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Abstract

There are a lot of hidden dangers in the change of human skin conditions, such

as the sunburn caused by long-time exposure to ultraviolet radiation, which

not only has aesthetic impact causing psychological depression and lack of self-

confidence, but also may even be life-threatening due to skin canceration. Cur-

rent skin disease researches adopt the auto-classification system for improving

the accuracy rate of skin disease classification. However, the excessive depen-

dence on the image sample database is unable to provide individualized diagnosis

service for different population groups. To overcome this problem, a medical

AI framework based on data width evolution and self-learning is put forward in

this paper to provide skin disease medical service meeting the requirement of

real time, extendibility and individualization. First, the wide collection of data

in the close-loop information flow of user and remote medical data center is dis-

cussed. Next, a data set filter algorithm based on information entropy is given,
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to lighten the load of edge node and meanwhile improve the learning ability of

remote cloud analysis model. In addition, the framework provides an external

algorithm load module, which can be compatible with the application require-

ments according to the model selected. Three kinds of deep learning model, i.e.

LeNet-5, AlexNet and VGG16, are loaded and compared, which have verified

the universality of the algorithm load module. The experiment platform for

the proposed real-time, individualized and extensible skin disease recognition

system is built. And the system’s computation and communication delay under

the interaction scenario between tester and remote data center are analyzed. It

is demonstrated that the system we put forward is reliable and effective.

Keywords: Skin Disease Recognition, Data Width Evolution, Self-learning

Process, Deep Learning Model

1. Introduction

A skin disease is the pathological state affecting the body surface. Long-time

exposure to ultraviolet radiation or the radiation from high-frequency wire-

less equipment may induce the skin canceration. According to the statistical

data report from American Cancer Society [1], it is estimated that 91,270 new

melanoma cases are diagnosed in the United States in 2018, and meanwhile it

is estimated that about 9,320 people will die from melanoma. Melanoma has a

high cure rate at early detection, with 99% of 5-year relative survival rate. How-

ever, since it is easier to spread to other parts of the body than non-melanoma

skin cancers, the 5-year relative survival rate at long-term stage drops to 20%.

The symptom of skin diseases is a long and constantly changing process.

Generally, the health care provider should provide assessment where changes

have occurred in certain area of the skin for over a month or longer. However,

due to multiple factors such as poor medical conditions and cumbersome medical

process, patients always ignore such changes of their skin, or wrongly identify

them as other skin injuries. Meanwhile, no family physician or supervision

organization carries out the regular maintenance and treatment since it is not
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required to report medical records to the cancer registry.

The development of body sensor network [2, 3], artificial intelligence, cloud

computing [4] and wireless network communication [5, 6] has brought opportu-

nities to the cognitive medical service [7, 8, 9]. The remote health monitoring,

health guidance and feedback can be realized through multi-sensor data fu-

sion [10, 11] with the help of remote medical devices, such as mobile phone [12],

wearable device [13], intelligent robot, autonomous vehicle and unmanned aerial

vehicle [14, 15]. And an open-source programming framework to support rapid

and flexible prototyping and management of human-centered applications is crit-

ical [16]. In the paper [17], it is pointed out that mobile devices equipped with

deep neural network can potentially extend the range of dermatologists outside

the outpatient service. It is estimated that by 2023, the number of smart phone

users will reach 7.2 billion [18]. It is possible to provide general diagnosis service

with low cost [19].

The automatic recognition of patients’ skin conditions may become a good

promoter for the cognitive medical monitoring framework. On one side, it can

reduce the consumption of resources deployed to the medical industry center,

and meanwhile automatically feed back the patients’ conditions and service ex-

periences evaluation. On the other side, it properly takes into account the

consumption of patients’ time and money cost as well as the concerns on pri-

vacy. The cloud computing technology deployed on the medical center can solve

the problem that the local devices, under the big data environment, have insuf-

ficient computing and storage capacities to provide the computation-intensive

services [20, 21, 22]. However, the huge amount of data transmission and com-

munication will cause a consumption of network communication resources, it is

still unable to meet the delay-sensitive characteristic of cognitive medical ser-

vices [23, 24, 25]. The deployment of edge computing technology on the network

edge can solve the pressure caused by the large scale of computation-intensive

and rich-media tasks [26, 27, 28]. Also, the technology is beneficial to facil-

itate secure data management and convenient data trading in mobile health

care [29]. Some existing advanced computation offloading schemes such as [30]
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and novel routing mechanisms such as [31] can be integrated into the system

to achieve highly reliable cooperative computing and communication between

local terminals and remote clouds [32].

