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Abstract

Person localization or segmentation in low resolution crowded scenes is important for person tracking and recognition, action
detection and anomaly identification. Due to occlusion and lack of inter-person space, person localization becomes a difficult task.
In this work, we propose a novel information fusion framework to integrate a deep head detector and a body pose detector. A
more accurate body pose showing limb positions will result in more accurate person localization. We propose a novel Deep Head
Detector (DHD) to detect person heads in crowds. The proposed DHD is a fully convolutional neural network and it has shown
improved head detection performance in crowds. We modify Deformable Parts Model (DPM) pose detector to detect multiple upper
body poses in crowds. We efficiently fuse the information obtained by the proposed DHD and the modified DPM to obtain a more
accurate person pose detector. The proposed framework is named as Fusion DPM (FDPM) and it has exhibited improved body
pose detection performance on spectator crowds. The detected body poses are then used for more accurate person localization by
segmenting each person in the crowd.

Keywords: Crowd Analysis; Person Segmentation; Person Localization; Information Fusion; Body Pose Detection; Upper Body

Detection

1. Introduction

Vision based algorithms have achieved significant progress
for scenes containing single or few persons for human detec-
tion, person tracking, localization and recognition [1H3]. How-
ever, automated analysis of relatively dense crowds is signifi-
cantly more difficult [6]. It is due to a number of challenges
posed by the crowded environment such as severe occlusion,
low resolution, and perspective distortions. Though dense crowd
analysis is more complex, it offers better solution to the real-
world applications. It is important for surveillance and security,
space and infrastructure management of large events such as po-
litical, religious, social, and sports gatherings. In dense crowds,
person pose estimation may be considered as the first step to-
wards person localization, recognition, anomaly identification
as well as action assignment and recognition.

Deformable Parts based Model (DPM) [2] person pose de-
tector has shown excellent performance for single or few person
pose detection. The DPM separately detects positions of dif-
ferent body parts and then joins them using Dynamic Program-
ming (DP). However, DPM was originally developed for scenes
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Figure 1: Some sample head/face images from the SHOCK dataset. All images
are of quite low resolution. (a-d) Examples of different viewing angles of head.
(e) An instance with lack of facial features. (f-j) Examples of partially occluded
faces.

containing isolated or non-overlapping persons. For the case
of crowded environments, the performance of DPM degrades.
We modify the DPM algorithm to efficiently detect upper body
poses in crowded scenes. We also propose a deep learning
based novel head detector for low resolution crowded scenes.
We propose fusion of information obtained by the deep head de-
tector and modified DPM, resulting in a Fusion DPM (FDPM)
algorithm which has shown better performance on crowded sce-
nes.

In crowd scenes, full person detection becomes extremely
challenging due to high occlusion and low person resolution.
For most of the persons only upper body remains visible and
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lower body becomes occluded therefore full person detectors
cannot be applied on dense crowds. Due to close vicinity of
persons and wide variation in person poses, upper body detec-
tion as a whole becomes challenging. In contrast, person heads
remain visible most of the times and therefore fusion of head
information obtained using deep learning with a part based up-
per body pose detector significantly increases the performance
of the pose detector.

As discussed earlier, person heads have higher probability
of being visible compared to upper bodies. Therefore, we may
assume that if there is a head with high confidence there is a per-
son, though the opposite may not be true. In order to localize
persons, we experimented with different existing head/face de-
tectors. Most of these have shown low accuracy on the densely
crowded scenes because of low resolution of face/heads, vary-
ing viewing angles and absence of facial features in many cases
as shown in Fig. []

In order to obtain an accurate head detector in crowded
scenes, we propose a Deep Head Detector (DHD) which is a
fully convolutional neural network. We consider the problem
of head detection as a segmentation problem. The proposed
DHD assigns each image pixel a probability of being a head
pixel. Probability of a pixel exponentially decays as distance
increases from the head center. The proposed network consists
of multiple convolutional and de-convolutional layers. We com-
pared head detection results of our proposed Deep Head Detec-
tor (DHD) with LBP, HOG and Haar based detectors. We find
that even after retraining these detectors on the same dataset,
these algorithms still exhibit lower accuracy than the proposed
DHD algorithm. Preliminary results in this direction are re-
cently presented in a workshop [7].

Once heads in an image are detected with high confidence,
we then consider fusion of head information with FDPM which
detects all upper-body candidate skeletons with certain confi-
dence using appearance model and head segmentation proba-
bility map. The proposed refinement reduces the confidence of
skeletons without a clear head and thus boosts the confidence
of true detection. Then we select the skeleton with maximum
confidence score from each overlapping group of skeletons, as-
suming the group belongs to the same person in real world. We
compare the results of the FDPM with the existing methods and
observe that our method performed better.

Once we select high confidence skeletons we consider the
pose of the corresponding person to be encoded by that skele-
ton. For person localization by segmentation, we learn multiple
color based Gaussian distributions for each limb of a specific
person. Using these Gaussian distributions, we then perform
pixel assignment to each limb. Then all limbs are integrated
to yield a full person segment. The same process is repeated
for all persons in the crowd. In contrast to some existing algo-
rithms which yield rectangular body boxes [10]], our algorithm
produces exact person segment. The rectangular body boxes
may contain more than one persons in dense crowds making
action assignment very difficult. Fig. [2|shows the flow of our
proposed algorithm.

