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Abstract: Evaluation of UAV systems is mostly based on simulation tools that are manually 

configured to define the trajectory (ground truth trajectory) for comparing with the system 

output. In this work, the authors present an original method to evaluate the performance of 

UAV platform in real situations without considering simulations. The proposed evaluation 

methodology allows calculating the system accuracy and robustness with a considerable 

number of samples, accumulating the performance of different missions in the same 

conditions. The main innovation is an alternative evaluation for designing sensor fusion 

parameters using real performance indicators of navigation accuracy in UAVs based on a 

commercially available flight controller and peripherals. This methodology and selected 

performance indicators allow to select the best parameters for the fusion system of a 

determined configuration of sensors and a predefined real mission not requiring ground truth. 

The selected platform is described highlighting the available sensors and data processing 

software, and the experimental methodology is proposed to characterize the sensor data 

fusion output. The results show in detail the presented performance metrics for a set of 

trajectories in order to determine the best choice of parameters using quality measurements of 

navigation output. 

Keywords: UAVs sensor fusion; EKF; Real Data Analysis; System Design 

 

1. Introduction 

Unmanned Aerial Vehicles (UAVs) are controlled by a computer that integrates data from 

some electro-mechanical sensors and any local or global positioning system and applies control 

systems to change its position, orientation and velocity using the available locomotion system. 

The controller usually is an embedded microcontroller with appropriate interfaces to all vehicle 

components. As an example, PixHawk Px4 system integrates navigation data and software 

modules including fusion algorithms [1]. 

The main problem in navigation focuses on improving GNSS (Global Navigation Satellyte 

Systems) with the ability to provide accurate navigation output when this source of data 

becomes unavailable due to unexpected outages or problems derived from intentional attacks 

in GNSS denied environments such as signal interference (jamming) or fake signal generation 

(spoofing). Therefore, an approach based on the fusion of complementary sensors is essential, 

resorting to the fundamental equations of navigation and the characterization of the errors 

committed by each data source. This area has become popular due to the ubiquity of GNSS 

systems such as GPS (Global Positioning System) and the availability of inertial sensors based 

on inexpensive micro electro-mecanical systems (MEMS) components [2],[3],[4]. The integration 

of these complementary technologies allows compact and robust navigation solutions to 

determine attitude and location, so that the vehicle can determine its state in a robust way and 

use appropriate control techniques for autonomy. Other alternatives for non-dependence on the 

GNSS signal involve the deployment of autonomous localization systems such as the 

recognition of the environment by artificial vision [5] or location by means of several 

complementary sources [6], with the associated cost of developing a complementary 

infrastructure. 
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Complementary to navigation technologies, the use of lasers in combination with other 

range detection sensors (sonar, radar, video), allows to extend the navigation conditions and 

obstacle avoidance. In the air vehicles (UAVs), the integration requirements (consume, weight, 

dimensions) are much more restrictive but, even so, it is a line in continuous development 

[7],[8],[9]. Regarding protection against spoofing, there is also a noticeable research activity [10]. 

Protections include diverse strategies ranging from simple actions such as monitor the 

communication channel, to cryptographic authentication, discrimination based on the level of 

signal, time of arrival, multi-antenna systems, wave polarization, Doppler shift and arrival 

angle, etc., as described in [11], [12]. 

Therefore, research of robust and general techniques to integrate complementary data 

sources has become essential for this type of systems in order to provide reliable applications. 

The purpose of this research is the analysis of available equipment and experimental 

environments to validate the robustness of the theoretical solutions working in real conditions, 

and the contribution is based on a methodology and performance metrics to assess the 

performance in real-world conditions. The improvements in multi-sensor navigation must be 

based on the definition of parameters of the tracking system that should be adjusted to improve 

the output in a predefined set of missions with a set of available sensors. The methodology 

proposed in this paper assumes that real system adjustments will be based on a real platform 

with predefined flight missions so that, in this context, the best parameters could be obtained 

analyzing the real operation of sensors and real output. Simulation of UAV environments are 

not enough to evaluate in a thorough way these systems in real conditions of real missions. 

Accordingly to [13], evaluation tasks should be aligned with the user needs and how the fusion 

system meets the specifications. In this case of autonomous navigation, the accuracy and 

stability of fusion output, assessed by means of filter innovation and consistence, are priorized 

as target metrics to increase the relability of this critical function. The selection of parameters 

and quality metrics is a complex task, particularly in real applications, since there are not 

ground truth or a standard methodology for making the data fusion evaluation. There are 

numerous examples of output analysis of algorithms and configurations based on simulation, 

such as characterizing navigation errors [14], sensor fault detection [15], sensor integration in 

vehicular navigation [16] or simultaneous navigation and calibration [17]. Other works in UAV 

and vehicular navigation use experimental real data sets, usually illustrating the output in 

certain trajectories, in order to assess specific aspects such as robustness against GPS outages 

[18][19], estimation of magnitudes sensed from on-board sensors  [20], impact of outliers in 

different solutions [21]. 

 

In this paper, the novelty of proposal is focused on the evaluation based on real data to 

avoid simulated evaluation and allow quantitave analysis of performance in real-world 

conditions in a systematic procedure. The main innovation is to test system parameters under 

real conditions in order to get comparative results. Before testing parameters, we define the 

UAV platform (type, sensors, tracking algorithms and control system). In this methodology the 

only parameters to be adjusted are related with estimation algorithms (and data fusion system) 

to improve the perception of the UAV. UAV type, sensors and control system keep constant in 

the proposed methodology. The steps of proposed methodology are:  mission definition, 

mission execution, sensor data storage for each flight and, using this stored data, adjustment of 

data fusion algorithms to obtain the best filter parameters. Real data is used to optimize 

parameters of tracking filter, keeping constant type, sensors and control system. The briefing of 

this methodology for adapting filter parameters to real conditions is presented together with a 

systematic analysis of available real data. Section II presents a review of metrics for sensor 

fusion evaluation before introducing the proposed methodology and evaluation metrics. 

Section 3 presents the design problem for UAV navigation, highlighting the parameters of 

Extended Kalman Filter with impact in the performance. Section 4 introduces the selected 
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working platform, detailing the architecture of its software and the vehicles we have made to 

test its capacities and collect data. Section V explains the experimental environment,  analyses 

the recorded sensor data and characterizes the PixHawk Px4 system filter and fusion algorithms 

following the presented methodology. Finally, section VI summarizes the conclusions derived 

from this work. 

2. Evaluation of UAV Sensor Fusion in Real Conditions 

In many real problems, simulated environments are used to define UAV sensors and the 

system parameters to optimize the system performance [14],[15],[16],[22],[23]. Some problems 

appear with this kind of methodologies, basically how to represent in simulation all effects 

appearing in real conditions and the way to evaluate the parameters configuration. UAV 

simulation have been applied to design the control subsystem for predefined missions, but 

simulation of real sensors is a major problem in this kind of approach. Real UAV conditions are 

not easy to model in simulators. UAVs are affected for atmospheric conditions and random 

movements due to control noise, so accurate simulation of input data is extremely complicated 

for designing system parameters. 

