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Abstract: Oceanic eddies are ubiquitous in global oceans and play a major role in ocean energy
transfer and nutrients distribution, thus being significant for understanding ocean current
circulation and marine climate change. They are characterized by a combination of high-speed
vertical rotations and horizontal movements, leading to irregular three-dimensional spiral
structures. While the ability to detect eddies automatically and remotely is crucial to
monitoring important spatial-temporal dynamics, existing methods are inaccurate because
eddies are highly dynamic and the underlying physical processes are not well understood.
Typically, remote sensing is used to detect eddies based on physical parameters, geometrics
or other handcrafted features. In this paper, we show how Deep Learning may be used to
reliably extract higher-level features and then fuse multi-scale features to identify eddies,
regardless of their structures and scales. We learn eddy features using two principal
component analysis convolutional layers, then perform a non-linear transformation of the
features through a binary hashing layer and block-wise histograms. To handle the difficult
problem of spatial variability across Synthetic Aperture Radar (SAR) images, we introduce a
spatial pyramid model to allow multi-scale features fusion. Finally, a linear support vector
machine classifier recognizes the eddies. Our method, dubbed DeepEddy, is benchmarked
against a dataset of 20,000 SAR image patches, achieving a 97.8+1% accuracy.

Keywords: remote sensing; feature fusion; SAR imaging; eddy detection; deep learning.

1. Introduction

Object detection is one of the most active research topics in the field of computer vision,
because it is the basis for target identification, monitoring and tracking [1-3]. Automatic remote
sensing image detection is crucial for monitoring the dynamics of oceanic eddies, which are
ubiquitous in global oceans and dominate more than half of the ocean’s kinetic energy [4, 5].
The dynamic nature of oceanic eddies is caused by the instability of ocean currents, the stress
of sea surface wind, and the variety of seabed topography [6]. As a result, oceanic eddies have
rotating coherent structures in diverse patterns, with diameters varying between several
hundred meters to several hundred kilometers. Conventionally, eddies having a radius of 10-
100 km are referred to as ‘mesoscale eddies’, while those with a radius shorter than 10 km are
called “‘sub-mesoscale eddies’. What makes eddies particularly difficult to detect is that they
move rapidly and dynamically change their structures, velocity and vorticity, during a lifetime
that can span from days to hundreds of days [7].

Oceanic eddy detection based on the variety of remote sensing data has been widely
studied [7-32]. However, great differences between the current oceanic eddy detection methods
are shown, mainly because the information features of oceanic eddies acquired by different
remote sensing satellites vary greatly. For instance, the changes in sea surface temperature
(SST), chlorophyll concentration (CHL), height (SSH) and roughness caused by oceanic eddies
can be recorded by infrared, ocean color, altimeter and synthetic aperture radar remote sensing,



respectively. Eddy detections using SST and SSH is prone to false positives because many other
ocean phenomena also impact the sea surface temperature and surface ocean color (chlorophyll
concentration) [8], and they cannot detect the oceanic eddies with a diameter smaller than 50km,
because of the low spatial resolution of SSH data [7].

Synthetic Aperture Radar (SAR) images acquired oversea areas (Figure 1), contain a wide
range of small-scale and mesoscale phenomena of the ocean and are less susceptible to cloud
and sunlight conditions [9]. Therefore, SAR images become an ideal data source to detect the
oceanic eddies [10]. However, the oceanic eddies in SAR images manifest not only a variety of
spatial scales and spiral structures (intensity, diameter, center) but also geometric deformation
caused by the imaging mode of remote sensing satellites. In addition, some eddies in SAR
imagery are dark (i.e., low backscatter), narrow, curvilinear, concentric bands that appeared to
spiral inward. Whereas the other eddies (e.g., many were found in the Gulf Stream and East
Australia) are a narrow band of enhanced brightness [32]. All of these features make oceanic
eddy detection a challenging task.

Figure 1. Oceanic eddies in SAR images from multiple satellite sensors.

The conventional methods of eddy detection are mainly divided into the following
categories: physical parameter-based [7, 10, 14-27], geometric-based [11-13] or handcrafted
feature-based [29-31]. Physical parameter-based methods need to set a suitable threshold for a
specific region, and are therefore task-specific and limited in generalization capability.
Geometric-based methods do not easily detect eddy details from the data without clear
geometrical features. Handcrafted feature-based methods usually design low-level features by
experts, which are not able to capture the full dynamics of oceanic eddies. All current methods
are highly depended on much expert knowledge and are very sensitive to data noises. What is
really missing is a generalized method to automatically detect oceanic eddies from multisource
remotely sensed data, which is the subject of our paper.