The organization of the rest of the paper is as follows. Re-
lated work is reviewed in the following Section [2} Sections [3]

and [4] describe our approach in detail. In section[5] we discuss
experiments and results. Finally, we conclude our work and
give suggestions for the possible extensions in Section [6]

2. Related Work

Significant research efforts have been devoted to the crowd
analysis during the past decade. However, most of these re-
search works have only addressed quite high level problems
such as crowd counting [4} |8, 9], crowd flow classification,
segmentation and stability analysis [[11} [12]. Low level crowd
analysis such as person pose estimation and person segmenta-
tion in crowded scenes have not been well investigated [13].
Moreover, crowd datasets used in these investigations are quite
sparse in terms of number of persons. For high level tasks,
research community has used extremely dense crowd datasets
where hardly person heads are visible for example UCF crowd
segmentation and counting datasets. Due to lack of person visi-
bility, low level analysis cannot be performed on these datasets.
On the other hand, action recognition datasets mostly have only
one person or few persons performing some action. Therefore,
in terms of number of persons there is a big gap between ex-
tremely dense crowd datasets and very sparse action recogni-
tion datasets which is yet to be filled. In this work, we focus
on a complex spectator crowd dataset (SHOCK) [6] which con-
sists of up to 150 persons per frame/image. Using this dataset,
we perform low level analysis through head localization. Some
preliminary results on SHOCK dataset were presented by the
original authors [6]. We go a step forward and propose algo-
rithms for person pose estimation using head positions and per-
son segmentation through the predicted pose.

One can relate head segmentation/localization with face de-
tection but in crowded scenes it is significantly different. Most
of the face detectors [} 14, [15] rely on face specific features
such as skin color or structure of eyes, nose and mouth etc. But
in crowds, these features are not strong enough due to low reso-
lution of a person in an image. Additionally, face pose varies a
lot from frontal to left, right, down and rear poses. Recent suc-
cesses of deep neural networks for image classification [16}/17]]
and segmentation [18] tasks motivated us to use deep NN to
address head segmentation problem where hand crafted feature
based methods [5] failed on even head detection task. Our head
segmentation method is inspired by the fully convolutional neu-
ral network in [[19]. Initial results on the proposed head segmen-
tation method have recently been presented in [7].

Yang et al. [20] proposed a face detection method in crowds
where they used an object detector to generate bounding box
proposal for faces and then validate each proposal with their
proposed Faceness net. Whereas, our proposed method predicts
all faces in a given image at once. Qin et al. [21] and Chen
et al. [22] proposed a cascaded CNN to predict faces. They
used multiple CNNs to predict a single face whereas we used
one CNN to predict multiple heads in a given image. Recently
Faster RCNN has also been employed for face detection [23].
Hu et al. [24] has trained CNN at multiple resolutions and the
final detection scores are integrated to detect faces with large
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Figure 2: Flow diagram of the proposed Fusion DPM (FDPM) algorithm. During training, preprocessing phase extracts each person from raw images. Feature
extraction step extracts the features of each individual to feed them into FDPM. Deep Head Detector (DHD) processes raw images to predict the head probability
maps. During testing, FDPM uses each person’s features and head probability map to predict person skeleton. Gaussian Person Segmentation (GPS) module uses a
raw image along with predicted skeletons to generate segmentation masks for each person.

scale variations. The computational complexity will linearly
increase with the number of resolutions being used.

In recent years, significant work has been done on person
pose estimation in images and videos [25-28]]. Deformable part
based models [2} and approaches based on deep con-
volutional neural network [32H33] have achieved quite good
performance. The main focus of these methods was person
pose estimation in scenes with mostly single person or very
few persons. Performance of these methods in crowded scenes
degrades because they are designed to capture appearance and
geometric relation between the body parts of a single person.
Hence, they are less robust to person-person occlusions. Newell
et al.proposed a stacked network [33]] for the detection of per-
son pose. Their network was specifically designed for single
high resolution person whereas our method can detect many
overlapping low resolution persons. Cao et al. has re-
cently proposed a very fast multi-person pose detection algo-
rithm, however their performance degrades on low resolution
images as often required in crowd scenes.

Background subtraction is a very simple case of segmenta-
tion and extensively addressed in literature [36-39]. However,
segmentation of person body parts is a very challenging prob-
lem due to limb articulation, diverse appearance and occlusions.
Existing methods address the segmentation of one or few per-
sons using color and motion based approaches [40, 41]]. Some
methods have been proposed for multiple person segmentation
and occlusion handling but each method has its own limitation.
For instance, the approach proposed in [42] used stereo dispar-

ity cues along with color and motion, while performance of [43]]
depends on pedestrian detector, and the method in used in-
formation from multiple cameras to segment people. The au-
thors of [45]] used a pose and super pixel based approach to
segment single person in a video. We address this problem for
scenes with spectator crowds by fusing the person pose with
color based Gaussian mixture models and handle the occlusion
problem by introducing scene level constraints.

3. Deep Head Detector (DHD) Algorithm

In dense crowds, head/face of a person has relatively high
probability of being visible as compared to the rest of the body.
Therefore, presence of a head/face with high confidence means
presence of a person. However, head detection in crowded
scenes is a difficult problem due to significant noise and out-
liers. We pose the head detection as a segmentation problem
by estimating a probability for each pixel being the head pixel.
Our approach is different from the typical head/face or object
detectors, which is to slide a filter on the image and classify
each image location as an object or a non-object. We propose
a deep learning based solution that segments full image at once
by assigning a probability of belonging to a head to each pixel.
Fig.[3h & b show an input image and head labels used for train-
ing. The output of the proposed network is shown in Fig. [3k.
For each pixel probability of being a head pixel is shown using
pseudo color. Since the training labels are bounding boxes for
each head, therefore detection also appears as rectangles. We
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Figure 3: Training and testing of DHD: (a) Original Image. (b) The ground truth
head bounding boxes with Gaussian probability weights. (c) Head probability
map generated by the proposed DHD network.
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Figure 4: Deep Head Detector (DHD) network architecture: each block consists
of a set of layers and each layer represents a specific operation as shown on the
top of image. Within a block each layer has same depth written on the top of
each block. Left to right arrows show that last layer of each down-sampling
block is also used during up-sampling.

use this probability map as an input to the person pose detector
as later explained in Section .1}

3.1. Network Architecture

The deep convolutional neural network employed for head/
face detection is motivated by the success of UNET [19] for
cell segmentation. A block diagram of the proposed network
is shown in Fig. ] We employ multiple down-sampling and
up-sampling blocks where down-sampling blocks are used to
shrink the image size and capture the context information whereas
symmetric up-sampling blocks expand the down-sampled im-
age to get better localization. Down-sampling blocks in the
proposed network capture the context information whereas up-
sampling blocks localize the head using features from the last
layer and high resolution features from the symmetric down-
sampling layers using the copy steps. Use of high resolution
features from down-sampling blocks has also been proved use-
ful to achieve better performance in many other studies, for ex-
ample DCAN [359] and DenseNet [60] architectures.

