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Abstract

We propose an extension of Torra’s notion of hesitant fuzzy set, which appears to be well
suited to group decision making. In our model, indecisiveness in judgements is described
by two nested hesitant fuzzy sets: the smaller, called necessary, collects membership values
determined according to a rigid evaluation, whereas the larger, called possible, comprises
socially acceptable membership values. We provide several instances of application of our
methodology, and accordingly design suitable individual and group decision procedures.
This novel approach displays structural similarities with Atanassov’s intuitionistic fuzzy
set theory, but has rather different goals. Our source of inspiration comes from preference
theory, where a bi-preference approach has proven to be a useful extension of the classical
mono-preference modelization in the fields of decision theory and operations research.

Key words: Hesitant fuzzy set; Necessary and possible preference; Decision making;
Score; Aggregation operator.

1. Introduction

Zadeh’s [56] fuzzy set theory deals with impreciseness or vagueness of data and eval-
uations by imputing degrees to which objects belong to a set. The appearance of fuzzy
set theory induced the rise of several related theories, which codify subjectivity, uncer-
tainty, imprecision, or roughness of evaluations. The rationale of these theories is to create
new and more flexible methodologies, which allow one to realistically model a variety of
concrete decision problems.

In this direction, a recent and promising extension of fuzzy set theory is represented
by Torra’s [46] hesitant fuzzy sets (HFSs). As Bustince et al. [12] explain, this notion
coincides with set-valued fuzzy sets in Grattan-Guinness [30]. The characterizing feature
of HFSs is that they permit to model a type of imprecise human knowledge that cannot
be captured by classical fuzzy sets: for instance, collective decision making is a natural
outlet for hesitant fuzzy models [3].
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The naturalness of HFSs is witnessed by the quickly growing literature in the field. For
instance, Alcantud and Torra [5] define the notion of uniformly typical HFS, which appears
to be a rather good fit for real applications. Among the several extension/variations of the
theory of hesitant fuzzy sets, let us mention Zhu and Xu [58], who define extended HFSs,
and Alcantud and Santos-Garćıa [6], who introduce expanded HFSs. Liao and Xu [37,
section 1.2] give an account of earlier extensions of the HFS model, e.g., dual hesitant
fuzzy sets (Zhu et al. [59]), hesitant fuzzy linguistic term sets (Rodŕıguez et al. [44]), and
interval-valued hesitant fuzzy sets (Chen et al. [14, 15]).

Enlarging the scope of HFS is motivated by an attempt to make modelization more
precise and adherent to reality, also designing transparent and flexible decision procedures.
In this direction, here we propose a hybrid approach to the topic, which employs a nested
pair of HFSs in place of a single one. Although this approach bears some resemblance
with the ethos of Atanassov’s intuitionistic fuzzy sets (IFSs), our goals are rather different,
being mostly related to the creation of effective decision procedures that are suited to a
collective/social setting.

The inspiration and motivation of our model stems from a recent and non-standard
approach to preference modeling, based on “necessary and possible preference structures”.
Due to the generality of its underlying philosophy, this approach has already adapted to
different fields of research. For instance, a very recent fuzzy modelization of the political
system [4] is inspired by a necessary and possible approach. In this new setting, the
private opinion of a generic citizen on each topic of the political campaign is modeled by a
trapezoidal (or quasi-trapezoidal) fuzzy profile on the interval [−1, 1] (where −1 is extreme
left, and 1 is extreme right). On the other hand, the opinions of political candidates are
modeled by two profiles on each topic of the campaign: a private (necessary) profile
describing the politician’s intimate beliefs, and a public (possible) profile containing the
former and expressing his political tolerance. The result is a PaP-profile –private and
public profile– for each topic of the political campaign. Political parties are then created
on the basis of the similarity of politicians’ PaP-profiles.

In order to better motivate our model, let us preliminarily review some recent de-
velopments in the fields of both IFSs and preference theory. It may be the case that
a practitioner believes that an option belongs to a set to a certain degree –as fuzzy sets
assume– but, at the same time, she is unsure about such an assessment. In order to model
such a situation, Atanassov [7, 8, 9] introduced intuitionistic fuzzy sets, which associate
to each element of the ground set a pair of numbers in the unit interval, representing
membership and non-membership evaluations. (Notice that, as a consequence of the def-
inition, the sum of the two membership degrees should not exceed one for each element
of the ground set.) In a nutshell, intuitionistic fuzzy set theory models judgements from
both a “positive” and a “negative” point of view, thus refining the classical approach.

Concerning preference modeling, the typical way to represent an economic agent’s
preference structure (in a non-stochastic setting) on a set of alternatives is by means
of a binary relation, which is typically assumed to satisfy forms of completeness and/or
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transitivity.1 Historically, preorders, semiorders [25, 38, 41], interval orders [19, 20], and
tournaments [39] are the types of binary relations that have been employed for the mod-
elization of preferences, due to the fact that they satisfy some desirable –yet not too
demanding– properties: see, e.g., the books [10, 41] and references therein for an exten-
sive list of possible applications of these natural types of preference structures.

A very recent approach to preference modeling departs from this traditional setting
by employing a pair of suitably interconnected binary relations in place of a single binary
relation. The advantage of this bi-preference approach lies in the possibility to more flex-
ibly model preference structures (of a single agent or a set of agents) in several scenarios.
More specifically, the two layers of information in a bi-preference allow one to single out
the binary relations of “strict preference”, “indifference”, “incomparability”, and “indeci-
siveness”. This represents an enrichment of the descriptive power of the model, since the
mono-preference approach usually identifies indecisiveness with incomparability.

Technically, the two components of a bi-preference are nested into each other, and are
connected by properties that make this structure well suited to applications in economics
and psychology. The two traditional tenets of economic rationality –completeness and
transitivity– are “spread” over the two components of a bi-preference: the first (called
rigid) is transitive but usually incomplete, whereas the second (called soft) is possibly
complete but typically intransitive. Finally, the property of transitive coherence ensures
that the soft component partially retains transitivity with respect to the rigid component.2

It is apparent that the theory of bi-preferences displays, mutatis mutandis, some struc-
tural similarities with Atanassov’s IFSs. However, there are major theoretical differences
between the two approaches, both methodologically and semantically. For instance, con-
trary to bi-preferences, there is no nesting relationship in the case of IFSs. Further,
bi-preferences (and the model that we propose from their hybridization with HFSs) com-
pletely dismiss the property that certain sums should be bounded by 1.

A special class of bi-preferences is given by necessary and possible preferences (NaP-
preferences), which satisfy additional structural properties. Originally introduced in the
field of Multiple Criteria Decision Aid as an operating tool for the so-called Robust Or-
dinal Regression [32], in the last years NaP-preferences have proven to be useful in the
modelization of a large amount of decision problems that require techniques of operations
research: see the survey [31].3 In a necessary and possible modelization of preferences,

1The weakest form of transitivity is acyclicity (i.e., the non-existence of cycles of strict preferences),
which has been studied at large in the literature: see, e.g., [1, 40].

2For a detailed discussion on the topic, see the introductory sections of [13] and [23], and especially
the extensive analysis of uniform bi-preferences in [29].

3The axiomatization of NaP-preferences is quite recent [23]. Further, NaP-preferences have been
examined from several points of view: their relationship with preference relations satisfying (m,n)-
Ferrers properties [24, 28], and, in particular, with the genesis of interval orders and semiorders [21];
asymmetric and normalized forms of NaP-preferences [22]; well-graded families –in the sense of Doignon
and Falmagne [16]– of NaP-preferences [26]; symmetric counterparts of NaP-preferences, called NaP-
indifferences [27]; bi-preference structures under uncertainty [13]; generalizations of NaP-preferences by
uniform types of bi-preferences [29].
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the total information provided by an economic agent is split in two parts: (i) “positive”,
codified by the necessary component; and (ii) “negative”, codified by the impossible com-
ponent (that is, the complement of the possible component). Then the complement of
the overall information representes a hesitation in preferential judgements: the parallel
with intuitionistic fuzzy set theory is now apparent.

The idea underlying this paper is to replicate the new approach to preference theory
mentioned above within the realm of hesitant fuzzy sets, defining a notion of NaP-HFS
(necessary and possible HFS) as a suitable pair of HFSs. Then the two components of a
NaP-HFS are: (i) the necessary HFS, which describes the set of “individually preferred”
membership values; and (ii) the possible HFS, which provides the set of “socially ac-
ceptable” membership values. In this way we obtain a new notion, which encompasses
hesitant fuzzy sets, and is more flexible in capturing the subtleties of decision making,
especially in a collective setting. Here we start developing the main properties of this
novel construction, and define some useful tools to help the practitioner to analyze the
concept. In particular, several examples of this paper emphasize its capability to model
situations of collective decisions. Finally, we employ these tools (aggregation operators,
scores, etc.) to effectively propose a flexible decision making procedure, which generalizes
widely accepted procedures that employ hesitant fuzzy sets.

The paper is organized as follows. Section 2 collects all preliminaries on hesitant
fuzzy sets, as well as some variations and extensions. In particular, we dwell on the
notions of aggregation operator and score, and propose comprehensive definitions in the
general setting. The core of the paper is Section 3, where we describe our necessary and
possible approach to hesitant fuzzy sets. To motivate our analysis, we provide several
examples of possible applications. We also extend some typical operations on hesitant
fuzzy sets to a necessary and possible setting, and introduce new types of operators that
are specifically related to nested pairs of hesitant fuzzy sets. In Section 4 we develop
a flexible decision making procedure for alternatives defined by typical NaP-HFSs. We
illustrate this procedure in some examples, and then discuss its relationship with earlier
approaches by HFSs. We also put forward a variation that initiates group decision making
in this context. Section 5 summarizes the results of the paper and suggests future
directions of research. The Appendix contains some remarks about a novel notion of
monotonicity for scores, which makes them better suited for sound decision procedures.

2. Preliminaries on hesitant fuzzy sets

In this section we recall the basic terminology on hesitant fuzzy sets, and mention
some interesting extensions of the original definition. Hereafter, we fix a nonempty set X
of alternatives. Further, we use the following notation:
- P([0, 1]) is the family of all subsets of the unit interval [0, 1],
- P∗([0, 1]) is the family of all nonempty subsets of [0, 1],
- F∗([0, 1]) is the family of all nonempty finite subsets of [0, 1], and
- F∗n([0, 1]) is the family of all nonempty subsets of [0, 1] with n or fewer elements.

