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 Concepts in quantum theory are borrowed to capture multimodal interactions 

 A complex-valued neural network is built to implement the framework 

 The model is comparable to SOTA baselines and addresses the interpretability 
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Abstract

We tackle the crucial challenge of fusing different modalities of features for

multimodal sentiment analysis. Mainly based on neural networks, existing

approaches largely model multimodal interactions in an implicit and hard-to-

understand manner. We address this limitation with inspirations from quan-

tum theory, which contains principled methods for modeling complicated

interactions and correlations. In our quantum-inspired framework, the word

interaction within a single modality and the interaction across modalities

are formulated with superposition and entanglement respectively at different

stages. The complex-valued neural network implementation of the framework

achieves comparable results to state-of-the-art systems on two benchmark-

ing video sentiment analysis datasets. In the meantime, we produce the

unimodal and bimodal sentiment directly from the model to interpret the

entangled decision.
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1. Introduction

Multimodal sentiment analysis is an emerging topic in natural language

processing. It aims at identifying the sentiment of a speaker by gaining

clues from multimodal signals, including textual, visual and acoustic chan-

nels. From a cognitive point of view, humans express feelings or emotions

via different channels. Quite often, a particular sentence entails different

sentiments under different visual-acoustic contexts. As shown in Fig. 1, by

uttering the sentence “The pizza is OK”, a speaker could stay unbiased to-

wards the pizza w dith a blank facial expression and a neutral voice, show

his affection to it with a smiling face and a passionate voice, or express a

negative attitude with a despising look and a disappointing sound. Conse-

quently, it is not enough to rely solely on textual clues to judge sentiment,

and considering visual and acoustic signals is equally essential. Therefore,

the core challenge, falls on the fusion strategy that effectively captures the

interactions between multimodal signals.

The two main components of multimodal interactions are intra-modal and

inter-modal interactions. Intra-modal interactions refer to the interactions

between features within a specific modality, such as the language structure

and word dependencies for text or the evolution of human facial expressions

over time. Modeling of intra-modal interactions will lead to a unimodal

representation and decision on its basis. Inter-modal interactions are the

interactions between different modalities on a higher level. The examples
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Figure 1: A motivating example. The sentence “The pizza is OK” has different sentiments

in different visual-acoustic contexts. One needs to jointly model the signals from three

modalities in order to judge the entailed sentiment correctly.

above are accounts of a simple inter-modal interaction between visual and

acoustic modalities where they are always consistent with each other in terms

of sentiment judgment. More often, different modalities contain different

sentiment tendencies when judged individually, and a joint decision is in

place to fuse the unimodal results.

Prior work mainly models intra- and inter-modal interactions and conduct

multimodal fusion on the feature level via neural networks [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14]. The neural structures allow the models to learn

multimodal interactions typically from a large scale of data in an end-to-

end fashion, often leading to satisfactory accuracy. However, the multimodal

interactions are implicitly encoded by those models, which adds difficulties

to understand the multimodal interactions in human language. Some models

do not contain specific components to handle intra-modal and inter-modal

interactions explicitly, but jointly model both levels of interactions by fusing

multimodal features at each timestamp in a recurrent structure [4, 5, 6,

3]. Others rely on sequence-to-sequence structure to directly obtain joint
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representations of a sentence based on its word-level unimodal features [7, 8].

The tensor-based approaches have also been employed as a mathematical

structure for fusing unimodal features either on the word level or on the

sentence level [2, 11, 1, 10].

In all three directions of performing multimodal fusion, the way the

modalities interact is often vague and implicit for both levels of interac-

tions [15]. It is closely related to the interpretability issue and the broader

concept of explainable AI. Interpretability has become a significant concern

for machine learning models. As those models have brought about remark-

able performance boosts, researchers are looking for ways to understand

the model, in order to know whether we can trust it and deploy it in real

work [16], or whether it contains privacy or security issues [17]. Existing

models in multimodal sentiment analysis heavily rely on neural structures to

fuse multimodal data, which often behave like black-boxes with few numeri-

cal constraints and purely data-driven assignment. As a result, these models

invariably suffer from low interpretability.

In this paper, we investigate a quantum-inspired approach for fusing mul-

timodal data, in an attempt to provide a principled view of multimodal fusion

from a quantum perspective. The inspiration stems from the manifestation

of non-classical phenomena in human cognition and decision, which violates

classical probability theory but adopts a compact explanation via quantum

theory (QT) [18]. QT has stimulated the successful construction of quantum-

inspired models for human cognition-related tasks, such as information re-

trieval (IR) [19, 20] and language understanding [21, 22]. As a typical human

cognitive task, however, multimodal sentiment analysis has received little at-
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tention from a quantum-inspired viewpoint [23, 24], due to the challenge in

modeling complicated interactions across different modalities in a quantum

manner.

We present a novel quantum-theoretic multimodal fusion framework. The

framework aims to recognize the sentiment of a multimodal sentence, which

consists of word-aligned features of visual, acoustic and textual modalities.

Because of the word-aligned format of data, the intra-modal interactions

mainly consist of relations between different words in different modalities,

while the inter-modal interactions are the interactions between visual, acous-

tic and textual modalities. Our framework answers the following questions:

1. How can we model the intra-modal interactions between different words?

2. How can we model the inter-modal interactions across different modal-

ities?

3. How can we make sentiment predictions based on the sentence repre-

sentation?