To avoid overfitting and to improve learning, we empiri-
cally select the number of down-sampling blocks to be four
and up-sampling blocks to be three as explained in Section[5.2]
We used 2x2 max pooling with no overlap, 3 x 3 unpadded
convolution filter to avoid boundary effect and tanh activation
function. A dropout layer with 0.5 dropout rate is used in the

last down-sampling block. The proposed design of a down-
sampling block in the DHD network as shown in Fig. []is
given by

Yi = fmax(yi—l) o fconv(’v W27L71) o fa(')
o feonw (s Wai) o fa(+),

where fiaz, feonvs, and f, are the max-pooling, convolution
and activation functions respectively, y;_1 is the output of pre-
vious block, i € {1,2,..., D}, D is the total number of down-
sampling blocks, 1o represents the input image, and W is the
trainable weight matrix for down-sampling block. The operator
(o) provides the output of preceding function to the superseding
function and operator (-) represents the output of the preceding
function.

In each up-sampling block, we concatenate the feature maps
of de-convolution layer with the feature maps of last convolu-
tion layer of respective down-sampling block. The proposed
design of an up-sampling block in the DHD Network is shown
in Fig. []and given by

ey

Zj :fdconv(zjfl, W{;j_Q) o fcat(‘,nyj)
© fconv('7 W?:jfl) o fa(') o fconv('7 W;]) o fa(')7

where fycony and f.q: are deconvolution and concatenation func-
tions, z;_1 is the output of the previous up-sampling block
and yp_; is the output of the (D — 4)" down-sampling block.
W' is the trainable weight matrix for up-sampling block, j €
{1,2,...,U} and U is total number of up-sampling blocks.
The output of the last down-sampling block is the input of the
first up-sampling block, zp = yp. In case of unpadded convo-
lution, input image size becomes crucial because each input of
2 x 2 max pooling layer must have even dimensions to be down-
sampled perfectly. Therefore, only a set of image sizes work for
given number of down-sampling blocks. The validity of an im-
age size for a given number of down-sampling layers can be
verified by Egs. [3]and[d] This relationship depends on reduc-
tion in image size after a convolution, number of convolutions
in a down-sampling block, down-sampling ratio and number of
down-sampling blocks. The reduction in image size after one
convolution depends on convolution filter size and stride size.
Let a be the reduction in image size

(@)

ne — fs+1

5 ; 3

a=mn,—
where n,, fs and S are the sizes of image, convolution filter and
stride, respectively. During down-sampling, we are reducing
image size with an integer factor (max pool). Therefore, if the
output size of the last down-sampling block is an integer value
then output sizes of all intermediate blocks will also be integer
values. Let np be the output size of the last down-sampling
block. Using Eq.(3), np is given by

np = (ra)?~' xn, —2a (l(rd)D> ;

1—Td

“



where rq is the down-sampling ratio. Using (@), we ensure
the input image size n, is the one which results in an integer
np. Our network has unpadded convolutions in both down-
sampling and up-sampling paths. Therefore, output of the last
up-sampling block is much smaller than the input image es-
pecially for small input images. The output dimensions are
important for better selection of input image size and amount
of overlapping. Let ny be the output size of last up-sampling
block. Using Eqgs. (3) and @), ny is given by

(r)” — 1)

Ty — 1

ny = (ry)Y x np — 2a ( ®)
where 7, is the up-sampling ratio. D and U are the number
of down-sampling and up-sampling blocks. For a given in-
put image size n, X n, the output probability map size will
be ny X ny. Since ny < n,, the output probability map will
correspond to central portion of the input image, leaving the
border with no probability values. To solve this problem we
divide the large input image into smaller overlapping blocks of
size n, X n,. We use alpha blending to fuse the probability
values of the overlapped region.

3.2. Network Output and Optimization

After the last up-sampling block, a convolution filter of size
1 x 1 x C is used to map output to the required number of
classes(C'). Let f(u, ¢) be the activation score at a pixel position
u for class c. We convert these scores into probabilities by using
a pixel-wise softmax. Let p(u, c¢) be the probability of pixel u
belonging to class ¢

o - eo(f(we) 6
) = S ) ©

To measure the deviation of the predicted probability map p
from the ground-truth [, we use cross entropy as criterion. We
minimize following cost function

c
cost = — Z Z l(u,c)logy(p(u,c)), ™

u c=1

where [(u, ¢) represents the actual probability at pixel u belong-
ing to class c. We use Adam stochastic optimization method [46]]
for optimization of our model with 0.001 initial learning rate.
The probability map p after convergence of the algorithm is
used as an input to the person pose detector as explained in
Section .1} The probability map p can also be used for the
localization of heads in crowed images as discussed in Section
5.2]

4. Information Fusion for Person Pose Detection in Dense
Crowds

Person pose estimation is a problem of localization of per-
son body parts such as head, torso, upper and lower arms (Fig.
[Bla). These parts have different sizes. We divide each body part

a b c

Figure 5: (a) Upper body skeleton overlaid on a person. (b) Extended skele-
ton used for training. (c) A rectangular patch is used to capture appearance
information of each of the 18 sub-parts. (d-f) Each rectangular box represents
a state. Three different images represent different forms of each state where
same colored states (red or black) share the same orientation.