The traditional skin disease detection system complete the classification out-

put through characteristics extraction of image data set as the input. The ex-

isting researches adopt the deep architecture to automate the learning of char-

acteristics [33, 34, 35], and the priori knowledge based on pathological skin data

set is obtained to improve the accuracy of automatic classification. Esteva et

al [17] put forward the adoption of Deep Convolutional Neural Networks to clas-

sify skin diseases, and demonstrate the achievement of expert-level diagnosis.

In the literature [36], it is discussed that the pre-trained deep neural network

model has an effect superior to the model trained from the beginning, and the

problem of insufficient labeled image data of skin disease can be solved by pre-

training the Convolutional Neural Network (CNN) with the images from other

medical fields.

Due to the limited intelligence of current system, a one-time testing result

be concluded by inputting the collected users’ skin image data into the system,

but the function of monitoring the changes of skin conditions cannot be realized.

Meanwhile, current system is a centralized system with a static and centralized

database required an active update by expert, which limits the user mobility

and cannot realize convenient and high-efficiency self-checking. In addition, the

centralized system is unable to provide sufficient resources to support the indi-

vidualized database for different population groups. Due to the centralization

of the database, it is unable to give a good judgment for paroxysmal diseases.

We consider that the future skin disease monitoring system will meet follow-

ing characteristics:

• Real-time: The user’s individual database keeps accumulating and storing.

The system analyzes user’s skin state based on personal historical data and

current data, and monitors skin state changes regularly. The camera on

smart terminal capture user’s skin image, and skin analysis reports feed
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back to terminals. Users record their skin state changes based on reports.

• Dynamic: The physical location of users often changes dynamically, but

mobile devices are relatively static for skin disease detection. Through

mobile terminals, users can easily and efficiently collect individual skin

images. With the computing power of terminals, fast analysis results are

provided to users.

• Sharing mode: User’s skin images can be locally stored for analysis. Mul-

tiple users also send their data to the cloud for sharing. The cloud collects

data from different users, and conducts more accurate analysis with its

powerful storage and computing capacity.

Different from the traditional open-ended input/output system, we intend

to build a user-centered close-loop system, and consider connecting the mobile

terminal users’ personal data collection, the communication between mobile

terminals and remote data center, and the real-time update of training model.

Based on this, a deep skin disease monitoring system based on edge-to-cloud

cognitive medical framework is put forward. Specifically, the contributions of

this paper are divided into three points as below:

1. A medical AI framework based on data width evolution and self-learning

is proposed. Under such framework, the process of information interaction

between users and terminal devices, and the wide collection of data in the

close-loop information flow of user and remote medical data center are

considered.

2. A data set filter algorithm based on information entropy is given, so as to

lighten the load of no-label data sets in terminals and edge cloud in the

meantime of improving the data quality of remote cloud data base and

the learning ability of analysis model.

3. A load module specially for analysis algorithms is designed. Under such

module, it can be compatible with the application requirements accord-

ing to the learning model selected. Meanwhile, three learning models are
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deployed successively in the load module and the training process is com-

pleted.

The remained parts of this paper are organized as below. In Section 2, the AI

medical framework is presented, and the entities in and function of the AI med-

ical framework are introduced in detail. In Section 3, based on the framework

raised, the data width collection and the self-learning process are elaborated.

In Section 4, the training details of the three deep learning models deployed

on cloud are provided, including the data set acquisition, model building and

training precision. In Section 5, the skin disease recognition prototype system is

demonstrated, the specific scene case is given, and the computing and communi-

cation delay of the system are analyzed. Finally, the whole paper is summarized

and future works are discussed in Section 6.