Oceanic eddies are mostly active in the areas where ocean currents exist. For example, in
the Kuroshio extension region (in English “Japanese Current”, i.e. a north-flowing ocean
current on the west side of the North Pacific Ocean), cyclonic/anticyclonic eddies may cause
local upwelling/downwelling, leaving footprints in the SST field in the form of local extremes.
Therefore, geometric-based methods, such as geometric features of the velocity field [12] and
quasi-contour tracing and clustering [13], have been widely used to identify the eddy centers,
size, intensity, tracks and lifetime based on the SST and ocean color remotely sensed data.



However, the significant differences in structures, scales, centers and other attributes between
different ocean eddies lead to low detection accuracy of the geometric-based methods.

SSH observations from satellite radar altimeters provide SSH maps, showing closed-
contour sea level anomaly of the oceanic eddies. Specifically, the anticyclonic eddies (in the
Northern Hemisphere) show positive sea surface height anomalies (SLA), while the cyclonic
eddies show negative SLAs. However, oceanic eddy detection methods on SSH maps have
mainly been based on physical criteria, or the Okubo-Weiss (W) parameter method [7,14-18].
This is commonly used for global ocean eddies detection and monitoring, but has significant
limitations due it dependency on region-specific thresholds and sensitivity to noise in the SSH
maps [19-21]. Alternative physical parameter-based oceanic eddies detection methods, such as
winding angle [22,23] and wavelet analysis [24, 25], also suffer from the dependency on velocity
fields and are sensitive to the amplified noise in the derivatives of SSH data. Moreover, the
computational performance is poor for the pixel-based methods concerning the high-resolution
remotely sensed data [19, 20].

To resolve the weakness of the physical parameter-based methods, contour-based
methods identify eddies globally as closed contoured smoothed SSH anomalies using a nearest
neighbor search [19]. An improved algorithm adapted from PDELTA [26] could identify
multiple regions gradually within a time-series, by adding a spatial analysis feature, and
greatly raised the computational performance by visiting each pixel at most once [27].
Unfortunately, the SSH data have a spatial resolution of tens of kilometers and, thus, are not
adequate to perform detailed analysis of oceanic eddies with a smaller diameter, such as the
sub-mesoscale oceanic eddies [10].

SAR images obtained from radar sensors have a high spatial resolution and a wide swath
of observation, which makes them effective sources for gaining more comprehensive and
detailed information on mesoscale and sun-mesoscale phenomena in the oceans [9,28,29].
Currently, most studies of oceanic eddies detection in SAR images are based on handcrafted
features [28-31]. The feature design requires expert knowledge and is not efficient with respect
to time and labor, especially considering the massive and continuous producing of SAR images
by the global earth observation system. In a recent research, a preliminary study on ocean eddy
identification and tracking based on SLA data was proposed by using neural networks.
However, the network training data was based on the results of Okubo-Weiss methods and the
identification accuracy was unknown [33]. A hierarchical network with fuzzy logic rule-based
classification was proposed to detect the ocean mesoscale atmospheric phenomena
automatically, and it reached an accuracy of 80% [9]. These works indicate the great potential
of hierarchical networks in ocean eddies detection.

In the field of general object detection and target recognition from images, such as face
recognition, facial expression recognition, and handwriting recognition, deep learning models
have achieved great success [1, 3, 34-37]. In contrast to designing features based on expert
knowledge, deep learning models can learn high-level features automatically from a large
database. Especially for some detection tasks with a complex background or changing
environment, the feature fusion method based on deep learning is more effective [3]. However,
the deep learning models need to train a huge number of parameters with a rich training
dataset. A simple deep learning baseline network named PCANet [35] was proposed to reduce
the computation expenses. The PCANet network was designed to be easy to train and be
adaptable to different tasks. Its performance was on par with the state-of-the-art deep learning
models for different tasks such as image classification, object detection and pattern recognition
[35]. Moreover, the principal component analysis (PCA) method has been a popular choice for
remotely sensed image fusion [38].