 

2.1 Previous works 

The validation and quality assessment of fusion system is a fundamental step in the 

development.  Several authors establish quality metrics according the applications 

domain and their knowledge about the problem. A gap exists among the performance 

measures used in testing environments and the ones used in practical environments. 

Some authors have been carried some studies for comparing different metrics with 

ground truth and/or without ground truth [24][25][26][27][28], however these studies 

can be considered insufficient because the research community has shown a moderate 

application of them.  

So, it is required to verify if the assessment suggestions on testing environments are 

also useful in practical environments. Besides, it is important to verify the use of 

“objective” measures, being independent from the application domain and from the 

human subjectivity. Avoid subjectivity is a complex task because user should be inside 

the test: some requirements must be fulfilled to select relevant information which is 

very dependent from the user and the domain application. Consequently, metrics 

show some dependence and a definition of the performance indicators that could be 

unified for various possible situations becomes very complex.  

The quality dimensions can be grouped as quality metrics with ground truth and 

quality metrics without group truth: 

 

A. Quality metrics with Ground Truth 

 

A high number of metrics with ground truth have been applied in different fields such 

as multi-target tracking. However, the problem of this metrics is the application in real 

scenarios. Table 1 shows a set of metrics calculated using the ground truth, which are 

reported in the literature. 
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Table 1. Metrics based on ground truth 

Metric References 

Accuracy: Root mean squared error, Average 

Euclidean error, Average Harmonic error, 

Average Geometric error / Completeness 

[26] 

# targets, #images, probability of (error, hit, 

FA, detection), confidence, attention, 

workload, delay variation, throughput,  

accuracy, positional accuracy. 

[29] 

RMSE of the position, MED of the position, 

AEE (Average Euclidean Error) of velocity 

[28] 

Kinematics Accuracy 

Detection performance = false track 

probability + probability of Missed Truth 

[30] 

Accuracy, completeness, opportunity, 

consistency 

[31] 

Accuracy, confidence, throughput, cost, 

opportunity, completeness, relevance, 

usability. 

[32] 

track error- range, track error – azimuth, track 

error –speed, track error heading. false track 

rate, false track length (updates) No. 

misclassified tracks, misclassified length 

(updates). 

[33] 

Accuracy: Root mean squared error of 

reconstructed position 

(transversal/longitudinal) and velocity 

(heading/groundspeed). 

Association: Percentage of unassociated plots 

in reconstructed trajectories, number of short 

trajectories 

[34] 

 

B. Quality metrics without Ground Truth 

 

The quality metrics without ground truth are not widely reported, however 

after a systematic review, most of these classes of quality metrics have been 

applied in multi-target tracking applications. Table 3 and Table 4 show the 

global and local quality metrics respectively.  

 

Table 3. Global Metrics without ground truth 

Metric References 

Fusion break rate, Rate of fusion tracks, 

Track recombination rate 

 

[35] 

Quality metrics without Ground TruthQuality metrics without Ground Truth

in reconstructed trajectories, number of short 

Association: Percentage of unassociated plots 

in reconstructed trajectories, number of short 

and velocity

Association: Percentage of unassociated plots 

and velocity

Accuracy: Root mean squared error of 

33]



Delay, reaction time, timeliness, 

acquisition/run time, Update rate, cost, 

collection platforms, #assets 

[29] 

 

 

Table 4. Local Metrics without ground truth 

Metric References 

Rate of non-associated data, Rate of 

premature removed tracks, Average residual 

 

[35] 

Delay, delay variation, Update Rate, cost 

 

[29] 

 

# Associated tracks [33] 

Association performance = track purity + 

track switches 

[30] 

Number of missed targets, track life time, 

Rate of False alarm number of false track per 

time window, Rate of track fragmentation, 

Track latency: confirmed track 

latency+tentaty track latency + dead track 

latency, Track redundancy, Number of 

spurious tracks, Number of false tracks, Total 

execution time. 

 

[26] 

 

Average number of broken tracks, Track 

continuity, Spurious track mean rate, 

Number of valid tracks 

 

[26] 

 

Consistency of estimators (visualization of 

histograms), stability of segmentation 

(visualization of mode of flight) 

[36] 

 

Therefore, as indicated in [35], the development of objective evaluation metrics with no 

available ground truth is a challenge yet for data fusion researchers. There are no well-

established procedures to systematically evaluate sensor fusion systems beyond simulated 

conditions, making in many times difficult to predict performance in real-world conditions. 

After the revision of previous works, there are scarce global metrics without ground truth of 

fusion system, such as [34] where the metrics are fusion break rate, rate of fusion tracks and 

track  recombination  rate.  This  terminology  considers  “global”  metrics  as  those  assessing  the 

global  fusion  system  output,  while  “local”  metrics  evaluate  specific  outputs  from  individual 

sensor data processes in a decentralized fusion architecture. Some local metrics without ground 

truth are: rate of non-associated data, rate of premature deleted tracks and average residual 

[34], association performance metrics for track purity and track switches [33], or number of 

missed targets, track life time, rate of false alarms, rate of track fragmentation and track latency 

[26]. In particular, references [34],[36] refer to reconstruction algorithms used to evaluate 
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tracking systems. The quality of reconstruction is assessed mainly with simulated trajectories, 

and also visually inscpected with real datasets. 

 

2.2 Proposed Methodology 

 

In this scenario, the proposed methodology avoids simulated evaluation and tests directly 

the system parameters under real conditions. The first step of this methodology is the definition 

of the UAV platform, the type, cinematic characteristics, set of sensors, tracking algorithms and 

the control unit. Once the UAV platform is defined, the methodology is composed by the 

following steps, as displayed in Fig. 1: 

1) Design: Mission definition. A specific mission is defined by means of a predefined 

trajectory containing a set of waypoints. A waypoint is a predetermined geographical position 

specified with global coordinates (latitude, longitude, altitude) and, following the navigation 

terminology, is used to predefine a change in direction, speed, or altitude along a certain 

trajectory, so it usually has associated a velocity vector (groundspeed and heading) or hold time 

if the speed is predifined to be zero. The flight controller takes waypoints as references to 

control the vehicle and follow the desired path. Basically, the procedures make use of both fly-

over and fly-by waypoints. A fly-over waypoint is a waypoint that must be crossed vertically by 

an aircraft. A fly-by waypoint is defined as the intersection of two straight lines so the vehicle is 

expected to perform a transition from one path to another using a turn that "flies by" the 

waypoint but does not cross it. Specific parameters of fusion system are selected from a set of 

possible values. These specific parameters will be evaluated in real conditions by means of 

several flights. Waypoints are used to repeat the same flight several times to evaluate 

statistically the impact of some specific parameters. 