2. Medical AI Framework

The medical AI framework based on data width evolution and self-learning

is shown as Fig. 1. The framework contains user terminal, edge nodes, radio

access network (RAN), cloud platform and remote medical site. Try to imagine

an application scenario like this. A user finds abnormal changes in facial skin

tissue and has plagued. At this time, the user can, on his/her mobile devices

such as mobile phone, easily send the skin images to the edge nodes through

taking photos by camera or uploading images from mobile phone gallery. The

edge nodes, after data filtering, transmit the skin images to the cloud through

the RAN. The cloud provides analysis results on the user’s skin conditions based

on the deployed learning model, and meanwhile transmits the results to the

remote medical site. Upon receipt of the user’s data, the specialist physician

feeds back the medical measures to the user, and meanwhile archives the medical

records to evaluate the changes of the user’s skin conditions. The main parts

involved in the framework are introduced in details.
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Figure 1: The Proposed Medical AI Framework.

2.1. User terminal

It refers to users’ terminal devices, mainly including smart phone, smart

bracelet, camera, humanoid robot and other intelligent devices. The terminal

device itself contains the data storage module, data sending module, data pro-

cessing module, and data receiving module. The user, after collecting his/her

skin images through the device’s shooting App or from the device gallery, firstly

makes simple pre-processing by the data processing module and then uploads

the skin images to edge node by the data sending module, and the data receiv-

ing module will receive the medical feedback data transmitted from the remote

cloud or remote site. These devices are characterized by high mobility, low com-

puting resources, and low storage resources. To deal with wireless transmissions

in high mobility situations such as vehicular environments, we can employ ex-

isting self-organized cooperative transmission scheme like [37] or some advanced

routing protocols [38].

2.2. Edge node

It refers to node equipment deployed on the network edge with relatively

high computing resources and storage resources, such as the local server. The

local server has deployed the learning model, which can carry out skin condition

recognition according to users’ local data. The edge node transmits the skin
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image to the remote cloud through RAN, and meanwhile receives the updating

parameters of the trained learning model from remote cloud, so as to provide

high-efficiency local services.

2.3. Cloud platform

The cloud platform provides computation-intensive task processing services.

The learning ability of model in algorithm load module is improved through

receiving the skin image data from the edge nodes. The algorithm load module

realizes the adaptation with the application requirements by loading different

learning models, and the updated model parameters are transmitted to the

edge nodes. The resource cognition module cognizes the network resources,

and the data cognition module cognizes the application context and network

environment context. The two modules act upon each other to carrying out the

network resource management and allocation to meet service requirements of

applications.

2.4. Remote medical site

It refers to the remote medical resources, including doctors, nurses, medical

devices and etc. The remote dermatologists receive the user skin conditions

analysis results from the cloud, provide online medical services and feed back to

user terminals. Users receive the suggested treatment from remote dermatolo-

gists, and meanwhile evaluate the service contents.

3. Data Width Evolution and Self-learning Process

Next, we discuss the close-loop data flow in the framework, and give the

data width collection and the self-learning process. It is shown as Fig. 2.

3.1. Data Width collection

First, the terminal devices acquire users’ skin images and transmit them to

the remote medical cloud platform, and the cloud provides skin disease diag-

nosis service for users by the traditional method based on skin database and
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Figure 2: The Illustration of Data Width Collection and Self-learning Process.

deep learning. When the edge nodes receive the continuously accumulated im-

age data from user, the edge cloud pre-processes the local data based on the

local cognition, and then send the user data to the remote medical cloud plat-

form. The remote cloud receives the data set from multiple terminals and deep

model parameters updated based on global cognition, and then further feeds

back the updated parameters to the edge node for a better local cognition. In

the whole close-loop process, the skin image data of users, the local cognition

data of edge nodes, and the global cognition of the cloud are transmitted and

communicated mutually, so as to continuously explore valuable information. In

addition, the remote cloud cognizes users’ skin conditions according to the deep

learning model, and meanwhile judges users’ health condition and emotional

state and feed back to users. While requesting services, users may also provide

the skin condition data, health condition data, emotional state data and sur-

rounding environment information for remote intelligent analysis. The use value

of the framework can be expanded horizontally through continuous infusion of

information based on user, environment and model into the system.
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3.2. Self-learning Process

After continuous infusion of information based on user, environment and

model into the system, the huge amount of data loaded in the system are unla-

beled. It cannot be guaranteed that the unlabeled data set plays a positive role

in the model training and global cognition of the cloud platform. Meanwhile,

the transmission of huge amount of unlabeled data set will consume the network

communication resources and thus reduce the service experience of users [39].