Inspired by the general deep learning models and PCANet for object detection and image
classification, we aimed to develop an effective and generalized method to solve the problem
of oceanic eddy detection using SAR image data. The proposed automatic method, based on



deep learning, is dubbed DeepEddy. DeepEddy is based on PCA filters convolution to form a
simple deep learning network, which can obtain invariant and high-level oceanic eddies
features by layer-wise learning from the training dataset. As pyramid representation for image
fusion can improve classification accuracy [39], DeepEddy adopts spatial pyramid pooling
(SPP) in feature-level fusion. The SPP can handle the complicated structures and poses of
oceanic eddies via fusing the multi-scale features, so that the trained DeepEddy method can be
applied to detect diverse and anomalistic geometrical shapes of oceanic eddies in different
scales and for different SAR image resolutions. DeepEddy, is benchmarked against a dataset of
20,000 SAR images, achieving a 97.8+1% accuracy, which is significantly higher than the 80%,
reported in the automatic classification method for mesoscale atmospheric phenomena above
sea [9].

The main contributions of our work are as follows: (1) A new method for oceanic eddy
detection based on deep learning is proposed, which can hierarchically learn high level and
invariant features of oceanic eddies. (2) An eddy dataset based on SAR images from multiple
satellite sensors is first established for eddy detection, which provides a data benchmark for
future research on eddy detection. Our dataset is publically available at
https://github.com/YanlingDu-SHOU/Mesoscale-Oceanic-Eddy-Dataset. (3) The method
achieves high accuracy for eddy detection without any manual intervention and expert
knowledge, which puts forward a new idea for the accurate identification of high dynamic
ocean phenomena. Additionally, it is also possible to detect small-scale oceanic eddies with a
diameter of less than 50 km, which would not be possible with SSH data.

This paper is a substantial extension from our initial findings published in the ICNSC 2017
conference [37]. We give here all the details of DeepEddy, providing a comprehensive
evaluation under a broader range of conditions and a comparative evaluation between
DeepEddy and PCANet. Moreover, we benchmark our results against the Visual Interpretation
method in SAR images presented in [32].

The rest of the paper is organized as follows. In the next section, we describe the method
of oceanic eddy detection. In particular, we give more details about the Spatial Pyramid Pooling
(SPP) layer, which plays a key role in enhancing the DeepEddy robustness on dynamic oceanic
eddy detection. Section 3, contains experiments and result analysis. We describe the established
process of the oceanic eddy dataset and add the method of data augmentation. Then, the
experiments under different parameters are performed and comprehensive results analysis is
presented. In Section 4, we carry out comparisons between DeepEddy and PCANet in terms of
the detection accuracy, and between DeepEddy and the Visual Interpretation method in SAR
images. Finally, we conclude by discussing the implications of the presented study and future
work in Section 5.

2. DeepEddy Methods

In order to detect oceanic eddies in SAR images automatically, we propose a method based
on deep learning that can detect oceanic eddies within a range of spatiotemporal situations,
without requiring expert knowledge. The details are put forward in the following sections.

2.1. A Deep Learning Architecture for Oceanic Eddy Detection

The software architecture of our proposed method, consisting of hierarchical feature
learning layers and of a linear Support Vector Machine (SVM) classifier, is illustrated in Figure
2. Firstly, the convolution filters used in DeepEddy are learned through principal component
analysis (PCA) based on the vectorized representation of input SAR images. Local patterns of
the eddy are then extracted in the PCA convolutional layer. The convolutional filter is an
essential parameter in Convolutional Neural Networks (CNNs) that directly determines the
features of learning. Unlike the traditional CNNs, which initialize the convolution filters in a



random way, DeepEddy uses the primary convolution filters that are generated from the
principal component analysis to learn much more distinguishing features with a simple
architecture. Although multiple convolution layers with PCA filters can be applied to learn
high-level features of the eddy, our method only uses two PCA convolutional layers because
experiments showed that two layers were sufficient to achieve high detection accuracy.
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Figure 2. DeepEddy, the method based on a simple deep architecture for oceanic eddy detection. The
method mainly consists of PCA-based convolution layers, a nonlinear processing layer and a feature
pooling layer to learn the high level and invariant features of oceanic eddies.

Next, a nonlinear processing layer that contains binarization and hashing mapping
enhances the separation of the features. Then, the feature pooling layer with block-wise
histograms reduces the dimensions of the features. Meanwhile, considering the dynamics of
eddy shapes and poses caused by the phases and incident angles of the remote satellite sensors,
spatial pyramid pooling (SPP) is used to extract multi-scale spatial features of oceanic eddies.
Finally, based on the learned high-level and invariant features, the SVM classifier outputs the
detection results.

Suppose that the training SAR images set {li}zl contains N input images. Firstly, we
resize each image to the same size m x n. The patch size is ki x k2 at all convolutional layers. The
parameters need to learn from the training SAR images. {I i};} are only the PCA filters. The

components of the proposed architecture are described in detail next.