Figure 6: (a) Upper body pose detection results of DPM algorithm with train-
ing by the original authors on Buffy dataset. (b-c) Zoomed in versions of two
different areas in (a). Green and red lines represent true and false detections.
Large number of false detection are clearly visible. To avoid these errors, we
have to retrain DPM on SHOCK training dataset.

in to multiple keypoints (Fig. Bb). We use a rectangular win-
dow to extract appearance feature of each keypoint (Fig. [Bk).
Then we train a model that learns appearance of each portion,
their co-occurrences and spatial relations.

In order to estimate the position of different limbs and body
pose of an individual in an image containing a crowd we con-
sider Deformable Parts Model (DPM) [2]]. The performance of
the DPM algorithm is excellent on the images containing single
or few persons which are well separated. However, we practi-
cally observed that the performance of DPM degraded signifi-
cantly on images containing crowded scenes with large number
of persons close to each other. One such example is shown in
Fig. |§| in which one can see false detections, miss detections
and incorrect poses and limb positions. It is because person
pose estimation in densely crowded images is more challeng-
ing task due to low resolution of persons and severe occlusions.
In order to handle these challenges we fuse the information ex-
tracted by DPM algorithm and the information extracted by the
deep head detector and obtained good performance on crowd
images. We named this technique as Fusion DPM (FDPM) al-
gorithm.



4.1. Model for the Crowded Scenes

In classical part models [47] all possible pose articulation of
a body part are generated by scaling and rotation of a base sate
of that body part e.g. upward and horizontal pointed lower arm
can be generated by rotation of its downwards pointing state.
Linear transformations of a base state cannot generate all pos-
sible real world states of a limb, especially out of plane rota-
tions. A better approach is to represent the articulated pose of
a person using a mixture-of-states for each body part. A state
represents a sub-part in a particular appearance, orientation and
scale (Fig. [5g-f). Therefore, we do not use manually rotated and
foreshortened states of each body part to model an articulated
pose. Instead, a fixed set of possible rotated and foreshortened
states for each body part are inferred from training dataset using
clustering to model an articulated pose. Each limb can appear
in different orientations but in a particular orientation all states
on a rigid limb will share the same orientation due to the rigid-
ity constraint, Fig. [5-f. This constraint motivates us to learn a
prior from the co-occurrence of states with specific orientation
and scale. This kind of prior will favor the realistic poses over
non-realistic ones.

We divide a person into K sub-parts (keypoints), for each
sub-part we have S unique states thus we have S x K states
in total. Let M be the state matrix of size S x K where each
column corresponds to a particular sub-part and each value in
that column corresponds to a unique orientation and scale of
that sub-part. We compute a co-occurrence matrix (M,,) of
size K.S x K S which encodes co-occurrence score of any two
states in the training data. We also compute an occurrence score
matrix (M,s) of size S x K, using training data. For this pur-
pose K-means clustering is applied on the normalized position
of each sub-part with respect to its parent sub-part. M,s en-
codes the occurrence score of a particular state for a particular
sub-part which is size of the corresponding cluster. A pose P
is a set of states such that exactly one state is selected from the
each column of the state matrix, P = {s1, 82, - sk }. The
sum of occurrence scores of these states is the occurrence score
of P and sum of co-occurrence score of these states is the co-
occurrence score of P. The overall score of the pose is the sum
of these two scores [2].

K K K
C(P) =) Mos{sit+ D > Meofsiisih,  ®

i=1 j=1

where M,{s;} is the occurrence score of state s; in the ma-
trix Mos and Mo{s;,s;} is the co-occurrence score of states
{si,sj} € P as given by the matrix M.

Another model is used to capture the appearance of each
state. It primarily learns color and illumination invariant tem-
plate of that state. Let M, be the matrix such that each row
corresponds to a particular state in the state matrix. Each row
contains state template representing significance of a particu-
lar dimension of the feature of that state. Thus a state template
partially encodes the global geometry of the pose because each
state has different appearance model. The appearance cost [2]

for pose P is given by

K
A(I7 P) = ZMw{Sz} : ¢(Ia Si)a )

where 7 is an image, M,,{s;} is the weight vector for the state
s; and ¢(I, s;) is HOG feature vector computed for state s; in
image /.

Along with variability in orientation and appearance, body
parts can also deform in many ways while being a valid pose.
However, this deformation is limited due to kinematic constraints.
Let M, be the state deformation weight matrix of size K252 x 4
where each row corresponds to the deformation weight for a
pair of states. The deformation cost [2] for pose P is given by

K K
D(I,P) = ZZMd{Si,Sj} : ‘I)(Si78j), {Si,Sj} € P,
i=1 j=1
(10)

where ®(s;,s;) = [dx dz? dy dy?] encodes the deformation
between state s; and s;, and dov = x; — x; and dy = y; — y;
denote the relative location of each state s; with respect to each
state s;. Mg{s;,s;} is a row in the state deformation weight
matrix corresponding to state s; and s;.

In crowded environments often head has low resolution and
lot of pose variations. Therefore HOG based appearance model
in DPM exhibits degraded performance. We propose the out-
put of DHD algorithm to be fused with HOG based score. For
this purpose, we convert the output of DHD algorithm (head
probability map) into head confidence score by subtracting a
threshold value. A positive score will favour the head detec-
tion whereas a negative score will disfavour. We scale the HOG
score by the head presence score at each location.

