Figure 2(b)), but shuffles the two remaining clusters. For T = {3, 8}, the

proposed EGD approach discovers all three clusters, except for a few elements
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Figure 2: EGD clustering results for illustrative example: (a) T = {3}, (b) T = {8}, (c)

T = {3, 8}, (d) T = {2}, (e) T = {7}, (f) T = {2, 7}, (h) T = {1}, (i) T = {9}, (j) T = {1, 9}.

near the border and a small group of points treated as a separate cluster. We

note that the border between clusters in this data set is not obvious and the

problem of clustering such points belonging to the border will be addressed

further in Section 6. Apparently, the collective nature of the proposed method

leverages the benefits of runs with a single t (see Figure 2(c)).

Furthermore, using the data set with ground-truth, we show the effectiveness

of the EGD algorithm by providing clustering results under various settings

of the parameter T . Figures 2(d), (e), and (f) display clustering results for

15



−0.2

0

0.2

0.4
D

im
en

si
on

le
ss

 q
ua

nt
ity

(a)

−4 −2 0 2 4

−2

0

2

4

F
ea

tu
re

 2

(b)

−0.2

0

0.2

D
im

en
si

on
le

ss
 q

ua
nt

ity

(c)

−4 −2 0 2 4

−2

0

2

4

F
ea

tu
re

 2

(d)

−0.1

0

0.1

0.2

Point index

D
im

en
si

on
le

ss
 q

ua
nt

ity

(e)

−4 −2 0 2 4

−2

0

2

4

Feature 1

F
ea

tu
re

 2

(f)

Figure 3: EGD clustering steps in illustrative example for T = {3, 8}. (a) The first eigenvector

of similarity matrix at the first iteration, (b) the first division, (c) the first eigenvector of

similarity matrix at the second iteration, (d) the second division, (e) the first eigenvector of

similarity matrix at the third iteration, (f) the third division.

T = {2}, T = {7} and their combination T = {2, 7}, respectively. The algorithm

with T = {2} assigns nearly all points to one cluster (see Figure 2(d)). For

T = {7}, the method determines two clusters marked green and blue, but mixes

points in the third cluster (see Figure 2(e)). For T = {2, 7}, the EGD algorithm

discovers all three clusters, except for a few elements near the border and a small

group of points treated as a separate cluster. Clustering results for T = {1},

T = {9} and their combination T = {1, 9}, displayed in Figures 2(h), (i), and

16



(j), are similar to the ones obtained for T = {3}, T = {8}, and T = {3, 8}, and

consistently show the benefit of collective diffusion depths.

To demonstrate the functioning of the ensemble algorithm, we display how

the data set is split by the eigenvectors of the ensemble group diffusion matrix

G in (4) in every iteration. We consider the case when T = {3, 8}. The first

eigenvector corresponding to the first iteration of the algorithm splits the data

set into two clusters, green and black (see Figures 3(a)-(b)). At the second

iteration, its own first eigenvector splits the green cluster into two parts, green

and blue (see Figures 3(c)-(d)). Last, the first eigenvector corresponding to

the third iteration separates the green cluster from the previous step into two

subclusters, marked green and red (see Figures 3(e)-(f)). In Figure 3 values of

the eigenvectors and the corresponding points on the scatter plots are displayed

in the same color. In addition, we add Figures 10 and 11 in Supplementary

Materials to show how the data set is split by the eigenvectors of the matrix

G in every iteration for T = {2, 7} and T = {1, 9}, respectively. The results

demonstrate that the algorithm is stable under various parameter settings and

provides reasonable separation into groups. Then, we set δd = 0 to promote

cluster splits. We run EGD by varying t from small to bigger values to show how

cluster structure evolves by changing t values. Figure 4 demonstrates the effect

of increasing t on clustering results, evolution from local to global structure.

For comparison, we provide the results of the modularity, spectral, and hier-

archical clustering methods used further in this work (see Figure 5). As param-

eter values for spectral and hierarchical methods we provide true (k = 3) and

wrong numbers of clusters (k = 2, 4). Hierarchical clustering method places all

data points mainly in one cluster for all tested parameter values (see Figures

5(a)-(c)). Spectral clustering correctly determines one cluster for k = 5 but

shuffles points belonging to the other two clusters. However, for k = 3, spectral

clustering performs relatively well, which is quite natural in that the true num-

ber of clusters was provided in this case. The results of the spectral clustering

approach can be seen in Figures 5(d)-(f). The modularity approach fails for this

data set as it discovers too many clusters (see Figure 5(g)).
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Figure 4: Evolving cluster structure by changing t (number of defined clusters is shown in

brackets): (a) T = {1} (14), (b) T = {5} (11), (c) T = {9} (10), (d) T = {12} (8), (e)

T = {15} (9), (f) T = {25} (7), (g) T = {29} (6), (h) T = {35} (5), (i) T = {40} (4).

Next, we applied the EGD algorithm to the test cases in which underlying

manifold structures exist, as presented in Figure 6. Figures 6(a)-(c) refer to

artificial data sets representing classes of different shapes [23]. Figure 6(d)

displays the test case which the FLAME approach [24] used as a challenging

test case. For computing distance matrices we adopted Manhattan distance

measure for the two spirals data set displayed in Figure 6(a) and standardized

Euclidean distance measure for the remaining test cases. Similarity matrices

were calculated from distance matrices using Gaussian radial basis function as

in 5. EGD successfully determined true clusters for the test cases as shown in

Figures 6(a)-(c). In particular, the results for the test case (d) are comparable
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Figure 5: Clustering results for illustrative example: (a) hierarchical clustering (k = 2), (b)

hierarchical clustering (k = 3), (c) hierarchical clustering (k = 4), (d) spectral clustering

(k = 2), (e) spectral clustering (k = 3), (f) spectral clustering (k = 4), (g) modularity

clustering.

to the original method. Note that unlike original method, EGD assigned two

outlier points displayed in red to a separate cluster that looks natural in this

case and shows a potential ability to reveal a community that is small in scale.

