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a b s t r a c t 

In this article, we report on our experience regarding devising, implementing, and deploying a scheduler for multi- source fusion in the 

context of SCADA systems (Supervisory Control and Data Acquisition). They are challenging

because they commonly rely on low-end boards with very limited computing, memory, and storage capabilities,

but have to run hundreds if not thousands of agents that co-ordinate by means of complex multi-way rendez- vouses. Our work was 

carried out in the context of a solar plant in which we could easily confirm that not scheduling the rendez-vouses fairly may 

easily drive the system into as many as 3 779.10 critical-failure states per hour, whereas a straightforward solution to the problem 

can reduce the figure to 1 094.76 critical-failure states per hour. Unfortunately, that is far from zero, which is the ideal number. In the 

literature, there are several proposals to deal with this problem, but most of them could not be adapted to our context, namely: some of 

them can deal with two-way rendez-vouses only, whereas ours involve an average of 12.89 agents; others require to instrument the 

agents, but many of them are hardware devices that cannot be modified; a few others cannot work with rendez-vouses that can get 

intermittently enabled and disabled along an execution, which makes them of little interest in our context; and some require to use 

shared memory, which is an advanced hardware feature that is not supported by our low-end computing boards. The two proposals 

that we managed to adapt were not efficient enough in our context since they led to an average of 1 102.77 and 1 458.65 critical-

failure states per hour, respectively. That motivated us to work on a new proposal that does not have any of the previous problems. It 
relies on a incremental approach that was implemented very efficiently using bounded counters and queues. Furthermore, the 

experimental results and the corresponding statistical analysis confirm that it works very well in practice.
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. Introduction

We work in the context of multi-source fusion systems that support

ndustrial production plants. Such systems are commonly supported by

upervisory Control and Data Acquisition (SCADA) systems [8] that run

 collection of agents that work co-ordinately so that the plants work

afely and productively. The agents can be sensors, which are devices

hat sense the physical world and produce data, processors, which apply

ules to the data in order to make decisions regarding which actions must

e performed, and actuators, which perform the selected actions in the

hysical world. 

Such fusion systems have some common features, namely: a) Typi-

ally, several sensors, processors, and actuators must co-ordinate in or-

er to carry out a single piece of work. This implicitly requires imple-

enting multi-way co-ordination protocols that are far more involved

han in the case of two agents. b) Furthermore, the sensors and the actu-

tors are hardware devices that communicate by means of standardised

rotocols, which means that the chances that they can be instrumented
∗ Corresponding author. 

E-mail addresses: corchu@us.es (R. Corchuelo), migueltoro@us.es (M. Toro).
re very scarce. Instrumentation refers to changing the code of an agent

o that it can be integrated into a new framework. c) In addition, the

ame agent may require co-ordination with several independent groups

f agents, which implies that they must make decisions that do not ne-

lect any of the groups too often because that might easily result in

ritical-failure states. d) Another issue is that the computing boards on

hich they run are very simple; in particular, it is not generally expected

hat they can provide shared memory. e) Last, but not least, their com-

uting, memory, and storage capabilities are very scarce, which is not

ommonly due to budget constraints, but technical problems and veri-

cation requirements [39] . 

Remote-method invocation is the de-facto standard used in the con-

ext of SCADA systems. It is very adequate in cases in which the in-

eractions amongst the agents can be easily implemented by means of

essage-passing protocols. Unfortunately, the complexity of the proto-

ols increases as the number of agents involved in a piece of co-ordinated

ork increases. For instance, think of a system in which there are sev-

ral actuators that must open or close some pumps depending on the
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ecisions that they gather from several processors that need data from

everal sensors. Implementing a protocol that co-ordinates this piece of

ork is far from trivial and the result is not commonly simple to ver-

fy and test. Using a standard rendez-vous library helps abstract away

rom the details involved in the co-ordination and focus on the work to

e done. Open MPI [33,40] is a well-known library in this context, but

here are others that are specifically tailored for web services [15,27],

econfigurable systems [52],  integration technologies [18–20],  or Jav

ystems [32].  

Rendez-vouses help raise the level of abstraction, which is very ap-

ealing. Unfortunately, our experience proves that the scheduler must

e carefully designed so that every rendez-vous that is enabled suffi-

iently often is executed sufficiently often since, otherwise, the system

ay easily enter critical-failure states. In our experimental study, we

onfirmed that a scheduler that does not take the problem into account

ay lead to as many as 3 779.10 critical-failure states per hour; we

lso confirmed that a straightforward solution can reduce the figure to

 094.76 critical-state failures per hour, which is still very far from zero.

 critical-failure state is a situation in which a part of the system is not

orking well. If such a state lasts for too long, then the system might

alfunction, which may result in serious component damage, produc-

ion interruptions, environmental pollution, or human injuries, just to

ention a few common problems. Such states are typically due to a

omponent that is malfunctioning (e.g., faulty sensors or actuators, or

rocessors that work wrongly due to faulty boards, network failures, or

rong rules), but also due to actuators that do not perform their actions

imely due to scheduling problems, which is our focus in this article.

hen the system enters such a state, the engineers get an alarm and

xecute an automated recovery procedure first; if it does not work, then

he engineers override the system and try to keep it under control. If no

olution is found, then the system is stopped and reset, which results in

roduction interruptions and business losses. 

The previous problem is related to a liveness property called fair-

ess [16,25,34,53].  In the literature, there are many proposals to en

orce fairness, but most of them cannot be adapted to our context:

ome proposals were designed to deal with two-way rendez-vouses

nly [3,5,35,49,56,57,60],  but typical rendez-vouses in our context co

rdinate many more agents; others require to instrument the agents to

uild a scheduler into them [1,4,7,10,26],  which can only be simulated

y means of wrappers that are not generally possible to implement in

ow-end computing boards; some of them [4,7] cannot deal with rendez-

ouses that get intermittently enabled or disabled along an execution,

hich hinders applying them to our context; and some of them require

o use shared memory [42],  which is an advanced hardware feature tha

s not available in low-end computing boards. There are two proposals

hat could be adapted [30,45],  but our experimental analysis confirm

hat they are not efficient enough in our context because they drove

ur experimental system into as many as 1 102.77 and 1 458.65 critical-

ailure states per hour, respectively. 

In this article, we report on the design of a scheduler for multi-source

usion systems that are supported by SCADA systems. We introduce it

t a high level of abstraction that helped us prove that it is correct

nd complete; we also delve into how to implement it efficiently us-

ng bounded counters and queues, which is accompanied by a detailed

tudy on the impact on correctness, completeness, time complexity, and

pace complexity; we deployed our proposal to a solar plant and per-

ormed a series of experiments that confirm that it is able to run the

ystem without entering any critical-failure states; the intuitive conclu-

ions were confirmed to be statistically sound using a well-established

tatistical method. 

The rest of the article is organised as follows: Section 2 presents the

elated proposals and compares them to ours, Section 3 presents the

cheduler, Section 4 delves into its implementation, Section 5 reports

n the experimental analysis, and, finally, Section 6 summarises our

onclusions. 
[

. Related work

In this section, we present the related work. First, we summarise the

iterature and then discuss on the problems that motivate our work. 

.1. Summary of the literature 

We have found several architectures that were specifically designed

o support distributed multi-source fusion systems, namely: Wang et al.

54] presented an architecture that arranges agents into four layers: a

ensor driver layer, a logical sensor layer, a fusion unit layer, and a task

nit layer; Lyu et al. [38] , presented a three-layer architecture in which

ensors are deployed to the bottom layer and report to a gateway layer

hat keeps the processors in the application layer away from their pecu-

iarities; de Alba et al. [13] presented an architecture in which proces-

ors are implemented in a distributed blackboard that helps them work

o-ordinately; and Rodríguez et al. [44] devised a similar architecture

hat was implemented using an agent-oriented platform. 

The previous articles implicitly assume that there is a scheduler that

s provided by the underlying implementation platform. Our focus is on

he design of such a scheduler in a context in which computing power,

emory, and storage are scarce and fairness must be enforced to pre-

ent the system from entering critical-failure states. Fairness is a live-

ess property that basically requires the scheduler to make decisions

hat allow both the system and its individual components to progress as

uickly as possible [16,25,34,53] . 

Olderog and Apt [42] set the foundations to enforce fairness by

eans of a scheduler for non-deterministic multi-choice commands.

heir idea was to augment each thread with a collection of local coun-

ers that track how many times each alternative in a multi-choice com-

and may be neglected in spite of being enabled. This simple idea set

he foundation for many succeeding proposals, including ours. 