2) Execute: Each time a flight of the UAV, passing through the predefined waypoints 

(mission), is carried out, the values of the sensor data are stored (position and velocity taken 

from GPS, inertial data, magnetometers, etc.), together with the system output (sensor fusion 

output, control errors, specific data processing results, etc.). 

3) Save: A set of flights, with the same waypoints defining the mission, are carried out and 

the global data is stored in a log file. Data stored is the corresponding values of sensors data 

together with system output for specific parameters. Each log file is corresponding with specific 

parameters for filtering. At the end of the process, methodology generates a set of log files, one 

for each set of parameters. These log files are postprocessed offline. 

4) Analyze: The best configuration of parameters is selected, analyzing the performance 

metrics for the set of flights carried out over the same waypoints (mission). The metrics defined 

in the following subsection are computed, a crucial point because evaluation needs to evaluate 

the sensor fusion performance based on real data not in ground truth. 

5) Apply: The selected parameters are introduced in UAV system to perform real missions 

or refine the next tests to continue the design. 
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Figure 1: Real Evaluation Steps and Functionalities 

The decision about “the best” parameters should be based in a set of indicators to evaluate 

the quality of the main components of the data fusion system. In this problem, since the plot 

association is not a problem, all sensor data are integrated in a single track, the sensor fusion 

performance is evaluated with the two global indicators: averaged innovations and fusion break 

rate. These metrics, detiled in next subsection, allow the validation of the designed system and 

decision of appropriate configuration parameters in complex scenarios.  

2.2.1Averaged innovations 

The innovation, or residual, is computed in the tracking filter each time an update is done 

for the prediction. For instance, for horizontal XY position, denoting with sub-index p the 

predicted state vector     ̂        ̂        and sub-index m for measurement  (            ), both 

aligned at time k, and considering the average along a time window with NT measurements, it 

is defined as: 
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The normalized innovation also employs the covariance matrices considering both the 

predicted and observation uncertainties, matrix S (known as Mahalanobis distance). The 

averaged value of normalized innovations defined as: 

   
 

  
∑   ̂              ̂                     [

 ̂            

 ̂            
]
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Being S the sum of covariances in position for predicted vector and measurements (assuming 

their errors are independent): 
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This value is a-dimensional, and represents the discrepancy between observations and 

predictions, averaged along the measurements contained in NT. It is interesting to notice that 

covariance matrix for observation noise, R, is dependent on the sensor (in this case, mainly 

GPS), but the predicted covariance, Pp, depends on the assumed uncertainty for the model, as 

will be detailed in section 3. This implies that a very high value for Pp would produce very low 

values of residual rn, giving an incorrect indication of the quality metric. 

 

This problem can be addressed validating the consistency of residual rn. The normaized 

residual follows a normalized Chi-squared distribution with parameter DF (degrees of 

freedom) given by twice the number of 2D measurements averaged minus the dimension of S 

(4). So, for a valid model, rn should behave with this distribution: 
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So, the value should not be too far from theoretical mean        
 

  
 in order to validate the 

consistency of predicted covariance, taking the lower and higher bounds of confidence interval 

from the     distribution, as shown in [37] for a similar problem. 

 

Sometimes, if full covariance matrices are not available, a simplification is done and only 

the variances (diagonal terms) are considered: 
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This residual in horizontal plane has been defined using usual XY coordinates in plane, usually 

provided by the tracking filter. Sometimes, a more specific separation of components in 

transversal and longitudinal components of vehicle could be computed (as in [34]), providing 

errors more informative about specific aspects of missions, for instance the effect of control loop 

in some maneuvers. This work is focused on asessing the estimation errors, leaving the analysis 

of control error for possible extensions in future works. 
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With respect to vertical residual, it is computed in the same way as a 1D magnitude using the 

vertical deviations of prediction with respect to observations: 
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(the same comments about model validation for parameters    
      

      
      

      
      

  can 

be applied to the values in previous equations). 

2.2.2 Fusion break rate 

The rate of fusion break, tFB, is the number of times some navigation observation is 

declared as inconsistent in the integrity analysis and therefore de-fused (the less consistent 

component is removed from the system track). This may lead to tracker re-initialization or keep 

the system track with a component less, the faulty sensor. It is computed as:   

    
∑                                          

  
                    (7) 

 

Being oi each observation declared as inconsistent within the interval of of NT 

measurements. It is obtained counting the total number of fusion break events during the 

interval. The test to decide the removal of a data source is done using again the normalized 

innovation, with a typical threshold value of 5 times the standard deviation. 

3. Design parameters for UAV navigation filter: centralized EKF algorithm 

The sensor fusion system is based on a loosely coupled architecture, which uses GPS 

position and velocity measurements to aid the INS, typically used in most of navigation 

solutions based on sensor fusion [15],[18],[36],[22],[38]. In this way, the IMU sensors are used 

extrapolate position, velocity, and attitude at high frequency (50 Hz), while updates from GPS 

measurements at lower frequency (1 Hz) allows refinement of cinematic estimates and inertial 

sensor biases. Other proposals for multisensor navigation besides EKF are unscented Kalman 

(UKF) and Interacting Multiple Model (IMM) filters. The UKF non-linear character is employed 

to include some state constraints, such as surface geometry in road navigation [40]. In [41] a 

Interacting Multiple Model (IMM) is used. The state vector is updated with different dynamic 

models and IMM combination: constant velocity (CV), constant acceleration (CA), and constant 

turn (CT) models, a similar structure as used in sensor fusion with sets of models known a 

priori . The identification of stops situations is very useful and can be applied to activate 

calibration processes, for instance knowing that during stops, accelerations and rotation rates 

should be zero [40]. Besides, the problem of designing complex sensor fusion systems has been 

addressed from the point of view of machine learning. An approach to contextual aspects of 

GNSS/INS sources is presented in [40], or [41] presents the use of dynamic Neural Networks to 

build models of INS errors before combination with GPS data to facilitate adaptation with time-

varying errors 
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In any case, independently of the selected sensor fusion algorithm, the estimated state 

vector resulting in the output for the GNSS/INS filter usually contains the attitude vector 

(represented alternatively with a quaternion or Euler angles vector), 3D position and velocity 

and the bias terms for gyro accelerometer measurements.  

In this work, we have selected a representative dynamic model integrating local sensed 

inputs (accelarion and turns), absolute positions (GNSS data) and the dynamics of sensor biases, 

with appropriatey uncertainty models for the predictions. Most of solutions in literature share 

this global approach, with multiple variations in the particular coordinates and equations 

dynamics, although the meaning of parameters is basically the same. The selected coordinate 

frame for position and velocity in this solution is the ENU frame (East, North, Down) with 

respect to the tangent plan with origin defined by the arming point in the start of the mission. 