4



We warn the reader that at times we shall employ a slightly non-standard terminology,
which is notationally simpler than the one typically found in the specialized literature.
The reason for our choice is that the approach proposed in this paper naturally requires
the introduction of several new notions, which would make the presentation cumbersome,
should we stick with standard notation.

2.1. Main definitions

The main objects of our analysis are hesitant fuzzy sets:

Definition 1 (Xia and Xu [50],Torra [46]). A hesitant fuzzy element (HFE ) is a subset
E of [0, 1]. A hesitant fuzzy set (HFS) over X is a function h : X → P([0, 1]). An HFS h
over X is proper if h(x) 6= ∅ for all x ∈ X; otherwise, it is improper. In particular, the
trivial HFS over X is the (improper) HFS defined by h(x) = ∅ for all x ∈ X.

In many practical applications, the employed HFSs are proper, and they map each
element of X to a finite subset of [0, 1].

Definition 2 (Bedregal et al. [11]). A typical hesitant fuzzy set (THFS) over X is a
function h : X → F∗([0, 1]). A typical hesitant fuzzy element (THFE ) is a nonempty
finite subset of [0, 1].

Notice that the family of THFEs is equal to F∗([0, 1]). Every HFS over X associates
a set of membership values to each element of X, which may be empty for some x ∈ X.
However, if the HFS is typical, then any such set of membership values must always be
finite and nonempty, that is, each x ∈ X is mapped to a THFE. It is customary to list
the elements of a THFE in ascending order, i.e., E is a set of the type {e1, . . . , ek} ⊆ [0, 1]
for some k > 1, where e1 < . . . < ek. Noteworthy examples of THFEs are E = {1} (full
HFE ) and E = {0} (empty HFE ).

As usually done, we often represent a hesitant fuzzy set h over X as a set of ordered
pairs, i.e., h = {(x, h(x)) : x ∈ X}. For example, the ideal or full HFS over X is
{(x, {1}) : x ∈ X}, and the anti-ideal or empty HFS over X is {(x, {0}) : x ∈ X}.

The following definition provides a strengthening of the notion of typical HFS:

Definition 3 (Alcantud and Torra [5]). A typical hesitant fuzzy set h over X is uniformly
typical if there is n ∈ N such that |h(x)| 6 n for each x ∈ X. Equivalently, a uniformly
typical hesitant fuzzy set is a function h : X → F∗n([0, 1]) for some n > 1. We shall
abbreviate “uniformly typical HFS” by UHFS.

Clearly, every UHFS is a THFS, but the converse fails to hold in general. However, if
the ground set X is finite, then the two notions THFS and UHFS coincide. Alcantud and
Torra [5] associate a positive integer to each UHFS, its characteristic. Updated surveys of
HFSs and their applications include Rodŕıguez et al. [43], Rodŕıguez et al. [45], and Xu [51]:
these contributions illustrate the importance of hesitant fuzzy sets for both theoretical
and applied purposes. Further, the recent paper [2] provides up-to-date references on the
ranking of projects evaluated by HFSs.
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2.2. Basic operations on hesitant fuzzy sets

Some typical operators on HFSs are the following:

Definition 4 (Torra [46], Torra and Narukawa [47]). To any HFS h = {(x, h(x)) : x ∈ X}
over X, associate the following “derived” HFSs:

1. the lower bound h− of h, defined by h−(x) := {inf{h(x) : x ∈ X}} for all x ∈ X;

2. the upper bound h+ of h, defined by h+(x) := {sup{h(x) : x ∈ X}} for all x ∈ X;

3. for any α ∈ [0, 1], the α-lower bound h−α of h, defined by h−α (x) := {e ∈ h(x) : e 6 α}
for all x ∈ X;

4. for any α ∈ [0, 1], the α-upper bound h+
α of h, defined by h+

α (x) := {e ∈ h(x) : e > α}
for all x ∈ X;

5. the complement hc of h, defined by hc(x) = {1− h(x) : x ∈ X} for all x ∈ X.

Inspired by practical reasons, Torra [46] (see also Torra and Narukawa [47]) introduces
suitable notions of union and intersection –here renamed “discrete union” and “discrete
intersection”– between two HFSs. The next definition collects these notions, as well as
some less standard notions of union and intersection, here named “indiscrete”.

Definition 5. Let h1 and h2 be two HFSs over X.

1. The indiscrete union h1 ∨ h2 of h1 and h2 is the HFS over X defined as follows for all
x ∈ X: (h1 ∨ h2)(x) := h1(x) ∪ h2(x).

2. The discrete union h1 ∪ h2 of h1 and h2 is the HFS over X defined as follows for all
x ∈ X:

(h1 ∪ h2)(x) :=
{
e ∈ h1(x) ∪ h2(x) : e > max{h−1 (x), h−2 (x)}

}
⊆ (h1 ∨ h2)(x).

3. The indiscrete intersection h1 ∧ h2 of h1 and h2 is the HFS over X defined as follows
for all x ∈ X: (h1 ∧ h2)(x) := h1(x) ∩ h2(x).

4. The discrete intersection h1 ∩ h2 of h1 and h2 is the HFS over X defined as follows for
all x ∈ X:

(h1 ∩ h2)(x) :=
{
e ∈ h1(x) ∪ h2(x) : e 6 min{h+

1 (x), h+
2 (x))

}
⊆ (h1 ∨ h2)(x).

We shall use indiscrete union and intersection to aggregate nested pairs of HFSs.
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2.3. Aggregation of hesitant fuzzy elements

Xia and Xu [50] propose several aggregation operators on HFEs, which are then em-
ployed to describe effective decision making algorithms based on pieces of hesitant fuzzy
information. Many other examples of aggregation operators have been defined in the liter-
ature, e.g., by Yu et al. [55], and Wei [49]. (See [45, section 4] for an extensive account on
the topic.) However, to the best of our knowledge, the literature on HFSs lacks a formal
definition of “aggregation operator”. Thus, we propose the following general notion:

Definition 6. Let Pn([0, 1]) denote the Cartesian product of n copies of P([0, 1]), that is,

Pn([0, 1]) := P([0, 1])× . . .× P([0, 1])︸ ︷︷ ︸
n

.

Further, let P([0, 1]) denote the union of all finite Cartesian powers of P([0, 1]), that is,

P([0, 1]) :=
∞⋃
n=1

Pn([0, 1]) .

A HFE-aggregation operator is a map Ψ: P([0, 1]) → P([0, 1]) satisfying the following
properties:

1. (Non-triviality) for each n > 1 and E1, . . . , En ∈ P∗([0, 1]), we have Ψ(E1, . . ., En) 6= ∅;

2. (Identity) for each E ∈ P([0, 1]), we have Ψ(E) = E;

3. (Inclusiveness) for each E ∈ P([0, 1]) and n > 1, the inclusion E ⊆ Ψ(E, . . . , E︸ ︷︷ ︸
n

) holds;

4. (Monotonicity) for each n > 1 and E1, . . . , En, E
′
1, . . . , E

′
n ∈ P∗([0, 1]) such that Ei ⊆

E ′i for all i, the inclusion Ψ(E1, . . ., En) ⊆ Ψ(E ′1, . . ., E
′
n) holds;

5. (Typicality) for each n > 1 and E1, . . . , En ∈ F∗([0, 1]), Ψ(E1, . . ., En) is a THFE.

Further, we say that Ψ is an anonymous HFE-aggregation operator if it satisfies the
following additional property:

6. (Anonymity) for each n > 1 and E1, . . . , En ∈ P∗([0, 1]), if π is any permutation of
the set {1, . . . , n}, then the equality Ψ(E1, . . ., En) = Ψ(Eπ(1), . . ., Eπ(n)) holds.

A THFE-aggregation operator is an HFE-aggregation operator restricted to the union
of all finite Cartesian powers of F∗([0, 1]), i.e., a map Φ: F∗([0, 1])→ F∗([0, 1]), where

F∗([0, 1]) =
∞⋃
n=1

F∗([0, 1])× . . .×F∗([0, 1])︸ ︷︷ ︸
n

,

such that properties 2–4 hold (properties 1 and 5 are obviously satisfied). THFE-aggregation
operators can also be anonymous in the obvious sense.

7



Non-triviality and Identity are very natural in this context: the former means that the
aggregation of nonempty HFEs is a nonempty HFE, whereas the latter requires that the
aggregation of a single HFE produces exactly the same HFE. Inclusiveness assures that
when we aggregate several instances of a given HFE, every membership degree in such
HFE is a membership degree in the aggregate. With Monotonicity we guarantee that
larger HFEs produce larger aggregate results. Typicality is self-explanatory. Anonymity
is standard, but it is not always desirable: it states that the order of presentation of HFEs
has no bearing on their aggregate result.4

To aggregate evaluations and eventually obtain decision procedures, some authors have
proposed several types of “averaging operators” over time. The following operators are
defined in [50]:

Definition 7. For all E1, . . . , En ∈ F∗([0, 1]), define:

(i) the hesitant fuzzy averaging (HFA) operator by

HFA(E1, . . . , En) =
⋃

e1∈E1,...,en∈En

{(
1−

n∏
i=1

(1− ei)1/n
)}

;

(ii) the hesitant fuzzy geometric (HFG) operator by

HFG(E1, . . . , En) =
⋃

e1∈E1,...,en∈En

n∏
i=1

(ei)
1/n;

(iii) the hesitant fuzzy weighted averaging (HFWA) or geometric (HFWG) operators,
which extend (i) and (ii) by introducing weights wi ∈ [0, 1] with

∑n
i=1 wi = 1, by

HFWA(E1, . . . , En) =
⋃

e1∈E1,...,en∈En

{(
1−

n∏
i=1

(1− ei)wi

)}

HFWG(E1, . . . , En) =
⋃

e1∈E1,...,en∈En

n∏
i=1

(ei)
wi .

All operators listed in Definition 7 are indeed THFE-aggregation operators in the sense
of Definition 6:

Proposition 1. The HFA, HFG, HFWA, and HFWG operators are THFE-aggregation
operators. Further, HFA and HFG are anonymous, whereas HFWA and HFWG are non-
anonymous.

Proof. Straightforward.

4The order of presentations of HFEs may well influence the aggregate results in some circumstances:
imagine a situation in which the first agent to express an opinion is the CEO of a corporation, whereas
the other agents are VPs at a lower level of the hierarchy.
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2.4. Scores of hesitant fuzzy elements

Scores are [0, 1]-valued functions that evaluate hesitating fuzzy elements. Scores close
to zero are typical of HFEs with very low membership values, whereas scores close to
one characterize HFSs that contain very high membership values. Formally, scores can be
defined as follows:5

Definition 8. Given a family G ⊆ P([0, 1]), a score on G is a function s : G → [0, 1] with
the following properties:6

1. s(∅) = 0 whenever ∅ ∈ G;

2. (Boundedness) for all E ∈ G, we have inf(E) 6 s(E) 6 sup(E).