The idea to enforce fairness using a scheduler was soon adopted in

he context of distributed systems [48] , where fairness is used to en-

ure that no resource remains idle forever or that no agent can starve

orever. In the context of information fusion, there are some propos-

ls that focus on resources that can be accessed by means of specific-

urpose IoT networks [38,47] or general-purpose communication net-

orks [11,23,36,46,50] ; there are also some proposals that deal with

rbitrary resources [3,5,35,49,56,57,60] . Regarding agents, there are

everal proposals that focus on allocating them to the data centres [12] ,

he machines [22,31,41,55,58,59] , or the cores [14,24,43] that have

ore computing power available, since this helps prevent starvation. 

The previous proposals were devised in the context of systems whose

gents interact by means of remote-method invocations. The problem

s far more involved when the agents interact by means of rendez-

ouses, chiefly if they co-ordinate more than two agents, aka. multi-

ay rendez-vouses. The subject of fairness in the previous proposals

re the resources or the agents; in our context, the subject is a set of

endez-vouses: guaranteeing that they are executed fairly is the corner-

tone to guaranteeing that the agents can progress. Francez and Forman

17] adapted Olderog and Apt’s [42] proposal to this context. Some au-

hors soon started to work on solutions that do not require any shared

emory. Unfortunately, this research path was not straightforward be-

ause Tsay and Bagrodia [51] proved that no scheduler can guarantee

airness unless the agents ready only one rendez-vous stochastically, ar-

itrary delays can be introduced in the presence of a rendez-vous that

s known to be enabled, or every computational step in every agent can

e controlled by the scheduler. (Joung [29] characterised the exact sub-

et of topologies in which these impossibility results hold.) The first re-

earch path was explored by Joung [30] , the second one was explored

y Ruiz et al. [45] , but, to the best of our knowledge, nobody has ex-

lored the third one since it does not seem realistic. Recently, André

t al. [1] , Bensalem et al. [4] , Bonakdarpour et al. [7] , Brook et al.

10] , and Jongmans and Arbab [26] have focused on enforcing fairness
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y instrumenting the agents so that a distributed scheduler is built into

hem. 

.2. Discussion 

A good solution to implement a scheduler for multi-source fusion

ystems that are supported by SCADA systems must fulfil the following

equirements: 

– It must support multi-way rendez-vouses. We need a solution that

supports both two-way and multi-way rendez-vouses since the

latter are very common in our context. For instance, in our ex-

perimental analysis we dealt with a system in which the rendez-

vouses co-ordinate an average of 12.89 agents. 

– It must not require to instrument the agents. We need a solution

that does not rely on instrumentation since the sensors and the ac-

tuators are black boxes that are provided by third-party vendors.

The reader might argue that they might be wrapped using proxies

that simulate the instrumentation; although that solution makes

sense in a general context, it is not appropriate in our context

because the proxies must be deployed to additional computing

boards or share the existing computing boards with the proces-

sors. 

– It must implement a strong fairness notion. Some authors have

worked on a weaker notion of fairness that is not as stringent

as ours. Instead of requiring a rendez-vous to be enabled from

time to time, they require the rendez-vouses to be permanently

enabled from a specific point in the execution onwards, which is

far too restrictive in our context.

– It must not require any shared memory. We need a solution that

does not require any shared memory, since the usual hardware

that is available in our context does not support this feature. 

– It must be efficient in terms of both time and space. We need a solu-

tion with a low time and space complexity due to the small com-

puting, memory, and storage capabilities of the hardware used in

our context. 

The proposal by Olderog and Apt [42] does not deal with multi-way

endez-vouses, but multi-choice commands; this means that it provides

 foundation, but adapting it, if possible, is not straightforward. Un-

ortunately, it requires to instrument the source code of the agents to

hich it is applied, which is not possible in a context in which sensors

nd agents are black boxes provided by third parties; it also requires

hared memory, which is not available in our context; furthermore, the

roposal requires to know the status of each alternative before making

 decision on which must be executed, which is not efficient enough. 

The proposals that focus on resource that are connected through a

ommunications network [11,23,36,38,46,47,50] do not seem easy to

dapt because they depend on a variety of parameters that are highly

ependent on the network and difficult to extrapolate to other contexts,

.g., signal strength or waveform. The proposals that focus on general

esources [3,5,35,49,56,57,60] might be applicable by mapping each

endez-vous onto a shared resource for which the agents have to com-

ete; the problem is that they were not designed to deal with resources

hat must be shared by two or more agents. The proposals that focus

n agents [12,14,22,24,31,41,43,55,58,59] are not applicable because

heir goal is to guarantee that agents can progress by allocating them to

he computing devices that have more computing power available, in-

ependently from whether they co-ordinate or not with others; in these

roposals, an agent that is readying a rendez-vous is considered to be

aiting for input/output, which excludes it from the collection of agents

hose progress must be guaranteed. 

The adaptation of Olderog and Apt’s [42] proposal by Francez and

orman [17] can deal with multi-way rendez-vouses, but it requires to

nstrument the agents, which is not possible in our context in the case of

ensors and actuators, and it requires to know the status of every rendez-

ous before making a decision on which must be executed, which is
nefficient. The stochastic approach by Joung [30] might be used, but

ur experimental results prove that it is far too inefficient in our context;

urthermore, it cannot deal with systems in which a single agent can stop

xecuting naturally (i.e., it was programmed to work for a finite period

f time only) or systems in which an agent increases its execution time

onotonically (e.g., an agent that processes a log in a non-incremental

anner). The approach by Ruiz et al. [45] might also be used in our

ontext, but our experimental results also prove that it is not efficient

nough because it requires to perform some global computations that

re costly and it periodically requires to freeze the whole system to know

he status of every rendez-vous. The recent proposals by André et al.

1] , Bensalem et al. [4] , Bonakdarpour et al. [7] , Brook et al. [10] , and

ongmans and Arbab [26] also require to instrument the agents to build

 distributed scheduler into them, which is not generally possible in our

ontext due to the limitations of the computing boards; furthermore,

ensalem et al.’s [4] and Bonakdarpour et al.’s [7] proposals deal with

 weaker level of fairness that cannot deal with rendez-vouses that get

nabled or disabled depending on the logic of the system.

Summing up: none of the proposals in the literature seems to be

ppropriate in our context, which motivated us to work on a new one. 

. The scheduler

In this section, we describe the scheduler. First, we present some

reliminaries, then describe the proposal, and finally prove that it is

orrect and complete. 

.1. Preliminaries 

Our preliminaries focus on the mathematical foundations and some

undamental concepts regarding systems, executions, and fairness. 

efinition 1 (Mathematical foundations) . A transition is a tuple of the

orm 𝐶 1 
𝑒

⟶𝐶 2 , where C 1 denotes a source configuration, C 2 denotes a

arget configuration, ⟶ denotes a transition relation on configurations,

nd e denotes the event that fires the transition from the source to the

arget configuration. A configuration is a tuple that models the data

nd the execution state of a system. A transition chain is a sequence

f transitions of the form ⟨𝐶 𝑖 𝑒 𝑖 +1 ⟶𝐶 𝑖 +1 ⟩𝑖 ≥ 0 . We use notation ∃∞x : P ( x ) to

ean that there are infinitely many values of x that satisfy predicate P . A

ap is a correspondence amongst the elements of two sets; we represent

hem using notation { 𝑘 𝑖 ↦ 𝑣 𝑖 } 𝑛 𝑖 =1 , where { 𝑘 1 , 𝑘 2 , … , 𝑘 𝑛 } is the domain of

he map and { 𝑣 1 , 𝑣 2 , … , 𝑣 𝑛 } is its range ( n ≥ 0). If ≤ is an order on the

ange of map 𝜇, then 𝜇 denotes its flattening, which is defined as a re-

rdering of the domain such that 𝜇( ̂𝜇( 𝑖 )) ≤ 𝜇( ̂𝜇( 𝑖 + 1)) , for every 1 ≤ i < n,

 ≥ 0); simply put: 𝜇 sorts the domain of map 𝜇 according to its range.

e use RND to denote a random variable that is uniformly distributed

n the set of natural numbers. 

efinition 2 (Systems) . A system is a tuple ( R, A ), where R denotes a

et of rendez-vouses and A denotes a set of agents. A rendez-vous is a

omponent that allows several agents to exchange data co-ordinately;

hey have a state that is composed of variables that the agents that co-

rdinate on them can read and/or write. Rendez-vouses that co-ordinate

nly two agents are referred to as two-way rendez-vouses, whereas

endez-vouses that co-ordinate more than two agents are referred to

s multi-way rendez-vouses. An agent is a component that consumes

nd/or produces the data that are exchanged through the rendez-vouses;

he agents can be further classified as sensors, which sense the physi-

al world and write data to the rendez-vouses, processors, which read

ata from the rendez-vouses, process them, and write the results to the

endez-vouses, and actuators, which read data from the rendez-vouses

nd perform actions in the physical world. Agents execute scripts that

an either perform some local computation, ready some rendez-vouses,

r execute a rendez-vous (which allows it to perform co-ordinated com-

utations). There are a variety of technologies available to write the
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cripts [15,18–20,27,32,40,52].  An agent may ready several rendez

ouses at the same time, but only one of them may be selected for exe-

ution because agents are single-threaded in our context. 

