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Abstract

Band selection plays an important role in hyperspectral data analysis as it can

improve the performance of data analysis without losing information about the

constitution of the underlying data. We propose a MIMR-DGSA algorithm for

band selection by following the Maximum-Information-Minimum-Redundancy

(MIMR) criterion that maximises the information carried by individual fea-

tures of a subset and minimises redundant information between them. Sub-

sets are generated with a modified Discrete Gravitational Search Algorithm

(DGSA) where we definine a neighbourhood concept for feature subsets. A fast

algorithm for pairwise mutual information calculation that incorporates vari-

able bandwidths of hyperspectral bands called VarBWFastMI is also developed.

Classification results on three hyperspectral remote sensing datasets show that

the proposed MIMR-DGSA performs similar to the original MIMR with Clonal

Selection Algorithm (CSA) but is computationally more efficient and easier to
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handle as it has fewer parameters for tuning.

Keywords: Band selection, discrete optimisation, entropy, evolutionary

computation, feature selection, gravitational search algorithm, hyperspectral

imaging, Maximum-Information-Minimum-Redundancy, mutual information.

1. Introduction

Hyperspectral data is inherently complex because it contains data in both

the spatial and spectral domain in a three dimensional data structure. Most HSI

cameras record up to several hundred wavebands. Depending on the final ap-

plication, much of the recorded data may be unnecessary to retrieve the desired5

information. In fact, too much information might even have a detrimental ef-

fect on data analysis due to the well-known Hughes Phenomenon. Reducing the

number of features also results in less storage requirements and computational

complexity and minimises the risk of over-fitting.

Traditionally, there are two forms of dimensionality reduction, Feature ex-10

traction and feature selection. Feature extraction characterises the raw data

and generates new features from the available ones by linear combinations of

the same or projecting them onto a lower dimensional subspace. Recent tech-

niques include singular spectrum analysis [1], sparse representation [2, 3] or the

use of stacked autoencoders [4]. In contrast, feature selection defines the process15

of selecting a subset of all available features and thereby maintaining the origi-

nal integrity of the data. The selected subset provides insight into the intrinsic

processes that generate the data [5].

In Hyperspectral Imaging (HSI), adjacent bands are typically highly corre-

lated [6] and can safely be removed without significant information loss. Equally,20

not all recorded wavelengths are meaningful for the individual application and

are therefore not essential for the predictive power of the system. In [7], an

overview of common state-of-the-art supervised band selection algorithms is

given. These incorporate different measures such as the correlation coeffi-

cient, statistical measures like the Chi-Square distribution and most notably25
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the Minimal-Redundancy-Max-Relevance (mRMR) criterion that evaluates fea-

tures by their individual ability to explain class variables while minimising re-

dundancies based on mutual information. In [8], mRMR has been extended

and combined with a forward greedy search. Recent supervised techniques also

include new concepts such as High Dimensional Model Representation [9]. As30

ground truth data is rarely available for hyperspectral remote sensing data,

unsupervised techniques however provide a more generic approach and are of

greater interest for practical applications. Some algorithms have been reviewed

in [10], where the hyperspectral bands are ranked by measures such as the Shan-

non entropy or spectral derivatives. Other approaches include band clustering35

using various similarity measures and selecting representatives [11, 12]. Popular

similarity measures include information theoretical measures [13] or the corre-

lation coefficient [14]. More sophisticated algorithms try to evaluate a complete

band subset rather than individually ranking the features. Generating these

subsets is however known to be an NP -hard problem [15]. Therefore, typically40

Evolutionary Algorithms (EA) are employed to solve such problems. In feature

selection, popular EA techniques include Particle Swarm Optimisation (PSO)

[16, 17] and Firefly Algorithm (FA) [18, 19]. Both algorithms are population

based algorithms, where each solution is represented by a particle or firefly re-

spectively. In PSO, particles move within the solution space based on their45

own best position and a global optimal position. FA extends this concept and

introduces interaction between all solutions to allow better optimisation. These

concepts all define solutions as a binary mask determining the presence or ab-

sence in the selected feature subset and therefore implicitly solve the question

of the optimal number of selected bands. In [20] and [21], optimised versions of50

PSO and FA for hyperspectal band selection with a fixed number of bands are

proposed. This has the advantage of giving the user power over the size of the

band subset. The solutions are encoded as indices of the selected bands. [6] use

a different approach named Clonal Selection Algorithm (CSA), where solutions

are represented by immune system antigens that clone and mutate based on55

the quality of the solution. CSA is used to optimise the Maximum-Information-
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Minimum-Redundancy (MIMR) criterion. Based on entropy and mutual infor-

mation, the criterion tries to identify subsets with features that individually

carry maximum information (entropy) while minimising the redundancy (mu-

tual information) between them. As demonstrated in [6], MIMR-CSA poses a60

state-of-the-art unsupervised hyperspectral band selection algorithm that out-

performs most existing algorithms.

A common problem all of the above mentioned EAs face is the number of

control parameters [22] based on the objective function and the constitution of

the dataset. CSA in particular requires six parameters with control parameters65

for mutation, cloning and selection that need individual tuning. In addition,

CSA has a relatively high number of evaluations because the cloning can lead

to a very large amount of potential solutions. In this paper, we analyse the

suitability of other EAs to solve the band subset generation problem. In addi-

tion, we develope a modified Discrete Gravitational Search Algorithm (DGSA)70

based on [23] that addresses the issue of the number of parameters as well as

the computational cost.