A score on G = P([0, 1]) is called total, and a score on G = F∗([0, 1]) is called typical.

Notice that Boundedness implies that s({a}) = a for each a ∈ [0, 1] such that {a} ∈ G;
in particular, we have s({0}) = 0 and s({1}) = 1. The most used scores are typical (in
the sense of Definition 8), since they are defined on the family of all finite subsets of the
unit interval. The next example collects some simple instances of this kind.

Example 1. The following functions s : F∗([0, 1])→ [0, 1] are typical scores, where E =
{e1, . . . , en}, with e1 < . . . < en, is an arbitrary element of F∗([0, 1]):

• (min) s(E) = e1;

• (max ) s(E) = en;

• (second worst) s(E) = e1 if |E| = 1, and s(E) = e2 otherwise;

• (second best) s(E) = en if |E| = 1, and s(E) = en−1 otherwise;

• (average)7 s(E) = (e1 + . . .+ en)/n;

• (cut average) s(E) is the average if |E| 6 2, and s(E) = (e2 + . . . + en−1)/(n − 2)
otherwise.

The reason to employ typical scores such as “min” or “second worst” may be due to
a pessimistic/cautious view of the given evaluations. For instance, if a THFE collects all
membership values provided by experts in a certain field, the decision maker may want to
adopt a very cautious attitude, and select either the minimum evaluation or the second

5The generic term “the score function for HFEs” has often been used to designate specific examples,
as explained in [45]. Alcantud et al. [3] formally define score operators for typical HFEs: here we employ
a slight weakening of their definition.

6Farhadinia [18, Section 2] defines scores for the special case of THFEs with the same number of
(possibly repeated) elements. Besides this restriction, which we eschew, his definition imposes some
unnecessary boundary conditions.

7This is the Xia–Xu score: see Definition 9(i).
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worst. Dually, using scores such as “max” or “second best” reveals an optimistic/reckless
view of the evaluations collected in a THFE. Finally, scores such as the average or the
cut average are typical of situations that require to take the mean of evaluations (possibly
eliminating the worst and the best evaluations, as for some competitions at the Olympics).

The literature on typical scores is abundant: see Xia and Xu [50], and Farhadinia [17,
18], as well as [45, section 2] for further examples. Three noteworthy examples of scores
are the following:

Definition 9. For each E = {e1, . . . , en}, with e1 < . . . < en,

(i) the (typical) Xia–Xu score is the function s
XX

(E) =
∑n

i=1 ei/n,

(ii) for a nondecreasing sequence (δn)n>1 of positive numbers, the (typical) Farhadinia
score is the function s

F
(E) =

∑n
i=1(δiei)/

∑n
i=1 δi, and

(iii) the (typical) geometric-mean score is the function sgm(E) =
(∏n

i=1 ei
)1/n

.

Clearly, (ii) includes (i) as a special case, taking the constant sequence with value 1.

Scores were originally introduced because they permit to rank HFEs: the higher the
score of a HFE, the higher its relevance. Notice that, however, this ranking fails to be
fully discriminative in general, due to the possibility of ties between distinct HFSs. As a
matter of fact, ties must always appear for total scores, because there is no injection from
P(X) to X for any nonempty X.8 Rodŕıguez et al. [45, section 2] attest this issue both
with Xia–Xu’s and Farhadinia’s score, and examples can be produced to show that the
geometric score displays the same problem. Thus, even if the scores given in Definition 9
are not fully satisfactory, we cannot discard them on account of this issue, because it
affects them all in the same way.

In this paper, we shall only employ (an adaptation of) the averaging Xia–Xu score. The
main reason for our choice is this score satisfies a (desirable) property of “strong mono-
tonicity”, which makes it better suited to sound decision procedures. On the contrary,
scores (ii) and (iii) even fail to be “monotonic”. For the notions of strongly monotonic
and monotonic, see the Appendix.

3. Necessary and possible hesitant fuzzy sets

In this section we propose a new model of hesitant fuzzy sets, which generalizes some
known approaches by considering a nested pair of hesitant fuzzy sets. As we shall see, the
advantages of our model are not limited to a syntactic extension of the typical setting.
Indeed, the main feature of this novel approach is the possibility to allow flexibility in
applying it to concrete decision problems, especially when a group of agents is involved.

8In order to lessen this handicap, Alcantud and de Andrés [2] suggest a segment-based approach to
the problem of prioritizing hesitant fuzzy sets.
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3.1. Definition and semantics

Definition 10. A necessary and possible hesitant fuzzy set (NaP-HFS) over X is a pair
H = (hN , hP ) of hesitant fuzzy sets over X such that the inclusion hN(x) ⊆ hP (x) holds
for all x ∈ X. In this case, hN and hP are called, respectively, the necessary HFS and
the possible HFS of H. A NaP-HFS is proper if so is its possible component. Following
standard conventions in HFSs, we sometimes denote a NaP-HFS by the corresponding set
of triples, that is,

H =
{

(x, hN(x), hP (x)) : x ∈ X
}
.

A pair (EN , EP ), with EN ⊆ EP ⊆ [0, 1], is a necessary and possible hesitant fuzzy element
(NaP-HFE ); EN and EP are, respectively, its necessary HFE and its possible HFE.

Although some applications may require the possible HFS to be infinite-valued (e.g.,
it maps elements of the ground set on an interval, as in Example 5 below), in several cases
a finite environment suffices to model a decision problem. This consideration motivates
the following definition:

Definition 11. A NaP-HFS is typical (resp. uniformly typical) whenever its possible HFS
is typical (resp. uniformly typical) and its necessary HFS is proper. A pair (EN , EP ) such
that EP is a THFE and ∅ 6= EN ⊆ EP is a NaP-THFE.

Example 2. Let X = {x, y} be the set of options. Then

H =
{

(x, {0.2, 0.6}, {0.2, 0.3, 0.4, 0.5, 0.6}) , (y, {0.9}, {0.8, 0.9, 1})
}

is a uniformly typical NaP-HFS .

The semantics of a necessary and possible hesitant fuzzy set is quite natural in a
social/collective context. To clarify the point, assume that we are given a set C of economic
agents, who have to deliberate on the set of membership degrees of each x ∈ X. Then
the attitude of each agent c ∈ C may be synthesised by a NaP-HFS (hcN , h

c
P ), where the

necessary HFS hcN represents the core part of his beliefs, and the possible HFS hcP enlarges
the range of his evaluations by adding some compromise solutions.

More generally, in a social context we can identify two dual semantics of a NaP-HFS:

(1) from personal to social (bottom-up);

(2) from social to personal (top-down).

In semantics (1), the personal beliefs of each actors are primitive, and his social beliefs are
constructed only successively according to the goal at hand. Conversely, in semantics (2),
a social context is exogenously given (and shared by all actors involved in the decision
process), and only successively agents identify those values that fit their intimate attitude.
Let us further elaborate on these two semantics.

From point of view (1), each hcN(x) is primitive, and comprises all membership values
for the alternative x that the agent c intimately regards as suitable for the decision prob-
lem at hand. In a social context, however, some compromises on personal beliefs are often
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inevitable. Thus, each agent c ∈ C may “enrich” his evaluations by adding new member-
ship values for all x ∈ X, according to several factors (e.g., cultural/political opportunity,
discussions with other members of the community, attempts to create a coalition, etc.).
This process yields a (possibly larger) set hcP (x), which contains all membership values
for the element x ∈ X that the agent c considers as socially admissible/acceptable.9

On the contrary, considering point of view (2), assume that a “social perspective”
is given in the form of all admissible membership values for each alternative x: this is
synthesised by a set hC(x) of membership values for all x ∈ X. Then each agent c ∈ C
selects within hC(x) those membership values that he considers somehow justifiable from
his point of view, thus identifying a (possible) subset hcP (x) ⊆ hC(x) for all x ∈ X. At the
last stage, the agent c creates the (necessary) sets hcN(x) ⊆ hcP (x) for all x ∈ X, which
comprise only those membership values that really fit his personal attitude.

In the above (simplified) discussion, we assumed that each hesitant fuzzy element
that appears in the modelization is composed of all membership values provided by a
single agent. However, in our necessary and possible setting, HFEs appear to be better
suited to collect membership values expressed by subgroups of agents, who are a part of
a larger group of decision makers. The next subsection is devoted to clarify this point, by
presenting some practical applications of our approach.

3.2. Justification of the model and some motivating examples

The purpose of any novel model is typically manifold. It should be a faithful expression
of natural situations. It should help explain or understand facts better than existing
models. Ultimately, it should be applicable to make decisions.

Although individual agents are unlikely to employ apparently sophisticated principles
like those underlying NaP-HFSs, it is precisely because of their complexity that NaP-HFSs
may be successful in representing the intricacy of social scenarios. Some examples given
in this section justify such a claim. At any rate, it does not come as a surprise that
complicated models are needed to encapsulate collective interactions and beliefs, whence
the proliferation of statistical, game-theoretic, and optimization models. Observe also the
complexity of tax imposition, mortgages, insurance fees, investment decisions, etc.

As a first example supporting our claim, let us mention again the recent work in fuzzy
politics [4], where the authors have successfully employed a non-standard approach to
create a more faithful model of party formation in a fuzzy political setting. Its explanatory
power derives from a natural revision of existing well-established models according to a
necessary and possible logic, which improves widely accepted descriptions of the societal
mechanisms of party formation.

To provide further motivating evidence for the usefulness of our approach, below we
propose some decision making procedures, which are admittedly not simple to execute

9This point of view has already been employed in a recent modelization of the political system by
means of fuzzy sets [4]. In fact, the so-called private and public profiles (PaP-profiles) of politicians,
which are the prerequisite for the genesis of parties by the aggregation of similar profiles, are created for
each topic of interest in the political campaign according to a bottom-up logic.
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but, on the other hand, quite powerful. In terms of computational costs, they appear
to be perfectly affordable for the current state of affairs in mathematical software and
computers. Quite surprisingly, the fact that the agents may not be fully aware of the
complications of the procedure can even be regarded as an advantage: in fact, it can
deter them from using forbidden strategic types of behavior (e.g., cheating, since in a
simple procedure they can easily observe the benefits of their false statements). At any
rate, the agents’ concern should be the correct expression of their beliefs, rather than
their final implications with respect to decisions. In this respect, the procedures proposed
below appear to be well suited even for complicated types of judgements. Notice also that
the possible technicalities of the process end up attaching more value to the practicioner.