Other alternatives appear when independent modules with subsets of sensors are available to 

estimate attitude and cinematics with parallel filters [23], a robust solution but only available 

when the number of sensors is enough to group then in independent modules. 

 

This state vector allows the continuous estimation of cinematics and attitude of vehicle 

together with the inertial sensor biases, represented in a 16D vector which contains 3D position 

and velocity, attitude (represented with 4D quaternion qn) and 3D biases corrections for 

acceleration and angular rate in body frame, respectively ba and bw: 
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The orientation is usually computed with respect to the reference origin point taken at the 

mission arming point when engines are started (O in figure), with local ENU (East-North-Up) 

coordinates used to represent the vehicle position, velocity and orientation. 
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Figure 2: DCM inertial measurement conversion 

As shown in Fig 3,  the position and velocity are usually expressed in the inertial ENU 

frame (sub-index n) and the sensor biases expressed in the body-fixed frame. The state vector 

can be extended to include bias in barometric height,  th
tE ]k[b]k[x]k[x  if a barometer is 

available, to integrate also this source of measurements. 

 

So, the EKF fusion algorithm processes all available measurements in a centralized module: 

GPS, barometric height sensors, and the input of IMU readings with local body-frame sensed 

acceleration and angular rates. As we have mentioned, GPS and barometer inputs (zGPS, zbaro) 

are considered, within Kalman inference mechanism, as “observations”, while IMU inputs (am, 

wm) are considered as “control inputs”: 

        [

     
     
     

] [
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]                              (8) 

                                                         (10) 

Being      the obvservation noise of GPS 3D measurements,       the observation noise in 

the barometric height, and    the corresponding bias in this magnitude. The input control 

contains the ideal magnitudes of 3D accelerations and angular rates expressed in the body-fixed 

local frame, respectively  ̅     and  ̅    : 
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This input control is related to available IMU measurements at k-th time    )k,ka( mm  , 

which must be corrected with the respective estimated biases in the state vector.  
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Besides, in the case of body angular rate, also the Coriollis  effect, 
En , is subtracted to 

generate the corrected input control, projected through the Body-to-ENU frames conversion 

matrix,  n
bC k. This projection matrix is direclty obtained from the vehicle attitude expressed in 

quaternion vector: 
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The EKF requires a system model described by the state vector and a dynamic stochastic 

model to describe its evolution with time: 

 

x(t)
 x(t) = y(t, x(t), u(t), v(t))

dt

x(t)x(t)
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x(t)

 x(t) = y(t, x(t), u(t), v(t))
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 x(t) = y(t, x(t), u(t), v(t))

dt
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being u(t)the control input (deterministic) and v(t) is the plant noise process 

(unobservable noise). The first term u(t)is related to the observations provided by inertial 

sensors as indicated above, which include a certain noise error, while v(t)is an additional noise 

model to take into account deviations from the predictions. The prediction equations resulting 

from the model are obtained after integration of differential equation, a well-known model [42] 

is obtained for this problem with the following (non-linear) equations: 
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where  A[k] is the attitude transition matrix corresponding to the object attitude 

represented with quaternion, which depends on the components of corrected angular velocity 

in body frame,  b  p q rk [k] [k] [k]     : 
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Being the terms in previous equation computed as: 
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And, finally, U[k] is the correction in the velocity computed from the control input, 

corresponding to acceleration vector, expressed in inertial frame and projected to ENU frame, 

affected by the gravitational effect: 
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With this dynamic model, the Extended Kalman Filter approximates the predictions and 

their covariance matrix with a first-order approximation for the non-linear functions of 

prediction model,(.)f , and projection to the measurement space, (.)h : 
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being w[k] the observation noise process, and v[k] the system process noise to characterize 

uncertainty in the predictions. The prediction equations of Extended Kalman Filter are used to 

propagate the state vector and covariance matrix: 
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The matrices F, V, H are computed with the Jacobean operators applied to the model 

functions f and h: 
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The covariance matrix for process noise, Q, is separated in two terms: Qp, corresponding to 

uncertainty in predictions and Qu, projecting the errors of inertial sensors to the state vector. 
T

u pQ[k] V[k]Q [k 1]V [k 1] Q [k 1]    
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being    
      

      
      

  the model parameters used to tune the system response by 

adaptation of the plant-noise process Q[k]. The first two are used to model the uncertainty of 

IMU sensors, projected through V matrix to state vector, and the last two are direct models of 

prediction uncertainty for the assumed model of smooth variation of inertial sensor biases. 

Some of this parameters were tuned in the available experimental system with the 

methodology presented, as will be indicated in the following section. 

 

Finaly, given the prediction model detailed above, the “update” phase of extended Kalman 

filter is given by the classical EKF equations: 
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where the R[k] matrix in EKF update equations consider the noise in measurement 

observations: 
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Being    
 ,   

  the variance in horizontal and vertical errors of GPS positions, respectively, 

and     
  the variance in barometric height. 

 

Therefore, the EKF filter used for sensor fusion depends on two sets of parameters wich are 

sensor noise and plant noise. The terms in equation 21 correspond to the plant noise, used to 

stabilize the filter and avoid becoming too confident in its own predictions with respect to 

measurements. Both the estimation of cinematic parameters and sensor biases depend on 

chosing appropriate parameters characterizing noise in sensor data and uncertainty in 

prediction (process noise). Espeficiallly, process noise parameters affect to the predicted error 

covariance and have critical impact in the weights given to the sensor observations with respect 

to the predicted estimates. A higher value for these parameters implies higher values of 

predicted covariance and so higher gain to observations (since the confidence on prediction 

decreases). Conversely, lower values imply lower gain to observations (higher confidence on 

predictions). For instance, if GPS position noise parameters are set to very small values 

compared to INS prediction errors, it will produce frequent changes of position and attitude 

during vehicle hoover state. In the same way, low values for GPS velocity noise will cause the 

filter roll and pitch angles to be noisy, probably affecting to the vehicle motion up and down. In 

the next section, we will identify the available parameters of EKF in the selected platfor UAV 

experimentation. 

 

4. The PixHawk and PX4 UAV System 

Unmanned vehicles are used to execute predetermined missions such as data collection, 

event detection, surveillance tasks, etc., and for that they must be able to control their position 

and orientation (pose) by means of automatic control algorithms. They are controlled by a 
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computer that integrates data from available electro-mechanical sensors and external GNSS 

positioning system and applies output control systems to change its location using any 

locomotion system. This controller is usually an embedded microcontroller that performs the 

core of all vehicle components. 