Many of the aforementioned evaluation criteria depend on the use of in-

formation theoretic measures. A pre-calculation of the entropy and mutual

information based on kernel density estimation is suggested in [6] to evaluate75

the MIMR criterion in reasonable time. The naive approach of calculating the

pairwise mutual information between all bands quickly becomes very compu-

tationally expensive especially for hyperspectral datasets that comprise a large

amount of data and can last up to several days or weeks, according to our ex-

periments. In [24], a fast algorithm for the pairwise calculation of mutual infor-80

mation of gene regulatory networks data is proposed. On this basis, we propose

a Variable kernel BandWidth Fast pairwise Mutual Information (VarBW-

FastMI) estimation algorithm that accounts for strongly varying distributions

of hyperspectral bands within a dataset and calculates the pairwise mutual in-

formation of the bands efficiently. Based on VarBWFastMI, the discussed EAs85

are evaluated on three standard remote sensing HSI datasets and results are

analysed with respect to performance, computational cost and reproducibility.
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The two main contributions of this paper can be highlighted as follows: 1)

A comprehensive analysis of the calculation of information theoretic measures

in hyperspectral data is provided resulting in the VarBWFastMI algorithm. 2)90

A discrete neighbourhood concept for feature subsets is developed that results

in MIMR-DGSA feature selection which is a robust, computationally faster and

a less cumbersome algorithm with fewer parameters than similar algorithms.

The rest of the paper is structured as follows: Section 2 introduces the

basics of the MIMR criterion. Section 3 establishes details on the proposed95

VarBWFastMI and MIMR-DGSA algorithms. Section 4 defines some experi-

ments where the algorithm is evaluated and compared with other state-of-the-

art algorithms. Finally, Section 5 concludes the paper and gives an outlook on

possible future work.

2. The MIMR criterion100

The MIMR criterion for band selection is based on information theory, whose

fundamental measure, the Shannon entropy H(X) of a random variable X is

defined by:

H(X) = −
∫
X

p(x) log p(x)dx (1)

where p(x) denotes the Probability Density Function (PDF) of X.

The information shared by two random variablesX1 andX2 can be measured105

by the mutual information I(X1;X2), which is defined as:

I(X1;X2) =

∫
X1

∫
X2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
dx1dx2 (2)

where p(x1, x2) is the joint PDF of random variables X1 and X2.

To avoid quantisation errors from histogram PDF estimations, a popu-

lar method is Parzen window estimation [25]. Given a set of n observations

x1, x2, ..., xn of a random variable X, its PDF p(x) at point x can be approxi-110

mated by:

p̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3)
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where K(.) denotes the kernel function or Parzen window and is assumed to be

a symmetric PDF. h represents the kernel width or bandwidth which controls

the smoothness of the resulting density estimate. The choice of h is crucial to

the quality of the estimate [26].115

The most common kernel function is the Gaussian kernel. The PDF of

a univariate random variable with Gaussian kernel can be estimated from n

datapoints by:

p̂(x) =
1

n

n∑
i=1

1√
2πh2

exp

(
− (x− xi)2

2h2

)
(4)

And for a bivariate distribution:

p̂(x, y) =
1

n

n∑
i=1

1√
2πh2

exp

(
− (x− xi)2 + (y − yi)2

2h2

)
(5)

Let Xi denote the ith subset of s features and Xim denote the mth feature120

of that subset with 1 ≤ m ≤ s, the MIMR criterion can the be defined by:

max

 s∑
m=1

H(Xim)− 2

s− 1

∑
1≤m1<m2≤s

I(Xim1
;Xim2

)

 (6)

As an independent criterion for unsupervised subset evaluation, MIMR max-

imises the sum of the entropies H(.) of the features and minimises the sum of

the pairwise mutual information I(.; .) between all features in the subset. The

higher the entropy of a feature, the higher its information. Equally, the lower125

the mutual information between two features, the lower the shared information,

i.e. the redundancy between them.

3. The Proposed Algorithm

A flowchart of the proposed algorithm is outlined in Fig. 1, which has

two main steps. The fast calculation of entropy and mutual information with130

VarBWFastMI and MIMR-DGSA algorithm for band selection. Relevant details

are presented in the following Sections.
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Figure 1: Procedure of the entire band selection algorithm

3.1. VarBWFastMI

The estimation of the PDFs of hyperspectral bands to calculate the entropy

and mutual information pose some problems in practice that need to be ad-135

dressed. Depending on the composition of the HSI image, each wavelength can

potentially vary very strongly in terms of grey value distribution. Fig. 2 shows

the histogram of two different wavelengths of the Indian Pines dataset. It is

quite obvious that the two bands contain very different distributions of grey

values and require therefore different bandwidths for the kernel density esti-140

mation. In this paper, a bandwidth estimation algorithm for Gaussian kernels

Figure 2: Histogram of wavelengths 812 and 1322nm of Indian Pines dataset. Both wavelength

show very different PDFs.

based on the principle of the Mean Integrated Squared Error (MISE) is used.

Gaussian kernels are most commonly used and details about the bandwidth es-
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timation can be found in [27]. The bandwidth estimation can deliver a pseudo

optimal bandwidth for each hyperspectral band and therefore generate better145

estimates of the PDF and ultimately the entropy and mutual information. On

the basis of the density estimate p̂h with a given bandwidth h, an approxima-

tion of the entropy H(X) of a band X with n sample points can be directly

computed from:

H(X) =

n∑
i=1

p̂h(xi) log p̂h(xi) (7)

The calculation of the mutual information encounters additional challenges.150

As seen in Eq. 2, the mutual information requires the joint entropy of the

two random variables, which in turn requires a joint density estimate. Using

a Gaussian kernel function, the joint density can be estimated by Eq. 5. The

computational complexity however rises exponentially and for greater datasets,

the cost for the mutual information calculation becomes impractical. In [24], a155

fast algorithm for calculating the pairwise mutual information between features

based on a Gaussian kernel density estimation is introduced for gene regulatory

networks. The general idea is to use the fact that the integral of Eq. 2 can

be approximated by the sample mean of the respective random variables. The

proposed VarBWFastMI makes one major adjustment to that algorithm. Since160

we estimate a different kernel bandwidth for each hyperspectral band, this needs

to be considered for the pairwise mutual information calculation. Given the two

bandwidths hx and hy for the two bands x and y, Eq. 5 can be rewritten as:

p̂(x, y) =
1

n

n∑
i=1

1√
2πhxhy

× exp

(
−1

2

(
(x− xi)2

h2x
+

(y − yi)2

h2y

))
(8)