The two types of semantics of a NaP-HFS discussed in 3.1 (“bottom-up” and “top-
down”) provide the rationale for a meaningful extension of hesitant fuzzy set theory by
a necessary and possible approach. In order to better illustrate the applicability of NaP-
HFSs to concrete decision problems, as well as the differences between the two types
of semantics, here we present three examples. The first one is concerned with a social
scenario where necessary and possible expressions appear quite directly. Then we put
forward two additional (more subtle) examples, which illustrate some realistic situations
in a corporate setting. These last two examples suggest the adequacy of our modelization
in a suitable corporate setting, especially for cases in which a business company has a
rather complex hierarchical structure (that is, with a CEO, departments’ directors, sub-
departments’ officers, etc.).

Example 3. The Dean of a School intends to launch one new Degree, which combines the
skills of two existing Degrees (say, A and B). A committee has prepared two alternative
degree programmes (say, D1 and D2). The Dean decides to incorporate opinions about
their respective adequacies to the report.

Her corporate sense leads the Dean to seek the advice only from the academic faculty
of the Departments with responsibilities in the existing Degrees. In this way, she receives
several evaluations (whose internal production we do not describe here, but it could
be itself a source of multiplicities). These evaluations are grouped into two categories,
namely, those pertaining to faculty involved in Degree A, and those from faculty with
responsibilities in Degree B. However, in an attempt to be politically correct, she also
collects the feedback of the administrative staff and students of each of the current Degrees
A and B, which she clearly separates from the other sources of information. In her report,
the Dean insists that the opinion of the faculty must be taken into account, whereas the
opinion of the School community is given for guidance. Table 1 below gives a graphical
display of the information that the Dean collects.
According to our definitions, we have:

- hAN(D1) = {0.7, 0.8}, hBN(D1) = {0.5, 0.65},
- hAP (D1) = {0.7, 0.75, 0.8}, hBP (D1) = {0.5, 0.6, 0.65},
- hAN(D2) = {0.4, 0.6}, hBN(D2) = {0.4, 0.5, 0.55},
- hAP (D2) = {0.4, 0.6, 0.9}, hBP (D2) = {0.4, 0.5, 0.55, 0.7}.

Thus, NaP-HFSs naturally arise in this scenario.
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Table 1: A tabular representation of the information in Example 3.

Current Degree A Current Degree B
Faculty Faculty+Staff+Students Faculty Faculty+Staff+Students

D1 {0.7, 0.8} {0.7, 0.75, 0.8} {0.5, 0.65} {0.5, 0.6, 0.65}
D2 {0.4, 0.6} {0.4, 0.6, 0.9} {0.4, 0.5, 0.55} {0.4, 0.5, 0.55, 0.7}

Let us emphasize that the process in Example 3 is transparent and simple. The users
only need to submit the standard information –the belongingness to the characteristic of
being the adequate Degree. It is the expert who obtains the NaP-HFS as the result of a
quite natural “information fusion”.

The next two examples are respectively devoted to provide instances of the semantics
(1) and (2) of our approach, as described in Section 3.1. These examples will be also
used to informally sketch two general procedures to prioritize evaluations, which may fit
the two different settings. Nonetheless, in the present paper we do not pursue the goal
of creating complete decision models that fit these procedures, since this would require a
lengthy discussion on setting, motivation, and methodology. Future research on the topic
shall be devoted to state and complete these (classes of) procedures in the form of sound
algorithms for a decision.

We start with a setting that describes semantics (1) at work.

Example 4. Let C = {c1, c2, c3} be the executive committee of a corporation, whose
members have to express a judgement about the convenience of undertaking some invest-
ments within a set X of possible projects. (For instance, c1, c2 and c3 are the directors
of three different departments of the corporation, whose evaluation is considered equally
important by the CEO.) To that end, each member of C is asked to provide membership
values for all projects in X: each such value is an estimation of the likelihood that the
respective investment will be successful. According to semantics (1), suppose the three
members of C do have a clear personal view of the membership values of each alternative
in X, that is, their necessary HFSs hc1N , hc2N , hc3N are primitive. These necessary mem-
bership values may have quite variegated origins: distinct “subjective states of nature”
of each member of the committee, suggestions/opinions coming from some key people
in each department (e.g., the main officers of the sub-departments coordinated by each
director), beliefs associated to different perspectives about the strategic actions under-
taken by the CEO, etc. For a specific project x ∈ X, assume that we have, for instance,
hc1N (x) = {0.2, 0.6}, hc2N (x) = {0.4, 0.5, 0.6}, and hc3N (x) = {0.9, 1}. In summary, c1 (or the
key people of his department) judges that project x has either a small chance (0.2) or a
reasonable chance (0.6) to be successful, c2 thinks that there is roughly a 50-50 chance of
success for project x, and c3 believes that x is definitively a very good investment.

The global assessment of the committee C is obtained by aggregating all points of view,
and in this respect the CEO regards an agreement among departments as a rather desirable
feature. To that end, the three agents are then asked to “expand their horizons”, by
additionally providing possible HFSs that express their compromise solutions (e.g., asking
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additional points of view from relevant people of the respective departments, averaging
opinions of all of them, etc.). For instance, assume that this expansion process yields
hc1P (x) = {0.2, 0.3, 0.4, 0.5, 0.6}, hc2P (x) = {0.3, 0.4, 0.5, 0.6, 0.7}, and hc3P (x) = {0.9, 1}. In
other words, c1 and c2 display some flexibility in their judgements, whereas c3 turns out
to be fully rigid in his very optimistic evaluation. Indeed, on one hand, c1 decides to “fill
the gap” between the two rather far membership values by some intermediate values, and
c2 slightly enlarges his 50-50 evaluation in both directions; on the other hand, c3 decides
to completely maintain his necessary judgement also at a social level.

At this point, by proceeding in a similar way for every project y ∈ X, the agents c1,
c2, c3 submit their respective NaP-HFS H1 = (hc1N , h

c1
P ), H2 = (hc2N , h

c2
P ), H3 = (hc3N , h

c3
P )

over X for the final assessment. In order to get to a final assessment of the likelihood
of successfulness of each investment, below we sketch a procedure that determines a
“preferred” (by the CEO) set of membership values V (x) for each project x ∈ X. This
procedure is inspired by a logic of agreement/majority, however giving a higher weight to
personal assessments rather than to social compromises. Obviously, a different attitude
of the CEO would make a different evaluation procedure better suited to the task.

For each k ∈ {1, 2, 3}, define the k-th level NaP-HFS H(k) =
(
h

(k)
N , h

(k)
P

)
over X as

follows for each x ∈ X:

h
(k)
N (x) :=

{
a ∈ [0, 1] : a ∈

⋂
c∈C′ hcN(x) for some C′ ⊆ C such that |C′| = k

}
h

(k)
P (x) :=

{
a ∈ [0, 1] : a ∈

⋂
c∈C′ hcP (x) for some C′ ⊆ C such that |C′| = k

}
.

Then rank the following eight subsets of [0, 1] in descending order of preferability (where

we omit the argument x for the sake of clarity, e.g., h
(3)
N stands for h

(3)
N (x)):

(1)h
(3)
N , (2)h

(2)
N ∩ h

(3)
P , (3)h

(2)
N , (4)h

(1)
N ∩ h

(2)
P , (5)h

(1)
N , (6)h

(3)
P , (7)h

(2)
P , (8)h

(1)
P .

Finally, select the first nonempty set as output Vj(x), where the index j ∈ {1, 2, . . . , 8}
represents the stage at which the preferential evaluation is made (hence the higher the
integer, the lower the “strength” of the evaluation). Going back to our numerical example,

one can check that h
(3)
N (x) = h

(3)
P (x) = ∅ and h

(2)
N (x) = {0.6}. It follows that the final

assessment on x is V (x) = V3(x) = h
(2)
N (x) = {0.6}.

Example 4 employs typical NaP-HFSs to describe a corporate setting that fits se-
mantics (1). The next example illustrates semantics (2) of our necessary and possible
approach. However, also in order to display the flexibility of our methodology, we shall in-
stead employ non-typical NaP-HFSs, in which both components are interval-valued HFSs.

Example 5. In the same setting as the previous example, assume that the corporation’s
CEO provides a cautious estimation of the successfulness of all projects in X, thus giving
a large range of membership values for each possible investment. Specifically, the CEO es-
tablishes a primitive interval-valued HFS hC, which acts as a sort of “corporate guidelines”
for the evaluations to be given by the members of the executive committee C. Therefore,
according to semantics (2), all members of C have to abide by these guidelines.
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For the sake of concreteness, suppose that for a fixed project y ∈ X, the CEO has de-
cided that the membership values ought to be located within the interval hC(y) = [0.5, 1],
because he believes that the investment has rather good chances of being successful.
Further, let us assume that the three members of the committee C select, respectively,
hc1P (y) = [0.5, 0.7], hc2P (y) = [0.6, 0.9], and hc2P (y) = [0.75, 1] as those subintervals of
hC(y) = [0.5, 1] that they deem possible. In other words, c1 is not so optimistic (but
he cannot go below 0.5, because the CEO does not allow that), c2 basically agrees with
the CEO’s evaluation and simply restricts his range of possible membership values, and
finally c3 is quite confident that the investment will be successful. However, the three
profiles hc1P (y), hc2P (y), and hc3P (y) only express the compromise solution of each agent.
That is the reason why the CEO also requires the three members of C to describe their
inner beliefs (within the given boundaries imposed by him) in the form of three interval-
valued necessary HFSs, which are sharper than their respective possible HFSs. For is-
tance, suppose that, according to their personal attitudes described above, they provide
hc1N (y) = [0.5, 0.55], hc2N (y) = [0.75, 0.8], and hc3N (y) = [0.85, 0.9].

At this point, by proceeding in a similar way for every project x ∈ X, the agents c1,
c2, c3 submit their respective NaP-HFSs H1 = (hc1N , h

c1
P ), H2 = (hc2N , h

c2
P ), H3 = (hc3N , h

c3
P )

over X for the final assessment. Again, for the sake of illustrating the flexibility of our
necessary and possible approach, below we informally sketch a procedure that establishes
a preferred set of evaluations.