The experimentation and analysis have been done with the PixHawk flight controller. It is 

an open-hardware computer designed by 3D Robotics specifically to create autopilot vehicles, 

integrating PX4FMU and PX4IO boards in the same PCB (Printed Circuit Board). The integrated 

software with sensor data processing and flight control algorithms allows access to a rich set of 

parameters driving their performance. This is the main reason of using this solution to illustrate 

the proposed methodology and analyse the results obtained with different parameters. 

4.1 Sensors and data sources 

The PixHawk board has several sensors integrated to sense the local motion and 

environment of vehicle (accelerations, rates of turn, altitude, magnetic field, etc.), indicated in 

Table 3. They serve as data sources to the PX4 stack and also include some data processing 

functions, such as a digital motion processing (DMP) with programable low pass filters used 

MPU-6000 data. 

Table 3 Sensors Integrated in the PixHawk Board  

Sensor Type Axes Scale ADC accuracy Data rate 

L3GD20H gyroscope 3 2000 dps 16 bits 760 Hz 

LSM303D accelerometer/ 

magnetometer 

6 ± 16g / 

± 2gauss 

16 bits 1600 Hz/ 100 

Hz 

MPU-6000 accelerometer/ 

gyroscope 

6 ± 16g / 

2000 dps 

16 bits 1000 Hz/ 

8000 Hz 

MS5611 barometer 1 1200 mbar 24 bits 1000 Hz 

 

Besides the sensors integrated in the board, PixHawk counts with high connectivity for 

external devices and peripherals to increase the vehicle capabilities. At the right side, there are 

some specific connectors for certain peripherals, such as the two connectors for telemetry 

communication, one for GPS, and one Spektrum receiver socket. At the left side, there are some 

general-purpose ports and buses like two universal asynchronous receiver transmitter (UART) 

ports, two serial peripheral interfaces (SPI), one inter-integrated (I2C) connector, one universal 

serial bus (USB) connector, one controller area network (CAN) bus connector and 3.3V and 6.6V 

ADC connectors. The standard configuration of a PixHawk UAV counts with interfaces to 

external sensors specified in Table 4:  

Table 4. Additional sensors wired to the PixHawk 

Sensor Type Interface Range Accuracy Data rate 

Ublox Neo 

6M 

GPS  GPS  

port 

 x  2.5m  <3s 

HMC5883 Magnetometer I2C ± 16G  ±12MG 1600 Hz   
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barometerbarometer
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± 16g /

± 2gauss

± 16g /

2000 dps16 bits

16 bits

ADC accuracy

16 bits

Sensors Integrated in the PixHawk Board 

ADC accuracy

Sensors Integrated in the PixHawk Board 

functions, such as a digital motion processing (DMP) with programable low pass filters used 



Flow Sensor 

shield 

 Optical  

flow/gyroscope 

I2C  x  <0.5m  250Hz 

 

Range finder Ultrasonic sonar I2C 0-6m 0.5cm 1000 Hz 

Lidar lite Pointer lidar I2C 0-40m ±2.5cm 1-500Hz 

The complete set of sensors allow enhancing navigation capabilities and increase the 

accuracy of the stabilization system measurements, what is quite important when we want to 

create an unmanned vehicle, because it allows a more faithful image of the environment. Sensor 

inputs are processed by flight controller, together with commands received from telemetry, and 

this is used to control the motion through appropriate signals sent to the motors through 

electronic speed controllers (ESC). 

4.2 Software for Flight Control and Data Processing 

PX4 is the control software of PixHawk processor. It is a real-time operating system based 

on NuttX architecture and consists of two main layers: PX4 Flight Stack and PX4 Middleware. 

PX4 Flight Stack is the complete collection of applications embedded in PixHawk hardware for 

drone control, while PX4 Middleware is the interface that allows the flow of data from sensors 

to applications through a publish/subscribe system called uORB. uORB allows to publish the 

data coming from the sensors and make them available to the applications of the Flight Stack, 

obtaining a reactive system and totally parallelized.  

 

Regarding data processing, Px4 integrates an AHRS (attitude and heading reference 

system) that implements different algorithms to estimate the vehicle attitude and creates a 

direction vector used as reference for vehicle displacement. Fig. 3 shows the process flow from 

sensors to actuators used in this research, to give a general view of the whole flight control 

system [39]. The outstanding module is the Flight Controller where the navigation input is 

provided by sensor fusion based on the extended Kalman filter (EKF). It estimates the vehicle 

position, velocity and angular orientation, which are compared with the intendend trajectory 

provided by the navigator based on the missions sent from ground station. The controller is 

based on proportional-integrative-derivative (PID) modules which are mixed with control 

inputs from radio control to generate the individual inputs sent to each electronic speed 

controller. 

The focus of this work is in the performance of sensor fusion algorithms (highlighted in red 

in Fig. 3), with apropriate analysis based on real data and impact of the parameters used in this 

module in the accuracy of navigation system. 
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Figure 3: Main components in flight controller 

 

The basic components that are used to compute the navigation solution (position, velocity 

and attitude) during the flights are indicated below: 

4.2.1 Direction Cosine Matrix (DCM) 

This program allows the analysis of the triaxial accelerometers and gyroscopes data to 

obtain a Direction Cosine Matrix [45]. It makes possible the conversion of real-time 

measurements referred to the vehicle body frame into instantaneous orientation parameters of 

the vehicle to deliver roll, pitch and yaw angles (see Fig. 3) or variations (as quaternion vector 

used in the fusion filter).  

4.2.2 Inertial Navigation System (INS)  

This algorithm computes the movement and corrections based on onboard sensors and 

allows the vehicle to extrapolate its position between points using the DCM input. It is used to 

estimate the vehicle attitude with high frequency, so it is especially useful to complement the 

global position obtained from the GPS data. 

4.2.3 Extended Kalman Filter (EKF) 

Finally, the EKF is the algorithm fusing all measurements, integrating the inputs from 

DCM and INS to carry out the predictions between GPS observations. It considers the noise 

affecting to all measurements in the estimation of attitude and cinematic parameters to 

increases the accuracy and consistence of the output, even when the vehicle losses the GPS 

signal in certain time intervals. The Px4 system counts with several Extended Kalman Filter 

algorithms to process all sensor data (EKF1, EKF2, EKF3) in a compensation function that 

depends of the specific noise, availability and accuracy characterization of each sensor, 

throwing high accuracy estimations of the vehicle attitude. It can apply different EKF solutions 

running in parallel, using different sensor measurements and states. Table 5 shows the three 

available EKF modes: 

This algorithm computes the movement and correct
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TABLE 5. Px4 Extended Kalman Filters 

Name Specification 

EKF1 Only use the DCM for attitude control and 

the Inertial navigation for AHRS reckoning 

for position control 

EKF2 Use the GPS for 3D velocity and position. 

The GPS altitude could be used if 

barometer data is very noisy. 

EKF3 If there is no GPS, it can use optical flow to 

estimate 3D velocity and position. 