The algorithm in [24] can simply be adapted to estimate the joint densities

by Eq. 8 to incorporate the variable bandwidths that are estimated. The165

implementation of VarBWFastMI is based on the Matlab implementation of

the fast pairwise mutual information available at [28]. The code is altered to

incorporate variable bandwidths.
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3.2. DGSA for hyperspectral band selection

As a heuristic optimisation strategy developed in 2009 [29] that is inspired170

by Newton’s gravitational laws, GSA has gained increasing popularity in recent

years in various fields of computation [30, 31]. GSA interprets solutions as ob-

jects in an N -dimensional space that attract each other according to their mass

and gravitational force, where higher masses represent better solutions. The ba-

sic concept is visualised in Fig. 3a. In [23], a discrete GSA (DGSA) is developed.175

Adapted to the problem of hyperspectral band subset generation in particular,

DGSA can be defined as follows. Let each band subset Xi = (x1, x2, ..., xN ) be

encoded by agents in anN -dimensional space, whereN defines the number of de-

sired bands. In each dimension d, the possible agent coordinates xd ∈ 1, 2, ...,M

equal indices of all available bands F = {f1, f2, ..., fM}. Duplicates are not al-180

lowed, i.e. ∀i, j ∈ {1, 2, ..., N, i 6= j} → xi 6= xj which means that no agent

can have the same coordinate in more than one dimension. This is to avoid a

subset containing the same band more than once. The representation of band

subsets by agents in a search space is illustrated in Fig. 3b. The mass Mi of

(a) (b)

Figure 3: DGSA for 3 features. (a) illustrates the agents and their interactions in the three

dimensional space and (b) the representation of band subsets through agents.

agent i, the gravitational force Fij and resulting acceleration aij from agent i185
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to j as well as the normalised distance NRij are calculated according to [23].

The concept of distance between two band subsets is however redefined here

and inspired by the Manhattan distance. The distance between agents i and

j can be interpreted as the number of edges that need to be passed along an

undirected graph that connects all agents to reach j from i. One step can in190

this context be interpreted as moving agent i one edge along an N -dimensional

grid towards agent j. Note that the movement is ambiguous as no preference

as to which neighbour is selected is given in case of multiple paths between

the two agents. Fig. 4 illustrates movement in the Manhattan distance space

between two agents for a two-dimensional search space. Two possible paths are

Figure 4: Illustration of movement in Manhattan distance space in a two dimensional space.

The agent at coordinates (3,2) is moving towards the agent at (7,5) and has two options at

each step. This creates a number of possible shortest paths which are all equally likely.

195

indicated, but the number of paths is not limited to two. As a consequence,

each of the possible paths is equally likely. One constraint here is that no band

can be selected twice, which means that the number of possible neighbours is

reduced. Paths are chosen randomly to introduce a stochastic component and

prevent premature convergence.200

The resulting MIMR-DGSA algorithm is summarised in Algorithm 1. The

initial population P of agents is generated by a randmonised greedy initialisation

where nc random bands out of all are selected as candidates and the one that

produces the highest fitness is chosen and added to a set until the set reaches the

10



Algorithm 1 MIMR-DGSA Algorithm

1: Input: nb: Number of desired bands; s: Size of population or number of

agents; itermax: Maximum number of iterations; nc: Number of candidates

for generation of initial population

2: Output: Best solution Pbest found;

3: . Initialisation

4: iter ← 0; Kinit ← s; Gstart ← 1; Gend ← 0

5: Generate initial population P (iter) with s agents of length nb

6: Evaluate fitness fiti = MIMR(Pi) and mass Mi of each agent Pi ∈ P (iter)

7: . Main loop

8: while iter < itermax do

9: Update G, K by linear reduction functions

10: Update Kbest by selecting global K best solutions

11: Calculate acceleration aij for each agent Pi ∈ P (iter) with respect to each

Pj ∈ Kbest

12: for i = 1 to s do

13: Pi ← Move(Pi,K,Kbest, aij).

14: end for

15: for i = 1 to s do

16: Pi ← LocalSearch(Pi)

17: end for

18: P (iter + 1)← P (iter)

19: Evaluate fitness fiti = MIMR(i) and mass Mi of each agent Pi ∈ P (iter+

1)

20: Store best solution Pbest ∈ P (iter + 1) ∪Kbest

21: iter ← iter + 1

22: end while

11



desired size nb. In the main loop, both K and the gravitational constant G are205

reduced by a linear reduction function. K should equal 1 in the last iteration.

As suggested in [23], the Kbest set contains the globally best agents out of all

iterations instead of the local best agents of the current iteration. Mass and

acceleration of each agent are calculated according to [23]. In the movement

stage, it needs to be specified in which order the K best agents exert their force210

onto other agents. As stated in [23], later movements have a more significant

impact on the quality of the solution, which is why the priority is calculated by

the inverse mass. At the end of each iteration, a local search is performed for

each agent. This is based on the Hill climbing algorithm. The worst performing

band of the current subset is replaced by the best performing band of all re-215

maining bands, defined by the maximum entropy. The search terminates when

no neighbour can improve the fitness of the subset. The algorithm terminates

after itermax iterations and the current best solution poses the pseudo-optimal

subset of selected bands.

4. Experimental Results220

For performance assessment, the proposed MIMR-DGSA algorithm was tested

on three different hyperspectral remote sensing datasets. Details of the datasets

and comprehensive results are discussed in this section as follows.

4.1. Datasets and experimental setup

The three hyperspectral datasets include the Indian Pines, the Salinas and225

the Pavia University. Matlab files for the used datasets can be found in [32].