H(I,P)=a- > Al sy)-((sn) —B), (1)

spEP

where s;, are the states corresponding to the two head sub-parts
including forehead and chin/neck, (sy,) represents the prob-
ability of s), being a head, given by Eq. (6). A(I,s) is the
appearance score of each state in s;, and o and § are hyper
parameters.The « is the relative weight of head prior and the
B is the threshold. If the head probability is larger than /3 then
H(I, P) is positive otherwise it will be negative. Depending
upon the value of (sy,), overall score of a pose will increase
or decrease. Both « and /3 are empirically learned from the
training dataset.

The complete fusion model, consisting of co-occurrence
and head priors, appearance and deformation models is given
by

M(I,P) = C(P)+ A(I,P) + H(I,P) + D(I, P). (12)

The term H (I, P) may turn out to be negative in case of poor
head appearance. Similarly D(I, P) may evaluate negative if
sub-part positions in a test image I are away from the positions
in the model for pose P. In such cases, both of these terms will



cause reduction in the overall value of M (I, P). During train-
ing process the weight matrices M, and M, are learned while
maximizing M (I, P) using Structured SVM. The learned ma-
trices are then used during testing. Poses with M (I, P) larger
than a threshold are considered as candidate predictions while
poses with smaller M (1, P) are discarded. In crowded scenes,
mostly only upper body parts including heads, shoulders, arms
and torso remain visible. Due to occlusion caused by the sur-
rounding persons and other objects such as seats in the stadium,
lower body parts become invisible. Therefore, in this work we
trained only an upper body pose detector for persons in crowded
environments.

4.2. A New Accuracy Measure for Pose Detection in Crowds

Current evaluation metrics include Probability of a Correct
Pose (PCP) [26] , Probability of Correct Key-point (PCK) [2]]
and Average Precision of Keypoints (APK) [2]. Both PCP and
PCK only penalize miss-detection while do not incorporate false
positives, resulting in high accuracy in case of multiple detec-
tion of the same person. The common drawback of these mea-
sures is that these only report the detection accuracy for each
body part independently. In multiple detection, individual key-
points may gain good accuracy while the overall pose detection
remains poor. It is because the overall accuracy of a pose is
not efficiently captured by the individual keypoint accuracy. In
order to handle this problem, we propose a new evaluation met-
ric for accuracy of pose estimation which measures the correct
Probability of Full Pose (PFP). In case of multiple detection of
the same person, in the proposed PFP, only the best matching
skeleton is considered true positive while the remaining skele-
tons are false positives. The PFP score depends on the percent
correctly detected keypoints in the true positive skeleton, with
a penalty induced by the false positive skeletons.

For a crowded image containing multiple subjects we com-
pare the set of predicted skeletons S,, and the set of ground
truth skeletons Sg;. For each ground truth skeleton, we select
the best matching predicted skeleton. While comparing two
skeletons each corresponding keypoint is compared. We used
the same criterion as used for PCK and APK in [2] to evaluate
the correctness of an individual key-point. A key-point is con-
sidered correct if it falls within v x max (h, w) pixels of ground
truth key-point, where h and w are the height and width of the
person bounding box. We consider v = 0.20 which is not too
strict nor too loose for evaluation of predicted keypoints and
it is also used in previously published works [2] for PCK and
APK evaluation measures. We experimented with different val-
ues of v for APK measure to show the consistency in prediction
results (Tabld2). For a given ground truth skeleton, a predicted
skeleton with maximum number of correct keypoints is the best
match. Let Sy, be the set of best matching skeletons or true
positives, Sy, = Sp N Sy:. If no predicted skeleton with at least
one correct keypoint is found then that ground truth skeleton
has remained undetected and constitutes a false negative. Let
St be the set of false negatives, S¢, = Sg¢ — Sip. All pre-
dicted skeletons which are not in the set Sy, are false positives
Stp, Sgp = Sp — Syp. For each false negative and false posi-
tive skeleton we assign a zero PFP score. For the true positive
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Figure 7: Precision recall curve based comparison of different methods trained
on SHOCK dataset.

skeletons, PFP score is the ratio of correct keypoints to the total
keypoints. Let PF P (i) be the PFP score of i*" skeleton.

Number of Correct Keypoints ieS
Total Number of Keypoints ° tp
PFP(i) = 0, i€ S (13)
0, xS an

For a given crowd image containing large number of persons,
an image PFP score is defined as

Yics,, PFP(i)
1Stpl + [Ssp] + 1Sl

Iprp = (14)

where | - | represents the cardinality of the set. For a dataset
of crowd images, average Ippp over all test images is used
for comparison. The proposed measure Image Probability of
Full Pose Iprp more accurately captures accuracy of a pose
detection method in crowded scenes.

5. Experiments and Results

The proposed algorithms are tested on two publicly avail-
able datasets including a crowd dataset SHOCK [6] and Buffy
[[1] dataset. The DHD algorithm is compared with four existing
methods including Viola-Jones HOG [3]], Viola-Jones LBP [3]],
DPM head [2] , and DPM upper body [2]] detectors. The FDPM
algorithm is compared with six existing methods including Tran
[48], Andriluka [49], Eichner [50], Sapp-1 [S1], Sapp-2 [52]
and DPM [2]. The proposed DHD and FDPM algorithms have
shown excellent performance in all experiments.

5.1. The Datasets

In our experiments we used a recently published spectator
crowd dataset by Davide et al. [6]]. This dataset captured spec-
tators of an ice hockey match in Trento, Italy. It consists of 60



videos of 30 seconds each, 15 videos have different types of an-
notation such as body and face bounding boxes of each person.
Each frame is of 1024 x 1280 pixels and around 75 to 150 spec-
tators are visible in each frame. We randomly divided annotated
videos into training dataset consisting of 10 videos and testing
dataset consisting of 5 videos. For the training of head local-
ization method we used head bounding boxes as ground truth.
We convert these bounding boxes into probability maps where
probability at the centers of each box is 1 and probability of
neighbouring pixels exponentially decays as distance increases
from the head box center using Gaussian distribution. The min-
imum probability within the bounding box is clipped to 0.75.
For pose estimation we manually annotated upper body pose of
10 thousand persons in training videos. Note that SHOCK is
the only crowd dataset which has person annotations. In other
very dense crowd datasets [9] [33] individual persons are
not visible, therefore these datasets cannot be used for person
pose detection or person segmentation.