emark 1. Multi-source information fusion is a process that combines

ata from many sources to produce an output that is somewhat use-

ul. The previous idea fits our model perfectly: data are gathered from

he physical world using sensors, they are processed using processors

hat produce an output, which is fed into some actuators that perform

ctions. Our model assumes that the agents co-ordinate by means of

endez-vouses, which can co-ordinate two or more agents. We are inter-

sted in multi-source fusion systems that are supported by SCADA sys-

ems [8].  (SCADA stands for Supervisory Control and Data Acquisition.

uch systems are commonly used to monitor and control the individual

omponents of industrial plants in fields as diverse as telecommunica-

ions, water and waste control, oil and gas refining, transportation, or

nergy, just to mention a few examples. Typical SCADA systems are com-

osed of sensors and actuators that are provided by different vendors

nd processors that are implemented in-house. The sensors and the ac-

uators are very commonly implemented as black-box devices that com-

unicate by means of standardised protocols; simply put: the chances

hat they can be instrumented are scarce (by instrumentation we mean

hanging their source code so as to adapt them to specific purposes).

he processors are commonly deployed to low-end computing boards

hat provide very little computing power (in the range of a few MIPS),

emory (in the range of a few KiB), or storage (in the range of a few

undreds of KiB). 

efinition 3 (Executions).  We assume that the operational seman

ics of the technology used to implement a system was defined by

eans of a transition relation ⟶ on configurations of the form

 𝑎1 ,  𝑎2 ,  … , 𝑎𝑛 ,  𝑟1 ,  𝑟2 ,  … , 𝑟 𝑚 ),  where each ai  denotes the data and th

ution state of an agent and each rj  denotes the data and execution state

f a rendez-vous ( n ≥ 0, m ≥ 0, 1 ≤ i ≤ n,  1 ≤ j ≤ m ). An execution of a

ystem is a transition chain of the form ⟨𝐶 𝑖 𝑟 𝑖 +1 ⟶𝐶 𝑖 +1 ⟩𝑖 ≥ 0 , which indicates

hat rendez-vous 𝑟 𝑖 +1 is executed to transition from configuration C i to

onfiguration 𝐶 𝑖 +1 ( i ≥ 0). A rendez-vous is said to be enabled if every

gent that can ready it is readying it; we use notation enabled ( r, C ) to

enote that rendez-vous r is enabled in configuration C . 

efinition 4 (Fairness) . Fairness is a liveness property that requires

hat no rendez-vous that is enabled from time to time in an execution is

xecuted finitely many times (possibly never). Formally speaking, ex-

cution ⟨𝐶𝑖 𝑟 𝑖 +1⟶𝐶 𝑖 +1 ⟩𝑖 ≥ 0 is fair as long as ∀𝑟 ∶ (∃∞𝑖 ∶ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑( 𝑟, 𝐶 𝑖 )) ⇒
∃∞𝑖 ∶ 𝑟 = 𝑟 𝑖 ) . In the literature, there are some authors who consider a

eaker notion that requires that no rendez-vous that is enabled perma-

ently from a configuration onwards is executed finitely many times.

ormally speaking, the previous execution is weakly fair if ∀𝑟 ∶ (∃𝑘 ∶
𝑖 ≥ 𝑘 ∶ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑( 𝑟, 𝐶 𝑖 )) ⇒ (∃∞𝑖 ∶ 𝑟 = 𝑟 𝑖 ) . We focus on the initial formula-

ion since it is more general and stringent [16] . 

emark 2. The notion of fairness is intimately related to the idea of in-

niteness. The systems in which we are interested are designed to work

wenty-four hours a day, seven days a week. Theoretically, their execu-

ions are infinite; for practical purposes that means that their lengths

re not bounded by any pre-defined constant. Implementing fairness is

hallenging insofar the scheduler must guarantee that no rendez-vous

hat is enabled from time to time is executed finitely many times (pos-

ibly never). Note that one cannot check the previous property in finite

ime just taking a look at a partial execution. One the contrary, one

ust prove that the scheduler cannot produce any unfair executions by

eans of a theoretical analysis that commonly relies on a reductio ad

bsurdum argument. That is: one must assume that the scheduler may

roduce an unfair execution and then find a sequence of entailments

hat result in contradictions. In practice, enforcing fairness is appealing

ecause it helps give every rendez-vous that is enabled from time to

ime a fair chance to be executed. In our context, this is particularly im-
- 

ortant in order prevent the system from entering critical-failure states

hat might result in disaster. 

xample 1. Fig. 1 provides an excerpt from the definition of the system

hat we used in our experimental analysis. The actual system has 10 158

ensors of 321 different types, 124 processors of 97 different types, 2 034

ctuators of 112 different types, and 215 rendez-vouses that co-ordinate

2.89 agents in average. Thus, the example focuses on a tiny part that ex-

ibits a common co-ordination pattern that allows us to illustrate many

f the core concepts. 

Fig. 1 .a sketches the scripts that are executed by a specific type

f sensor, a specific type of processor, and a specific type of actuator

hen they co-ordinate on a collection of rendez-vouses of a specific

ype. Fig. 1 .b sketches an instantiation of this system with three sensors,

hree processors, three actuators, and three rendez-vouses. We implic-

tly assume that there is a loader that instantiates the agents and the

endez-vouses and distributes them according to a predefined topology;

e also assume that the loader provides an integer index to each agent

r rendez-vous, which is passed as parameter i to the corresponding

cripts. 

The sensor script consists in a loop that senses data from the phys-

cal world and immediately readies rendez-vouses RV ( i ) and 𝑅𝑉 ( 𝑖 + 1)
n order to send the data to agents that can also ready these rendez-

ouses (we implicitly assume that 𝑖 + 1 is computed modulo the number

f rendez-vouses in the system). The processor script consists in a loop

hat readies rendez-vous RV ( i ); when it is executed, the script reads the

ata sent by the corresponding sensor, applies a rule to compute an ac-

ion, and writes the action to the rendez-vous. The actuator script also

onsists in a loop that first readies rendez-vous RV ( i ) and then performs

he action that it reads from that interaction. Recall that the script of

he sensors and the actuators is built in the corresponding hardware de-

ices; one can only configure the rendez-vouses to which they broadcast

heir data or the rendez-vouses from which the actuators read them. 

Note how simple it is to specify such a complex system using rendez-

ouses since each of them encapsulates the protocol required to synchro-

ise multiple entities so that they can exchange data co-ordinately. This

ample system sketches a pattern that is very common in practice: three

ifferent agents need to co-ordinate (a sensor, a processor, and an actu-

tor) and there are some agents that may ready several rendez-vouses in

rder to provide their data to different agents (the sensors). Realise that

his is an instance of the well-known Dining Philosophers problem; the

eader can consult any textbook on distributed algorithms to realise how

ifficult it is to implement a solution to this problem using a protocol

hat relies on remote-method invocation [37] . 

Note, too, that a solution in which the sensors or the processors buffer

ata is not possible because of the tiny amount of memory or storage

hat is available in our context. In such a context, only a piece of data

an be stored and it must be distributed to the agents that are interested

n it at a specific point in time. Missing some data is not important as

ar as the system executes fairly. Unfortunately, our experiments prove

hat fairness does not happen naturally and must then be enforced by

he scheduler, cf. Section 5 . For instance, an execution of the previous

ystem in which rendez-vouses RV (1) and RV (2) are executed intermit-

ently and rendez-vous RV (3) is never executed happens too often in

ractice, which may easily drive the system into critical-failure states. 

.2. Description 

Our proposal works as follows: the scheduler associates a priority

ith every rendez-vous; the priority is a counter that indicates the num-

er of times that a rendez-vous may be rejected for execution despite

t is enabled; the scheduler arranges the rendez-vouses in a sequence in

ecreasing priority order (the smaller a counter, the higher the priority);

t then searches the sequence for the first rendez-vous that is enabled;

f it does not exist, then the system terminates; if it exists, then it is ex-

cuted and its priority is reset to a random natural value, whereas the



Fig. 1. Sketch of a sample system.

p  

c  

e  

v  

t

 

⟶  

o  

fi  

e  

o  

a  

v  

e

 

t  

t  

o  

a  

v  

i  

e  

t  

b

 

p  

t

3

 

n

T  

e

P  

g

𝜆

 

t  

t  

b  

fi  

e  

𝜌  

e  

t

(

t  

a  

t

e  

(

riorities of the rendez-vouses before it are kept and the others are in-

reased by one. The key is that the scheduler needs to find only the first

nabled rendez-vous in decreasing order of priority; the other rendez-

ouses may be enabled or disabled, but the scheduler guarantees that

hey will be executed if they are enabled from time to time. 