The illustrative and demo examples show that the proposed EGD clustering

approach can determine the underlying geometry of the data, even for those

data sets where some of the common clustering methods fail. We attribute it

to the property of ensemble group diffusion that inherently combines individual

outcomes to result in better cluster segmentation.
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(a) (b)

(c) (d)

Figure 6: EGD clustering results for the data sets: (a) two spirals, (b) outlier, (c) half kernel,

(d) FLAME.

5. Experimental and Empirical Results

5.1. Benchmark Methods

We compare the EGD clustering with other well-known methods frequently

used for community structure detection. Among those methods are agglom-

erative hierarchical clustering, spectral clustering, modularity clustering [9],

density-based clustering and a knowledge reuse framework-based (KRF) clus-

tering ensemble approach proposed in [8]. We apply the KRF approach to the

results obtained by Metis [25] and graph partitioning (GP) [26] algorithms by

varying the number of clusters.
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As a density-based method we refer to clustering by ‘fast search and find of

density peaks’ (FSFDP) by Rodriguez and Laio [17]. We use a Matlab imple-

mentation of FSFDP as was expounded in [27]. In order to define cluster centers

the original method adopted a manual setting by supervised analysis of a deci-

sion graph that displays local density ρi versus distance δi from points of higher

density for each data point i. Then one finds a rectangular region where both

δi and ρi are high [27]. As the procedure was quite inefficient and deteriorated

in the multiple data sets used, we designed a heuristic for automatic selection of

cluster centers by binning the data points into k equally spaced intervals along

the axes and marking points with maximal δ in each bin as cluster centers.

We employ both simulated and real-life data sets to compare performance

of the clustering algorithms, including the proposed EGD method in this paper.

In order to evaluate the performance of these algorithms, we need to have ”true

clustering labels” for each data set. The simulated data set clearly has one, as

we simulate the data set from a predefined correlation matrix structure. For

other real-world data sets, we deliberately chose empirical settings where we

can define such true clustering for all nodes.

5.2. Performance Evaluation

Given true clustering labels, we measure the performance of the clustering

results using two approaches: Rand measure [28] and normalized mutual infor-

mation (NMI) [8]. The Rand measure is based on the dyad-level accuracy of

clustering results, counting the number of pairs in which an algorithm’s clus-

tering result and the true clustering specification agree. In essence, it combines

the ratio of correctly clustered pairs (CC) and the ratio of correctly separated

pairs (CS). CC and CS quantify the performance of clustering algorithms in

terms of what percentage of pairs are correctly clustered or separated given the

true clustering results. They represent two extremes of a clustering algorithm’s

performance. If an algorithm tends to cluster aggressively by putting too many

nodes into the same cluster, it will score high in CC but low in CS, and vice

versa. Thus, a desirable clustering algorithm should score high in the Rand
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measure, balancing CC and CS.

These three measures are computed as follows:

CC =

∑
i,j 1{xi=xj}1{yi=yj}∑

i,j 1{xi=xj}1{yi=yj} +
∑

i,j 1{xi 6=xj}1{yi=yj}
,

CS =

∑
i,j 1{xi 6=xj}1{yi 6=yj}∑

i,j 1{xi=xj}1{yi 6=yj} +
∑

i,j 1{xi 6=xj}1{yi 6=yj}
,

Rand =

∑
i,j 1{xi=xj}1{yi=yj} +

∑
i,j 1{xi 6=xj}1{yi 6=yj}∑

i 6=j 1
,

where X = {xi}, i = 1, · · · , n is the clustering result under evaluation and

Y = {yi}, i = 1, · · · , n is the true cluster labels. n represents the number of

nodes in the graph.

On the other hand, we employ another measure, NMI, to capture similarity

between the true and test clustering results in a holistic way. Mutual information

is a concept from information theory and increases as two input sequences are

similar to each other. The normalized variant that we use in this paper scales

it into the range between zero and one. The normalization process is similar

to that of the Pearson correlation coefficient. In this case, the information-

theoretic entropy serves as a normalization factor. The information entropy

measures how random each input sequence is. Following Strehl and Ghosh [8],

NMI is calculated as follows:

NMI(X,Y ) =
I(X,Y )√
H(X)H(Y )

,

where I(X,Y ) denotes mutual information between X and Y , and H(X) and

H(Y ) denote the information entropy of X and Y , respectively.

We show the performance summary of the proposed method and other meth-

ods in terms of NMI and RND across 9 data sets in Figure 7. We give detailed

description of the data sets and performance comparisons in the following sec-

tions.