The Indian Pines dataset was collected by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS)[33] in 1992 and is a subregion of an image covering the

Indian Pines test site in North-western Indiana. It consists of 145 × 145 pixels

and 224 spectral reflectance bands ranging from 400nm - 2500nm. It contains230

two thirds agriculture and one third forest and other vegetation. The ground

truth is divided in 16 classes as shown in Table 1.
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Table 1: Indian Pines dataset with ground truth classes and their description as well as number

of samples available in each class

Class # Name # Samples Training Testing

1 Alfalfa 46 9 37

2 Corn-notill 1428 285 1143

3 Corn-mintill 830 166 664

4 Corn 237 47 190

5 Grass-pasture 483 96 387

6 Grass-trees 730 146 584

7 Grass-pasture-mowed 28 5 23

8 Hay-windrowed 478 97 381

9 Oats 20 4 16

10 Soybean-notill 972 194 778

11 Soybean-mintill 2455 491 1964

12 Soybean-clean 593 118 475

13 Wheat 205 41 164

14 Woods 1265 320 945

15 Buildings-Grass-Trees-Drives 386 77 309

16 Stone-Steel-Towers 93 18 75

The Salinas dataset was also collected by the AVIRIS sensor over the Salinas

Valley, California. The dataset comprises 512 × 217 pixels and again 224 bands

and has therefore a significantly higher data amount than the Indian Pines235

scene. The scene depicts vegetables, bare soils, and vineyard fields. The ground

truth also contains 16 classes, depicted in Fig. 2. To reduce noise effects in the

data, the water absorption band regions were removed, i.e. bands [104 - 108],

[150 - 163] and 220 for both the Salinas and Indian Pines datasets.

The Pavia University dataset was acquired by the Reflective Optics System240

Imaging Spectrometer (ROSIS)[34] during a flight campaign over Pavia, North-

ern Italy. It consists of 610 × 610 samples and 103 spectral bands covering a

range within 430nm - 860nm. As shown in Fig. 3, the ground truth contains 9

classes.

To evaluate the performance of the proposed MIMR-DGSA algorithm, it was245
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Table 2: Salinas dataset with ground truth classes and their description as well as number of

samples available in each class

Class # Name # Samples Training Testing

1 Brocoli green weeds 1 2009 401 1608

2 Brocoli green weeds 2 3726 745 2981

3 Fallow 1976 395 1581

4 Fallow rough plow 1394 278 1116

5 Fallow smooth 2678 535 2143

6 Stubble 3959 791 3168

7 Celery 3579 715 2864

8 Grapes untrained 11271 2254 9017

9 Soil vinyard develop 6203 1240 4963

10 Corn senesced green weeds 3278 665 2613

11 Lettuce romaine 4wk 1068 213 855

12 Lettuce romaine 5wk 1927 385 1542

13 Lettuce romaine 6wk 916 183 733

14 Lettuce romaine 7wk 1070 214 856

15 Vinyard untrained 7268 1453 5815

16 Vinyard vertical trellis 1807 361 1446

Table 3: Pavia University dataset with ground truth classes and their description as well as

number of samples available in each class

Class # Name # Samples Training Testing

1 Asphalt 6631 1326 5305

2 Meadows 18649 3729 14920

3 Gravel 2099 419 1680

4 Trees 3064 612 2452

5 Painted metal sheets 1345 269 1076

6 Bare Soil 5029 1005 4024

7 Bitumen 1330 266 1064

8 Self-Blocking Bricks 3682 736 2946

9 Shadows 947 186 761

compared with the original CSA version as well as PSO and FA. The individual

parameter settings are listed in Table 4. For CSA, the settings are based on [6],
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whereas for PSO and FA, the parameters of the respective literature were used

as a basis and were empirically adjusted for optimal results on the data used

in this paper. All algorithms are compared with respect to their band selection250

capabilities and time consumption. The band selection capabilities were assessed

with respect to pixel-wise classification. A Support Vector Machine (SVM) with

a Radial Basis Function (RBF) kernel whose parameters C and γ were tuned by

a grid search, i.e. selecting 20% of the pixels of each dataset’s classes randomly

for training and the remaining 80% for validation. The test- and validation-set255

splitting was repeated 10 times for each dataset and 3 runs of each algorithm

were performed for each set making it 30 runs per dataset. As a state-of-the-

art unsupervised feature selection benchmark for the classification performance,

Ward’s Linkage strategy using Mutual Information (WaLuMI)[35] algorithm was

applied. It hierarchically groups the spectral bands by a distance measure based260

on mutual information and selects a representative of each group as the band

subset. WaLuMI was chosen as it performs best among all compared algorithms

in [6] and therefore serves as a baseline. To compare the performance of the

MIMR criterion, the Fuzzy C-Means clustering method (FCM) has also been

applied in combination with DGSA and ultimately, a classification using all265

bands of each dataset was compared with that of the selected features.

4.2. Entropy and mutual information

For each of the three datasets, the lookup tables for the entropy and mu-

tual information were calculated with the proposed VarBWFastMI algorithm.

Results are visualised in Fig. 10 along the class mean spectra of each class in270

all three datasets. As expected, the Indian Pines and Salinas datasets show

a strong structural similarity for both the entropy and mutual information as

they are captured with the same sensor and contain similar vegetation scenes.

The bands on the edges of the water absorption regions in the Indian Pines and

Salinas datasets show a very low entropy and a low mutual information with275

the rest of the bands. Wavelength numbers 40 - 100 seem to carry the most

information as the entropy is the highest in that range. The Pavia University

15



Table 4: Parameter configurations for the different algorithms

CSA DGSA

Population size s 50 Population size s 30

Maximum iterations itermax 100 Maximum iterations itermax 30

Displaced antibodies d 5 Candidates for initialisation nc 10

Number of clones ncl 2500

Mutation probability nm 5

Selection probability ns 0.5

PSO FA

Population size s 25 Population size s 10

Maximum iterations itermax 100 Maximum iterations itermax 100

Acceleration coefficient 1 c1 2 Step size factor α 0.5

Acceleration coefficient 2 c2 2 Maximum attraction β0 0.2

Range of inertia weight w 0.9 Absorption coefficient γ 1

in contrast contains more man made objects and covers only a portion of the

spectral range of the other two datasets and is therefore quite different. It has a

remarkably uniform high entropy over almost all bands. In band numbers 70 -280

80, the entropy decreases slightly as the class spectra seem to be less distributed

and closer together. The mutual information equally shows a decline as most

bands seem to undergo a distinct change specific to their class.