To formalise this idea, we need to generalise the transition relation

that defines the operational semantics of our systems so that it works

n extended configurations of the form ( C, 𝜌), where C denotes a con-

guration of the system and 𝜌 is a map that associates a priority with

ach rendez-vous. In the initial configuration, we assume that the state

f every agent and rendez-vous is initialised to default values. We also

ssume that the initial priority map is initialised so that every rendez-

ous gets a priority using random variable RND . After that, the system

xecutes according to the following inference rule: 

𝐶 
𝜌( 𝑘 ) 
⟶𝐶 ′

∀1 ≤ 𝑖 < 𝑘 ∶ ¬𝑒𝑛𝑎𝑏𝑙𝑒𝑑( ̂𝜌( 𝑖 ) , 𝐶) 
𝑒𝑛𝑎𝑏𝑙𝑒𝑑( ̂𝜌( 𝑘 ) , 𝐶) 

( 𝐶 , 𝜌) 
𝜌( 𝑘 ) 
⟶( 𝐶 ′, 𝑢𝑝𝑑𝑎𝑡𝑒 ( 𝜌, 𝑘 )) 

The rule has three antecedents and a consequent. The first an-

ecedent requires that the system can transition from configuration C

o configuration C ′ by executing rendez-vous 𝜌( 𝑘 ) , for some k ; the sec-

nd antecedent constraints the value of k so that no rendez-vous in ̂𝜌 in

 position before k is enabled; the third antecedent requires the rendez-

ous at position k in ̂𝜌 to be enabled. Summing up, the antecedents of the

nference rule constraint k so that it denotes the position in ̂𝜌 of the first

nabled rendez-vous, if any. The consequent states that if such a k exists,

hen the system can transition from configuration C to configuration C ′ ,

ut the priorities must be updated as follows: 

upda te ( 𝜌, 𝑘 ) = { 𝑟 ↦ 𝜌( 𝑟 ) ∣ ∃1 ≤ 𝑗 ≤ 𝑘 − 1 ∶ 𝑟 = 𝜌̂( 𝑗 ) } ∪

{ 𝑟 ↦ RND ∣ 𝑟 = 𝜌̂( 𝑘 ) } ∪

{ 𝑟 ↦ 𝜌( 𝑟 ) − 1 ∣ ∃𝑘 + 1 ≤ 𝑗 ≤ |𝜌| ∶ 𝑟 = 𝜌̂( 𝑗 ) } 
Simply put: the update keeps the priority of the rendez-vouses before

osition k , resets the priority of the selected rendez-vous, and increases

he priority of the other rendez-vouses. 

.3. Correctness 

Proving that the scheduler is correct amounts to proving that it can-

ot generate any unfair executions. 

heorem 1 (Correctness) . The scheduler does not generate any unfair ex-

cutions. 

roof. We proceed by reductio ad absurdum. Assume that the scheduler

enerates the following execution: 

= ⟨ ( 𝐶 𝑖 , 𝜌𝑖 ) 𝑟 𝑖 +1 ⟶( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) ⟩𝑖 ≥ 0
If 𝜆 is unfair, that means that there must exists a rendez-vous r

hat is enabled from time to time in 𝜆, but it is executed finitely many

imes only (possibly never). Let R denote the set of rendez-vouses. It can

e partitioned into R 1 , which has the rendez-vouses that are executed

nitely many times in 𝜆, and R 2 , which has the rendez-vouses that are

xecuted infinitely many times. There must exist a configuration ( C z ,

z ) ( z ≥ 0) such that it is the last configuration in 𝜆 that is reached by

xecuting a rendez-vous in R 1 . Consider now a succeeding transition of

he following form: 

 𝐶 𝑖 , 𝜌𝑖 ) 
𝑟 𝑖 +1 ⟶( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) ( 𝑖 ≥ 𝑧 )

Assume that 𝜌𝑖 is of the form ⟨ 𝑟 1 , … , 𝑟 𝑞−1 , 𝑟 𝑞 , 𝑟 𝑞+1 … , 𝑟 𝑛 ⟩. Assume,

oo, that the neglected rendez-vous is r q . If neither 𝑟 1 , 𝑟 2 , … , 𝑟 𝑞−1 are en-

bled, this is contradictory because the scheduler would have checked

hem and would have selected 𝑟 = 𝑟 𝑞 for execution since it is the first

nabled rendez-vous in 𝜌𝑖 . Consequently, there must exists an index p

1 ≤ p < q ) such that r p is the first enabled rendez-vous in ̂𝜌𝑖 , i.e, 𝑟 𝑝 = 𝑟 𝑖 +1 .
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his means that when rp  is executed, 𝜌i is updated before reaching con-

guration ( 𝐶𝑖  +1,  𝜌𝑖 +1 ) so that the counter of the preceding rendez-vouse

emain unchanged whereas the counter associated with rp  is assigned a

andom natural value (possibly zero), and the counters associated with
he rest, including rq ,  are decreased by one. Realise that the counters

f the rendez-vouses before rp  are reset to random natural values or re-

ain constant every time that they are checked, whereas the counter
f rendez-vous rq  is decreased by one every time that it is not checked.

hen, there must exist a configuration ( Cs ,  𝜌s ) (s  ≥ z)  such that rq  is
nabled and 𝜌s (r q  ) must be necessarily the minimum counter in that

onfiguration. Consequently, rq  is the first rendez-vous in 𝜌𝑠 and must

ave been selected for execution in that configuration, which concludes

he proof. □

.4. Completeness 

Proving that the scheduler is complete amounts to proving that it can

enerate the whole set of fair executions, which we do in two steps: first,

e introduce a lemma that proves that every execution of a system can

e characterised with a series of priority maps in which the rendez-vous

hat is executed in each transition has priority one; next, we prove that

he scheduler can generate executions with such priority maps, which

enders it complete. 

emma 1 (A characterisation of priority maps).  Let 𝜆 be a fair execution

f the following form: 

 = ⟨ ( 𝐶𝑖 ,  𝜌𝑖 ) 𝑟𝑖 ⟶  ( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) ⟩𝑖 ≥ 0
The following is a characterisation of the priority maps in which the

endez-vous that is executed in each transition has priority one: 

𝑖 ( 𝑟 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

min { 𝑗 ≥ 𝑖 ∣ 𝑟 = 𝑟 𝑗+1 } − 𝑖 + 1 if ∃𝑠 ≥ 𝑖 ∶ 𝑟 = 𝑟 𝑠 +1
max { 𝑗 ≥ 𝑖 ∣ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑( 𝑟, 𝐶 𝑗 )} − 𝑖 + 1 if (∄𝑠 ≥ 𝑖 ∶ 𝑟 = 𝑟 𝑠 +1 ) ∧

(∃𝑠 ≥ 𝑖 ∶ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑( 𝑟, 𝐶 𝑠 ))
0 otherwise 

roof. The intuition behind the definition is as follows: 

1. Case 1: rendez-vous r is eventually executed from configuration ( C i ,

𝜌i ) onwards. In this case, the value assigned to 𝜌i ( r ) is the number

of configurations between ( C i , 𝜌i ) and the first succeeding configu-

ration, including ( C i , 𝜌i ), in which r is executed.

2. Case 2: rendez-vous r is eventually enabled but never executed. In

this case, the value assigned to 𝜌i ( r ) is the number of configurations

between ( C i , 𝜌i ) and the configuration in which r is enabled for the

last time, which might also be ( C i , 𝜌i ).

3. Case 3: rendez-vous r is never enabled from configuration C i on-

wards. In this case, we define 𝜌𝑖 ( 𝑟 ) = 0 .