22



DatasetSim (<=0.1)

 Sim(<=0.15)

Sim (<=0.3)
NIH

Amazon
DBLP

YouTube
Lung

St. Ju
de

N
M

I

0

0.2

0.4

0.6

0.8

1

 EGD (T={1})
 EGD (T={1,2})
 EGD (T={1 to 4})
 EGD (T={1 to 8})
 Modularity
 Hierarchical
 Spectral
 FSFDP
 KRF+Metis
 KRF+GP

(a)

Dataset
Sim (<=0.1)

 Sim(<=0.15)

Sim (<=0.3)
NIH

Amazon
DBLP

YouTube
Lung

St. Ju
de

R
A

N
D

0

0.2

0.4

0.6

0.8

1

 EGD (T={1})
 EGD (T={1,2})
 EGD (T={1 to 4})
 EGD (T={1 to 8})
 Modularity
 Hierarchical
 Spectral
 FSFDP
 KRF+Metis
 KRF+GP

(b)

Figure 7: Performance summary of the proposed method and other methods in terms of (a)

NMI, (b) RAND.

5.3. Simulation Tests

Our evaluation starts with the tests on synthetically generated data sets. We

use a simulated correlation matrix with four evident groups, which represents a

graph of 12 nodes. The group structure imposed into the correlation matrix is

{1,2}, {3,4,5,6}, {7,8,9}, {10,11,12}. Within-group true correlation coefficients

are 0.9, 0.7, 0.6, and 0.8. Nodes in groups 1 and 2 are positively correlated by

0.2 and those in groups 3 and 4 are negatively correlated by −0.4. All other

inter-group correlations are set to zero. Each node represents a random variable

and the edges of the graph are Pearson sample correlation coefficients ri,j in the

range from −1 to 1. The distance between two points i and j is calculated as

‖xi−xj‖ = 1/(ri,j +1). For calculating the similarity matrix W , a general form

of the Gaussian radial basis function in Equation (5) was used. More detailed

information about the data can be found in [29] and [15].

We evaluate each clustering method as an average over 10,000 replications.

For each replication, we build a sample correlation matrix from random real-

izations from the true correlation matrix. Following Stone and Ayroles [29], we

extract nine observations from the true correlation matrix using a multivariate

normal distribution. In order to see the effects of the width parameter σ, we

vary σ from 0.1 to 0.15 and 0.3.

We tested EGD by varying the diffusion depth parameter set as T = {1},
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{1,2}, {1,2,3,4}, and {1,2,3,4,5,6,7,8} from short-range to long-range scales. Our

benchmark methods include agglomerative hierarchical clustering, spectral clus-

tering, modularity clustering, density-based clustering and KRF applied to the

results of Metis and GP. We informed benchmark methods other than Modular-

ity about the number of clusters with both the true value (k = 4) and misleading

values (k = 3, 5). Table 4 in Supplementary Materials shows the results of sim-

ulation experiments using the nine clustering methods. Boldface values denote

the highest number in each column. EGD ouperforms other methods for all

values of σ. The method demonstrates more accurate results for relatively low

values of σ = 0.1, 0.15 and low values of the parameter δd, with the highest NMI

and Rand scores of 0.91 and 0.94, correspondingly for both σ values.

To verify the performance differences between the proposed method and

the other methods, we applied post statistical analysis using repeated measures

ANOVA. The tests showed that the proposed method outperformed the other

methods in the simulation experiments with 95% confidence levels. Please refer

to Supplementary Materials (Table 2) to see the p-values of the tests.

5.4. Co-PI Network from the NIH Research Funding Data

To benchmark the performance of the proposed method in the real-world

context, we constructed a principal-investigator (PI) network from the funding

data of the National Institute of Health (NIH) of the United States. The NIH

is a collective body of 27 institutes and centers (ICs), disbursing $25-30B every

year for biomedical research. This accounts for a significant portion of the total

biomedical research funding of the U.S. and the NIH is the single largest public

entity in the picture. As a public agency, the NIH keeps track of detailed funding

information for each grant including grant application abstract, activity type,

amount of grant, list of co-PIs, and institution of the head PI.

For each grant, one or more researchers are in charge of carrying out the

proposed research project. Among them, one person is designated as head PI

(or contact PI), who is meant to be the primary corresponding agent for the

project. Each project record also contains the head PI’s associated institution
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(university, research institute, or private company) and its address. Although

most grants are executed by a single PI, a few projects are led by multiple PIs,

in which case the project is run by a head PI and co-PIs.

We focus on the projects having multiple co-PIs to construct the collabo-

ration network of researchers in biomedical research. By counting the number

of co-occurrences of PIs, we obtain the weighted undirected graph of the co-PI

network.

In order to test the clustering algorithms, we need not only a network but

also true labels of the nodes. We prepared the true labels based on the location

of the affiliated institution of a PI. In essence, we infer whether PIs are co-

located from the collaboration network structure among the co-PIs. Reasoning

behind this inference is that researchers in the same geographical region are

more likely to collaborate on research project supported by NIH funding.

We first collected all grant data between 2000 and 2012 from NIH’s data

retrieval interface called ExPORTER. The NIH publishes funding records not

only for its 27 ICs but also for some other related agencies. Then, a small

number of research grants are awarded to non-US institutions. Last, some large

projects are broken into subproject records occasionally. In such cases, we only

consider the ultimate parent project record. Since our focus is on the NIH’s U.S.

funding records, we remove non-U.S. projects from our sample. After filtering

out non-NIH, non-US grants, and subproject records, we are left with 707,496

grants. 14,093 projects among them have more than one PI and the number of

unique PIs is 11,999. As institution information is only available for the head

PI, we removed PIs for which we cannot identify the institution, and 9,769 PIs

remain. The collaboration network is extremely sparse because of a myriad of

isolated cliques of two or three PIs. We extracted the connected components of

size greater than or equal to 10 from the entire landscape. At last, we are left

with 993 PIs from 217 institutions in 44 states. Assuming that investigators

affiliated with institutions that are geographically close to each other have a

higher chance to collaborate as co-PIs, we use the state as a true clustering

label for each PI based on the location of their institution.
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Table 5 in Supplementary Materials shows the performance comparison with

the NIH data set. The EGD clustering with δd = 0 and T = {1} outperforms

all other configurations and algorithms, including modularity clustering. We

observe a high Rand measure and low NMI consistently across all methods.