The speed-up achieved by the VarBWFastMI algorithm compared to the

naive approach is compared in Tables 5 and 6. The naive approach entails esti-285

mating the univariate and bivariate PDFs of each band and band combinations

individually, while for the mutual information matrix, only the upper triangle

needs to be calculated and the lower one can be mirrored. The kernel density

estimation is done with the Matlab KDE Toolbox available at [36]. It employs

kd-trees to faster estimate the kernel density. The VarBWFastMI algorithm was290

implemented in Matlab as well and both algorithms were run on an Intel Core

i5 CPU at 3.20 GHz with 16 GB RAM and were performed on the Indian Pines

dataset. In Table 5, different numbers of bands out of the 200 available ones
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were selected randomly in 5 runs and the mean runtime was measured. In Table

6, different numbers of samples were used for the calculation. These numbers295

stem from taking 1%, 5%, 10%, 25% and 50% of the samples of each class. One

can see that with an increasing number of bands, the speed-up also increases

whereas the speed-up seems to be not directly correlated to the number of sam-

ples. As each band has a very different PDF, with very different numbers of

samples and distribution over the intensity range, the time consumption cannot300

be linearly scaled up with an increasing number of samples. A definite speed-up

factor cannot be established but it is evident that the proposed VarBWFastMI

performs much faster than the naive approach by a large factor. Especially for

large datasets such as the Salinas scene dataset, this can significantly reduce

the computational cost from several weeks to only days.

Table 5: Time consumption in seconds for the mutual information with varying numbers of

bands on the Indian Pines dataset with a fixed number of 1031 samples

# Bands 10 20 50 75 100 150

Naive 53.4 303.1 1591.7 3608 6532.1 14149

VarBWFastMI 5.7 9.3 30.0 47.1 67.1 116.5

Speed-up 9.3 32.6 53.1 76.6 97.5 122.0

305

Table 6: Time consumption in seconds for the mutual information with varying numbers of

samples for the Indian Pines dataset with all 200 bands

# Samples 110 520 1031 2569 5128

Naive 33.1 379.4 1318.1 7249.9 25188

VarBWFastMI 0.6 2.3 7.9 43.7 169.6

Speed-up 55.1 165.0 166.8 165.9 148.5

Values obtained by the naive approach and VarBWFastMI were compared

and differences are at a magnitude of around 10 × 10−5. i.e. both approaches

yield almost identical results.
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4.3. DGSA Parameter analysis

All parameters were plotted against the evaluation of the MIMR fitness func-310

tion on the mutual information and entropy values for the Indian Pines dataset.

The population size s and number of iterations itermax are the two parameters
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Figure 5: Sensitivity of DGSA parameters (a) population size (b) number of iterations and

(c) number of candidates to the optimisation performance on the Indian Pines Dataset.

influencing the performance of DGSA. Both have been analysed in Fig. 5a and b

for a fixed number of 30 bands on the Indian Pines dataset. To magnify the im-

pact of both parameters, DGSA was performed with random initialisation. As315

expected, both parameters increase the performance by increasing their values.
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They are chosen to be as minimal as possible to achieve maximum optimisa-

tion capacity with minimal computational effort. Based on these results, s and

itermax are both set to 30 in future experiments for our MIMR-DGSA method.

The number of candidates nc for the initialisation was analysed in Fig. 5c.320

By increasing this number, the chances of picking a good solution increase as

well. However, to guarantee a good exploration of the search space, a trade-off

between subset fitness and population diversity is mandatory. Therefore, we

suggest to set nc to 10.

4.4. Runtime analysis325

As stated in [20], MIMR-PSO has a computational complextity of O(i× s×

n2b) which is linearly correlated to the number of iterations i, the population size

s and quadratically correlated to the number of desired bands nb caused by the

MIMR evaluation. Due to the interaction between the fireflies in MIMR-FA, it

is quadratically correlated to the size of the population and has a complexity330

of O(i × s2 × n2b). As stated in [6], MIMR-CSA has a time complexity of

O(i × ncl × n2b), which is linearly dependent on the number of clones ncl and

quadratically dependent on the number of selected bands nb. MIMR-DGSA

also has a quadratic complexity, i.e. O(i × s × K × n2b), but the number of

MIMR evaluations per iterations is limited to the number of initial agents s and335

the decreasing number of K best solutions. The initialisation of DGSA has a

time complexity of O(s × nc × n2b), which is linearly correlated to the number

of candidates nc and quadratically correlated to nb. All algorithms share the

dependence on number of iteration and the quadratic runtime of the MIMR

evaluation, showing the importance of pre-calculating the entropy and mutual340

information. The main differences are rooted in the population size and the

interaction between the solutions. MIMR-DGSA has an additional initialisation

step which can potentially decrease the efficiency. In our, case, the number of

candidates for the initialisation is relatively low, which is why this step does not

have a big effect on the runtime.345

To compare the time consumption, all algorithms were performed on the
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Figure 6: Time consumption of (a) MIMR-CSA, MIMR-DGSA with different configurations,

MIMR-PSO and MIMR-FA and (b) a closeup of MIMR-DGSA, MIMR-PSO and MIMR-FA

with different numbers of selected bands.