The proof is straightforward: the rendez-vous that is executed in each

ransition falls within Case 1, so 𝜌𝑖 ( 𝑟 𝑖 +1 ) = min { 𝑗 ≥ 𝑖 ∣ 𝑟 = 𝑟 𝑗+1 } − 𝑖 + 1 =
 − 𝑖 + 1 = 1 ; note, too, that the only smaller counter is zero, but accord-

ng to the definition, this value is assigned to rendez-vouses that are

ever again enabled. Thus, the rendez-vous executed in each transition

as priority one. □

heorem 2 (Completeness) . The scheduler can generate the whole set of

air executions of a system. 

roof. Our goal is to prove that the scheduler can generate executions

n which the priority map in each configuration is characterised by the

revious lemma. Consider any transition of the following form: 

 𝐶 𝑖 , 𝜌𝑖 ) 
𝑟 𝑖 +1 ⟶( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) ( 𝑖 ≥ 0)

Configuration ( C 0 , 𝜌0 ) is special since it must be constructed by

eans of a procedure that initialises the data and execution state of

very agent and rendez-vous and also initialises the priority map to ran-

om natural numbers. That is, nothing prevents the scheduler from gen-

rating a priority map as characterised by the previous lemma. 
Thus, we have to focus on the succeeding transitions. In a configu-

ation ( C i , 𝜌i ) ( i ≥ 1), 𝜌𝑖 has the following structure: 

𝑖̂ = ⟨
𝜌𝑖 ( 𝑟 )=0 

⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟 1 , … , 𝑟 𝑧 −1 , 

𝜌𝑖 ( 𝑟 )=1 
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟 𝑧 , … , 𝑟 𝑧 + 𝑝 , 

𝜌𝑖 ( 𝑟 ) > 1 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟 𝑧 + 𝑝 +1 , … , 𝑟 𝑛 ⟩ ( 𝑧 ≥ 1 , 𝑝 ≥ 0)

That is, there can be 𝑧 − 1 initial rendez-vouses whose priority equals

ero, next 𝑝 + 1 rendez-vouses whose priority equals one, and then 𝑛 −
 − 𝑝 rendez-vouses whose priority is greater than one ( 𝑧 − 1 ≥ 0 , 𝑝 + 1 ≥
 , 𝑛 − 𝑧 + 𝑝 ≥ 0) . Therefore, there are three cases to analyse: 

1. Case 𝑟 ∈ { 𝑟 1 , 𝑟 2 , … , 𝑟 𝑧 −1 } : the rendez-vouses whose priority is zero

are not enabled in ( C i , 𝜌i ) or any succeeding configuration. Other-

wise, we can apply the first or the second case of the definition of 𝜌i

and they both lead to counters greater than or equal to one. There-

fore, if these rendez-vouses are permanently disabled from configu-

ration ( C i , 𝜌i ) onwards, then 𝜌𝑖 +1 ( 𝑟 ) = 0 , which is consistent with the

update that the scheduler performs because it does not modify the

counters that are associated with the disabled rendez-vouses at the

beginning of 𝜌𝑖 .
2. Case 𝑟 ∈ { 𝑟 𝑧 , 𝑟 𝑧 +1 , … , 𝑟 𝑧 + 𝑝 } : the executed rendez-vous belongs to the

set of rendez-vouses whose priority equals one, so it is one of the

rendez-vouses in this case. We can assume that r z is selected for exe-

cution because any arrangement of the rendez-vouses with the same

priority is valid according to the definition of the scheduler. Thus,

there are two sub-cases:

(a) Case 𝑟 = 𝑟 𝑧 : in this case, 𝜌𝑖 +1 ( 𝑟 ) ≥ 0 , which is consistent with the

update performed by the scheduler since it resets the counter of

rendez-vous r to a random natural value.

(b) Case 𝑟 ∈ { 𝑟 𝑧 +1 , … , 𝑟 𝑧 + 𝑝 } : in this case, the scheduler decreases

the counter associated with r by one, so we need to prove that

𝜌𝑖 +1 ( 𝑟 ) = 0 , which indicates it will be permanently disabled from

configuration ( C i , 𝜌i ) onwards. Indeed, because if 𝜌𝑖 +1 ( 𝑟 ) was

greater than zero, this would imply that r might be enabled at

least one more time from configuration ( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) onwards, that

is 𝜌i ( r ) should be greater or equal than two. Consequently, if this

value is greater than zero in configuration ( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) , given that

rendez-vous r has not been selected for execution in configura-

tion ( C i , 𝜌i ), then 𝜌𝑖 ( 𝑟 ) = 1 + 𝜌𝑖 +1 ( 𝑟 ) ≥ 2 should hold, which con-

tradicts the idea that 𝜌𝑖 +1 ( 𝑟 ) might be greater than zero.

3. Case 𝑟 ∈ { 𝑟 𝑧 + 𝑝 +1 , 𝑟 𝑧 + 𝑝 +2 , … , 𝑟 𝑛 } : the scheduler decreases the counter

associated with r by one, i.e., we need to prove that 𝜌𝑖 +1 ( 𝑟 ) = 𝜌𝑖 ( 𝑟 ) −
1 . Indeed, because if 𝜌i ( r ) was greater than one, this would mean

that there exists 𝜌i ( r ) configurations before r is selected or enabled

for the last time, including ( C i , 𝜌i ). Therefore, this happens one less

time in configuration ( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) , i.e., 𝜌𝑖 +1 ( 𝑟 ) = 𝜌𝑖 ( 𝑟 ) − 1 .

e have now explored every possible case and we have proved that the

cheduler can update the priority map in each transition according to the

haracterisation of the previous lemma, which concludes the proof. □

. The implementation

In this section, we describe the implementation. First, we present

ome preliminaries on how to implement maps, then describe the im-

lementation of the scheduler, next analyse its time and space complex-

ty, and, finally, analyse the impact of implementing it using bounded

ounters. 

.1. Preliminaries 

The key to an efficient implementation is to select the right data

tructures. Our implementation relies heavily on maps, which we use

o store a rendez-vous specification map in which each rendez-vous is

apped onto the agents that can eventually ready it, a readiness map

n which they are mapped onto the agents that are readying them in a

articular configuration, and a priority map in which they are mapped

nto their corresponding priority counters. 



Fig. 2. Main method of the scheduler.
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The specification and the readiness map can be implemented using a

ash-table approach since the key to performance is to be able to fetch

he sets of agents that may ready or are readying each rendez-vous as

fficiently as possible. No other operation is performed on them. 

The priority map requires a careful selection of the implementation

ecause we need to flatten it many times. Unfortunately, a hash-table

pproach does not allow to perform this operation efficiently. Fortu-

ately, Brodal [9] devised a priority map implementation that performs

he following operations in O (1) worst-case time: makeQueue (), which

eturns a new empty queue, isEmpty ( 𝜌), which returns whether queue 𝜌
s empty or not, select ( 𝜌), which returns the element with the maximum

riority in queue 𝜌, insert ( 𝜌, e, p ), which inserts element e with priority

 into queue 𝜌; additionally, it implements the following operation in

 (log n ) worst-case time: delete ( 𝜌), which deletes the element with the

inimum priority from queue 𝜌 and returns it. Furthermore, it does not

equire more than O ( n ) space to store a queue with n elements. This

akes Brodal’s [9] approach a very good choice in our context. 

.2. Scheduler implementation 

Fig. 2 shows the main method of the scheduler. It works on a set

f rendez-vouses R and a specification map T that indicates which pro-

esses must ready each rendez-vous so that it becomes enabled. First, it

nitialises queue 𝜌, which implements the priority map, and readiness

ap C , which keeps track of which agents have readied which rendez-

ouses. The former is initialised so that each rendez-vous is assigned a

andom natural value and the latter is initialised so that each rendez-

ous is assigned an empty set of agents. The method then starts its main

oop, which consists of the following steps: a) it first waits for a notifi-

ation of the form Ready ( S ) from any agent a , which indicates that it is

eadying the rendez-vouses in set S ; b) it then loops over S and updates

ap C to record that agent a is readying that subset of rendez-vouses;

) it then invokes method transition , which implements the inference rule

hat specifies the scheduler and returns the updated priority map and

he rendez-vous selected for execution, if any; c) if the transition method

eturns a non-empty map and a non-null rendez-vous, then that rendez-

ous may be executed immediately, which requires to send an execute

otification to the agents that had readied it and to update the cor-

esponding readiness sets. The main method terminates when method

ransition returns an empty priority map, which means that no rendez-

ous is enabled and the system has stopped. 
Fig. 3 .a shows the ancillary transition method. It works on a priority

ap 𝜌, a readiness map C , and a specification map T . It firsts iterates

ver the priority map to find the first rendez-vous that is enabled. The

teration is implemented in a loop in which the rendez-vouses in queue 𝜌
re iteratively transferred to the ancillary queue 𝜌′ . In each iteration, the

ighest priority rendez-vous is first selected from queue 𝜌; if the set of

rocesses that have readied that rendez-vous equals the set of processes

ndicated by the specification map T , then that rendez-vous is enabled.

n this case, we transfer all of the elements that remain in 𝜌 to queue

′ by means of the ancillary transferAll method; otherwise, we move

he disabled rendez-vous from queue 𝜌 to queue 𝜌′ using the transferOne

ethod. If one rendez-vous is found to be enabled, then transition returns

ueue 𝜌′ , which is an updated version of 𝜌, and the rendez-vous selected

or execution; otherwise, it returns an empty queue and a null rendez-

ous. 