2.2 The First Convolution Layer

In order to obtain the PCA filters of the convolution layer, we first need to vectorize the
input SAR images. For each SAR image [ in the training image set, a ki x k2 patch slides on the
images with a certain stride. Then, we subtract the patch mean from each patch and get

X, = [J_Ci,1,J_Ci,Z,---3_Cyn,ﬁ], where i =m — [kl/z] L A=n-— [kZ/Zl ;% =%, 1|:)Ii 1 is a mean-

removed patch, and 1 is an all-one vector with proper dimensions. For all input images, we
combine the vectors as (1).
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The filter number in the i-th convolutional layer is denoted as L; and we use PCA to

minimize the reconstruction error in a set of orthonormal filters, shown as (2).

min |X—VV'X[., st. W =I @)

veRrkikzxl

where [ is a L1 x Liidentify matrix and L: is the principle eigenvectors of XXT.
The PCA filters can be expressed as (3).

W =mat,  lq(xXX")eR™, 1=12,-.1, 3)

where the function mat, (vector) is to convert the vector = R“* to a matrix W e R"™*

and qi(XXT) represents the [-th principal eigenvector of XXT. The dominating principal
eigenvectors capture the main variation of all of the mean-removed training patches. The
output of the first convolutional layer is defined as

I=1*wW!, i=12--N (4)

where * denotes the convolution of two dimensions. [ is the i-th input image, and W !is the

I-th filter of the PCA in the first convolutional layer.

2.3 The Second Convolution Layer

A majority of operations are consistent with the first convolutional layer. Similar to the
first layer, we subtract the patch mean from each patch and collect the mean-removed patches

to concatenate them into:

Y = [Y1 Y?,.. Yh ] & Rk LaNi )

where, Y represents the outputs of all the images after convolving with W,"We ¢

an obtain the PCA filters of the higher layers, which are denoted as

W =mat, (g (YR 1=1,2--, 1, h=2 ©6)

For each input I} of the layer i convolving with W," for [= 1,2,--,L,, the output O

will have L: images of the size m x n.
o =t w i, 9
The architecture can be easily built with more layers if a deeper architecture is found to be
beneficial. At the h-th layer, D (D = [I/<{'L;) inputs produces D sets of outputs 02 (d =

1,2,...D) and each set has Ls images. Thus, the total number of output images will be H?ﬂ L;.

2.4 Nonlinear Processing Layer



After the convolution layers, the feature maps of the input SAR images are obtained. We
use hashing to operate nonlinear processing on the convolutional outputs. The h-th layer
outputs have D (D = [1/=} L;) sets of real values and each set has a total of L, outputs
{I A },Lz’l The outputs are binarized to {H( I*wW' )}f’; using a Heaviside step function H("),
whose value is one for positive entries and zero otherwise. Following binarization, each binary

string is encoded into decimal numbers, and the map function is as follows:

T¢ =y 2 H(0f), d=12,..D (8)

This forms an “image” for each set of L, output, where each pixel value is an integer and
ranges from 0 to 2%» — 1.

2.5 Feature Pooling Layer

The feature pooling is performed in two steps: the block-based histogram is used to reduce
feature dimensions. Then spatial pyramid pooling is used to extract the multi-scale features of
oceanic eddies to improve the robustness of DeepEddy.

2.5.1 Block-based Histogram

After the nonlinear processing, each of these “image” T} is partitioned into B blocks. We
compute the histogram of the decimal values in each block and concatenate all B histograms
into one vector and denote this vector as Bhist(T}) . Then, the “features” of the input SAR
image I; is defined as the set of block-wise histograms, i.e.,

f. = [Bhist(TY), -, Bhist(TP)]" € R")>B )

In this process, the local blocks are overlapped, and the overlapping ratio is another
important parameter of DeepEddy, as will be further discussed in Section 3. The block-wise
histogram encodes special information and offers some degree of translation invariance in the
learned features within each blocks.

2.5.2 Spatial Pyramid Pooling

Oceanic eddies captured in SAR images have significant geometric distortion and spatial
scale differences. This is caused by the spatial and temporal dynamic nature of oceanic eddies
as well as the multi-temporal, multi-angle, multi-polarization imaging mode of SAR satellites.
To deal with the complexity of oceanic eddies in structures and scales, the spatial pyramid
pooling (SPP) method is introduced into the DeepEddy architecture, as the flowchart shows in
Figure 3.
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Figure 3. Flowchart of the Spatial Pyramid Pooling Layer (SPP).



The features can map to a fixed length feature vector in the feature pooling layer based
on the multiscale partition. Specifically, the length of the feature vector is 21 (16+4+1) in our
model. Assuming that the sizes of the input feature maps are (w, h), the steps of SPP are as
follows.