Low CC and high CS scores explain why Rand measure is higher than NMI.

This implies that the co-PI network is highly fragmented and it has a fairly

low chance that two PIs are associated with the institutions in the same state.

When algorithms place nodes into the same cluster, it is more likely to be

wrong than when they separate out nodes into different clusters. Thus, under

this sparse clustering structure, we see that NMI is a more robust measure than

the Rand measure, although these two measures were close to each other in the

simulation study in the previous section. Last, the hierarchical clustering and

FSFDP clustering scores are low in both Rand and NMI, which suggests that

the methods clearly failed to correctly identify the latent community structure.

Spectral clustering, Metis, GP, and KRF produced better results, but still fell

short of the results from modularity clustering and the EGD clustering.

5.5. Social Network Data with Ground Truth Membership Records

Social networks have gained a significant number of users over the past

decade. Various social network services operate in the web with a different

focus, such as for friendship or professional career networks. This trend led

to an explosion of availability of social network data that could be used for

academic research. Indeed, various fields such as marketing and psychology

have used data sets from real world social network services to address a specific

research question. Clustering algorithm development is one of the fields that

can immediately benefit from using these social network data sets. One hurdle

that prevents one from doing such research is that raw social network data

usually does not provide ground truth membership of the nodes. In order to

test clustering algorithm performance, we need a true clustering that can be

compared against as a benchmark. The notion of ground truth membership

depends on how you frame the clustering task. For instance, suppose that
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we are interested in clustering people in a professional career social network.

Depending on our research interest, community structure may be defined by

age group or the industry that they are working in. In this case, both age group

and industry code can serve as the ground truth membership label for each

person in the network.

This section is devoted to the analysis using ground truth networks provided

by Yang and Leskovec [30], who constructed a large set of networks with explicit

ground truth community structure from a number of different domains. We ap-

ply the EGD algorithm to the Stanford Network Analysis Project (SNAP) data

consisting of three data sets and compare its performance with the benchmark

methods in the same way as before. SNAP data used in this section are in fact

undirected graphs with binary edge weights describing three well known real

world networks.

The first data set is Amazon’s product co-purchasing network. The data set

is constructed based on the feature which lists corresponding products (goods)

under the tag “Customers Who Bought This Item Also Bought” [30]. The

ground truth community is constructed in a way that all its members share a

common purpose. Amazon-defined product categories (e.g., electronics, beauty

& health, or clothing) serve as the ground-truth communities. The second data

set is from DBLP, which is a widely known bibliography repository archiving

archiving publication records particularly focusing on the field of computer sci-

ence. Yang and Leskovec [30] extracted authors’ collaboration network from

publication data. The authors are connected if they have a joint publication.

The publication venues serve as ground-truth communities for the authors. Last,

the third data set comes from YouTube, an online video sharing community. It

acts as a social network where users can form friendships, create own groups, and

join other groups. Such group membership provides ground-truth communities

of the users.

In the original data set, Yang and Leskovec [30] provided the list of the top

5,000 largest communities along with network data (i.e., nodes and edges). Since

the size of the networks is too large, we first need to reduce the data to check
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how the clustering algorithms work with smaller data sets. We preprocessed the

data in a way that we randomly select top 10 mutually exclusive communities.

This guarantees that each node belongs to only a single community, which

clears the ambiguity concern of multiple membership. Second, in order to lift

the computational burden, we reject a sample containing more than 300 nodes.

Last, we randomly choose 100 samples to construct the final set of samples. The

network and community statistics averaged over 100 samples are as follows.

The average number of nodes and edges in three data sets (Amazon, DBLP,

YouTube) are (132, 107, 103) and (387, 314, 171), respectively. All data sets

have similar number of nodes, but samples from YouTube are much more sparse

networks, as they have about half the number of edges compared to the other

two data sets. The average clustering coefficients are (0.69, 0.88, 0.30); DBLP

exhibits the highest level of clustering coefficients. In sum, these three sets of

samples have different network-level characteristics, which allows us to examine

the sensitivity of algorithm performance by comparing the algorithms in these

three different settings.

Table 6 in Supplementary Materials shows the performance comparison

among the nine clustering algorithms with various configurations. In these re-

sults, the EGD method predominantly outperformed all other benchmark algo-

rithms. δd = 0 and 0.001 produce the best outcome and a larger set of t led to

a better outcome than the smaller set, such as T = {1}. The overall accuracy

scores measured in NMI are in the descending order of DBLP (95.74%), Amazon

(94.05%), and YouTube (88.81%), which suggests that higher average clustering

coefficient is associated with more accurate clustering outcomes. The statistical

testing for the three data sets showed that the proposed method outperformed

the other methods in the SNAP experiments with 95% confidence levels except

for comparisons with spectral clustering. Notice that for DBLP and YouTube

we informed spectral clustering of the correct number of clusters. To see the

p-values of the tests, refer to Supplementary Materials (Table 3).
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5.6. Amazon Co-purchasing Relationships

Since our proposed method and the dependence clustering works on the

adjacency matrix of the network, it is not limited to undirected graphs. Rather,

we surmise that our method may work better on directed graphs compared to

other favored choices of clustering methods. We construct a set of directed graph

samples from Amazon’s co-purchasing relationship between products. If product

i is purchased together with product j frequently, we denote the relationship as a

directed edge from i to j. Note that this relationship is not necessarily reflexive

because the absolute level of demand for the two products may starkly differ.