Indian Pines dataset with different numbers of selected bands. For consistency,

both CSA and DGSA algorithms were performed with the same population size

and are terminated after the same number of iterations. Fig. 5 shows that in-

creasing to number of iterations does not increase the optimisation performance350

significantly. Additionally, MIMR-DGSA was performed with optimised popula-
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tion size and iterations, as established in Section 4.3. The number of candidates

for the initialisation of DGSA is set to 10. For PSO and FA, the population

size and iterations were set according to [20] and [21] respectively and slightly

adjusted based on empirical values and all other parameters are set as specified355

in Table 4. As seen from the time measurements in Fig. 6, MIMR-DGSA with

the same s and itermax as MIMR-CSA performs about twice as fast. With the

parameter settings established in Section 4.3, MIMR-DGSA only requires a frac-

tion of the time of MIMR-CSA, where for 150 features, MIMR-DGSA takes only

5 seconds compared to over 50 seconds for MIMR-CSA. The increased time con-360

sumption of CSA is rooted in the relatively high number of clones per antigen,

whereas DGSA only has a limited number of agents with a decreasing number

of K best agents. PSO and FA both perform very similar and both outperform

CSA and DGSA due to their straightforward implementation of the movement

strategy. DGSA suffers in this respect due to the elaborate neighbourhood and365

movement concept.

4.5. Classification performance

In this subsection, the classification accuracy using the selected features are

compared to evaluate the efficacy of the band selection approaches. MIMR-FA,

MIMR-PSO, MIMR-CSA, MIMR-DGSA as well as WaLuMI were performed370

selecting 30 bands on the Indian Pines and Salinas datasets and 20 bands on the

Pavia University dataset. The Overall Accuracy (OA), Average Accuracy (AA)

and Kappa coefficient were calculated in every case alongside the individual

class accuracies. Results are summarised in Tables 7, 8 and 9 for comparison.

As seen in Table 7, in terms of OA, MIMR-PSO performs best for 30 bands on375

the Indian Pines dataset, where MIMR-CSA and MIMR-DGSA perform roughly

similar. Only FCM-DGSA performs significantly worse. Looking at Fig. 7, One

can see that MIMR-DGSA and MIMR-CSA also perform very similar for differ-

ent numbers of selected bands, outperforming MIMR-FA and WaLuMI, whereas

MIMR-PSO performs best selecting 90 or less bands. For the Salinas dataset,380

MIMR-FA performs best as seen in Table 8 and Fig. 8. Again MIMR-CSA and
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Table 7: Comparison of classification results selecting 30 bands for different algorithms on the

Indian Pines dataset

Class MIMR-

CSA

MIMR-

DGSA

WaLuMI FCM-

DGSA

MIMR-

PSO

MIMR-

FA

1 72.2±9.9 75.7±9.7 71.7±18 63.8±13 79.0±8.1 73.3±12

2 76.9±3.0 76.3±3.6 79.0±2.1 64.1±5.4 78.0±2.9 72.9±5.9

3 72.5±3.0 72.0±3.6 69.7±3.8 57.2±5.9 73.3±3.9 68.6±7.0

4 67.1±4.7 68.9±5.3 69.1±3.2 51.2±7.2 67.4±4.4 64.0±8.7

5 92.8±1.1 92.7±0.9 91.2±1.1 88.1±2.3 91.6±2.2 91.1±3.0

6 98.0±1.3 98.0±0.8 97.0±1.4 95.1±1.8 96.5±1.8 96.2±1.9

7 88.2±2.3 86.7±5.3 87.3±2.0 60.0±16 84.8±9.0 80.0±10

8 98.4±0.8 98.0±1.4 97.7±1.1 96.6±2.0 96.9±1.6 97.0±1.9

9 63.3±17 63.8±19 70.0±18 22.3±15 51.0±24 56.3±22

10 77.8±3.2 77.0±3.3 76.7±3.1 63.4±3.5 80.0±3.3 71.7±10

11 85.3±1.3 84.4±1.4 83.6±2.1 78.0±2.0 85.3±1.5 82.7±2.4

12 73.4±2.9 75.6±3.8 73.6±4.9 50.1±6.9 81.3±3.6 79.7±3.6

13 96.2±1.9 96.3±2.1 97.2±2.2 92.0±4.7 97.3±1.5 98.0±1.2

14 95.8±0.9 95.7±0.9 95.1±1.1 94.4±1.4 95.9±1.1 95.5±1.2

15 59.6±3.3 60.3±2.7 56.9±2.9 47.8±5.6 61.8±4.7 59.5±5.6

16 86.1±6.8 85.9±9.0 87.3±6.8 89.1±4.3 91.7±5.1 88.9±6.1

OA 83.6±0.8 83.4±0.8 82.9±0.5 74.4±2.0 84.4±1.1 81.5±2.9

AA 81.5±1.3 81.7±1.6 81.4±1.2 69.6±2.7 82.0±1.8 79.7±3.4

Kappa 81.3±1.0 81.0±0.9 80.5±0.5 70.6±2.3 82.2±1.3 78.8±3.4
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Table 8: Comparison of classification results selecting 30 bands for different algorithms on the

Salinas dataset

Class MIMR-

CSA

MIMR-

DGSA

WaLuMI FCM-

DGSA

MIMR-

PSO

MIMR-

FA

1 99.5±0.2 99.5±0.2 99.4±0.2 99.5±0.4 99.4±0.4 99.4±0.4

2 99.8±0.2 99.8±0.2 99.8±0.1 99.8±0.1 99.8±0.1 99.7±0.2

3 98.6±0.4 98.8±0.4 99.6±0.2 99.3±0.4 99.3±0.4 99.2±0.5

4 99.4±0.2 99.4±0.3 99.5±0.2 99.2±0.4 99.3±0.4 99.4±0.4

5 98.2±0.4 98.4±0.6 99.0±0.4 98.9±0.5 98.9±0.4 98.8±0.6

6 99.8±0.1 99.8±0.1 99.9±0.1 99.9±0.1 99.8±0.1 99.8±0.1

7 99.8±0.1 99.8±0.1 99.7±0.1 99.6±0.2 99.6±0.2 99.6±0.2

8 87.5±0.8 88.3±0.9 88.6±0.5 88.8±0.6 88.8±0.7 89.2±0.6
9 98.4±0.4 99.2±0.7 99.8±0.2 99.7±0.1 99.8±0.1 99.8±0.1
10 94.8±0.6 95.6±0.8 97.3±0.6 96.6±0.9 97.2±0.6 97.3±0.6
11 92.7±1.6 96.1±2.5 98.8±0.4 98.3±0.9 98.4±1.0 99.0±0.7
12 99.8±0.2 99.8±0.2 99.8±0.1 99.9±0.1 99.8±0.4 99.9±0.1
13 99.4±0.3 99.5±0.3 98.9±0.6 99.1±0.6 99.2±0.5 99.2±0.5