(1) In the partition based on the first scale, one input feature map is divided into 16 sub-
image blocks with a size of (w/4, h/4).

(2) Inthe partition based on the second scale, the same input feature map of the first step
is divided into 4 sub-image blocks with a size of (w/2, h/2).

(3) In the partition based on the third scale, the input feature map does not divide
anymore and has the original size of (w, h).

The above SPP layer produces multi-scale spatial features of oceanic eddies, which are
considered to have better distinguishing ability than the features learned in single scales. The
SPP layer can enhance the robustness of DeepEddy on high dynamic oceanic eddies detection,
as will be verified in the experimental section below.

When the invariant features of oceanic eddies are learned hierarchically, a simple linear
SVM classifier is chosen to obtain the final results of eddy detection based on these features.
It uses the linear kernel x (xl-, xj) = x] x; and the hinge loss Loss = max (0,1 —y;(w”"x; +b)).

To sum up, the main parameters of the DeepEddy architecture include the filter size ki, k>,
the number of convolutional layers, the number of filters in each convolutional layer L,

W

the block size for local histogram, the overlapping ratio between blocks and the pyramid vector.
3. Experimental Analysis

In this section, we describe the experiments carried out to verify the detection accuracy of
DeepEddy. All experiment were performed on a computer with an Intel i7 CPU with 16GB
memory, Windows 10 OS and Matlab 2015b.

3.1 Datasets

We established our dataset starting from the SAR images generated by ENVISAT and ERS-
2 Satellites between 2005 and 2011 (provided by European Space Agent https://earth.esa.int ).
ENVISAT SAR images are C band (5.3 GHz) data with three modes: the image mode, the
alternating polarization mode with a swath width of 100 km and approximately 30 mx30 m
spatial resolution, and the wide swath mode with a swath width of over 400 km and 150 m=150
m resolution. ERS-2 also works in the C band with 30 mx30 m resolution. Most of the SAR
images used in our experiments are in VV polarization mode, which is more suitable for the
study of ocean currents and ocean waves. The vertical and horizontal movement of oceanic
eddies can cause significant fluctuation of ocean currents and waves in the coverage area. The
oceanic eddies training dataset in SAR images has different resolutions and is perfect for the
detection of oceanic eddies at different scales.

Although the DeepEddy method is independent of geo-spatial locations and temporal
variations, we have to constrain our datasets to a certain location and time to maintain the
correct association with oceanic eddies generation. In order to improve the efficiency of manual
annotation, we used the SAR images covering the area 13°N to 25°N and 116°E to 125°E, which
is where Kuroshio generates several oceanic eddies [32].

The oceanic eddies training datasets used in this study were manually annotated by three
trained persons. We annotated a total of 159 oceanic eddies in the specific region from 2005 to
2011 on ENVISAT and ERS-2 SAR images, which vary significantly not only in eddies position,
scale, orientation and vorticity but also in visual representation and textures. Most of the



annotated oceanic eddies images have various sizes ranging from about 100x100 pixels (~3 km)
to 650x650 pixels (~97.5 km); some are above 1000x1000 pixels (over 150 km). We resized the
oceanic eddies to the specific size of 280 x 280 pixels, which was determined by choosing the
dominant size in the statistical distribution of oceanic eddies image sizes. To train a more
generalized and more robust deep learning method, we further enlarged the training dataset
by data augmentation. To our knowledge, there are no publicly available remotely sensed
image datasets at present. We established a relatively more abundant dataset for future eddies
studies, and we will continue to update and enrich this dataset in the future. The dataset is
available at https://github.com/YanlingDu-SHOU/Mesoscale-Oceanic-Eddy-Dataset.

3.2 Data Augmentation

An adequate and diverse training dataset is the key foundation for achieving an excellent
image detection accuracy based on the deep learning method. However, the large volume
training dataset would consume much labor, which is hard to achieve in practice. Data
augmentation is an essential way to increase the volume and variety of the training dataset in
deep learning, and the training dataset is usually enlarged by 100-1000 times [40]. In this study,
we use image translational transformation, rotation transformation and noise transformation
to enlarge the volume of the training dataset, as shown in Figure 4, leading to a 125 times
augmentation and a total of 20,000 samples.