Assume that the CEO decides to assess the membership values of each investment
according to a logic that regards similar points of view among the members of C as being
a winning strategy. To that end, first the CEO determines the “level or agreement” among
the three members of C, by using both components of their NaP-HFS as follows: declare
that ci agrees with cj on option y whenever hciN(y) ⊆ h

cj
P (y) and h

cj
N(y) ⊆ hciP (y). In

other words, the CEO regards an agreement between ci and cj to be in place whenever the
personal evaluation of ci lies within the social evaluation of cj, and, vice versa, the personal
evaluation of cj lies within the social evaluation of ci. These comparisons of evaluations
on each project y ∈ X yield an adjacency graph associated to y, having the members of
C as vertices and their agreement on y (if any) as edges. Finally, the CEO determines
a finite set of numbers (possibly one), obtained by averaging the necessary judgements
of the members of C that belong to the longest paths (i.e., connected chains of vertices)
in the graph. These numbers shall represent the preferred values of the successfulness
likelihood of each project.10

In our example, the only agreement on the evaluation of y is between c2 and c3, as one
can easily check. Therefore, the longest path in the graph associated to y is unique, and

10Exactly the same logic is employed in [4] to describe aggregation of politicians according to their
personal and social views (cf. Footnote 9). Specifically, a matching graph of all of the candidates involved
in a political campaign is obtained as follows: a politician x “agrees” with another politician y if both (i)
the private profile of x is contained in the public profile of y, and (ii) the private profile of y is contained
in the public profile of x. The matching graph is the starting point for an algorithm that describes the
creation of political parties in our fuzzy setting.
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is given by the sequence of vertices c2c3. As a consequence, the CEO takes the average
of the two necessary HFS (evaluated at y) hc2N (y) = [0.75, 0.8] and hc3N (y) = [0.85, 0.9],
obtaining the unique value 0.825: this will be the successfulness likelihood of project y, as
derived from the evaluations of the committee C, subject to the constraints/preferences
displayed by the top management.

3.3. Basic operations on NaP-HFSs

We extend to NaP-HFSs some standard operators defined for HFSs (see Section 2.2).

Definition 12. For each NaP-HFS H =
{

(x, hN(x), hP (x)) : x ∈ X
}

over X, we define
the following “derived” NaP-HFSs over X:

1. the lower bound of H is the pair H− = (h−N , 〈hN |hP 〉−), where h−N denotes the lower
bound of the necessary HFS, and 〈hN |hP 〉− is the HFS defined as follows for each x ∈ X:

〈hN |hP 〉−(x) :=
{

inf{hN(x) : x ∈ X}, inf{hP (x) : x ∈ X}
}

;

2. the upper bound of H is the pair H+ = (h+
N , 〈hN |hP 〉+), where h+

N denotes the upper
bound of the necessary HFS, and 〈hN |hP 〉+ is the HFS defined as follows for each x ∈ X:

〈hN |hP 〉+(x) :=
{

sup{hN(x) : x ∈ X}, sup{hP (x) : x ∈ X}
}

;

3. for any α ∈ [0, 1], the α-lower bound of H is the pair H−α = ((hN)−α , (hP )−α ), where
(hN)−α (resp. (hP )−α ) denotes the α-lower bound of the necessary (resp. possible) HFS;

4. for any α ∈ [0, 1], the α-upper bound of H is the pair H+
α = ((hN)+

α , (hP )+
α ), where

(hN)+
α (resp. (hP )+

α ) denotes the α-upper bound of the necessary (resp. possible) HFS;

5. the complement of H is the pair Hc = ((hN)c, (hP )c), where (hN)c (resp. (hP )c) denotes
the complement of the necessary (resp. possible) HFS.

In addition, the suplement of H =
{

(x, hN(x), hP (x)) : x ∈ X
}

is the pair Hs =
(
hP , hN

)
,

where the bar denotes set-theoretic complement in the interval [0, 1]: thus, for each x ∈ X,
we have hP (x) = [0, 1] \ hP (x) and hN(x) = [0, 1] \ hN(x).

As is Definition 4, there is a remarkable asymmetry between upper/lower bounds and
α-upper/lower bound. In HFSs, the former are singletons, whereas the latter are subsets.
Here, since we wish to retain this ethos together with the necessary and possible spirit,
we adapt the definitions of upper and lower bounds in order to still obtain NaP-HFSs.

The following example exhibits some simple instances of the above notions.

Example 6. Let H = {(x, {0.2, 0.6}, {0.2, 0.3, 0.4, 0.5, 0.6}), (y, {0.9}, {0.8, 0.9, 1})} be
the NaP-HFS already examined in Example 2. According to Definition 12, we can compute
the following derived NaP-HFSs.
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1. The lower bound of H: this is the NaP-HFS defined as

H− =
{

(x, {0.2}, {0.2}), (y, {0.9}, {0.8, 0.9})
}
.

2. The upper bound of H: this is the NaP-HFS defined as

H+ =
{

(x, {0.6}, {0.6}), (y, {0.9}, {0.9, 1})
}
.

3. For α = 0.3, the α-lower bound of H: this is the (improper) NaP-HFS defined as

H−0.3 =
{

(x, {0.2}, {0.2, 0.3}), (y, ∅, ∅)
}
.

4. For α = 0.6, the α-upper bound of H: this is the NaP-HFS defined as

H+
0.6 =

{
(x, {0.6}, {0.6}), (y, {0.9}, {0.8, 0.9, 1})

}
.

5. The complement of H: this is the NaP-HFS defined as

Hc =
{

(x, {0.4, 0.8}, {0.4, 0.5, 0.6, 0.7, 0.8}), (y, {0.1}, {0, 0.1, 0.2})
}
.

3.4. Set-theoretic operations for NaP-HFSs

Now we proceed to define some operations for NaP-HFSs. Two of them, discrete
union and intersection, extend the corresponding notions for HFSs introduced in [46, 47].
Another two are the indiscrete forms of union and intersections. The last one, called
“merge”, is peculiar to our approach.

Definition 13. Let H =
{

(x, hN(x), hP (x)) : x ∈ X
}

and H′ =
{

(x, h′N(x), h′P (x)) : x ∈
X
}

be NaP-HFSs over X.

1. The indiscrete union H∨H′ of H and H′ is defined by H∨H′ = (hN ∨ h′N , hP ∨ h′P ).

2. The discrete union H ∪H′ of H and H′ is defined by H ∪H′ = (hN ∪ h′N , hP ∪ h′P ).

3. The indiscrete intersection H∧H′ ofH andH′ is defined byH∧H′ = (hN∧h′N , hP∧h′P ).

4. The discrete intersection H∩H′ of H and H′ is defined by H∩H′ = (hN∩h′N , hP ∩h′P ).

5. The merge H 	 H′ of H and H′ is defined by H 	 H′ = (hN ∧ h′N , hP ∨ h′P ).

The above definitions are extended to arbitrary families of NaP-HFSs in an obvious way.

The notions of (discrete and indiscrete) union and intersection require no further ex-
planation. On the contrary, the notion of merge needs some clarification, since it is
motivated by the employment of two different principles in its two components. Indeed,
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the merge of a family of NaP-HFSs is inspired by a logic of “caution” (modeled by inter-
section/minimality) for the core part of the membership values, and by one of “tolerance”
(modeled by union/maximality) for the socially acceptable membership values.11

Next, we show that the notions in Definition 13 are well-defined:

Lemma 1. For any two NaP-HFSs over X, their indiscrete union and intersection, their
discrete union and intersection, and their merge are proper NaP-HFSs over X.

Proof. The result is immediate for indiscrete union and intersection, as well as for merge.
For discrete union, let H =

(
hN , hP

)
and H′ =

(
h′N , h

′
P

)
be NaP-HFSs over X. Since

hP ∪ h′P is a proper HFS, to prove the claim it suffices to show that the inclusion (hN ∪
h′N)(x) ⊆ (hP ∪ h′P )(x) holds for any x ∈ X. Thus, fix x ∈ X, and pick an arbitrary
e ∈ (hN ∪ h′N)(x). The hypothesis readily yields e ∈ hN(x) ∪ h′N(x) ⊆ hP (x) ∪ h′P (x).
Further, since by definition of discrete union we have e > max{(hN)−(x), (h′N)−(x)}, and
the latter is equivalent to the join of e > inf{hN(x) : x ∈ X} and e > inf{h′N(x) : x ∈ X},
we deduce e > inf{hP (x) : x ∈ X} plus e > inf{h′P (x) : x ∈ X}. In conclusion,
e ∈ (hP ∪ h′P )(x) by the definition of discrete union.

The argument for discrete intersection is similar to that given for discrete union.

As clarified in Sections 3.1 and 3.2, the main rationale of a necessary and possible
approach to hesitant fuzzy set theory is that it allows one to naturally deal with decision
making in a social/collective setting. Thus, it does not come as a surprise that the next
definition introduces some notions that aim at capturing the inner coherence of a family
of NaP-HFSs over a common set of alternatives.

Definition 14. Let H = (hN , hP ) and H′ = (h′N , h
′
P ) be two proper NaP-HFSs over

X. We say that H and H′ are weakly compatible if the inclusions hN(x) ⊆ h′P (x) and
h′N(x) ⊆ hP (x) hold for all x ∈ X. If, in addition, we also have hN(x)∩ h′N(x) 6= ∅ for all
x ∈ X, then we say that H and H′ are strongly compatible.

More generally, we have:

Definition 15. Let H be a nonempty family of proper NaP-HFSs over X. We say that
H is a weakly compatible family if any two elements in it are weakly compatible. If, in
addition, we also have

⋂
(hN ,hP )∈H hN(x) 6= ∅ for all x ∈ X, then we say that H is a strongly

compatible family.

Obviously, two proper NaP-HFSs H and H′ over X are weakly (resp. strongly) com-
patible if and only if {H,H′} is a weakly (resp. strongly) compatible family. Notice that
Definition 15 is asymmetric for the conditions of weak and strong compatibility of a family

11The underlying logic of the merge has been employed in [4] for the creation of the profiles of parties
from the profiles of its members (cf. Footnotes 9 and 10). Specifically, for each topic of the political
campaign, the PaP-profiles of the politicians who belong to a party are aggregated according to a logic
of caution (i.e., minimal) for their private profiles, and one of tolerance (i.e., maximal) for their public
profiles: this procedure of aggregation gives rise to the bi-profile of a party on each topic.
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of NaP-HFSs over X: indeed, a family H is weakly compatible if and only if so are any
two elements in it, but the same does not hold for strong compatibility. The next example
exhibits a weakly (but not strongly) compatible family such that every two elements in it
are strongly compatible.