This data set is also compiled by SNAP [31]. SNAP collected the co-purchasing

network data at multiple points in time. The version we used to construct our

samples was collected by SNAP on June 1, 2003. The original population data

set consists of 403,394 nodes and 3,387,388 directed edges.

Product co-purchasing networks can serve our purpose of testing the clus-

tering algorithms only if we also have true labels of all nodes. SNAP also

provides the metadata for each node such as the product name, product group,

and optional subcategories that the product belongs to. SNAP collected the

metadata in summer 2006, approximately three years after the co-purchasing

network was collected. However, we argue that this gap in data collection time

does not affect our samples and results in a significant way because product

group and subcategories do not change frequently over time. Most of the nodes

fall into one of four product groups: books, music CDs, videos, and DVDs. We

decide to select one product group and choose books only for our final samples

for three reasons. First, we narrow down to a single product group because

we suspect co-purchasing links exist extremely sparsely across different product

groups. Second, books are highly standardized products and have a well-defined

classification scheme based on the topical subject. Third, books represent more

than 70% of the original SNAP data set, thus, choosing books does not under-

mine the representativeness of our samples. In order to uniquely assign each

book to a single true label, we pick the most frequent subject category for a

book when the book is tagged with multiple subject areas.
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With these settings in place, it is impractical for us to run various clustering

algorithms on the full data set. We thus create samples from the full data

set with which we test and compare the performance of different clustering

algorithms within a reasonable amount of time. The detailed sampling steps

are as follows. First, we choose a random book and the randomly chosen book

then becomes the only member of the seed set. Second, for each book in the

seed set, we look up books frequently co-purchased with the focal book. Third,

we add the co-purchased books to the seed set. Fourth, we repeat Step 2 and

3 until the size of the seed set reaches the previously defined threshold. We set

the threshold at 100 for our sampling process, so all of our sampled networks

have at least 100 nodes. Last, we extract all directed edges between the nodes

in the final seed set. In essence, this sampling process generates multiple layers

of egonetworks superposed to each other. The adjacency matrix resulting from

the sampling process is binary and asymmetric. We create 10 sample networks

and labels using this sampling process. The performance metrics are averaged

across the 10 samples when reported in the results section.

Each sampled network, on average, contains 165.3 nodes and 774.8 edges,

which results in an average network density of 0.03132. 34% of the directed

edges are reciprocal, which means that the two nodes have a bidirectional rela-

tionship in such cases. The frequently co-purchased relationship is not reflexive

by itself, but a significant portion of the relationship in our samples is indeed

bidirectional, largely because of our sampling process relying on egonetworks.

Still, more than 60% of the relationships are unidirectional. The average number

of subject categories for each sampled network is 22.3. One may suspect that

most of the nodes in a sampled network belong to a single category also because

of our reliance on egonetworks for sampling. However, category membership

turns out to be quite evenly distributed. The most frequent category accounts

for only 16% of the nodes in a network and the average Herfindahl-Hirschman

Index, representing the concentration of proportions, is 0.0873, which is not

particularly high.

Table 7 in Supplementary Materials shows the performance comparison be-
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tween the proposed EGD and modularity clustering methods. After the pre-

vious tests we decided to narrow down the comparison analysis to these two

methods, as they show the most stable results and both methods do not re-

quire a parameter specifying the number of clusters. EGD with low values of

t and δd outperforms modularity clustering in terms of NMI. Moreover, our

method is able to inherently handle the directed relationship by a transition

matrix, whereas the modularity approach forces the directed relationship to be

symmetric. Thus, compared to modularity clustering, our approach can better

handle problems where data sets with inherent directed nature are involved.

5.7. Gene-expression data

In this section we consider two high-dimensional data sets as regards to gene-

expression profiles. One is the lung cancer data set [32] including four known

classes of speciments: 139 adenocarcinomas (AD), 21 squamous cell carcinomas

(SQ), 20 pulmonary carcinoids (COID), and 17 normal lung (NL). The other

is St. Jude leukemia data set [33] that contains samples from pediatric acute

lymphoblastic leukemia patients. The data set includes six leukemia subtypes:

43 T-lineage (T-ALL), 27 E2A-PBX1, 15 BCR-ABL, 79 TEL-AML1, 20 MLL

rearrangements, and 64 hyperdiploid karyotype (i.e., > 50 chromosomes). More

detailed description of the data sets can be found in Table 1.

Table 1: Description of the data sets

Data set # classes # samples # features Distance/Similarity

Lung cancer 4 197 1000
Euclidean/

Gaussian (σ = 0.1)

St. Jude 6 248 985
Standardized Euclidean/

leukemia |D−max(D)|∗

* D refers to distance matrix

For both data sets similarity matrices are obtained from the distance matri-

ces using the measures described in Table 1. For the lung cancer data set the
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test results show that EGD outperforms other approaches demonstrating the

highest NMI and Rand measure scores, as shown in Table 8 (Supplementary

Materials). Note that though Modularity clustering method performs better in

terms of NMI, it assigns every point to a separate cluster, which is hardly prac-

tical. Moreover, hierarchical clustering that provides the highest Rand measure

score allocates nearly all the points to a single cluster with an exception of only

a few samples. The same happens to FSFDP and KRF. Spectral clustering

neither succeeds.