The Buffy dataset consists of unconstrained images with as-
sociated ground-truth stick-men annotations. It is very chal-
lenging in term of person appearance, scale variability, highly
cluttered background, and different kinds of person clothing.
A line segment is provided as annotation indicating location,
size and orientation of the upper body parts (head, torso, up-
per/lower right/left arms). Exactly one person is annotated in
each frame and there are 748 annotated frames from 5 episodes
of the fifth season of the TV show Buffy the Vampire Slayer. We
report pose detection results on a test subset from this dataset
which consists of three episodes, in total 276 frames.

5.2. Experiments on Head Detection

For the training of the proposed DHD, we randomly cropped
10 patches of size 428 x 428 pixels from each frame of the
training videos with frame rate reduced to one frame per sec-
ond. On-line data augmentation is done by random horizontal
flipping of training patches during each epoch. We train our
network for 30 epochs of data. Beyond that error reduction is
not significant. The down-sampling ratio is fixed to 0.50 and
the up-sampling ratio was fixed to 2.00.

We train our network by varying the down-sampling blocks
to three (DHD-3), four (DHD-4) and five (DHD-5). The corre-
sponding up-sampling blocks are 2, 3, and 4 respectively. We
observed that the deeper network DHD-5 started learning un-
desired low level details such as pixel color values for posi-
tive class, instead of learning a useful mixture of high level and
low level information. On the other hand, the shallow network
DHD-3 was unable to segment all heads in the given images. It
accounted more false negatives while the deeper network DHD-
5 exhibited lot of false positives especially on patches contain-
ing skin color such as hands. The DHD-4 network learned a
good representation of data and hence performed the best as
compare to DHD-3 and DHD-5 (Fig. [7).

We compared the results of DHD algorithm with two im-
plementations of Viola-Jones (VJ) object detector [3] and two
variation of Deformable Part Models (DPM). For a fair compar-
ison we retrained VJ with LBP and VJ with HOG features on
SHOCK training dataset. The generic trained VJ by the original

Figure 8: VJ-LBP and VJ-HOG are the head detection results of Viola-Jones
detector trained using LBP and HOG features. DHD is the propose head detec-
tor. Green is true positive, red is false positive and black is false negative.

Table 1: Head detection results of different methods trained and tested on the
SHOCK dataset.

Algorithm Precision | Recall | F1 Score
DHD-3 0.8989 | 0.7549 | 0.8206
DHD-4 0.9287 | 0.8588 | 0.8924
DHD-5 0.8816 | 0.8279 | 0.8539
VJ-HOG [3] 0.7600 | 0.6035 | 0.6727
VJ-LBP [3] 0.7187 | 0.5734 | 0.6379
DPM-Head [2]] 0.8596 | 0.7535 | 0.8031
DPM [2] 0.6946 | 0.7259 | 0.7099

authors showed degraded performance on the SHOCK dataset.
We also retrained DPM model with three parts (head, face,
neck) and 18 parts (upper body) on SHOCK training dataset.
The DPM trained on Buffy by the original authors has shown
degraded performance on the SHOCK dataset. Retraining has
significantly improved performance of these existing algorithms.
Results of the retrained methods are reported in Table [T] which
is organized according to the maximum F} scores achieved by
each algorithm

Fy = 2(Precision * Recall)/(Precision+Recall).

Corresponding precision and recall values are also given in Ta-
ble[T] Precision-recall curves for all methods are shown in Fig.
[71 These results demonstrate that the proposed DHD-4 algo-
rithm has outperformed the other methods with a significant
margin. The proposed DHD-4 can process 2.66 frames per sec-
ond on Intel Xeon CPU E5-2650 with 128GB RAM. Note that
DHD-4 is significantly faster than the DPM based head detec-
tor which takes 2.32 seconds to process one frame on the same
machine.

5.3. Experiments on Pose Detection

In order to train a pose detector on crowd dataset we man-
ually annotated 10 joints in the upper body of each person in
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Figure 9: Comparison of the proposed FDPM with the existing DPM algorithm
using average PFP score on SHOCK dataset.

training (10 videos) and test datasets (5 videos). Annotations
include one point on head, neck, each shoulder, each elbow,
each wrist, and two on torso (Fig. [5h). Each limb is divided into
multiple parts to learn multiple templates (Fig. [5p). In training
data, considering each person skeleton independently we get
10 thousand skeletons. However, there are significant redun-
dancies in skeletons due to minor person motion across many
frames. We prune these redundant skeletons to get only highly
articulated skeletons using K-mean clustering with K = 300.
Only fully visible skeletons are considered for training. The se-
lected skeletons are flipped left-right because of equal probabil-
ity of each instance to happen in real world scenarios. Negative
training images are taken from the INRIA Person database [54]].
For fair comparison, DPM algorithm is also retrained on the
same dataset.

During test for each skeleton confidence score M (I, P) is
computed using Eq. (12). Skeletons with M (I, P) > Ty are
considered as candidate skeletons where Ty is the confidence
threshold. A small value of Ty will result in large number of
skeletons and vice verse. Fig. [9]shows variation of average PFP
with the variation of Ty from minimum confidence threshold to
a maximum value. In order to compare the proposed FDPM
with the existing DPM we computed Area Under the Curve
(AUC) in Fig. 0] using mean of the average PFP scores. Over-
all, our method has higher AUC score as compared to DPM.
Our method not only perform better in term of AUC but it is
also quite robust to false positives as it has higher average PFP
score on lower thresholds.