Deploy a data filter algorithm in the edge cloud to filter out the worthless data,

and upload the valuable data to the cloud [40]. The edge cloud, based on the

information entropy, filters and provides the valuable data to the remote cloud.

The remote cloud further adjusts and optimizes the model parameters to longi-

tudinally explore more valuable information.

We assume that the labeled data sets are xl = [xl
1, x

l
2, · · · , x

l
n, · · · , x

l
n], (1 ≤

n ≤ N), where N is the number of labeled data sets. The label classes cor-

responding to the labeled data sets are yl = [yl1, y
l
2, · · · , y

l
m, · · · , ylM ], (1 ≤

m ≤ M), respectively, where M is the number of label classes, and for bi-

nary classification problem, M = 2 . Assume that the unlabeled data sets are

xu = [xu
1 , x

u
2 , · · · , x

u
k , · · · , x

u
K ], (1 ≤ k ≤ K), where K is the number of unla-

beled data sets. We consider making skin color classification on the unlabeled

data sets which is denoted as cu = [cu1 , c
u
2 , · · · , c

u
s , · · · , c

u
S ], (1 ≤ s ≤ S), where

S denotes the number of skin color classifications. Then with the conditions of

xu
i already labeled as class cs, the probability of being predicted as skin disease

class j is p
j
i = p

(

yxu

i
= j|cs

)

, and it is concluded that the prediction probabil-

ity of xu
i is pxu

i
= {p1i , p

2
i , · · · , p

M
i }. On this basis, the prediction probability

entropy of unlabeled data is defined as:

E
(

pxu

i

)

= E
(

yxu

i
= j|cs

)

= −

M
∑

j=1

p
j
i log

(

p
j
i

)

. (1)

If the entropy value is less than a certain threshold value ET , i.e. E
(

pxu

i

)

<

ET , the unlabeled data is selected. The threshold value ET is related to the

sample size of labeled data, the accuracy rate of model classification, and the
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quality of service required by users. When the entropy value is relatively small,

the newly selected data has a lower prediction uncertainty.

A large amount of unlabeled data collected from users’ personal terminal

devices is stored in the edge cloud. The filtration of the unlabeled data in the

edge nodes decreases the transmission amount of image data with low value, and

reduces the communication delay of user service. Meanwhile, owe to the pre-

liminary filtration operation in edge nodes, the cloud utilizes the most valuable

data to update the knowledge base, which guarantees the precision of classifica-

tion. In addition, the data selection according to the skin color labeled by users

can form new database classifying by population groups, so as to support the

individualized database for different groups.

4. CNN Model Training and Comparison

A data set used for the classification of human face skin disease is built.

The human face images on web pages are crawled by keyword search. The key-

words are human face pictures, human face skin disease. The first 20 pages

of dynamic web pages are selected for each keyword. Totally 6,144 images are

obtained through crawling. The dermatologists from Wuhan Union Hospital

are invited to classify all skin images. The labels of images contain 14 classes,

including facial acnes, forehead acnes, alar acnes, acne marks, chloasma, preg-

nant spots, sunburn spots, radiation spots, age spots, dark circles, blackheads,

nevus, large pores, wrinkles. Considering the characteristics of diseases, facial

acnes, forehead acnes, alar acnes and acne marks are unified as skin acnes. And

chloasma, pregnant spots, sunburn spots, radiation spots and age spots are uni-

fied as skin spots. Unusable images are removed from the data set. Finally the

images are classified as five types of skin diseases. In the classification of skin

acnes, skin spots, skin blackheads, dark circles and clean face, the images having

skin acnes are taken as the positive sample, and others having skin spots, skin

blackheads, dark circles and clean face are taken as the negative samples. In

the selection of negative samples, the number of images for each disease type is
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Figure 3: The Diagram of CNN Model for Skin Disease Classification.

selected according to the number of images for positive sample, so as to make

the ratio of positive samples and negative samples is about 1:1, which avoids

the problem of sample imbalance.