For the St. Jude leukemia data set EGD performs best with the highest

NMI value of 0.88, as shown in Table 9 (Supplementary Materials). The high-

est Rand measure score of 0.96 is provided by spectral clustering. However,

compared to spectral clustering the loss of EGD in Rand measure is not signif-

icant. Hierarchical and KRF approaches fail by assigning the majority of the

points to a single cluster which is verified by significantly low values of CS and

high values of CC.

5.8. Running Times

Finally, the running time for the methods and the data sets used in this work

are displayed in Figure 8. The experiments were conducted on a system with

the following characteristics: 64-bit Windows 10 operating system, Intel(R)

Core(TM) i5-3317U CPU 1.70 GHz, 8 GB RAM, and MATLAB (R2014b).

MATLAB implementations of the KRF approach, Metis, and GP used in the

experiments are available at [34] and [35]. For the methods which require the

number of clusters as a parameter, only iterations when the true parameter

values are provided were considered during the running-time evaluation. Figure

8(a) displays running times on the logarithmic scale grouped by the data sets

and averaged over the data sets, correspondingly. Figure 8(b) shows running

times in seconds for each method averaged over the data sets. The proposed

EGD demonstrated good performance and proved to be the most efficient for

the majority of the data sets among the ensemble methods used for comparison

in this work. In addition, we show running times according to the length of
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input data in Figure 9. The data set consists of randomly generated points in

two dimensional space where every point belongs to one of three clusters (n

points in a cluster), similarly to the example from Figure 1(a). In the tests, n

varies in the interval from 50 to 6000. The experiments were conducted on a

system with the following characteristics: 1TB of RAM, 64 CPU cores (8 cores

Intel(R) Xeon(R) E7-8837 2.67GHz per CPU), and MATLAB (R2017a). The

proposed EGD showed consistent performance among the tested methods. One

can see that EGD is comparable to Modularity, outperforming it for large input

lengths (n > 2000) and KRF+GP for all the values of T .
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Figure 8: Running times of the methods (a) grouped by the data sets (logarithmic scale), (b)

averaged over the data sets.

6. Discussions and Conclusion

Cluster ensemble algorithms recently became popular in the field of data

analysis because of the growing capabilities of computing technologies. With

careful selection of consensus procedure, they prove to be more accurate com-

pared to individual clustering results. Ensemble strategies benefit from com-

bining individual runs of a component algorithm diversified in a randomized or

systematic fashion. Randomized diversity is usually achieved by manipulating

data (e.g., bagging and nonparametric bootstrapping), whereas systematic di-

versity is the result of varying parameters (e.g., parametric bootstrapping). In
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Figure 9: Running times of the methods against data input length (logarithmic scale).

this paper, we employ the latter approach.

Our method, EGD, proposed in this paper is an ensemble approach that

maximizes the group diffusion measure. Ensemble diversity is achieved by vary-

ing the diffusion depth parameter t. This way, the combined effect of both

bias and variance error components reduction is expected. Cluster size can be

bounded below by proper settings of the dependence gain parameter δd ranging

in the interval [0, 1]. We suggest using small values of δd for the data sets with

sparse clustering structure. On the other hand, for the data sets with dense

structure and expected unclear boundaries, we recommend using higher values

of δd. We must note that the cluster size can be bounded below by setting a

hard threshold on the minimal number of points in the cluster. This provides

direct intuition to setting the threshold according to the expected size of the

smallest cluster. The solution with a dependence gain parameter is more flexible

and acts as a form of soft threshold. The intuition for setting the dependence

gain parameter is, however, less straightforward.

For evaluating the algorithm, we use both simulated and real-world data

sets. In the simulated data set, EGD outperforms modularity clustering with

respect to Rand and NMI measures. When small values of the width parameter
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σ are used, better performance is achieved for larger sets of t values. Similarly,

structures of the SNAP and gene-expression data sets are best revealed by EGD

with a larger set of t values. This is likely due to the non-uniform density

of the underlying data, which requires consideration at different scales. On

the other hand, for the NIH data set with sparse clustering structure, EGD

outperforms all other methods including modularity clustering for small t values.

This implies that this data set has a fine-grained structure which is better

discovered by small diffusion depths. In general, this zooming mechanism is

ensured by the parameter t in particular. The method is able to determine local

clusters with smaller values of t, whereas higher t values allow for determining

the global structure. The combination of its values allows for defining clusters

more accurately.

Therefore, we conclude that EGD is suitable for solving structure discovery

problems for data sets covering a wide spectrum of underlying structural and

density properties thanks to flexibility in the tuning of the parameters. Dif-

fusion depth and dependence gain parameters serve the purpose of selectively

addressing data analysis at different scales, whereas the ensemble binding pro-

vides integration over the scales. The benefit of the proposed method, however,

presents the questions of how one should set the parameters and of what are the

theoretical interpretations, and of how one can optimally set the gain parameter

depending on cluster depths, which will be a future research direction.

Despite accurate results shown in our tests, the proposed EGD algorithm can

be improved further by a number of advances. In particular, we will give more

detailed attention to the regularization of the algorithm’s optimization criterion

and the ability to efficiently handle large-sized data in the next phase of our

research. Additionally, it is highly demanded to extend the method by adding

the ability to determine overlapped clusters, where each instance may belong to

multiple clusters simultaneously. This problem is particularly important in the

field of community detection in social networks, where multiple membership is

a natural attribute.