Example 7. Assume that the three departments D1, D2, D3 of a corporation are re-
quired to provide an evaluation of successfulness for the two projects in the set of in-
vestments X = {x, y}. The evaluations of the three departments are collected into a
family H =

{
HD1 ,HD2 ,HD3

}
of NaP-HFSs over X, where the pairs HD1 =

(
hD1
N , hD1

P

)
,

HD2 =
(
hD2
N , hD2

P

)
, HD3 =

(
hD3
N , hD3

P

)
represent the necessary and possible membership

values assigned to the projects in X by D1, D2, D3, respectively. Specifically, for each
i = 1, 2, 3, the necessary HFS hDi

N collects all values individually assigned by the members
of the board of directors of department Di, whereas the possible HFS hDi

P is an acceptable
compromise solution that is collectively reached by all top managers of department Di

(which of course must respect the evaluations of the directors of Di). Assume that the
following evaluations are given:

hD1
N (x) = {0.3, 0.5, 0.6}, hD1

N (y) = {0.8, 0.9}, hD1
P (x) = [0.2, 0.8], hD1

P (y) = [0.6, 1],

hD2
N (x) = {0.4, 0.5}, hD2

N (y) = {0.7, 0.8, 0.9}, hD2
P (x) = [0.1, 0.7], hD2

P (y) = [0.5, 0.9],

hD3
N (x) = {0.2, 0.4, 0.6}, hD3

N (y) = {0.6, 0.7, 1}, hD3
P (x) = [0, 0.7], hD3

P (y) = [0.5, 1].

One can readily check that the family H is weakly compatible. Furthermore, any two
elements of H are strongly compatible (in the sense of Definition 14), and yet H fails to
be a strongly compatible family (in the sense of Definition 15).

Example 7 shows that a family H of NaP-HFSs may not be strongly compatible al-
though any two elements in it display a strong compatibility. However, for the types of
NaP-HFSs described below, the property of strong compatibility extends from the binary
case to an arbitrary one.

Definition 16. A proper NaP-HFS H = (hN , hP ) over X is convex (resp. compact) if
hN(x) is a nonempty convex (resp. compact) subset of [0, 1] for each x ∈ X; equivalently,
if its necessary component hN maps all elements of X to nonempty convex (resp. compact)
subsets of [0, 1].

Obviously, a convex compact NaP-HFS over X maps each element of X to a nonempty
closed subinterval of [0, 1]. Then, we have:

Theorem 1. A nonempty family of convex compact NaP-HFSs over X is strongly com-
patible if and only if so are any two of its elements.

Proof. Necessity is obvious. For sufficiency, let H be a nonempty family of convex compact
NaP-HFSs over X, and assume that any two elements of H are strongly compatible. By
Definitions 14 and 15, this means that, for any H = (hN , hP ),H′ = (h′N , h

′
P ) ∈ H, we have
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that H and H′ are weakly compatible, and hN(x) ∩ h′N(x) 6= ∅ for all x ∈ X. To prove
that the H is a strongly compatible family, we need show that

⋂
(hN ,hP )∈H hN(x) 6= ∅ holds

for all x ∈ X. Fix x ∈ X. We prove the claim in the following two steps:

(i) for each nonempty K ⊆ H of finite size,
⋂

(kN ,kP )∈K kN(x) 6= ∅ ;

(ii) if (i) holds, then
⋂

(hN ,hP )∈H hN(x) 6= ∅ .

For part (i), apply Lemma 2 stated below for the linearly ordered set (L,≺) = ([0, 1], <).
Part (ii) readily follows from part (i) by Tychonoff theorem. This completes the proof of
the theorem.

The technical result needed to derive (i) in the proof of Theorem 1 is the following:

Lemma 2. Let A =
{
A1, . . . , An

}
be a family of n > 2 convex subsets of a linearly

ordered set (L,≺).12 If any two elements of A intersect, then
⋂
A 6= ∅.

Proof. The claim holds trivially for n = 2. Next, let A = {A1, A2, A3} be a family of
three nonempty convex subsets of (L,≺). Toward a contradiction, assume that we have

x ∈ A1 ∩ A2 6= ∅ , y ∈ A1 ∩ A3 6= ∅ , A2 ∩ A3 6= ∅ , A1 ∩ A2 ∩ A3 = ∅ .

It follows that x /∈ A3 and y /∈ A2. Without loss of generality, suppose x ≺ y. Since A3 is
convex and x /∈ A3, we have x ≺ A3 (which means that x ≺ a for all a ∈ A3). Similarly,
we obtain A2 ≺ y (which means that b ≺ y for all b ∈ A2). Pick z ∈ A2 ∩ A3. By what
we have just proved, we get x ≺ z ≺ y. However, A1 is convex, hence x, y ∈ A1 implies
z ∈ A1. Thus, we can conclude z ∈ A1 ∩ A2 ∩ A3, a contradiction. This proves that the
claim holds for n = 3.

Proceeding by induction on n, assume that the claim holds for any family of pairwise
intersecting convex subsets of (L,≺) having size n. We shall prove it for any such family
of size n + 1. Let A =

{
A1, . . . , An+1

}
be a family of convex subsets of (L,≺) such that

Ai ∩ Aj 6= ∅ for all i, j ∈ {1, . . . , n+ 1}. For each i = 1, . . . , n, set Bi := Ai ∩ An+1.

Claim: B = {B1, . . . , Bn} is a family of nonempty convex pairwise intersecting subsets
of (L,≺).

Proof of Claim. First of all, notice that each Bi is nonempty by hypothesis. Further, it
is not difficult to show that each Bi is convex as well. Finally, to prove that Bi ∩Bj 6= ∅
for all i, j ∈ {1, . . . , n}, simply observe that Bi ∩ Bj = Ai ∩ Aj ∩ An+1, hence the result
follows from what proved in the first paragraph for the case n = 3. This completes the
proof of the claim.

Now the Claim allows us to apply the induction hypothesis to the family B, and
conclude

⋂
B 6= ∅. Since

⋂
A =

⋂
B, this proves that the lemma holds.

12Recall that a linearly ordered set is a pair (L,≺) such that L is a nonempty set, and ≺ is a binary
relation on L that is asymmetric, transitive, and complete. (The typical linear order is the real line
(R, <).) A set A ⊆ L is convex whenever, for all x, y, z ∈ L such that x ≺ y ≺ z, if x, z ∈ A then y ∈ A.

21



3.5. Aggregation of NaP-hesitant fuzzy elements

Aggregation operators for hesitant fuzzy elements enable us to produce aggregation of
NaP-HFEs in a natural way. Thus, we propose the following general notion:

Definition 17. For every Ψ aggregation operator for HFEs, we define an aggregation
operator for NaP-hesitant fuzzy elements by the expression

ΦΨ((E1
N , E

1
P ), . . . , (En

N , E
n
P )) = (Ψ(E1

N , . . . , E
n
N),Ψ(E1

P , . . . , E
n
P ))

for any n = 1, 2, . . . and any list (E1
N , E

1
P ), . . . , (En

N , E
n
P ) of n NaP-HFEs.

Observe that the properties of the aggregation operators for HFEs ensure that Defini-
tion 17 produces a NaP-HFE for each (Ei

N , E
i
P ). Similarly, any aggregation operator for

THFEs defines an aggregation operator for NaP-THFEs by the analogous expression.

Definition 18. Noteworthy aggregation operators for NaP-THFEs include:

(i) the NaP-hesitant fuzzy averaging (NHFA) operator, defined by

NHFA((E1
N , E

1
P ), . . . , (En

N , E
n
P )) = (HFA(E1

N , . . . , E
n
N),HFA(E1

P , . . . , E
n
P ))

i.e., Ψ = HFA in Definition 17;

(ii) the NaP-hesitant fuzzy geometric (NHFG) operator, defined by

NHFG((E1
N , E

1
P ), . . . , (En

N , E
n
P )) = (HFG(E1

N , . . . , E
n
N),HFG(E1

P , . . . , E
n
P ))

i.e., Ψ = HFG in Definition 17;

(iii) the NaP-hesitant fuzzy weighted averaging (NHFWA) and geometric (NHFWG) op-
erators, which extend (i) and (ii) by using HFWA and HFWG, respectively.

NHFA and NHFG verify the obvious anonymity property, whereas NHFWA and
NHFWG are their non-anonymous extensions.

The following example exhibits some simple instances of the above notions.

Example 8. Let ({0.2, 0.6}, {0.2, 0.3, 0.6}) and ({0.9}, {0.9, 1}) be NaP-HFEs. According
to Definition 18, we can compute the following aggregate NaP-HFEs:

1. NHFA(({0.2, 0.6}, {0.2, 0.3, 0.6}), ({0.9}, {0.9, 1})) =

= (HFA({0.2, 0.6}, {0.9}),HFA({0.2, 0.3, 0.6}, {0.9, 1})) =

= ({1−
√

0.08, 0.8}, {1−
√

0.08, 1−
√

0.07, 0.8, 1}) ≈ ({0.717, 0.8}, {0.717, 0.735, 0.8, 1});

2. NHFG(({0.2, 0.6}, {0.2, 0.3, 0.6}), ({0.9}, {0.9, 1})) =

= (HFG({0.2, 0.6}, {0.9}),HFG({0.2, 0.3, 0.6}, {0.9, 1})) =

≈ ({0.424, 0.735}, {0.424, 0.447, 0.520, 0.548, 0.735, 0.775}).
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4. Individual and group decision making procedures

In this section we use the tools developed in the previous sections to describe a flexible
decision making procedure for alternatives defined by typical NaP-HFSs. In a first step
of the construction, we develop our idea in the individual setting and give an illustrative
example; successively, we compare our proposal with other possible approaches, which
are inspired by decision making with hesitant fuzzy sets. In a second step, we adapt the
mechanism in a way that it can be applied to a society with a finite number of agents.

Be it an individual or a societal context, our decision making problem consists of
selecting one among a finite number of alternatives. These alternatives are evaluated by
means of a finite number of features. A NaP-THFE characterizes (a) to which extent
each alternative verifies each characteristic, or (b) to which extent each alternative should
be selected according to one of the agents’ opinion. Interpretation (a) concerns a multi-
criteria decision making formulation of the problem, whereas interpretation (b) refers to
a multi-agent decision making formulation.

The data of our problem can be displayed in tabular form. Rows are associated to
alternatives, and columns are associated to agents, properties, or attributes: we shall
refer to it as a NaP-hesitant fuzzy decision table. Each cell contains a NaP-THFE, which
captures how the corresponding alternative verifies the corresponding property (in the
multi-criteria decision making formulation), or whether it should be selected according to
the opinion of the corresponding agent (in the multi-agent decision making formulation).
Notice that we have already used this natural representation of the informational input
in Example 3 (see Table 1).