The diagram of CNN model for skin disease classification is shown as Fig. 3.

The system uses the Convolutional Neural Network model to extract skin image

characteristics. Three learning models, i.e. LeNet-5 [41], AlexNet [42] and

VGG16 [43], are adopted to carry out the training, classification and assessment

processes. In the experiment, 85% of the data set is used as the training set,

and the remaining 15% is used as test set.

Firstly, three deep Convolutional Neural Networks are pre-trained on Ima-

geNet [44]. Then a fine tuning is carried out on all layers. The last layer is the

softmax layer, which allows to do classification on two diagnosis classes. LeNet-

5 is set as 2 convolutional layers, 2 max-pooling layers and 3 fully connected

layers. The sizes of all input images are adjusted as 228*228*3, and the input

images are normalized. AlexNet is set as 5 convolutional layers, 3 max-pooling
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layers and 3 fully connected layers. The max-pooling operation is carried after

the 1st, 2nd and 5th convolution. The sizes of all input images are adjusted

as 227*227*3, and the input images are normalized. The learning rate in the

experiment is set as 0.001, and the number of iterations is 150. The batch sizes

of the training set and test set are respectively 64 and 5, and the dropout rate

is 0.6. VGG16 is set as 13 convolutional layers, 5 max-pooling layers and 3 fully

connected layers. The sizes of all input images are adjusted as 227*227*3, and

the input images are normalized. The batch size of the training set is 32. The

number of iterations is 200. Other parameters are set as the same with LeNet-5

and AlexNet. The accuracy rates of the three learning models on five classes of

skin disease are shown as Table. 1. It can be seen from the statistical data that

the AlexNet model has the best overall effect.

Table 1: Skin Disease Classification Accuracy Rate of Three CNN Models.

Skin acnes Skin spots Skin blackheads Dark circles Clean face

LeNet-5 0.63 0.65 0.70 0.58 0.87

AlexNet 0.79 0.80 0.91 0.78 0.95

VGG16 0.68 0.75 0.87 0.76 0.90

5. A demonstration system for skin disease recognition

5.1. Prototype Platform

AI skin disease recognition prototype platform is built, as shown in Fig. 4.

The hardware environment includes AIWAC (Affective Interaction throughWide

Learning and Cognitive Computing) robot [45], local server, and remote cloud

platform. The AIWAC robot is equipped with AI skin App, and captures the

user image through the camera above the display screen. The local server is

the edge node. The remote cloud is equipped with AMD FX 8-Core processor

in 4GHz with 32 GB RAM DDR3. Under current environment, the commu-

nication gateway is the communication bridge for the AIWAC robot and local

server, the local server and remote cloud, and the remote cloud and AIWAC

robot.
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Figure 4: The AI-Skin Prototype Platform.

The AI skin disease detection processes are as follows: Firstly, the training

of skin disease classification models is executed on the remote algorithm server

based on our own skin database. After the completion of training, the trained

models are stored in the cloud platform, and meanwhile migrated to local server

for execution. Then, the skin images of user captured from AWAIC robot are

transmitted to edge node. When edge node receives those data, the unlabeled

data are selecting based on data set filter algorithm, and then labeled together

with the recognition model. The labeled data transmitted to remote cloud for

deep training and the updated model parameters are fed back to the edge node.

The algorithm extension interface deployed in cloud server can load different

algorithm models. To execute the recognition algorithm in edge device, it is

required to deploy TensorFlow environment [46].

5.2. Test Scene

An experimental test is carried out on the AI skin prototype platform. The

tester captures her own face skin image through the mobile terminal camera, and

the OpenCV [47] face detection classifier is utilized to label and segment face

area as the input of model. The skin disease recognition algorithm deployed

in local server is AlexNet model, which is selected by the optimal result in

cloud training. Based on the types of skin diseases given by Table. 2, the
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(a)  Skin Disease Detection (b)  Analysis Report

Figure 5: The Skin Disease Recognition Demo and Analysis Report.

skin conditions of the tester are analyzed for five classes of skin diseases, i.e.