35



Acknowledgements

This research was supported by a grant from the HPY Research Foundation

funded by Elisa, Finland. This research was also supported by the National

Safety Promotion Technology Development Program (201600000002094, Smart

crime prevention solution development through machine learning based on Im-

age Big Data), funded by the Ministry of Trade, Industry and Energy(MOTIE).

This work was also supported by the Ministry of Education of the Republic of

Korea and the National Research Foundation of Korea (NRF-2015S1A5A2A03047963).

This research was also supported by the grant (C0514059) funded by Small and

Medium Business Administration (SMBA) and AURI in the Republic of Korea.

References

[1] S. Fortunato, C. Castellano, Community structure in graphs, in: Encyclo-

pedia of Complexity and Systems Science, 2009, pp. 1141–1163.

[2] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM

Computing Surveys 31 (3) (1999) 264–323.

[3] T. J. Hastie, R. J. Tibshirani, J. H. Friedman, The elements of statisti-

cal learning : data mining, inference, and prediction, Springer series in

statistics, Springer, New York, 2009.

[4] B. Minaei-Bidgoli, A. Topchy, W. Punch, Ensembles of partitions via data

resampling, in: Proceedings of International Conference on Information

Technology: Coding and Computing, Vol. 2, 2004, pp. 188–192.

[5] R. Dudoit, J. Fridly, Bagging to improve the accuracy of a clustering pro-

cedure, Bioinformatics (2003) 1090–1099.

[6] A. L. N. Fred, A. K. Jain, Combining multiple clusterings using evidence

accumulation, IEEE Transaction on Pattern Analysis and Machine Intelli-

gence 27 (2005) 835–850.

36



[7] J. Jia, X. Xiao, B. Liu, Similarity-based spectral clustering ensemble se-

lection, in: Proceedings of 9th International Conference on Fuzzy Systems

and Knowledge Discovery, 2012, pp. 1071–1074.

[8] A. Strehl, J. Ghosh, Cluster ensembles-a knowledge reuse framework for

combining multiple partitions, Journal of Machine Learning Research 3

(2003) 583–617.

[9] M. E. J. Newman, Modularity and community structure in networks, Pro-

ceedings of the National Academy of Sciences 103 (23) (2006) 8577–8582.

[10] M. Girvan, M. E. J. Newman, Community structure in social and biological

networks, Proceedings of the National Academy of Sciences 99 (12) (2002)

7821–7826.

[11] D. Lai, H. Lu, C. Nardini, Enhanced modularity-based community detec-

tion by random walk network preprocessing, Physical Review E 81 (6).

[12] A. Arenas, A. Fernandez, S. Gomez, Analysis of the structure of complex

networks at different resolution levels, New Journal of Physics 10 (5) (2008)

053039.
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Supplementary Materials

Table 2: Results (p-values) of repeated measure ANOVA tests for Simulation data (the null

hypothesis is µ1 = µ2, in which µi means the performance of method i, and the alternative is

µ1 6= µ2)

Metod1 Method2 NMI Rand

Simulation data, σ = 0.1

EGD (δd = 0.01,T = {1}) Modularity <0.001 <0.001

Hierarchical (k=5) <0.001 <0.001

Spectral (k=5) <0.001 <0.001

FSFDP (k=5) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001

Simulation data, σ = 0.15

EGD (δd = 0,T = {1, 2}) Modularity <0.001 <0.001

Hierarchical (k=5) <0.001 <0.001

Spectral (k=5) <0.001 <0.001

FSFDP (k=5) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001

Simulation data, σ = 0.3

EGD (δd = 0,T = {1}) Modularity <0.001 <0.001

Hierarchical (k=4) <0.001 <0.001

Spectral (k=4) <0.001 <0.001

FSFDP (k=5) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001
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Table 3: Results (p-values) of repeated measure ANOVA tests for SNAP data (the null hy-

pothesis is µ1 = µ2, in which µi means the performance of method i, and the alternative is

µ1 6= µ2)

Metod1 Method2 NMI Rand

Amazon

EGD (δd = 0,T={1 to 8}) Modularity <0.001 <0.001

Hierarchical (k=11) <0.001 <0.001

Spectral (k=9) <0.001 0.131

FSFDP (k=11) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001

DBLP

EGD (δd = 0.001,T={1 to 8}) Modularity <0.001 <0.001

Hierarchical (k=11) <0.001 <0.001

Spectral (k=10) 0.300 0.043

FSFDP (k=11) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001

YouTube

EGD (δd = 0,T={1 to 8}) Modularity <0.001 <0.001

Hierarchical (k=11) <0.001 <0.001

Spectral (k=10) 0.200 0.977

FSFDP (k=11) <0.001 <0.001

KRF+Metis <0.001 <0.001

KRF+GP <0.001 <0.001
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Figure 10: EGD clustering steps in illustrative example for T = {2, 7}. (a) The first eigenvec-

tor of similarity matrix at the first iteration, (b) the first division, (c) the first eigenvector of

similarity matrix at the second iteration, (d) the second division, (e) the first eigenvector of

similarity matrix at the third iteration, (f) the third division.
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Figure 11: EGD clustering steps in illustrative example for T = {1, 9}. (a) The first eigenvec-

tor of similarity matrix at the first iteration, (b) the first division, (c) the first eigenvector of

similarity matrix at the second iteration, (d) the second division, (e) the first eigenvector of

similarity matrix at the third iteration, (f) the third division.
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Table 5: NIH