The discussion about our model assures that this decision making problem is an ex-
tension of the well-known decision making problem in which alternatives are described
by typical HFSs. The latter model has been investigated by several authors: see, e.g.,
Alcantud and de Andrés [2], Alcantud et al. [3], Farhadinia [17], Xia and Xu [50], and
Xu and Xia [52].

Algorithm 1 below explains our proposal for solving this decision making problem.
In words, it first computes the aggregate of the information submitted by each agent, or
associated with each attribute. This process results into a NaP-THFE describing each
alternative. Then a global score is computed for each alternative: this score is defined
as the average of the scores associated with each necessary and possible THFE of the
aggregate information. Such average depends on a “balance factor”, which weights the
importance of the core/individual beliefs vs. the expanded/socially acceptable beliefs.
Finally, the alternatives are ranked by their average scores: score-maximizer options are
the optimal ones.

Notice that the presence of three types of variables (aggregation operator, score, and
balance factor) makes the proposed algorithm flexible and adaptable to the needs of
practitioners. As observed below in this section, our algorithm incorporates well-known
mechanisms for decision making, which are employed in cases when the alternatives are
characterized by standard (typical) HFSs.
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Algorithm 1: Decision making with alternatives identified by NaP-HFSs

A priori elements: (I) aggregation operator on NaP-THFEs, (II) score on THFEs, and
(III) balance factor α ∈ [0, 1].

1: Input a NaP-hesitant fuzzy decision table. (Alternatively, input k typical NaP-HFSs,
one for each of the k alternatives x1, . . . , xk that must be ranked.) There are l param-
eters. In tabular form, tij denotes cell (i, j), which is the NaP-THFE associated with
alternative xi and attribute j ∈ {1, . . . , l}.

2: Calculate the aggregate NaP-THFE associated with each of the k alternatives by the
selected aggregation operator on NaP-THFEs.

3: Calculate the score of each necessary and possible THFE of these aggregate NaP-
THFEs. At this point, for each i = 1, . . . , k, alternative xi is associated with two
scores siN and siP .

4: For i = 1, . . . , k, compute αi = αsiN + (1− α)siP .

5: The result of the decision is any alternative xj such that αj = maxi=1,...,k αi.

4.1. A numerical example

The following illustrative example describes step by step how to apply Algorithm
1. This example is designed especially to show how the balance factor –which basically
models the attitude of the decision maker in weighting strictly individual values against
social evaluations of tolerance– may affect the final selection.

Example 9. Let C = {c1, c2} be a set of two agents who express a judgement about
the convenience of undertaking some investments within a set X = {x1, x2} of possible
projects. Assume that c1 and c2 submit their respective NaP-HFS H1 = (hc1N , h

c1
P ) and

H2 = (hc2N , h
c2
P ) over X for the final decision. These evaluations are captured by Table 2,

which is a NaP-hesitant fuzzy decision table. Below we solve the multi-agent decision
problem by a routine application of Algorithm 1.

(i) Suppose that we select NHFA as an aggregation operator, and Xia and Xu’s score.
Table 3 shows the corresponding computations of the elements that are needed in order
to apply Algorithm 1. It is apparent that option x1 will be chosen over x2 irrespective of
the value of the balance factor, because s1

N > s2
N and s1

P > s2
P imply α1 > α2 for each

α ∈ [0, 1].

(ii) Now suppose that we select instead NHFG as an aggregation operator, whereas the
chosen score function is still Xia and Xu’s. Table 4 displays the corresponding computa-
tions. In this case the choice of the balance factor is far from being irrelevant. Indeed,
for α = 0.20, we can conclude that x1 should be selected, because

α1 = α 0.579 + (1− α) 0.575 = 0.5758 > 0.5662 = α 0.583 + (1− α) 0.562 = α2.
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On the contrary, for α = 0.85, it is x2 that should be selected, since now we have

α1 = α 0.579 + (1− α) 0.575 = 0.5786 < 0.5809 = α 0.583 + (1− α) 0.562 = α2.

Table 2: A representation of the NaP-HFSs associated with Example 9.

Agent 1 Agent 2

x1 ({0.2, 0.6}, {0.2, 0.3, 0.6}) ({0.9}, {0.9, 1})
x2 ({0.4}, {0.3, 0.4, 0.5}) ({0.8, 0.9}, {0.7, 0.8, 0.9})

Table 3: Aggregate NaP-HFEs and scores associated with Example 9. The aggregation operator is NHFA.
The score is Xia and Xu’s. Values are rounded off to the three decimal digits.

Xia-Xu score
Aggregate NaP-HFE by NHFA Necessary HFE Possible HFE

x1 ({0.717, 0.8}, {0.717, 0.735, 0.8, 1}) s1
N = 0.758 s1

P = 0.813
x2 ({0.654,0.755}, {0.542, 0.576, 0.613, 0.626, 0.654, 0.684, 0.735, 0.755, 0.776}) s2

N = 0.704 s2
P = 0.662

Table 4: Aggregate NaP-HFEs and scores associated with Example 9. The aggregation operator is NHFG.
The score is Xia and Xu’s. Values are rounded off to the three decimal places.

Xia-Xu score
Aggregate NaP-HFE by NHFG Necessary HFE Possible HFE

x1 ({0.424,0.735}, {0.424,0.447,0.520,0.548,0.735,0.775}) s1
N = 0.579 s1

P = 0.575
x2 ({0.566, 0.6}, {0.458, 0.490, 0.520, 0.529, 0.566, 0.592, 0.6, 0.632, 0.671}) s2

N = 0.583 s2
P = 0.562

4.2. Comparative analysis

It is worth noticing that the adjustable decision procedure described above heavily
relies on the fact that all agents’ opinions are characterized by suitable pairs of typical
HFSs (instead of a single HFS). However, we can also apply it to cases where (some of)
the alternatives are characterized by standard THFEs. The argument goes as follows.

Algorithm 1 uses a balance factor α that affects the conclusion as to which alterna-
tives can be chosen. The value of this factor is related to the decision maker’s attitude
towards the value of the private or social information provided by agents. The balance
factor ranges over the interval [0, 1]. In particular, when α is 0 (resp. 1), Algorithm 1
discards the information on the necessary (resp. possible) THFE. In other words, in ex-
treme circumstances, we only need the either the possible or the necessary THFE to reach
a decision. In fact, in these cases the algorithm results into known procedures based on
scores of HFEs (cf. Xia and Xu [50], as described in [3, Table 1]). As a consequence, our
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algorithm ends up extending Xia and Xu’s proposal for making decisions about alterna-
tives defined by typical HFSs to the more general case of alternatives defined by typical
NaP-HFSs.

Put briefly, if our input is in the form of a typical HFS associated with each alternative,
then we can replicate the information in order to get one typical NaP-HFS for each alter-
native. We can now apply Algorithm 1 to this setting. The results of the computations
coincide with Xia and Xu’s computations for the original information.

The level of sophistication expected from users determines the complexity of the so-
lution to our decision making problem. Even if we keep the fundamental structure of
our algorithm, we can incorporate more information –such as weights of the criteria or
their degrees of importance– through the aggregation operator in the second step of the
procedure. To that end, we just need to refine the aggregators of HFEs mentioned in
Section 2.3 by taking inspiration from, e.g., Liao and Xu [35].

However, there are other approaches whose structure is rather different from this
general procedure. For instance, HF-VIKOR is an approach that ascribes to the rationale
of compromise solutions (see Yu [54]). Yu’s idea intends to overcome the difficulty of
finding an alternative that is optimal for all the criteria (see also Liao and Xu [34]).

A different category of solutions pertain to the so-called outranking approach, the
most popular of which is probably the ELECTRE approach (Roy [42]). Some variations
of ELECTRE have been adapted to the hesitant context by Liao and Xu [37, Sections
4.2.2,4.2.3]. However, these adaptations consist of a large number of steps (up to eleven
in the case of HF-ELECTRE I and II), some of which are rather involved.

Hesitant preference relations (Liao and Xu [36]) and interval-valued hesitant preference
relations (Chen, Xu, and Xia [15]) provide an additional degree of sophistication. They
are at the core of automatic [37, Section 6.3.1] or interactive [37, section 6.3.2] consensus
reaching processes, and group decision making algorithms [37, Section 6.4.3], respectively.
In comparison with our approach, these types of situations are informationally more
demanding, and computationally more costly.

4.3. Extension to a multi-person setting

In this section we explain how our Algorithm can be adapted to a multi-person setting
with m agents. The natural step to be added is the construction of a collective NaP-HFS
from the m individual NaP-HFSs. Afterwards the algorithm proceeds exactly as in the
individual case, i.e., it acts as if the group is a fictitious individual agent.

Algorithm 2: Group decision making with alternatives identified by NaP-HFSs

A priori elements: (I) two aggregation operators on NaP-THFEs, Φ1 and Φ2, (II) score
on THFEs, and (III) balance factor α ∈ [0, 1].

1: Input m NaP-hesitant fuzzy decision tables (thij)k×l, one for each of the m agents.
Here thij denotes cell (i, j) of table h, for each h = 1, . . . ,m.

2: Compute the collective NaP-HFS (Tij)k×l by the application of the first aggregation
operator to cells t1ij, . . . , t

m
ij , for each cell (i, j): Tij = Φ1(t1ij, . . . , t

m
ij )
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3: Calculate the aggregate NaP-THFE associated with alternative i, for each i = 1, . . . , k,
by the second aggregation operator on NaP-THFEs: (hiN , h

i
P ) = Φ2(Ti1, . . . , Til).

4: Calculate for each i = 1, . . . , k, the score siN of the necessary THFE hiN , and the score
siP of the possible THFE hiP .

5: For i = 1, . . . , k, compute αi = αsiN + (1− α)siP .

6: The result of the decision is any alternative xj such that αj = maxi=1,...,k αi.

5. Conclusions and future directions of research

The spirit of hesitancy has been adapted to many settings beyond the original state-
ment of Torra [46]. For instance, we find hesitant fuzzy linguistic term sets in Rodŕıguez
et al. [44], hesitant fuzzy soft sets in Wang et al. [48], interval-valued hesitant fuzzy sets
in Chen et al. [14, 15], hesitant intuitionistic fuzzy sets in Yao and Wang [53], which in
turn refine dual hesitant fuzzy sets as in Zhu et al. [59], probabilistic hesitant fuzzy sets
in Zhang et al. [57], probabilistic dual hesitant fuzzy sets in Hao et al. [33], among others.
There are no doubts that, in general, hybridization usually produces interesting models
and decision making mechanisms.