14 97.7±1.0 97.9±0.9 97.1±1.0 97.4±1.3 97.4±1.3 98.0±1.2
15 71.5±1.4 74.3±2.3 73.6±1.1 75.2±1.3 74.6±2.6 75.8±2.2
16 99.1±0.2 99.1±0.2 98.9±0.2 98.8±0.3 98.8±0.3 98.9±0.3

OA 92.6±0.3 93.4±0.5 93.6±0.1 93.8±0.2 93.8±0.4 94.0±0.4
AA 96.0±0.2 96.6±0.4 96.9±0.1 96.9±0.2 96.9±0.3 97.1±0.3
Kappa 91.8±0.3 92.6±0.6 92.9±0.1 93.1±0.3 93.0±0.5 93.3±0.4
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Table 9: Comparison of classification results selecting 20 bands for different algorithms on the

Pavia University dataset

Class MIMR-

CSA

MIMR-

DGSA

WaLuMI FCM-

DGSA

MIMR-

PSO

MIMR-

FA

1 92.2±0.6 92.1±1.0 92.9±0.4 90.3±1.2 91.7±1.4 93.5±0.8
2 97.9±0.2 97.7±0.2 96.9±0.2 96.5±0.5 97.0±0.5 97.1±0.5

3 75.3±1.7 74.7±3.7 76.0±1.0 66.8±6.9 74.9±5.1 77.4±3.3
4 94.1±0.8 93.8±0.9 91.5±0.7 90.4±1.1 92.3±1.2 92.7±1.4

5 99.3±0.3 99.4±0.3 99.3±0.2 98.5±0.6 99.1±0.3 99.2±0.3

6 89.6±0.6 88.4±1.1 81.1±1.1 64.6±9.9 77.4±9.0 83.0±5.5

7 78.7±1.8 78.0±3.4 80.9±1.7 80.2±2.1 82.2±1.9 83.8±1.7
8 87.4±0.9 87.6±1.6 87.9±0.7 86.8±1.8 88.7±1.6 89.8±1.1
9 99.9±0.2 99.9±0.1 99.8±0.2 99.7±0.2 99.8±0.1 99.8±0.2

OA 93.2±0.1 92.9±0.5 91.9±0.1 88.7±1.8 91.4±1.7 92.7±1.1

AA 90.5±0.3 90.2±0.9 89.6±0.2 86.0±2.2 89.2±1.9 90.7±1.2
Kappa 91.0±0.2 90.6±0.7 89.2±0.1 84.8±2.5 88.5±2.3 90.3±1.5

Table 10: Mean OA, AA and Kappa Coefficient over the three datasets of the different algo-

rithms.

MIMR-

CSA

MIMR-

DGSA

WaLuMI FCM-

DGSA

MIMR-

PSO

MIMR-

FA

OA 89.80±0.40 89.90±0.60 89.47±0.23 85.63±1.33 89.87±1.07 89.40±1.47

AA 89.33±0.60 89.50±0.97 89.30±0.50 84.17±1.70 89.37±1.33 89.17±1.63

Kappa 88.03±0.50 88.07±0.73 87.53±0.23 82.83±1.70 87.90±1.37 87.47±1.77
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MIMR-DGSA show a very similar performance for different numbers of bands

but are outperformed by WaLuMI and notably FCM-DGSA for a lower number

of bands. For the Pavia University dataset, MIMR in combination with CSA,

DGSA, FA and PSO all outperform WaLuMI and FCM-DGSA for any number385

of bands up to 75, as seen in Fig. 9 where CSA seems to perform best selecting

20 bands. Both MIMR-DGSA and MIMR-CSA again perform very similar as

shown in Table 9 and Fig. 9. Another observation that can be made specifically

from Tables 7 and 9 is that MIMR-PSO and MIMR-FA yield a larger standard

deviation. This might hint at the fact that they have less optimisation qual-390

ities for the MIMR criterion and the selected bands are more random, which

is examined in Section 4.6. Even though this yields higher mean accuracy, the

algorithms are less reliable in individual runs. This leads to the conclusion that

FA and PSO can potentially achieve a higher classification accuracy in indi-

vidual cases, whereas CSA and DGSA perform slightly less but more robust395

for different datasets. None of the presented algorithms consistently generates

optimal performance. To investigate this, we have compared the average mea-

sures of the OA, AA and Kappa coefficient over the three datasets, as shown

in Table 10. MIMR-DGSA seems to slightly outperform all other algorithms.

This hints at the fact that DGSA performs better in terms of generalising over400

different datasets, but in individual cases, might perform inferior. Hence, even

though FA and PSO may produce higher classification accuracy in individual

cases, their overall performance for band selection can be compromised due to

inferior generalisation capabilities. This is evaluated in detail in the following

section.405

4.6. Optimisation performance

In this section, we are investigating the optimisation performance of the EAs

with respect to the MIMR criterion. The objective is to maximise the individual

entropies of selected bands and minimise their mutual information. A higher

MIMR value indicates a better subset. The actual value is dependent on the410

constitution of each dataset, but algorithms can be compared among each other
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Figure 7: Performance comparison of all band selection algorithms on the Indian Pines dataset
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Figure 8: Performance comparison of all band selection algorithms on the Salinas dataset

within one dataset. Table 11 summarises the mean MIMR value achieved after

the last iteration of the four EAs of 20 runs. One can see that FA performs

worst on all datasets, whereas CSA and DGSA perform very similar. PSO

performs better than FA and even becomes even with DGSA for the Pavia Uni-415

versity dataset but worse for the other datasets. As seen in Fig. 11, the mutual

information and especially the entropy for most bands in the Pavia University

dataset are very similar which might suggest that most band combinations yield
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Figure 9: Performance comparison of all band selection algorithms on the Pavia University

dataset

Table 11: Comparison of optimisation performance of the different optimisation algorithms.