Method δd Parameter CC CS Rand NMI

EGD 0 T = {1} 0.3422 0.9306 0.9201 0.4946

T = {1, 2} 0.3253 0.9305 0.9192 0.4868

T = {1 to 4} 0.2907 0.9311 0.9156 0.4743

T = {1 to 8} 0.2915 0.9312 0.9155 0.4726

0.0001 T = {1} 0.3313 0.9306 0.9195 0.4881

T = {1, 2} 0.3253 0.9305 0.9192 0.4868

T = {1 to 4} 0.2907 0.9311 0.9156 0.4743

T = {1 to 8} 0.2915 0.9312 0.9155 0.4726

Modularity 0.3048 0.9308 0.9173 0.4843

Hierarchical k = 43 0.0753 0.9303 0.2287 0.1690

k = 44 0.0753 0.9303 0.2287 0.1699

k = 45 0.0754 0.9307 0.2305 0.1717

Spectral k = 43 0.1322 0.9299 0.8767 0.3571

k = 44 0.1424 0.9303 0.8810 0.3705

k = 45 0.1309 0.9295 0.8797 0.3523

FSFDP k = 43 0.0777 0.9612 0.1559 0.1686

k = 44 0.0771 0.9547 0.1565 0.1519

k = 45 0.0773 0.9504 0.1745 0.1612

Metis k = 43 0.2436 0.9296 0.9142 0.4093

k = 44 0.2703 0.9300 0.9157 0.4296

k = 45 0.2533 0.9296 0.9152 0.4189

KRF+Metis 0.2505 0.9295 0.9150 0.4134

GP k = 43 0.1568 0.9297 0.8938 0.3676

k = 44 0.1430 0.9294 0.8893 0.3613

k = 45 0.1694 0.9299 0.8975 0.3788

KRF+GP 0.2150 0.9287 0.9135 0.3800
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Table 7: Amazon co-purchasing relationships

Method δd Parameter CC CS Rand NMI

EGD 0 T = {1} 0.0772 0.9184 0.8317 0.2971

T = {1, 2} 0.0813 0.9192 0.7697 0.2563

T = {1 to 4} 0.0810 0.9185 0.8190 0.2746

T = {1 to 8} 0.0808 0.9188 0.7680 0.2326

0.001 T = {1} 0.0800 0.9185 0.8179 0.2564

T = {1, 2} 0.0816 0.9192 0.7616 0.2253

T = {1 to 4} 0.0804 0.9184 0.8116 0.2381

T = {1 to 8} 0.0804 0.9187 0.7641 0.2065

Modularity 0.0778 0.9182 0.8441 0.2872
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Table 8: Lung cancer

Method δd Parameter CC CS Rand NMI

EGD 0.09 T = {1} 0.2928 0.7630 0.5164 0.1069

T = {1, 2} 0.2172 0.7902 0.4896 0.1259

T = {1 to 4} 0.2643 0.7477 0.4941 0.0345

T = {1 to 8} 0.3346 0.7997 0.5557 0.3609

Modularity 0 1 0.4754 0.4192

Hierarchical k = 3 0.9963 0.0386 0.5410 0.0974

k = 4 0.9947 0.0578 0.5493 0.1206

k = 5 0.9931 0.0771 0.5576 0.1408

Spectral k = 3 0.4330 0.6147 0.5194 0.0188

k = 4 0.4162 0.6056 0.5063 0.0153

k = 5 0.5231 0.4420 0.4845 0.0508

FSFDP k = 3 0.9864 0.0063 0.5204 0.0103

k = 4 0.9864 0.0063 0.5204 0.0103

k = 5 0.9864 0.0063 0.5204 0.0103

Metis k = 3 0.3281 0.6680 0.4897 0.0061

k = 4 0.2435 0.7508 0.4847 0.0083

k = 5 0.1952 0.8032 0.4843 0.0160

KRF+Metis 1 0 0.5246 0

GP k = 3 0.3292 0.6675 0.4901 0.0137

k = 4 0.2512 0.7543 0.4904 0.0246

k = 5 0.1986 0.7994 0.4843 0.0493

KRF+GP 1 0 0.5246 0
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Table 9: St. Jude leukemia

Method δd Parameter CC CS Rand NMI

EGD 0.06 T = {1} 0.9469 0.9319 0.9351 0.8262

T = {1, 2} 0.9469 0.9623 0.9589 0.8800

T = {1 to 4} 0.8882 0.9648 0.9482 0.8539

T = {1 to 8} 0.7514 0.9827 0.9325 0.8172

Modularity 0.9686 0.8411 0.8688 0.7640

Hierarchical k = 3 0.9512 0.0475 0.2436 0.0845

k = 4 0.9485 0.0568 0.2503 0.0974

k = 5 0.9482 0.0568 0.2503 0.0953

Spectral k = 3 0.9418 0.9646 0.9596 0.8663

k = 4 0.7265 0.9640 0.9125 0.7675

k = 5 0.8488 0.9879 0.9578 0.8640

FSFDP k = 3 0.9449 0.7988 0.8305 0.7428

k = 4 0.9233 0.8833 0.8920 0.8253

k = 5 0.9175 0.8761 0.8851 0.8038

Metis k = 3 0.9497 0.3772 0.5015 0.4488

k = 4 0.7265 0.7412 0.7380 0.4956

k = 5 0.6348 0.6824 0.6721 0.4129

KRF+Metis 1 0 0.2170 0

GP k = 3 0.6333 0.9242 0.8611 0.6845

k = 4 0.5557 0.9454 0.8608 0.6704

k = 5 0.4956 0.9593 0.8587 0.6764

KRF+GP 1 0 0.2170 0
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