(al) Raw SAR Image (b1) 0.3*W (c1) 0.3*H (d1) 0.3*W  0.3*H

(a2) Raw SAR Image (b2) Rotates 60 ° Clockwise (c2) Rotates 135 ° Clockwise (d2) Rotates 210 ° Clockwise

(a3) Raw SAR Image (b3) Variance is 0.02 (c3) Variance is 0.05 (d3) Variance is 0.2

Figure 4. The Oceanic Eddies Training Dataset is enlarged based on Data Augmentation.
Figures 4(al)-(d1) are example translational transformations. Figures 4(a2)-(d2) are example
rotation transformations. Figures 4(a3)-(d3) are example noise transformations.

3.3 Training method

To train DeepEddy, we used the 10-fold cross validation on the dataset. This means that
the Eddy Dataset was randomly divided into 10 groups, one of which was used as a test set at
one time, and the remaining 9 groups were used as a training set for model training. Then, we
trained the DeepEddy method varying the following parameters: the number of filters (the



number of filters in the first and second layers were defined as L: and Lo, respectively); the size
of each filter (k: and k: are the filter sizes in the first layer and second layer, respectively); and
the ratio of block overlap (BOR). In this way, we could investigate the influence that each
parameter had on the detection accuracy. In addition, we compared the detection accuracy of
PCANet [31] and DeepEddy, using the same parameter settings. In the pooling layer, the
histogram block size (B) was fixed to 8x8, and the spatial pyramid pooling (SPP) was set to 4x4,
2x2, and 1x1 sub-regions for all of the experiments.

3.4 Impact of the Number of Filters

To study the impact that the number of filters has on eddy detection accuracy, we varied
in turns the number of filters in each layer of DeepEddy, while keeping the other layers
constant. Firstly, we varied the number of filters L:in the first layer from 1 to 17, at an interval
of 2, given the fixed number of filters L in the second layer. The filter sizes of DeepEddy were
ki=k:=>5, and the overlap ratio was 0.5. Figure 5, shows the changes in detection accuracy with
L1 when L2 was set to 7, 9, 11 and 13, respectively. The model achieves the best detection
accuracy at L1 = 3 when L2 was fixed at 7, 9 and 11, and L: = 5 when L2 = 13. The results show
that the number of filter layers does impact the detection accuracy, and the numbers in the two
layers interact with each other. In our experiments, the best accuracy of 96.842% was achieved
with a combination of Li =3 and L2 = 11. From Figure 5, there is a declining trend when L: is
getting bigger (e.g., L1 >13), and overall, when [ =7 and 13, the model achieves lower accuracy
than when L2 =9 and 11. According to the trends, it is suggested that the number of filters in
the first layer should be relatively small, whereas the number of filters in the second layer
should be larger than that of the first layer but should not be too large either.
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Figure 5. Oceanic eddy detection accuracy under different numbers of filters. Given L. =7, 9,
11 and 13, the changes in the detection accuracy with varying the number of filters in the first
layer (L1) at an interval of 2.

3.5 Impact of the Filter Size

The impact of filter size of DeepEddy was further investigated by changing the filter size
in both convolutional layers. In particular, we set the second layer filter size k2=7, 9, 11, 13 and
15 when changing the first layer filter size ki from 1 to 17 with an interval of 2. The filter
numbers were set to L1 = 3 and L2 = 11 based on the results in section 3.5. The block overlap
ratio (BOR) was 0.5. As the results show in Figure 6, the accuracy of DeepEddy increases with



the increase in the filter size in the first layer until k: = 13 and then decreases. k: plays little part
in this case. The best detection accuracy of DeepEddy was 97.8+1%, with k1= 13 and k1= 11.

0.98

o
©
~

1

Detection accuracy

o
©
>

——————a1

i

~
N
1
~
>~
N
1
©
e ==
1
-
ol

0.95
11 13 15 17
Filters size in the first layer

w
o
~
©

Figure 6. Oceanic eddy detection accuracy under different filter sizes.

3.6 Impact of the Block Overlap Ratio

Given the best number of filters (L1 = 3, L> = 11), the best filter sizes (k1 =13, k2=11), and the
second-best filter sizes (k: =13, k2 = 7), we changed the block overlap ratio (BOR) between 0.1
and 0.7 (at 0.1 steps), achieving the results depicted in Figure 7. The detection accuracy tends
to be stable with the increase in the block overlap ratio when ki1 =13, k2 = 11. Meanwhile, the
detection accuracy has a small step-by-step increase when ki =13 and k2 =7 and becomes stable
when BOR >= 0.5. This suggests that, as long as the BOR is greater than 0.5, it has no effect on
the accuracy. In the case of the above parameter settings, the best accuracy was 97.86+0.7%,
which is considerably higher than the best accuracy of 80% gained in traditional methods [9].
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Figure 7. Oceanic eddy detection accuracy under different block overlap ratios (BORs).