The ancillary transferOne and transferAll methods are shown in

ig. 3 .b and c. Both methods require their parameters to be in/out be-

ause Brodal’s [9] proposal assumes that queues are handled by ref-

rence. Method transferOne works on two queues 𝜌 and 𝜌′ ; it transfers

he rendez-vous with the maximum priority in queue 𝜌 to queue 𝜌′ ; the

riority is not changed at all since the highest-priority rendez-vous is

ssumed to be disabled. Method transferAll works on two queues 𝜌 and

′ , too; it transfers all of the rendez-vouses in 𝜌 to 𝜌′ so that the highest-

riority one (which is assumed to be enabled) gets its priority reset to

 random natural number and the remaining ones get their priorities

ncreased. 

.3. Complexity analysis 

In this section, we prove that the scheduler does not require more

han O ( m log m ) time to process a ready notification from an agent and

t does not consume more than O ( n m ) space, where m denotes the num-

er of rendez-vouses and n denotes the number of agents. These upper

ounds are sensible to implement the scheduler in a SCADA context in

hich computing power, memory, and storage space are very limited. 

The sketch of the proof is as follows: first, Lemma 2 proves that

ethod transferOne does not require more than O (log m ) time and O (1)

pace; next, Lemma 3 proves that method transferAll does not require

ore than O ( m log m ) time and O (1) space; then, Lemma 4 proves that

ethod transition does not require more than O ( m log m ) time and O ( m )

pace; finally, Theorem 3 proves the time and space upper bounds re-

arding the scheduler. 

emma 2 Method. transferOne. Let m denote the number of rendez-vouses

n a system. A call to transferOne ( 𝜌, 𝜌′ ) does not require more than O (log m )

ime and it does not consume more than O (1) space. 

roof. A call to transferOne ( 𝜌, 𝜌′ ) wraps a call to delete , which can be

ompleted in O (log m ) worst-case time, followed by a call to insert , which

an be executed in O (1) worst-case time. The call requires to temporarily

tore the element retrieved from 𝜌 before inserting it in 𝜌′ , which does

ot exceed O (1) space. As a conclusion, a call to transferOne ( 𝜌, 𝜌′ ) does

ot require more than O (log m ) time and it does not consume more than

 (1) space. □

emma 3 Method. transferAll. Let m denote the number of rendez-vouses

n a system. A call to transferAll ( 𝜌, 𝜌′ ) does not require more than O ( m log m )

ime and it does not consume more than O (1) space. 

roof. The first two statements do not require more than O (log m ) time

ince they call the delete and the insert methods on a queue that has a

aximum of m elements. The main loop calls again the delete and the

nsert methods a maximum of 𝑚 − 1 times; in each iteration, the size of

ueue 𝜌 decreases by one. Thus, the following is an upper bound to the

ime required to execute the main loop: 

log ( 𝑚 − 1) + log ( 𝑚 − 2) + log ( 𝑚 − 3) + ⋯ + log 2 + log 1 = 



Fig. 3. Ancillary methods.
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𝑚 −1 ∑
𝑖 =1 

log ( 𝑚 − 𝑖 ) < 
𝑚 ∑
𝑖 =1 

log 𝑚 = log 
𝑚 ∏
𝑖 =1 
𝑚 = log 𝑚 

𝑚 = 𝑚 log 𝑚 

Therefore, a call to transfer ( 𝜌, 𝜌′ ) does not require more than

 ( m log m ) time. Furthermore, the call requires only a temporary vari-

ble to store the elements that are transferred from 𝜌 to 𝜌′ , which means

hat it does not require more than O (1) space. □

emma 4 Method. transition. Let m denote the number of rendez-vouses in

 system. A call to transition ( 𝜌, C, T ) does not require more than O ( m log m )

ime and it does not consume more than O ( m ) space. 

roof. The first two statements run in O (1) worst-case time. The main

oop is executed a maximum of m times; in each iteration, the call to

ethod select does not require more than O (1) time, the check for en-

blement can be implemented in O (1) worst-case time using hashed

ets (a trivial implementation would not consume more than O ( n ) time,

here n denotes the number of agents in the system), and the call to

he transferOne method was proved not to consume more than O (log m )

ime. So the main loop does not require more than O ( m log m ) time to

xecute; in the final iteration it might call method transferAll , which

oes not require more than O ( m log m ) time. The final check to return

he value of the method does not require more than O (1) time. The call

equires to store a Boolean variable and a new queue 𝜌′ , only. As a con-

lusion, a call to transition ( 𝜌, C, T ) does not require more than O ( m log m )

ime and it does not consume more than O ( m ) space. □

heorem 3 (The scheduler) . Let m and n denote the number of rendez-

ouses and agents in a system, respectively. The scheduler does not require

ore than O ( m ) time to initialise, it does not require more than O ( m log m )

ime to process a ready notification from an agent, and it does not require

ore than O ( n m ) space. 

roof. The initialisation sentences do not require more than O ( m ) time

o execute because creating queue 𝜌 and readiness map C can be accom-

lished in O (1) worst-case time; the initialisation loop iterates over the

et of rendez-vouses and initialises their priorities and the sets of agents

hat are readying them in O (1) worst-case time. Thus, the conclusion is

hat the scheduler does not require more than O ( m ) time and more than

 ( m ) space to initialise. 

The main loop blocks on the receive statement until an agent sends

 ready notification. It then updates the readiness map, which can be

asily implemented in O ( m ) worst-case time, calls the transition method,

hich does not require more than O ( m log m ) time, and, if possible, sends
n execute notification to a subset of agents, which does not require

ore than O ( m ) time, and updates the readiness map, which does not

equire more than O ( m ) time. As a conclusion, the scheduler does not

equire more than 𝑂(3 𝑚 + 𝑚 log 𝑚 ) ⊆ 𝑂( 𝑚 log 𝑚 ) time to process a ready

otification from an agent. 

The scheduler must store the set of rendez-vouses, which requires

 ( m ) worst-case space, and the specification map, which does not re-

uire more than O ( n m ) space. Furthermore, it must store queue 𝜌,
hich requires O ( m ) worst-case space, readiness map C , which requires

 ( n m ) worst-case space, and every call to method transition requires

 ( m ) worst-case space. As a conclusion, the scheduler does not require

ore than 𝑂( 𝑚 + 𝑛 𝑚 ) ⊆ 𝑂( 𝑛 𝑚 ) space. □

.4. Impact of using bounded counters 

The counters on which our proposal relies must be implemented us-

ng data registers that provide a limited range of integer or natural num-

ers. In the following theorems, we analyse the impact of using bounded

ounters on correctness and completeness. 

heorem 4 (Correctness preservation) . An implementation in which

ounters range in interval [− |𝑅 | + 1 , 0] , where R denotes the set of rendez-

ouses in a system, preserves correctness. 

roof. The proof follows from reductio ad absurdum. Assume that an

mplementation of the scheduler produces an unfair execution of the

ollowing form: 

= ⟨ ( 𝐶 𝑖 , 𝜌𝑖 ) 𝑟 𝑖 +1 ⟶( 𝐶 𝑖 +1 , 𝜌𝑖 +1 ) ⟩𝑖> 0
Obviously, 𝜌0 must set every counter to zero since this is the only

andom natural value that can be generated. If 𝜆 is unfair, it implies

hat there exists an element r ∈ R that is enabled from time to time,

ut it is executed finitely many times only (possibly never). The set of

endez-vouses R can be partitioned into sets R 1 and R 2 so that R 1 is the

ubset of rendez-vouses that are executed finitely many times in 𝜆 and

 2 = 𝑅 ⧵𝑅 1 . There is also a z ≥ 0 such that the rendez-vouses executed

rom configuration ( C z , 𝜌z ) onwards belong to set R 2 . 