In this paper we have hybridized the hesitant model with a successful approach in
preference theory, namely, bi-preferences of a suitable kind, called necessary and possible
preferences : see Cerreia-Vioglio et al. [13], Giarlotta and Greco [23], Giarlotta [21, 22],
Giarlotta and Watson [24, 25, 26, 27], and references therein for other similar approaches.
In this way we have obtained a new notion, which encompasses hesitant fuzzy sets, and
is more flexible in capturing the subtleties of decision making. We have started devel-
oping the main properties of this novel construction, and defined some helpful tools for
the practitioner to analyze the concept. In particular, several examples of this paper
emphasize its natural ability to model situations of collective decisions. Finally, we have
employed these tools (aggregation operators, scores) to effectively propose a very flexible
group decision making procedure, which generalizes widely accepted procedures in the
setting of hesitant fuzzy sets.

In order to keep this first paper on the topic as intuitive as possible, we only imposed
the condition that the codomain of the possible component enlarges that of the necessary
component. In future research we shall aim at exploring further properties of connection
between the two components of a NaP-HFS, and discuss at large the semantics of their
implications, as well as relationships with other models.

Additional future research on the topic mainly goes in three directions. First of all, we
aim at giving correlation coefficients, other aggregation operators or scores, and of course
new decision making mechanisms to suit the needs of different frameworks. Furthermore,
preference relations are an additional remarkable tool that we can adapt to this setting.
In particular, we plan on designing flexible algorithms that are adequate to a corporate
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or a public setting, which should complete the evaluation procedures informally described
in Examples 4 and 5.

Second, we wish to explore the relationship existing between our necessary and possible
approach and some variations of hesitant fuzzy sets that have recently been introduced
in the literature. In particular, the notion of expanded hesitant fuzzy set (XHFS), as
introduced by Alcantud and Santos-Garćıa [6], appear to have strong connections with
the approach undertaken in this paper. To that end, it appears feasible to develop a
notion of representability of NaP-HFSs, which is qualified by the existence of a suitable
group of agents C and a certain type of XHFS related to C.

Finally, we are in the process of formally defining a notion of ranking procedure. This
novel notion should naturally resolve all ex-equo situations, which are a typical problem
of all existing ranking procedures. A necessary and possible setting makes the design of
such procedures particularly effective.
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Appendix: Monotonicity of scores

The general notion of score (Definition 8 in Section 2.4) imposes very few restrictions.
However, typical scores may satisfy additional properties, which make them better suited
to sound decision procedures. Below, we introduce forms of monotonicity, since they
appear to be among the most natural conditions that should hold for any typical score.
The next example illustrates the rationale of these properties, which are going to be
formally introduced in Definition 19.

Example 10. Assume that s : F∗([0, 1]) → [0, 1] is a “well-behaved” typical score. Let
F, F ′, F ′′ be the following typical fuzzy elements:

F = {0.1, 0.3, 0.4} , F ′ = {0.1, 0.5, 0.7} , F ′′ = {0.3, 0.6, 0.7} .

Due to obvious considerations of monotonicity, one would naturally expect the inequalities
s(F ) 6 s(F ′) 6 s(F ′′) to hold, possibly in a strict sense; and, most likely, s(F ) <
s(F ′′) should hold as well, since F is component-wise dominated by F ′′. In this case
the comparison appears rather easy, since the fuzzy elements F, F ′, F ′′ do have the same
character.

What about the case of hesitant fuzzy elements having a different size? In order to
derive some reasonable guidelines that may qualify the behavior of a score as “good”, let
us consider the fuzzy elements E,E ′, E ′′ defined as follows:

E = {0.1, 0.3, 0.5} , E ′ = {0.3, 0.6} , E ′′ = {0.3, 0.7, 0.8, 1} .
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The fuzzy elements E = {e1, e2, e3} and E ′ = {e′1, e′2} can be easily compared by looking
at them in “descending order”, that is, from right to left. Indeed, since e3 = 0.5 6 0.6 = e′2
and e2 = 0.3 6 0.3 = e′1, one ought to conclude that s(E) 6 s(E ′) – and, most likely,
s(E) < s(E ′) – due to the fact that the score of E should be further lowered by its least
value e1 = 0.1. For dual reasons, the comparison of the fuzzy elements E ′ = {e′1, e′2} and
E ′′ = {e′′1, e′′2, e′′3, e′′4} can be easily done if we read them in “ascending order”, that is, from
left to right. Indeed, since e′1 = 0.3 6 0.3 = e′′1 and e′2 = 0.6 6 0.7 = e′′2, one ought to
conclude that s(E ′) 6 s(E ′′) – and, most likely, s(E ′) < s(E ′′)) – due to the fact that
the score of E ′′ should be further increased by its largest values e′′3 = 0.8 and e′′4 = 1.
Finally, based on considerations similar to the ones above, one may naturally deduce that
the strict inequality s(E) < s(E ′′) should hold, since comparing E and E ′′ in any possible
ordered way –that is, from right to left, or from left to right– always produces a strict
domination of the latter over the former.

The next definition makes the above ideas into a formal notion.

Definition 19. A typical score s : F∗([0, 1]) −→ [0, 1] is monotonic if it satisfies the
following two properties for all m,n ∈ N such that 1 6 m 6 n, and all E,E ′ ∈ F∗([0, 1])
such that E = {e1, . . . , em} and E ′ = {e′1, . . . , e′m, . . . , e′n} (both written in ascending
order):

(UM) (Upper Monotonicity) if ei 6 e′i for each i = 1, . . . ,m, then s(E) 6 s(E ′);

(LM) (Lower Monotonicity) if e′n−m+i 6 ei for each i = 1, . . . ,m, then s(E ′) 6 s(E).

Further, a monotonic typical score s : F∗([0, 1]) −→ [0, 1] is said to be strongly monotonic
if it satisfies the following two additional properties:

(SUM) (Strict Upper Monotonicity) if ei 6 e′i for each i = 1, . . . ,m, and either ej < e′j for
some j or m < n, then s(E) < s(E ′);

(SLM) (Strict Lower Monotonicity) if e′n−m+i 6 ei for each i = 1, . . . ,m, and either
e′n−m+j < ej for some j or m < n, then s(E ′) < s(E).

Before dwelling on the semantics of Definition 19, let us consider a special case.

Remark 1. Assume that s : F∗([0, 1]) −→ [0, 1] is a monotonic score. Let E = {e1, . . . , en}
and E ′ = {e′1, . . . , e′n} be THFEs (listed, as usual, in ascending order) having the same
character n > 1. If the inequality ei 6 e′i holds for each i = 1, . . . , n, then either one be-
tween (UM) and (LM) readily yields the inequality s(E) 6 s(E ′); in particular, whenever
s is strongly monotonic, either one between (SUM) and (SLM) implies s(E) < s(E ′) as
long as ej < e′j holds for some j.

Although the properties of monotonicity given in Definition 19 appear a bit technical
at a first sight, their semantics is absolutely natural. Specifically, Upper Monotonicity
ensures that for typical hesitant fuzzy elements E and E ′ such that |E| = m 6 n = |E ′|, if
the lowest m elements of E ′ are greater than or equal to the respective elements of E, then
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the score of E ′ is greater than or equal to that of E. Strict Upper Monotonicity adds the
requirement that in the particular case that either some inequality holds in a strict way
or the sizes of E and E ′ are different, the score of E ′ is strictly larger than the one of E.
For instance, in Example 10, property (UM) allows one to derive s(E ′) 6 s(E ′′), whereas
property (SUM) delivers s(E ′) < s(E ′′). The property of (Strict) Lower Monotonicity is
dual to that of (Strict) Upper Monotonicity. For instance, in Example 10, property (LM)
allows one to derive s(E) 6 s(E ′), whereas property (SLM) delivers s(E) < s(E ′).

Although the typical scores introduced in Definition 9 appear to be somehow natural,
regrettably only one of them is monotonic:

Proposition 2. The Xia–Xu score is strongly monotonic. The Farhadinia score and the
geometric-mean score fail to be monotonic.

Proof. The proof that the Xia–Xu averaging score satisfies the four properties (UM), (LM),
(SUM) and (SLM) is straightforward, and is left to the reader.

Next, we exhibit a pair of THFEs for which Lower Monotonicity fails upon using the
Farhadinia score. Let E = {0.4, 1} and E ′ = {0.3, 0.4, 1}. By (LM), any monotonic
score s must satisfy s(E ′) 6 s(E). Let (δn)n>1 be any nondecreasing sequence of positive
numbers such that δ1 = 1, δ2 = 3, and δ3 = 13. Then we have:

s
F
(E) =

1 · 0.4 + 3 · 1
1 + 3

= 0.85 <
14.5

17
=

1 · 0.3 + 3 · 0.4 + 13 · 1
1 + 3 + 13

= s
F
(E ′)

which contradicts (LM).
Finally, we show that the geometric-mean score does not satisfy Upper Monotonicity.

Let E = {0.5} and E ′ = {0.5, 0.6}. If s is any score satisfying (UM), then s(E) 6 s(E ′)
holds. Since

sgm(E) =
√

0.5 > 0.7 >
3
√

0.3 = sgm(E ′) ,

we conclude that the geometric-mean score does not satisfy (UM).

Proposition 2 explains why in this paper we have only employed the Xia–Xu score to
rank HFEs.

References

[1] Alcantud, J. C. R. (1999). Weak utilities from acyclicity. Theory and Decision 47 (2), 185–196.

[2] Alcantud, J. C. R., and R. de Andrés (2016). A segment-based approach to the analysis of project
evaluation problems by hesitant fuzzy sets. International Journal of Computational Intelligence
Systems 29, 325–339.

[3] Alcantud, J. C. R., R. de Andrés, and M. J. M. Torrecillas (2016). Hesitant fuzzy worth: An
innovative ranking methodology for hesitant fuzzy subsets. Applied Soft Computing 38, 232–243.

[4] Alcantud, J. C. R., A. Biondo, and A. Giarlotta (2018). Fuzzy politics I: the genesis of parties.
Fuzzy Sets and Systems, forthcoming.

30



[5] Alcantud, J. C. R., and V. Torra (2018). Decomposition theorems and extension principles for
hesitant fuzzy sets. Information Fusion, 41, 48–56.
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