In order to compare our method with the existing methods
we also evaluate it on PCK, PCP and APK criteria in addition to
our proposed PFP metric. For individual keypoint analysis we
use PCK and APK evaluation criteria for SHOCK dataset. PCK
is a false positive invariant criterion and only penalize miss de-
tections. Therefore, its best score is at lower confidence thresh-
old (Ty = —1.02) as compared to PFP. Our proposed FDPM
performed much better than the DPM in terms of keypoint eval-
uation. FDPM has higher average PCK for all keypoints. Fig.
[T0] shows that head prior not only helps to prune false detec-
tions but also improves localization of head and its neighboring
keypoint.

To evaluate our method using APK criterion, we compute
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Figure 10: Comparison of FDPM and DPM algorithms using average Probabil-
ity of Correct Keypoint (PCK) criterion on SHOCK dataset.
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Figure 11: Comparison of FDPM and DPM algorithms using Average Precision
of Keypoints (APK) criterion on SHOCK dataset.

precision of all keypoints at different recall values. Then we av-
erage all these precision values for each keypoint across dataset.
Which represents the APK score of a keypoint. To report an
APK for pose on whole dataset we again average the APK
scores across keypoints. Our algorithm has shown higher mean
APK score on SHOCK dataset as compared to DPM. Compari-
son of both methods is presented in Table 3] and summarized in
Fig. [TT)

In SHOCK dataset, people are in stadium seating arrange-
ment, therefore wrists and hips have lower probability of being
visible as compared to heads, shoulders and elbows. Wrists
also become invisible if hands are inside pockets. Moreover,
annotation of occluded limbs on a low resolution dataset is also
a challenging task and it is not as precise as heads, shoulders
and elbows annotation. Therefore the accuracy of all compared
methods has significantly degraded on wrist and hip compared
to head, shoulder and elbow as shown in Table [3}

We also evaluated our method on a non-crowd dataset where
only few persons are visible. We used Buffy dataset for this



Table 2: Average Precision of Keypoints (APK) Score for different values of

Table 5: Average Precision of Keypoints (APK) Score on Buffy Dataset.

alpha v on SHOCK Dataset
Method | Avg | Head | Shoulder | Elbow | Wrist | Hip

Keypts | gamma | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 DPM 7748 | 86.48 87.03 80.32 | 57.27 | 76.31
Average FDPM 34.26 | 52.29 | 66.47 | 74.97 | 82.78 FDPM | 78.24 | 87.44 88.02 81.17 | 56.30 | 78.29

DPM 32.81 | 5145 | 64.76 | 7491 | 81.97
Head FDPM | 81.42 | 90.60 | 93.13 | 93.29 | 93.68

DPM 75.42 | 86.01 | 87.86 | 90.91 | 91.90
Wrist FDPM | 942 | 23.58 | 37.59 | 50.73 | 62.11

DPM 11.40 | 25.20 | 39.19 | 52.72 | 62.77 )

Table 3: Comparison of Average APK Scores on SHOCK Dataset between
the original DPM, DPM with False Positive Removal (DPM-FPR) and Fusion
DPM (FDPM)

Method Mean | Head | Sholdr | Elbow | Wrist | Hip

DPM 64.76 | 87.86 | 86.69 | 72.21 | 39.19 | 37.83
DHDFPR | 64.99 | 89.26 | 87.35 | 72.24 | 38.85 | 37.21
FDPM 66.47 | 93.13 | 91.21 | 75.61 | 37.59 | 34.81

purpose because many previous pose detection methods have
reported their results on it. Test dataset images also have a
subset of bounding boxes which are detected by a rigid HOG
upper-body detector. To make a fair comparison we also de-
tect skeletons within these bounding boxes. On this dataset our
method has obtained similar performance as compared to the
other state of the art methods including Tran [48]], Andriluka
[49]], Eichner [S0], Sapp 1 [S1], Sapp 2 [52]], and DPM [2] pose
detectors as shown in Table 4 We also compared our results
with the DPM in term of APK on Buffy dataset (Table[5). Note
that, these results are generated using Buffy ground truth, where
an image has only one annotated person.

We observe that FDPM algorithm is more robust to par-
tial occlusions and self-occlusions, especially when the lower
body gets occluded due to surrounding persons in the specta-
tor crowd. Occlusions are handled during pose detection phase
which is done partially, only on the upper body. Pose detection
model is based on four different costs as discussed in Section
4. Three of these costs, including appearance, co-occurrence
and deformation help to predict the most probable location of
an occluded limb. However, similar to the other pose detectors,
the FDPM cannot find the body pose of a person if only head is
visible and everything else gets occluded.

Table 4: PCP on Subset of Buffy Test Set

Method Torso | Head | U.arms | L.arms | Avg
Andriluka [49] | 90.7 | 95.5 79.3 41.2 76.7
Eichner [50] 98.7 | 979 82.8 59.8 84.8
Sapp 1 [51] 100 100 91.1 65.7 89.2
Sapp 2 [52] 100 96.2 95.3 63 88.6
DPM [2] 98.8 | 99.2 94.8 68.6 90.3
FDPM 100 99.5 97.0 68.3 91.2
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Figure 12: Comparison of FDPM and DPM algorithms using Average Precision
of Keypoints (APK) criterion on Buffy dataset.