3.7 Intermediate Outputs of Oceanic Eddies in SAR Images of DeepEddy



To gain a better understanding of the DeepEddy procedure, we visualize here some of its
intermediate outputs. These include the convolutional layer filters and the output features of
the second convolutional layer, under the DeepEddy parameters that have resulted in a 97.86%
detection accuracy, that is: k1 = 13 and k2 =11, L1 = 3 and L2 = 11, BOR = 0.5. Figure 8(a) shows
the filters learned by the two stages of PCA. These filters with different patterns can extract the
most important features of the input image from different angles. Figure 8(b) shows the 33
feature maps extracted from an example eddy in the second PCA convolutional layer. These
feature maps illustrate some spiral shape and texture features in different levels of granularity
and grayscale. In DeepEddy, the filters are learned and feature extraction are fully automatic,
without requiring the costly intervention of domain experts.

(b)

Figure 8. Visualization of intermediate outputs of DeepEddy. (a) The 3 filters learned by the
first PCA stage with the size of 13x13 in the top row, and the 11 filters learned by the second
PCA stage with the size of 11x11 in the bottom row. (b) The 33 output features of the second
PCA convolutional layer with the size of 280<280.

4 Comparative Evaluations
4.1 Performance of the Detection Accuracy of PCANet and DeepEddy

4.1.1 Comparison considering the number of filters

First, we compared the detection accuracy of PCANet and DeepEddy with different filter
numbers. The parameters of the filter sizes and overlap ratio of both methods were set to ki =
13, k2=11 and 0.5, respectively. The number of filters in the first layer was fixed to L1 = 3, and
the number of filters in the second layer was gradually increased from 1 to 17 with an interval
of 2. As illustrated in Figure 9, the model detection accuracy of DeepEddy is slightly better than
that of PCANet when L: is less than 5 but significantly better when L2 is more than 5. In addition,
the difference between the two methods gets larger as L increases, which proves that
DeepEddy has stronger robustness and higher accuracy.

4.1.2 Comparison considering filter size

Then, we explored the model detection accuracy of the two methods with different filter
sizes. In the following four group experiments, the parameters of the filter number and overlap



ratio of both methods were set to L1 =3, [2=11 and 0.5. The filter sizes in the second layer were
setto 3, 5,9, and 15, and the filter sizes were varied in the first layer gradually from 3 to 17 with
an interval of 2. The results shown in Figure 10(a) - (d), account for a better performance of
DeepEddy. In particular, with the gradual increase in the filter size in the first layer, the
detection accuracy of DeepEddy improves more rapidly than PCANet. The results verify the
validity of adding SPP in the architecture, which can extract the multi-scale spatial features of

oceanic eddies and enhances the robustness of DeepEddy.
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Figure 9. Comparison of PCANet and DeepEddy detection accuracy with a different number
of filters. Given that the filter number in the first layer equals 3, the accuracy changes with an

increase in the filter number in the second layer from 1 to 17.
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Figure 10. Comparison of PCANet and DeepEddy detection accuracy with different sizes of
filters. The filter sizes in the second layer are set to (a) 3, (b) 5, (c) 9, and (d) 15, and the filter
size is varied in the first layer gradually from 3 to 17 with an interval of 2.




4.2 Comparisons with Non-Deep Learning Methods

At present, automatic detection methods are mainly based on SST and SSH remote sensing
data [9-29]. It is inappropriate to compare altimetry-based methods with DeepEddy due to the
different data source types and different spatial scales of eddies considered. SAR image-based
oceanic eddy detection methods mostly use visual interpretation [28, 31, 32, 41], which relies
on some specific visual features [41] to identify the oceanic eddies by eye observation on SAR
images. An automatic classifier with SAR image [9] claimed 80% accuracy for several ocean
mesoscale atmospheric phenomena, but unfortunately, oceanic eddies were not included in
that study. Therefore, we compared our method with a visual interpretation method in SAR by
Xu and Yang [32].

Without the exact eddy ground truth in the SAR images from [32], we could not discuss
the method accuracy comparison with Xu and Yang’s. Here, we only compared our eddy
detection results with those presented in [32], which applied visual interpretation based on the
visual features of eddies [41]. According to the study in [32], they used the SAR images at
Kuroshio region and from the following observational data: ERS-2 and ENVISAT SAR images
from 2005 to 2011 with three modes; the image mode (IM), the alternating polarization mode
(AP); and the wide swath mode (WS). From those images, 426 frames were first selected
manually, and then a total of 60 distinct eddies were identified in 37 SAR images. From the
same SAR images described in [32], DeepEddy automatically detected 104 distinct eddies in 65
SAR images, among which there are 42 WS mode, 16 IM mode and 7 AP mode of SAR images.
The number of oceanic eddies by DeepEddy is significantly higher than those identified by the
visual interpretation method in [32]. The radius distributions of the oceanic eddies detected by
both methods are shown in Figure 11.