If rendez-vous r is enabled from time to time in 𝜆, then there are

nfinitely many configurations ( C s , 𝜌s ) ( s ≥ z ) in which both 𝑟 𝑠 +1 and r

re enabled. Without any loss of generality, we can assume that 𝜌𝑠 is
f the form 𝜌𝑠 = ⟨ 𝑟 1 , 𝑟 2 , … , 𝑟 𝑝 −1 , 𝑟 𝑝 , 𝑟 𝑝 +1 , … 𝑟 𝑛 ⟩ ( 𝑝 > 0) and that r p is the

endez-vous selected for execution in configuration ( C s , 𝜌s ). Obviously,

he counter associated with the neglected rendez-vous must have a value



Fig. 4. Schema of our solar power plant.
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reater than or equal to 𝜌s ( r p ); otherwise, it would be before r p in 𝜌𝑠 and,

iven that it is enabled, it would have been selected, which contradicts

ur hypothesis. Therefore, the neglected rendez-vous must be after r p 
n 𝜌𝑠 . In this situation, the counter associated with r p is reset to zero,

hat is, it must be at the rear of 𝜌𝑠 +1 in the next configuration. With-

ut any loss of generality, we can assume that it is the last rendez-vous

n 𝜌𝑠 +1 because if there are other rendez-vouses with the same prior-

ty any ordering is valid according to the definition of the scheduler.

onsequently, the priorities associated with 𝑟 𝑝 +1 , 𝑟 𝑝 +2 , … , 𝑟 𝑛 in the next

onfiguration are decreased by one; that is, there should exist a configu-

ation ( C q , 𝜌q ) ( q ≥ s ) such that the priority associated with the neglected

endez-vous must be necessarily higher than the priority associated with

ny other rendez-vous and it should be at the beginning of 𝜌𝑞 . Since its

ounter is not altered, it should be selected when a configuration in

hich it is enabled is reached, which contradicts our hypothesis. Fur-

hermore, a priority may be increased |𝑅 | − 1 times in the worst case

ecause the corresponding rendez-vous can remain unchecked |𝑅 | − 1
imes at most. As a conclusion, an implementation that provides coun-

ers in range [− |𝑅 | + 1 , 0] preserves correctness. □

heorem 5 (Completeness preservation) . An implementation that imple-

ents priorities with bounded counters does not preserve completeness. 

roof. Assume that we have bounded counters that range in the inte-

er interval [− |𝑅 | + 1 , 𝑚 ] , for some m ≥ 0, i.e., |𝑅 | + 𝑚 different integer

alues are available. Assume that there exists a fair execution in which

endez-vous r is selected only once at configuration ( 𝐶 |𝑅 |+ 𝑚 , 𝜌|𝑅 |+ 𝑚 ) . Re-

lise that 𝜌0 ( r ) should be at least |𝑅 | + 𝑚 + 1 , which is out of range. As

 conclusion, implementing the scheduler with bounded counters does

ot preserve completeness. □

emark 3. Common computing boards provide data registers that al-

ow to operate with integer counters in range [−2 𝑏 −1 , 2 𝑏 −1 − 1] or natural

ounters in range [0 , 2 𝑏 − 1] , where b denotes the number of bits of the

ata registers. The largest priority that a rendez-vous may have is − |𝑅 | +
 . Thus, implementing the priorities using integer counters amounts to

asting the values in range [−2 𝑏 −1 , − |𝑅 |] , which are quintessential to

enerate as many fair executions as possible. Thus, our proposal is to

mplement the priorities using natural counters, which range in interval

0 , 2 𝑏 − 1] , and then use a simple linear translation in which − |𝑅 | + 1 cor-

esponds to 0 and 2 𝑏 − |𝑅 | corresponds to 2 𝑏 − 1 . This way, the priorities

ange in an interval in which no value is wasted. 

. Experimental analysis

In this section, we describe our experimental analysis. First, we de-

cribe the solar plant in which we performed our experiments, then

eport on the experimental environment, the baselines and the com-

etitors, and finally present our experimental results and analyse them

tatistically. The experimentation was performed in the context of an

ndustrial research project with a company that wished to explore new

odels that minimise the gap between the specification produced by
heir research team and the implementation carried out by their engi-

eering team [6] . Due to non-disclosure clauses, we cannot report on

very detail from an engineering point of view, but we can provide an

verall picture that is enough to assess our proposal from a scientific

oint of view. 

.1. Description of the system 

Solar plants have proven to be very efficient and eco-friendly because

hey use molten salt and water that can be recycled many times and do

ot significatively pollute the environment. They have recently become

conomically feasible due to the positive balance between production

osts and sales benefits [28] . 

Fig. 4 sketches the solar plant in which we conducted our experi-

ents. The flow to generate electricity starts at the cold tank, which

tores molten salt at roughly 290° C. At such temperatures, the salt is a

uid that can be easily pumped into the solar tower, where it is heated

p to 565° C thanks to the solar radiation that is concentrated there by

eans of an array of heliostats. The salt is then pumped into the hot

ank, where it can be stored at about 390° C. The salt is then pumped

rom the hot tank into the steam generator, where heat is transferred to

ater, which boils and becomes steam that is pumped into a standard

urbine that generates electricity. The salt is returned to the cold tank,

here it can start a new cycle and the steam is condensed, deareated

a process that removes dissolved oxygen), and returned to the water

ank. The flows of salt, steam, and water need to be carefully controlled

o that the plant works optimally depending on the weather conditions

nd the amount of electricity that must be produced. 

In the actual system, there are 10 158 sensors, 124 processors, and

 034 actuators. There are 321 types of sensors, which produce data re-

arding temperature, pressure, voltage, intensity, conductibility, vibra-

ions, acoustics, force, or strain, just to mention a few examples. There

re 97 types of processors, which execute rules that were learnt using a

ariety of machine-learning procedures, try to recover the system auto-

atically when it enters a critical-failure state, or send data and statistics

o an external machine-learning system that improves the rules incre-

entally. There are 112 types of actuators, most of which are pumps

hat help keep the flows of molten salt, water, and steam under control.

here are also 215 rendez-vouses that co-ordinate 12.89 agents in av-

rage; the smallest rendez-vouses are two-way and the largest ones are

4-way.

.2. The experimentation environment 

The sensors and the actuators are provided by many different ven-

ors, but they all communicate by means of industrial standards that

elp integrate them with a variety of technologies, including ours. 

The processors were developed in-house and they were deployed to

n array of 124 Arduino Mega 2560 REV3 boards, each of which is

quipped with one ATmega2560 CPU that delivers up to 16 MIPS when



Table 1

Average performance (millions of rendez-vouses per hour).
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unning at 16 MHz, 256 KiB of flash memory (of which 8 KiB are dedi-

ated to the standard boot loader), 8 KiB of SRAM memory, and 4 KiB of

EPROM memory. Note that ATmega2560 CPUs have 8-bit data regis-

ers, which means that doing computations with 16-bit counters reduces

heir computing power to 4–8 MIPS [2] . 

Each board was extended with an Arduino Ethernet REV3 shield that

elps the processors communicate through a standard IEEE 802.3u net-

ork. This shield was selected because it has two additional advantages:

rst, it can power the boards from the Ethernet connector, which re-

uces the number of power cords and power sockets required; second,

t has a Micro SD card socket that helped us store the statistics without

onsuming any storage in the main board. 

 

Each board was triplicated to implement the main system, a fail-over

ystem, and an additional test system in which engineers can experiment

ith new proposals without interfering with the other systems. 

.3. The baselines and the competitors 

We implemented two straightforward proposals that serve as base-

ines for experimentation purposes, namely: 

– PROP1: this baseline executes the rendez-vouses as soon as they

are detected to be enabled. Obviously, PROP1 does not guarantee

that the executions are fair; it is intended to prove that fairness

must be enforced since, otherwise, the system may easily run into



Table 2

Deviation in performance (thousands of rendez-vouses per hour).
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critical-failure states. It was implemented as follows: on reception

of a ready notification, the scheduler checks if a rendez-vous is

enabled and executes it immediately; otherwise, it updates the

readiness map and waits for another notification. 

– PROP2: this baseline requires the status of every rendez-vous to be

known before making a decision on which one must be executed.

Obviously, this guarantees fairness at the cost of introducing ar-

bitrary delays; it is intended to prove that fairness must be en-

forced efficiently since, otherwise, the systems may also run into

critical-failure states. It was implemented as follows: on recep-

tion of a ready notification, the scheduler firsts checks the status

of every rendez-vous; if they all are known to be enabled or dis-

 

abled, then the most priority one is executed; otherwise, it waits

for another notification. 

We also managed to adapt two other proposals in the literature that

erve as competitors for experimentation purposes, namely: 

– PROP3: this proposal uses the approach by Ruiz et al. [45] , which

guarantees fairness by introducing regular delays that freeze the

system from time to time. This approach requires to perform a

static analysis of the system that helps understand which rendez-

vouses are linked to each other because there are agents that can

ready them all; it also requires to analyse the status of the rendez-



Table 3

Critical-failure state alarms.
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vouses at run-time to determine if they are stable or not, which

has to do with whether they can become enabled in future or not.