 

Therefore, AHRS does not use a single Kalman Filter, but it is able to select the best EKF mode 

for each situation and execute both EKF1 and EKF2 in parallel if it is necessary.  

 

As mentioned, all available sensors are fused to estimate the position, velocity, and angular 

orientation by means of EKF. This algorithm has parameters used in the models of sensor 

measurements and and prediction errors. Basically, when sensor noise parameters are high in 

comparison to predictions, the filter gives less weights to the measurements, with potential 

delays and deviations during maneuvers, while small noise parameters produce high 

weighting, and consequently the filter will overreact to noise in the measurements. Regarding 

control, a proportional–integral–derivative (PID) controller is used to controll the multi-rotor 

angular orientation, with independent controllers for roll, pitch, and yaw. Each controller 

calculates the demanded angle rate based on differences between measured and demanded 

values of each angle, affected also by certain time constant parameters of controllers which 

regulate the system stability and reaction to changes. 

 

This work is focused on sensor fusion performance, and the analysis considers the impact of 

some of the key parameters of EKF used for estimation of navigation solution, described in 

section 3. The parameters controlling the EKF performance are indicated in Table 6. 

 

TABLE 6. Px4 prediction noise parameters of EKF2 

 

 

Name Description Default values 

EKF2_ACC_B_NOISE  Process noise for 

IMU accel. bias 

prediction 

 0.003  m/s3    

EKF2_GYR_B_NOISE  Process noise for 

IMU rate gyro 

bias prediction 

 0.001  rad/s2    

EKF2_ACC_NOISE Accelerometer 

noise for 

covariance 

prediction 

 0.35 m/s/s    
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EKF2_GYR_NOISE Rate gyro noise 

for covariance 

prediction 

 0.015  rad/s    

 

With respect to sensors noise parameters, they have been adjusted considering the 

accuracy specifications from sensor providers. The default values for sensor noise were used in 

all flights, as presented in Table 7 
 

TABLE 7. SENSOR MEASUREMENT PARAMETERS OF EKF2 

Name Description Values 

EKF2_BARO_NOISE barometric altitude 2.0m 

EKF2_GPS_P_NOISE gps position 0.5m 

EKF2_GPS_V_NOISE gps horizontal velocity 0.5 m/s 

EKF2_MAG_NOISE magnetometer 3-axis 5.0e-2 Gauss 

LPE_ACC_XY Accelerometer xy noise density 0.012 m/ŝ2/ 

sqrt(Hz) 

LPE_ACC_Z Accelerometer z noise density 0.02 m/ŝ2/ 

sqrt(Hz) 

EKF2_HEAD_NOISE noise for magnetic heading fusion 0.3 rad 

 

Finally, the sensor fusion logic includes protection values for self-assessment of 

performance, as mentioned in section 2 (fusion break events). A data source will be de-fused 

each time the threshold value for residuals are exceeded, being the default value 5 times the 

standard deviation, as shown in Table 8. 

Table 8. Fusion Gate Parameters of EKF 

Name Description Values 

EKF2_GPS_P_GATE Gate size for GPS horizontal 

position fusion 

5.0SD 

EKF2_GPS_V_GATE Gate size for GPS velocity fusion 5.0 SD 

EKF2_BARO_GATE Gate size for barometric and GPS 

height fusion 

5.0 SD 

EKF2_RNG_GATE Gate size for range finder fusion 5.0 SD 

EKF2_EV_GATE Gate size for vision estimate fusion 5.0 SD 

EKF2_GPS_P_GATE

Name

EKF2_GPS_P_GATE

Name

standard deviation, as shown in Table 8.

each time the threshold value for residuals are exceeded, 

standard deviation, as shown in Table 8.
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magnetometer 3axis
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5. Experimental Environment and Sensor Data Analysis 

5.1 Data acquisition 

The process of data acquisition was based on several flight test missions that have taken 

place on circuits like the one sketched in Fig. 4. 

 

Mission circuit design 

 

 

 

 

 

 

 

 

Real mission execution 

Figure 4: Test circuit diagram 

All flights were carried out with auto-pilot mode and supervised by human controller to 

change the mode of flight if needed. For each specified mission, we applied different 

configuration parameters to analyze the performance differences between each setting up of 

tracking filters.  

Besides these flights to assess the entire system (sensor fusion and flight control working 

together), previous tests were carried out to test specific sensors and configurations, as 

indicated in Table 9. The static test has been performed on the floor to avoid displacements and 

vibrations that could disturb the readings 

TABLE 9. TEST PERFORMED OVER THE SAME CIRCUIT 

Name Specification 

Static test without 

propellers 
Accelerometers and gyroscopes, noise 

Static test on idle Accelerometers and gyroscopes, noise 

Unmanned flight test GPS, inertial navigation system 

Unmanned hold test GPS, Flow Sensor, DCM 

Manual flight test PID and configuration parameters 

 

5.2 Data Characterization 
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Before exploiting sensor data for navigation enhancement, it is important to know the 

behaviour, limitations and main characteristics of the data we are working with, to establish a 

measure of the confidence and the consistence of the data. These properties are conditioned by 

the sensors and measurement processes. The logged data is very useful to debug the estimation 

algorithms and the flight performance. In this work we have focused in data used to explain the 

position estimations, the navigation system performance and the filter capabilities. Table 10 

shows the data analysis for the main data sources available [46]. 

Table 10. Data characterization 

Sensor Source Range Accuracy Data rate 

Raw X,Y,Z 

accelerometer 
L3GD20H 

MPU-6000 

± 16g ± 0.02g 8000Hz 

Raw X Y Z 

gyroscope 

L3GD20H 

MPU-6000 

[±2000] deg/s ± 3deg/s 8000Hz 

Roll, Pitch, Yaw DCM over 

Accel/Gyro 
[0,180]º ± 0.05deg 1600Hz 

Heading DCM over 

magnetometer 

[0,360]º 

 

± 1.5deg 

 

1000 Hz 

Atm. Pressure  MS5611 [10,1200]Hpa ± 1.2Hpa 1000Hz 

Sonar Floor   [0,6]m ± 0.02m  

Estimated local 

position terms 

INS Different  1000Hz 

Estimated speed Optical flow 

sensor 

[0,16]m/s ± 3.5m/S 

 

760 Hz 

Speed N/E GPS [0, 999] mph 5% <3s 

Global position3 GPS Lat[-90,90]º 

 Lon[-180,180]º 

3m <3s 

5.3 Data Analysis  

The logged data from different sensors are presented in this section. Data from triad of 

gyroscopes along body axes of UAV are displayed in Fig. 5, with different colors corresponding 

to the six flights executed with the same programmed mission in order to visualize the data 

logged in time. The corresponding boxplots for each flight are shown in Fig. 6, we can 

appreciate some outliers and no significant biases. 
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Global positionGlobal position

sensor

GPS

Optical flow 

sensor

Optical flow 

[0,6]m

Different

[10,1200]Hpa[10,1200]Hpa

± 1.5deg± 1.5deg

± 0.05deg



  

Figure 5: Gyroscope data of test flights (data sequence) 

  

Figure 6: Gyroscope data of test flights (boxplots) 

 

 

The corresponding histograms of previous data (with outliers removed) are presented in 

Fig. 7. The analysis of data histograms is important to validate the models of sensor noise, a 

fundamental element in EKF algorithm. Here we can see the data is affected of Gaussian shape 

noise, and the mean value of turns corresponding to maneuvers can be seen in the z axis.  
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Figure 
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Figure 7: Gyroscope data histograms 

 

Similar comments can be deduced about data from triad of accelerometers, presented in 

Fig. 8 (boxplots), with some significant outliers which were removed from tracking filter 

process. The histograms (outliers removed) for the whole set of data in the six flights are 

presented in Fig. 8.In this case, the turns performed in flights are reflected in the accelerations 

done along the y axis. 