Most of the eddies detected by both methods have a radius of 0-21 km, accounting for 88.5%
and 93% of all eddies identified by DeepEddy and the visual interpretation method [32],
respectively. However, the number of eddies detected by the two methods is significantly
different in every radius interval. The number of eddies detected by DeepEddy in each radius
interval is generally more than the visual interpretation method. Many eddies with a radius of
0-12 km are expected because small-scale oceanic eddies are mainly related to the complex
terrain in the studied Kuroshio sea area.
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Figure 11. Comparison of the radius distribution of eddies detected by DeepEddy and the
visual interpretation method in the area 13°N to 25°N and 116°E to 125°E where Kuroshio
passes through via ENVISAT and ERS-1/2 SAR images from 2005 to 2011.



We further compared the eddy detection results of the two methods based on the inter-
annual variations from 2005 to 2011, as shown in Figure 12. Two observations can be made.
Firstly, the number of oceanic eddies detected in SAR images shows large inter-annual
variations. The eddies detected in 2007 are many more than those in other years. This
phenomenon could be explained by the fact that the generation of small-scale oceanic eddies is
closely related to the wind field, temperature field and topographic conditions of the local area.
There were El Nifio and La Nifa events that occurred in 2007. Secondly, the inter-annual
variation trend of the oceanic eddies detected by DeepEddy is substantially the same as that of
the visual interpretation method, except for in 2006. The exception is possible due to a small
number of SAR images manually selected in 2006 in [32]. In addition, the visual interpretation
method is subjective so that the results might have been affected by one’s knowledge and
interpretation ability.

In summary, DeepEddy achieves very similar trends to the visual interoperation method
in terms of the radius and inter-annual distributions of eddy detection results. It indirectly
demonstrates the correctness of DeepEddy. On the other hand, DeepEddy detected more
eddies than the visual interoperation method. It shows the effectiveness of DeepEddy
compared to a manual process.
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Figure 12. Yearly distribution of eddies detected in SAR images in the area 13°N to 25°N and
116°E to 125°E between 2005 to 2011. The blue bar and red bar are the results detected in SAR
images by DeepEddy and the visual interpretation method, respectively.

5. Conclusions

In this paper, we have studied oceanic eddy detection methods and proposed a DeepEddy
architecture based on a simple deep network based on the PCA filter convolution neural
network. DeepEddy can learn the high-level and invariant features of oceanic eddies, providing
a fully automatic and accurate eddy detection, without having to rely on domain expert
knowledge.

Our experiments on the oceanic eddies dataset have demonstrated that the DeepEddy
detection accuracy of over 97+1% competes with the state-of-the-art detection accuracy that is
just over 80% [9]. Regarding the investigation of DeepEddy parameters on detection accuracy,
we could draw a number of interesting conclusions: the filter size should not be too small in
order to contain enough local information of the eddies; increasing the block overlap ratio
would not have much impact after a certain ratio such as 0.5; the number of filters in different
convolutional layers significantly impacted the accuracy.



Additionally, the comparison of PCANet and DeepEddy detection accuracy shows that
the architecture proposed in this paper achieves higher detection accuracy due to its robustness
in various structures and scales of eddies. The parameters’ impacts on the detection accuracy
can serve as a reference for future work.

What makes DeepEddy particularly appealing is its use of a light learning strategy, unlike
the typical deeper learning networks that have more sophisticated strategies and train millions
of parameters. The DeepEddy learning architecture allows to perform well even on a relatively
small training datasets, which enables it to be easily extended to other detection tasks using
other remotely sensed data. The comparison of oceanic eddy detection results show that
DeepEddy can detect more eddies than the visual interpretation method, mainly because
DeepEddy detects even the incomplete oceanic eddies as well as large-scale eddies.

In the future, we will further enrich the Eddy dataset, to include different regions of the
ocean and annotate the cyclonic and anticyclonic eddies separately in the training dataset
building process, which will allow for better differentiation. In addition, we would like to
research the ability of DeepEddy on multisource remotely sensed data and enrich the Eddy
dataset with other remotely sensed data.
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