(skin acnes, no skin acne), (skin spots, no skin spot), (skin blackheads, no skin

blackhead), (dark circles, no dark circle), and (clean face, unclean face). After

the completion of skin disease analysis, the skin condition report of the tester

is fed back to the mobile terminal. The execution results of real-time analysis

of skin conditions are shown as Fig. 5.

Table 2: Five Types of Skin Diseases Classification.

Type Class Class

1 Skin acnes No skin acne

2 Skin spots No skin spot

3 Skin blackheads No skin blackhead

4 Dark circles No dark circle

5 Clean face Unclean face

The skin disease recognition report is shown as Fig. 5 (b). First, the system

gives an overall score based on the skin condition of the tester and the score

is weighted by different skin diseases. Next, the exact analysis result of each

disease class is given. It is pointed out that, the problem of blackheads is
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Figure 6: Edge Computation Delay and Transmission Delay with AlexNet Model.

relatively serious, other skin diseases, including the skin acnes and skin spots are

only in mild degree. Moreover, the skin color of the tester is the yellowish skin

which is common in Asian people. It can be seen that these results are consistent

with the skin state of the tester. In addition, according to the skin analysis,

the report indicates that the tester belongs to the damp-heat constitution and

the excessive oil secretion leads to the enlarged pores or acnes. The report also

proposes measures for improving the skin conditions, such as increasing outdoor

sports to promote metabolism.

5.3. Delay Analysis

To evaluate the system’s reliability and validity, two different models, i.e.

LeNet-5 and AlexNet, are compared for the system’s computation delay and

transmission delay. In the experiment, the communication bandwidth is 2 Mbps.

We conducted 30 experiments under two models, and the sequence numbers

are from 1 to 30. The results of system delay under AlexNet and LeNet-5

models are shown in Fig. 6 and Fig. 7, respectively. From the figure, we can see
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that the computation delay of each model changes smoothly with the number

of experiments. Without considering the transmission delay of instructions in

communication, we can see that the factor determining the total time delay in

the system is the computation delay of edge nodes. The average delay of edge

computation under AlexNet model is 1.2s, but the end-to-end communication

delay (the sum of computation and transmission delay) between terminal device

and edge node is still in the order of 1s. The standard deviations of the total

communication delay under the two models are 75 ms and 63 ms, respectively,

which can show the effectiveness and flexibility of the real-time skin disease

recognition system.

Moreover, it is found that the edge computing time of images with high

resolution is shorter than that with low resolution, as shown in Fig. 8. In the

experiment, the size of original image is 1233634 bytes, and the size of the

compressed image is 4830 bytes. The computing time of high-resolution image

is shorter than that of low-resolution image under both AlexNet and LeNet

model. The image has a 1.0 probability of detecting skin blackhead disease
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Figure 8: Edge Computation Delay of Images with High- and Low- Resolutions.

at both resolutions. Upon testing the images of other skin diseases, it is found

that the high- and low-resolution images of blackheads and skin spots have little

impact on the classification accuracy.

6. Conclusion

In this paper, a real-time, individualized and extensible skin disease recogni-

tion system is presented. A medical AI framework based on data width evolution

and self-learning is proposed. The close-loop information flow between user and

remote medical data center is discussed based on the updating of the data sets

such as user’s skin images, user’s health conditions, environment information,

and model parameters in AI skin detection process. In addition, a data set filter

algorithm based on information entropy is given. Through the filtration of valu-

able data sets in the edge node, the data quality of the remote cloud database

and the learning ability of models can be further improved. The universality

of algorithm extension interface is verified based on the three learning models

trained on the cloud, i.e. LeNet-5, AlexNet and VGG16. A skin disease recogni-
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tion prototype system is built. And skin disease analysis result with the tester’s

face skin image shot on the mobile terminal camera is conducted. Meanwhile,

the edge computation delay and transmission delay of the system is tested, so

as to verify the reliability and validity of the system. In our experiment, the

end-to-end communication delay between terminal device and edge node is in

the order of 1s. We found that the high- and low-resolution images of some

skin diseases have little impact on the classification accuracy. There is a trade-

off between transmission delay and classification accuracy. In the future, lower

transmission delay can be realized through the deployment of image compres-

sion algorithms on terminals [48]. Moreover, the classification accuracy of skin

disease can be further improved by the improvement of learning model [49].
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