 

 

 

 

 

  

Figure 8: Accelerometer data for all flights (boxplots) 

the turns performed in flights are reflected in the accelerations 

for the whole set of data in the six flights 

the turns performed in flights are reflected in the accelerations 

, with some significant outliers which were removed from tracking filter 
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Similar comments can be deduced about data from triad of accelerometers, 
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Similar comments can be deduced about data from triad of accelerometers, 

: Gyroscope data histograms



  

Figure 9: accelerometer data histograms 

Similar analysis can be done for the other sensors (magenetometer, barometer, range 

finder, etc.), not presented here to save space. 

5.4 GPS and INS sensor fusion 

The most typical task carried out by the data fusion process of the Pixhawk (EKF2 filter) is 

the attitude estimation using magnetometer, gyroscope and accelerometer data (attitude and 

heading reference system), and then fuse with accelerometers and GPS data to estimate position 

and velocity. The EKF2 filter parameters were set using the default values indicated in tables 

7,8, except values affecting the performance (table 6), which were analysed accordingly to the 

methodology presented in this work. The values used for the 6 flights of this mission are 

indicated in table 11. 

The values of prediction errors have been systematically analyzed in the six scenarios 

considered, with flights repeating the programmed mission (waypoints), but changing the 

parameters affecting to EKF performance shown in Table 11. The selected values, to analyze the 

impact on performance metrics appear also in Table 11 and have been set considered the 

minimum and maximum values recommended in the implemented EKF2 system, being the 

“default” values (or factory settings) those used in flights #1 and #6. 

Table 11. Process Noise Parameters of EKF 

Name Flight1 Flight2 Flight3 Flight4 Flight5 Flight6 

EKF2_ACC_B_NOISE   0.003  

 m/s3 

0.001 

m/s3 

0.003 

m/s3 

0.007 

m/s3 

0.01  

m/s3 

0.003 

m/s3 

EKF2_GYR_B_NOISE   0.001  

 rad/s2 

0.001 

rad/s2 

0.003 

rad/s2 

0.007 

rad/s2 

0.01 

rad/s2 

0.001 

rad/s2 

EKF2_ACC_NOISE  0.35 

 m/s/s 

0.1  

m/s/s 

0.3  

m/s/s 

0.7  

m/s/s 

1.0  

m/s/s 

0.35  

m/s/s 

EKF2_GYR_NOISE  0.015  

 rad/s 

0.01  

rad/s 

0.03  

rad/s 

0.07  

rad/s 

0.1   

rad/s 

0.015 

rad/s 

 

 

The analysis was carried out by postprocessing the data collected from six flight tests using 

the described UAV system and operated autonomously (besides, the UAV was monitored 
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remotely by a pilot in visual line of sight for safety reasons). Figure 10 present the horizontal 

position estimated by tracking filter and GPS observations (circles). As can be appreciated in the 

zoomed figure 11, the flights corresponding to higher values of parameters (like flight 1, in blue, 

flight 5, in black) present lower deviations during turns, and, conversely, are affected more by 

the GPS noise. 

 

Figure  10: Lat-lon GPS input and EKF output for all flights (1-blue, 2-red, 3-cyan, 4-green, 5-

black, 6-yellow) 

 

  

Figure 11: Details of lat-lon GPS input and EKF output for all flights (1-blue, 2-red, 3-cyan, 4-

green, 5-black, 6-yellow) 

The same effects can be observed with the GPS velocity observations. Figure 12 presents 

the observations and filtered values, with zoomed graphics for the flights 2 and 6, to appreciate 

the difference responses of filtered positions with respect to observations. 
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Figure12: Details of lat-lon GPS input and EKF output for two flights (2-red, 5-black) 

5.5 Angular orientation 

The vehicle orientation is computed based on compass and magnetometer sensors, used to 

correct the angular estimation based on gyroscopes integrations. Fig. 13 shows the orientation 

angles (roll, pitch, yaw) with zoomed graphics for flights 2,6. The multi-rotor performs 

horizontal maneuvers producing rotations around the z axis (yaw), while the pitch and roll 

reflect the residual noise from control and sensor fusion processes. 

 

  

Figure 13: Details of Euler angles for two flights (2-red, 5-black) 

5.6 EKF Vertical Filter Performance 

Regarding vertical estimation, it can be obtained from different sensors, like barometer, 

GPS and range finders. Notice that, the GPS value describes a discrete scale with high precision 

but low resolution and a large latency. On the other side, the barometer measurement allows 

higher frequency data but requires a calibration with respect to the typical atmospheric 

pressure. The result of the fusion process throws an estimated value with the accuracy benefits 

of both measurements, allowing a consistent altitude. 

reflect the residual noise from control and sensor fusion processes.

rotations around the z axis (yaw), while the pitch and roll 

reflect the residual noise from control and sensor fusion processes.

rotations around the z axis (yaw), while the pitch and roll 

correct the angular estimation based on gyroscopes integrations. Fig. 

angles (roll, pitch, yaw) with zoomed graphics for flights 2,6. The multi

rotations around the z axis (yaw), while the pitch and roll 

compass and magnetometer sensors, used to 

correct the angular estimation based on gyroscopes integrations. Fig. 

compass and magnetometer sensors, used to 

lon GPS input and EKF output for two flights (2lon GPS input and EKF output for two flights (2



For the flights analyzed in this section, Fig 14 presents the GPS and barometer data input 

and the estimated outputfor flighs 2 and 5, the weights given to barometer data are higher than 

GPS, with a smoothing of noise. 

 

 

  

Figure 14: Estimated Details of Barometric and GPS height inputs and EKF output for flights 2-

red,5-black 

4.7 Analysis of Innovations 

The normalized innovations, as presented in section 3, are presented in this section. The 

position innovations in horizontal plane are presented (their distributions shown as boxplots) in 

Fig. 15. As can be seen, a slight reduction of values appears in configurations of flights 2 and 4. 