– PROP4: this proposal uses the approach by Joung [30] , which

consists of a distributed non-deterministic scheduler. Basically,

each agent stochastically selects one of the rendez-vouses that it

is readying and sends messages to the other agents that can ready

it; the agents then wait for a pre-defined period of time called Δ;

later, they check if the other agents have also selected the same

rendez-vous, in which case, it is executed; otherwise, the proce-

dure is re-initiated. We set Δ to the maximum time that the agents

spent doing local computations during the experiments that we

carried out with the other proposals. To implement this proposal,
 o
we had to wrap each sensor and actuator with a proxy that im-

plements the previous protocol. This, obviously, introduced some

additional workload to the computing boards. 

.4. Experimental results 

Hereinafter, we refer to our proposal as SCH. The experiments con-

isted of running it, the baselines (PROP1 and PROP2), and the com-

etitors (PROP3 and PROP4) on the test system for twenty-four days.

e computed several statistics regarding average performance, devia-

ion of performance, and number of critical-failure state alarms raised

n an hourly basis. 



Table 4

Statistical analysis.
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Table 1 shows our experimental results regarding average perfor-

ance. The average performances achieved by SCH, PROP1, PROP2,

ROP3, and PROP4 are 3.60 ± 0.09, 3.63 ± 0.28, 2.13 ± 0.07,

.63 ± 0.29, and 1.15 ± 0.52 million rendez-vouses per hour, respec-

ively. According to these results, PROP1 seems to be the proposal that

chieves the highest performance, followed by SCH (which is 0.82%

ess efficient), PROP3 (which is 27.55% less efficient), PROP2 (which is

1.32% less efficient), and PROP4 (which is 68.32% less efficient). The

ntuitive conclusion is that the scheduler does not seem to introduce a

ignificant penalty regarding efficiency, since the difference with regard

o PROP1 is only 0.82%; the penalty introduced by the other proposals

s huge because PROP2 requires to freeze the system on every decision,

ROP3 requires to freeze it from time to time, and PROP4 uses a stochas-

ic approach that is very inefficient. 

Table 2 presents our experimental results regarding the deviation

f performance. It was straightforward to compute an estimate for the

umber of times that each rendez-vous should have been executed in an

xecution in which each rendez-vous executes as many times as it can

nd draws are broken in a balanced manner; this facilitated computing
n estimation of the deviation of the actual number of executions with

egard to that estimate. The deviations in performance introduced by

CH, PROP1, PROP2, PROP3, and PROP4 are -0.02 ± 0.36, -0.15 ± 4.51,

0.15 ± 0.02 ± 0.23, 0.25 ± 0.42, and 0.13 ± 0.32 thousands of rendez-

ouses per hour, respectively. To make the difference more evident, we

eed to analyse the length of the intervals in which the deviations range,

hich are |[−0 . 72 , 0 . 58] | = 1 . 30 , |[−11 . 70 , 9 . 38] | = 21 . 08 , |[−0 . 41 , 0 . 46] | =
 . 87 , |[−0 . 43 , 1 . 13] | = 1 . 55 , and |[−0 . 41 , 0 . 73] | = 1 . 14 thousands of rendez-

ouses per hour, respectively. Recall that PROP2 freezes the system

efore deciding on which rendez-vous must be executed next, which

learly explains why it results in the smallest range of deviation regard-

ng the ideal execution; SCH introduces 166.67% deviation with respect

o PROP2, but the deviations introduced by PROP1, PROP3, and PROP4

re 2 702.56%, 198.72%, and 146.15%, respectively. That is, the pro-

osals that enforce fairness seem to introduce similar deviations to per-

ormance, which are clearly smaller than the deviation introduced when

airness is not enforced. 

Table 3 shows our experimental results regarding critical-failure

tates. Running our experiments in a test system allowed us to count
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he number of times that the system would have entered critical-

ailure states without any real impact on the solar plant. Realise that

CH did not drive the system into any critical-failure states, whereas

he other proposals resulted in an average of 3 779.10 ± 2 059.52,

 094.76 ± 525.70, 1 102.77 ± 501.67, and 1 458.65 ± 649.82 alarms

er hour, respectively. The results regarding PROP1 are not surprising

t all since we already know that it does not enforce fairness, which

eans that it can easily lead to executions in which the number of times

hat each rendez-vous executes deviates significantly from the number of

imes that it might have executed. The results regarding PROP2, PROP3,

nd PROP4 also make sense: realise that they implement fairness at the

ost of introducing arbitrary delays in the execution, which results in

ctuators that do not work as responsively as they should. 

Summing up: our proposal does not seem to introduce a significant

enalty on performance when compared to a scheduler that does not

ake fairness into account; it does not seem to introduce a large deviation

o the performance when compared to a scheduler that knows the state

f every rendez-vous before scheduling them; and it does not seem to

rive the system into any critical-failure states, which is very important

n our context. 

.5. Statistical analysis 

The conclusions from our experimental analysis are clear. What re-

ains to be done is to check that the differences in rank found in our

xperiments are statistically significant. We used the following statis-

ical analysis [21] at the standard significance level 𝛼 = 0.  05:  a) firs

e computed the experimental rank of each proposal regarding average

erformance, deviation in performance, and number of critical-failure

tates; b) then, we performed Iman-Davenport’s test to check if the dif-

erences in rank are globally significant or not; c) if they were, then we

erformed Bergman-Hommel’s test to compare the proposals to each

ther. Both tests return (adjusted) p-values that must be compared to

he standard significance level; if the p-value is smaller, then the con-

lusion is that the experimental results support the hypothesis that the

ifferences in rank are statistically significant; otherwise, they do not.

able 4 summarises the results; we have greyed the (adjusted) p-values

hat are smaller than the significance level and we have drawn the dif-

erence diagrams to facilitate the interpretation. 

Regarding the average performance, the experimental ranking is

ROP1 > SCH > PROP3 > PROP2 > PROP4. Iman-Davenport’s test re-

urns p-value 0.00, which clearly indicates that the experimental results

upport the hypothesis that there are global significant differences in

he ranking. It then proceeds to compare the proposals to each other

sing Bergman-Hommel’s test. The conclusion is that the experimental

esults do not support the hypothesis that there are significant differ-

nces between PROP1 and SCH, but it supports the hypothesis that the

ifferences are significant regarding the other comparisons. 

Regarding the deviation in performance, the experimental ranking

s PROP2 > PROP4 > SCH > PROP3 > PROP1. Iman-Davenport’s test

eturns a p-value that is very close to zero, which clearly indicates that

he experimental results support the hypothesis that there are global sig-

ificant differences in the ranking. Thus, it makes sense to compare the

roposals using Bergman-Hommel’s test. In this case, the test returns

hat the experimental results do not support the hypothesis that the dif-

erences between PROP4 and SCH or SCH and PROP3 are statistically

ignificant, whereas it supports the hypothesis that they are statistically

ignificant regarding the other comparisons. 

Regarding the number of critical-failure state alarms, the ranking

s SCH > PROP3 > PROP2 > PROP4 > PROP1. Since the p-value re-

urned by Iman-Davenport’s test is 0.00, the hypothesis that there are

lobal differences in rank is clearly supported by the experimental re-

ults. Bergman-Hommel’s test returns a p-value smaller than the signifi-

ance level only for the comparison between PROP2 and PROP3, which

eans that the experimental results support the hypothesis that the dif-
erences in rank between these proposals are not statistically significant,

ut they are regarding the other comparisons. 

Summing up: regarding average performance, the difference in rank-

ng between SCH and PROP1 is not statistically significant, which con-

rms that the penalty introduced by our proposal is not actually sig-

ificant; regarding deviation in performance, the difference in ranking

etween PROP2 and SCH is statistically significant; fortunately, the size

ffect is not important in this case, because the analysis confirms that

he differences in rank regarding the number of critical-failure states

ntered is very significant. The conclusion is that our proposal is not

etrimental at all to performance and can schedule the rendez-vouses

n a system as complex as ours very well. 

. Conclusions

In this article, we have delved into devising, implementing, and de-

loying a scheduler for multi-source fusion systems in the context of

CADA systems. It addresses the problems that we have found in other

roposals, namely: it can deal with multi-way rendez-vouses, it does not

equire any instrumentation, it implements a strong level of fairness, it

oes not require any shared memory, and it is efficient in terms of both

ime and space. Our analysis of the related work reveals that ours is the

nly proposal in the literature that was designed to address the problems

n the context of SCADA systems, most of which originate from the fact

hat the computing boards that support them have very limited comput-

ng, memory, and storage capabilities. Our experimental analysis makes

t clear that our proposal is good enough for practical purposes since it

as the only that could run the experimental system without entering

ny critical-failure states. The conclusions were checked to be statisti-

ally sound using a well-established statistical analysis procedure. 
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