Values indicate the evaluation of the MIMR criterion of the best solution achieved by each

optimisation algorithm.

Dataset # Bands FA PSO CSA DGSA

Indian Pines 30 175 188 193 193

Salinas 30 159 168 173 172

Pavia University 20 138 141 141 141

similar MIMR values. This explains why the optimisation performance of all

algorithms is very similar. These findings confirm the above assumption that420

optimising the MIMR criterion does not necessarily imply an optimal classifi-

cation accuracy. However, better optimisation of the MIMR criterion results

in a more robust accuracy and therefore band selection performance. The fact

that FA and PSO yield a better classification accuracy with an inferior optimi-

sation capability of the chosen MIMR criterion hence exposes shortcomings of425

the criterion rather than a superior band selection quality of the optimisation

algorithm. For this reason, we consider both CSA and DGSA as more suitable

for the proposed task.

27



4.7. Validation of selected bands
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Figure 10: Comparison of (a) - (b) mutual information, (c) - (d) entropy and (e) - (f) selected

bands with DGSA where (a), (c) and (e) refer to the Indian Pines and (b), (d) and (f) to the

Salinas dataset. The selected bands could achieve 83.7% OA for Indian Pines and 92.6 % for

Salinas

To verify the selected bands of MIMR-DGSA, the bands of a representative430

run were plotted on top of the mean spectra of each class in all datasets in Fig.

10 and 11 alongside the mutual information matrices and entropy tables. For

the Indian Pines dataset, bands 14 - 16, 20, 23, 26, 29, 31, 34 - 39, 41, 43 -
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Figure 11: Comparison of (a) mutual information, (b) entropy and (c) selected bands with

DGSA of the Pavia University dataset with an OA of 93.5%.

45, 49, 54, 62, 63, 65, 68, 71, 84 - 86, 99 and 117 were selected. In the Salinas

dataset, bands 1, 3 - 5, 11, 13, 20, 21, 25, 33 - 35, 37 - 42, 45, 47, 49, 51, 52,435

55, 68, 74, 76, 91, 93 and 94 were selected and for the Pavia University dataset,

only 20 bands were selected, i.e. 1 - 6, 19, 39, 49, 63, 69, 72, 74, 76, 78, 83, 91,

100, 102 and 103. The bands indexed from 40 to 100 in both the Indian Pines

and Salinas scene have the highest entropy and equally a relatively low mutual

information with other regions. Looking at the spectra, this region seems to440

show the biggest differences between the classes, justifying why most bands are

29



selected in this area in both datasets. The bands edging the water absorption

regions have a low mutual information but also a very low entropy, which is

why they are not selected. The bands higher than 120 have a relatively high

entropy but also a quite high mutual information with adjacent bands over a445

larger region. This is likely the reason why they are hardly ever selected. The

mean spectra seem to be very similar in this region as well for most classes. The

Pavia University dataset contains the most differences between the classes in the

exact wavelength region around number 70, with a slightly lower entropy but

also a much lower mutual information with all other regions. This makes the450

corresponding region most significant for classification. The edges of all spectra

also show some changes in the shapes and are therefore selected. The rest of

the bands seem to be evenly distributed over the spectral range.

5. Conclusion

In this paper, the MIMR-DGSA algorithm was proposed for hyperspectral455

band selection. The algorithm is based on the MIMR criterion aiming to max-

imise the entropy of bands and minimise the mutual information between the

bands in a subset. To evaluate the criterion, the entropy and mutual informa-

tion are pre-calculated. A detailed analysis of the calculation of these measures

for hyperspectral bands was presented resulting in the VarBWFastMI algorithm460

that calculates the pairwise mutual information of hyperspectral datasets in a

reasonable amount of time and incorporates variable bandwidths for the density

estimation. Additionally, a modified DGSA is developed introducing a neigh-

bourhood and movement concept for feature subsets in a discrete optimisation

space that generates potential subsets in a heuristic way and eventually gener-465

ates a pseudo-optimal solution. Results on three publicly available HSI remote

sensing datasets show that the proposed MIMR-DGSA performs very similar to

the original MIMR-CSA, on which it is based, but is much faster and easier to

use, as it only has three parameters. Parameters for the number of agents and

iterations are directly correlated with the quality of the optimisation, whereas470
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the number of candidates for the initialisation requires individual tuning based

on the underlying dataset.

When comparing both CSA and DGSA with other EAs, we were able to

show that FA and PSO are both less suitable to optimise the MIMR criterion.

The effect of this is that the achieved classification accuracy is subject to high475

variance. While PSO and FA can achieve a higher accuracy in individual cases,

DGSA was shown to perform superior and be more robust in average over all

datasets. This also lead us to conclude that the MIMR criterion itself does

not necessarily optimise classification accuracy. In other applications such as

regression or object detection, optimising the MIMR criterion might however480

perform better. Furthermore, PSO and FA require almost as many parameters

as CSA and need therefore additional tuning. None of the examined algorithms

performs consistently best in terms of accuracy, however, DGSA poses a robust,

faster and easier to use alternative to CSA, which both optimise the MIMR

criterion best. In combination with VarBWFastMI, we have therefore proposed485

an efficient state-of-the-art band selection algorithm. In future work, a more

robust and faster converging DGSA will be explored, and the conjecture that

MIMR performs well for applications other than classification will be examined

in detail.
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