Similar comments can be appreciated in the velocity innovations, presented in Fig. 16. 

 

 

  

Figure 15: boxplots for position innovations in all flights 

 

 

Similar comments can be appreciated in the velocity innovations, presented in Fig. 

. As can be seen, a slight reduction of values appears in configurations of flights 2 and 4. 

Similar comments can be appreciated in the velocity innovations, presented in Fig. 

The normalized innovations, as presented in section 3, are presented in this section. The 

position innovations in horizontal plane are presented 

. As can be seen, a slight reduction of values appears in configurations of flights 2 and 4. 

The normalized innovations, as presented in section 3, are presented in this section. The 

position innovations in horizontal plane are presented 

The normalized innovations, as presented in section 3, are presented in this section. The 

rometric and GPS height inputs and EKF output for flights 2rometric and GPS height inputs and EKF output for flights 2



  

Figure 16: boxplots for velocity innovations in all flights 

The accuracy of angular orientation is asessed with magnetometer innovation, the 

horizontal components are shown in Fig. 17. 

 

 

  
Figure 17: boxplots for orientation innovations 

 

Finally, Figure 18 presents aggregated position, velocity and orientation in a 9D innovation 

vector, normalized by its covariance matrix. In this case can be seen that flights 3,4 present the 

lower values. 
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Figure 18: normalized innovations for all flights 

 

This is confirmed with the root mean squared values of innovation, sown in table 12 

for the 6 flights 

 

TABLE 12. RMS OF INNOVATIONS 

Variable Flight1 Flight2 Flight3 Flight4 Flight5 Flight6    

pos_x 0.1456 0.1786 0.2011 0.1958 0.1205 0.1684    

pos_y 0.1366 0.1220 0.1451 0.1368 0.1294 0.1070    

pos_z 0.1674 0.1468 0.1452 0.1414 0.1527 0.1651    

vel_x 0.3495 0.2583 0.2280 0.2059 0.2517 0.2746    

vel_y 0.3250 0.2276 0.2187 0.2025 0.2732 0.2610    

vel_z 0.2115 0.1940 0.2226 0.2192 0.2060 0.2172    

mag_x 0.1372 0.1167      0.1116      0.1462      0.1309      0.1256    

mag_y 0.20357      0.19255      0.19246      0.1733      0.1686      0.2357    

mag_z 0.1197      0.1157     0.0952     0.0928      0.1743      0.1058    

aggregated pos-vel 0.5210      0.3572      0.3387      0.3084      0.3586      0.4121    

4.8 Fusion Breaks 

Finally, the fusion logic did not have any fusion break with the different filter parameters 

tested. The values of tests carried out (innovation divided by five times the standard deviation) 

are displayed in time in Figure 19, and the distribution represented as boxplots appear are 

shown in Figure 20. 

mag_y

mag_x

vel_z

0.1674

0.3495

0.1674

0.1456

0.1366

Flight2

0.1786

Flight2

INNOVATIONSINNOVATIONS

This is confirmed with the root mean squared values of innovation, sown in table This is confirmed with the root mean squared values of innovation, sown in table 



  

  

Figure 19: fusion break tests for all flights (horizontal position, height, velocity, attitude) 
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Figure 20: fusion break tests for all flights (horizontal position, height, velocity, attitude) 

 

As commented in section 2.2.1, the distribution of innovations falls within the acceptable 

conditions of residuals for the assumed error models and none of the observations were 

discarded in the fusion process to compute the navigation output. The prediction parameters in 

matrix S show a minimum innovation for the parameters in 4th flight, whose values are not the 

maximum variance in prediction (the same happens with the aggregated residual). As 

commented too, an arbitrarily high value of parameters would alow lower values of 

innovations, but the chi-squared test could be used to dicard those extremely close to zero 

value.  

The results have shown in detail the sensor fusion output with different parameters, reflecting 

the impact assessed through different magnitues and the quality metrics considered (averaged 

innovations and fusion breaks). The methodology allows to take decisions of appropriate 

parameters for the mission considering the global residual of navigation vector and differences 

with respect to the default configuration (flights #1, #6). A moderate improvement in averaged 

residuals was appreciated with parameters selected in flight #4, while the robustness in termes 

of fusion breaks was shown not critically dependent on these parameteres within the 

recommended intervals. Finally, the methodology can be generalized and applied to different 

conditions of residuals for the assumed error models and none of the observations were 

discarded in the fusion process to compute the navigation output. The prediction parameters in 

show a minimum innovation for the parameters in 4

As commented in 
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missions and sets of available sensors to explore the sensitivity of fusion algorithms and find 

the optimal parameters. 

The work presented  details an illustrative mission to show the methodology with a use case 

representing typical missions for monitoring an area (constant height, constant moderate speed 

between waypints, smooth changes in orientation with coordinated turns). The work will be 

extended in future to more complex missions to evaluate the best parameters when sharp 

maneuvers appear in the missions. 

A searched result in the mean term will be the best set of configurations for different types of 

missions, comparing different parameters depending on the characteristics of missions and 

class of maneuvers (smooth, sharp, etc.). Additionally, an interesting analysis for advanced 

missions will be the effect on in-flight EKF variation of parameters. For instance, routinary 

montioring missions can be combined with reactive maneuvers in case of predefined events 

(identification of unknown objects, obstacle detection and avoidance, etc.). So, although this 

analysis has been done with a monitoring mission with smooth maneuvers, the final system 

could have a set of pre-analyzed configurations and switch them accordingly to the current 

flight mode. 

6. Conclusions 

This paper presents a platform (Pixhawk PX4) and methodology to experiment with real data 

and assess the performance of UAV navigation. Based on data analysis and characterization, the 

algorithms can take advantage of available sources and optimize the performance to provide 

output with maxium reliability. The quality of all inputs was systematically analyzed, and the 

parameters of processing algorithms for EKF were evaluated considering the output analysis 

and specific performance metrics not based on ground truth. The results showed consistency in 

data with respect to assumed models, sensitivity of accuracy metrics with respect to the key 

parameters of fusion algorithms, and the possibility of adjusting the system performance to the 

missions considered. It is an example of the importance of having evaluation evidences to 

validate the models and assumptions considered in the design. 

In summary, this work presents a methodology to test and configure UAV navigation systems 

in real conditions, illustrated with an open environment for experimentation. The analysis of 

real data in a systematic way will allow successive improvements and parametrization, 

considering, among others, the following aspects: 

- Data filtering to reduce perturbations and remove outliers 

- Quality analysis to weight data uncertainty 

- Analysis of biases and calibration before fusion 

- Parameter adjustment for other modules (for instance low pass filters or flight control 

process) to optimize their performance (PID gains, filter parameters, observation and plant 

noises, etc.) 
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