5.4. Person Localization by Segmentation

On a given image, after pose detection, we apply Gaussian
Person Segmentation (GPS) to segment each person. GPS is
a color based classification of pixels belonging to a particular
person-limb. We use 10 joints from the upper body pose as
shown in Figure[5h for upper body segmentation. Two adjacent
joints (v;, v;) represent a limb. Let m;; be the midpoint of the
limb computed as average of the two joints. Let d;; be the dis-
tance of m;; from each of its end. For each limb we consider an
ellipse shaped region assumed definitely belonging to that limb
(Figure [I5h). All pixels within this ellipse are considered as
ground truth.

mij (.7})2

i mij(y)2
Smdij

-1
sydij

) 5)

where m;; () and m;;(y) are the z and y components of m;;.
Scale factors (s, s,,) are used to control ellipse height and width.
In all of our experiments we used (s;, s,,) = (0.6, 1) for heads,
(0.65,0.75) for torsos, and (0.5, 1) for the remaining limbs. In
order to align an ellipse with a particular limb we rotate the
ellipse by 6;; = cos~*{(v; v;)/(|vi||v;])}. The number of col-
ored regions may vary across limbs. For example, for face the
color of hairs is significantly different from the color of fore-
head. For each of these regions we need to learn a different
color model. In our experiments we learn three color models
for head and two for all other limbs using EM algorithm. For
each model we learn its weight w;, mean y;, and covariance ;.
Given these parameters probability of a pixel x = [z,., 7,4, zp] "
belonging to a particular model is given by

L) — ; _1 _ Nyl
(x| i, %) (%)D/zmexp( 5 (x = 1) 27 (x = )
(16)

where D = 3 is the color channels of the image. The probabil-
ity of a pixel belonging to a particular limb with model param-



Figure 13: Comparison of the proposed FDPM algorithm with the existing
DPM technique. FDPM has mostly performed better than DPM algorithm.

Figure 14: Pose detection results comparison on Buffy dataset: (a-b) Pose de-
tection by DPM algorithm (c-d) Pose detection by the proposed FDPM algo-
rithm. It can be observed that quality of detected poses has significantly im-
proved.

eters ) is given by

M
P(xIA) = wig(x|pi, i), (17)
=1

where M is the number of the models learned for that limb.

In order to find all pixels that belong to a particular limb
an extended ellipse is drawn which is 1.5 times bigger than the
ellipse used for the learning parameters. For each limb the ex-
tended ellipses are shown in Figure [T3p. We assume that all
pixels belonging to a particular limb are contained within the
extended ellipse. For each pixel x within the extended ellipse,
probability p(x|)\) is computed using Eq. If the probability
p(x|A) is larger than a threshold the pixel x is assigned label of
that person otherwise the pixel remains unlabeled. If a pixel re-
mains unlabeled after considering all skeletons detected by the
pose detector then that pixel belongs to the background. For a
particular person, pixel regions surrounded by the labeled pix-
els are also assigned the same label. A morphological closing

11

Table 6: Proposed Gaussian Person Segmentation (GPS) algorithm compared
with Background/Foreground Segmentation Algorithms

Method Precison | Recall | F1 Score | IoU
DCOLOR [53] 0.69 0.50 0.58 0.41
FPCP [56] 0.40 0.99 0.57 0.40
GODECK [57] 0.40 0.99 0.56 0.40
RMAMR [58] 0.42 0.99 0.58 0.41
Proposed GPS 0.90 0.72 0.80 0.67

Figure 15: (a) regions used for training of the color model of respective body
parts are represented by small green ellipses whereas (b) represents the regions
with large orange ellipses that are used to segment each body part.

operation (erosion then dilation) is applied to smooth out the
labeled region boundaries.

In crowd scenes most persons are partially occluded by the
neighboring persons. Therefore, before learning a color model
for a person-limb, we need to verify that limb must be visible,
not occluded. In SHOCK dataset we observe that mostly a per-
son is occluded by the persons sitting in front of him. To resolve
this type of occlusions we segment persons in a specific order.
From the set of given persons, a person with lowest head posi-
tion is processed first. This person is assumed to be in front of
all of the remaining persons in the set.

GPS algorithm is evaluated using F1-score and intersection
over union (IoU). GPS outperformed the foreground-background
segmentation algorithms as well as moving object detection
methods with a significant margin on SHOCK dataset (Table[6).
In this experiment our proposed algorithm obtained F1-score of
0.80 and IoU of 0.67. An example frame from SHOCK with
each person as one segment automatically detected by the GPS
algorithm is shown in Fig. [I6] In our experiments, the GPS
algorithm was able to obtain significantly more accuracy than
current state-of-the-art algorithms. Note that the existing algo-
rithms in Table [6] were executed on a batch of 15 frames while
the proposed GPS algorithm was executed on a single frame.
Table[6]shows average results computed on 31 frames from each
of the five test videos.

6. Conclusion

A person localization method via improved body pose is
proposed for crowded scenes. The improvement in body pose is



Figure 16: Person segmentation estimated by Gaussian Person Segmentation
(GPS) algorithm in one frame of SHOCK dataset.

based on fusion of information obtained by modified DPM and
a novel Deep Head Detector (DHD) which is a deep learning
based head/face detector. The DHD has shown better perfor-
mance than current head/face detectors in low resolution crowded
scenes. The proposed fusion based person pose detection algo-
rithm has achieved better performance on crowded scenes in
SHOCK dataset and also on multi-person Buffy dataset, com-
pared to the original DPM and other existing algorithms. A
Gaussian Person Segmentation (GPS) algorithm is used to seg-
ment all pixels belonging to a single person using the detected
pose by FDPM algorithm as spatial prior. A Gaussian mix-
ture model is learned for each limb, which is then used to de-
cide which pixels actually belong to that limb. The experi-
ments demonstrate better performance of the proposed meth-
ods over current state-of-the-art algorithms. In the proposed
fusion framework both DHD and DPM capture different infor-
mation resulting in improved performance. The proposed fu-
sion framework is generic and may be used with other head and
pose detection methods as well. An interesting future direction
may be an early fusion by jointly optimizing both detectors.
The proposed FDPM algorithm learns the body pose from the
annotations in the training dataset. Given enough examples of
rotated persons in the training data, FDPM will be able to detect
pose of rotated persons. Training on a dataset containing large
number of rotated persons is also an important future direction.
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