The interactions between different words are captured by quantum super-

position on the feature level. Quantum superposition has been successfully

applied to IR [19] and natural language processing (NLP) [21, 22], with

advantages in modeling word dependency and formulating semantic com-

position. We seek to extend the application scope from text analysis to a

multimodal context, and the quantum superposition of words is instrumented

based on the multimodal word representation.

As for inter-modal interactions, quantum entanglement is adopted to fuse

unimodal sentiment decisions. Quantum entanglement means that a state

in a composite system is so correlated that it cannot be decomposed into
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products of subsystem states. In analogy to quantum entanglement, for mul-

timodal sentiment analysis, the overall sentiment is perceived through a com-

plicated understanding of textual, visual and acoustic signals that can hardly

be viewed as a simple combination of unimodal clues. On the implementa-

tion level, this gives rise to explicit tensor product of unimodal sentiment

representations.

In our model, sentiment decisions are made via the concept of quantum

measurement, which is a natural choice given the quantum state represen-

tation of multimodal sentences. Concretely, an observable is introduced to

measure the probabilities of the multimodal sentences in the states of main

sentiment-related aspects. The probability values are then passed to a fully

connected layer to predict the final sentiment. Each sentiment-related aspect

is in effect an entangled state, indicating that the model views the sentiment

judgment as a complicated combination of unimodal decisions, which cannot

be simply decomposed into judgments based on each of the three modalities.

We evaluate our model by comparing it against state-of-the-art (SOTA)

baselines on two benchmarking multimodal sentiment analysis datasets, namely

CMU-MOSI [25] and CMU-MOSEI [6]. In a fair and comprehensive com-

parison, our model achieves comparable accuracy to the SOTA models. Fur-

thermore, an illustration of model interpretability is given by elaborating on

explaining the quantum process from a classical point of view. In partic-

ular, we present the unimodal and bimodal sentiment judgments implicitly

entailed in our model’s entangled sentiment predictions.
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2. Preliminaries on Quantum Theory

Quantum Theory (QT) provides a mathematical interpretation of the

microscopic world such as electrons and photons, by formulating the events

of this world as subspaces in a vector space with projective geometry. Here

we briefly introduce the core concepts of the quantum theory to set the basis

of our proposed multimodal fusion framework.

The mathematical formulation of superposition is established on the basis

of a Hilbert Space H, which is an infinite-dimensional inner product space

over the complex field. We adopt the widely-used Dirac Notations for a

mathematical representation of quantum concepts for consistency with quan-

tum theory. Essentially, a complex-valued unit vector ~µ and its conjugate

transpose ~µH are denoted as a ket |u〉 and a bra 〈u| respectively. The inner

product of two unit vectors |u〉 and |v〉 is a braket 〈u|v〉, and |u〉 〈v| refers to

the complex-valued matrix representing their outer product.

2.1. Superposition

As a fundamental concept in Quantum Theory, superposition describes

the inherent uncertainty in the state of a microscopic particle, such as a

photon or an electron. In the microscopic world, a physical property of a

single particle, such as location or the momentum, can simultaneously take

different values . In the quantum language, the particle is in a superposition

of multiple mutually exclusive basis states {|ei〉}, which is a set of complete

and mutually orthogonal basis vectors over the complex field. In a two-

dimensional Hilbert Space H2, the basis vectors are denoted as |0〉 and |1〉.
A general pure state is mathematically a linear combination of basis vectors
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with complex-valued weights such that

|φ〉 = α0 |0〉+ α1 |1〉 , (1)

where α0 and α1 are complex scalars with |α0|2 + |α1|2 = 1, and | · | is the

modulus of a complex number. It follows that |φ〉 is a 2-dim unit vector

defined over the complex field. When α0 or α1 is zero, then |φ〉 = |0〉 or |1〉
is a basis state. When α0 and α1 are non-zero complex values, the state |φ〉
is said to be a superposition of the states |0〉 and |1〉, and the scalars α0 and

α1 are amplitudes of the superposition whose squared moduli correspond to

probabilities in the measurement, as introduced in Section 2.3.

2.2. Mixture

Mixture describes the overall state of a set of pure states in probabilistic

distribution, i.e., a mixed system. The mathematical representation of the

mixed system state is a density matrix, which is a positive semi-definite

square matrix with a unitary trace. Essentially, for a set of pure states

{|φi〉}ni=1 with probability weights {pi}ni=1, the density matrix ρ for the mixed

state is computed by

ρ =
n∑

i

pi |φi〉 〈φi| , (2)

Since {pi}ni=1 are non-negative values that sum up to 1, the complex-valued

density matrix ρ produced by Eq. 2 is always positive semi-definite with

unit trace, i.e., ρ = ρH , tr(ρ) = 1. The diagonal elements of ρ are always

non-negative real values that sum up to 1, while the off–diagonal entries are

generally complex values.

Mixture encodes the uncertainty in the distribution of different particles.

Different probabilistic distributions of a set of pure states may give rise to
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the same (i.e., physically indistinguishable) mixed state. For instance, for

the set of states {|v1〉 = [1, 0], |v2〉 = [0, 1], |v3〉 = [
√
2
2
,−
√
2
2

], |v4〉 = [
√
2
2
,
√
2
2

]},
we have 1

2
|v1〉 〈v1|+ 1

2
|v2〉 〈v2| = I2

2
= 1

2
|v3〉 〈v3|+ 1

2
|v4〉 〈v4| (I2 is the 2 by 2

identity matrix), so the distributions {1
2
, 1
2
, 0, 0} and {0, 0, 1

2
, 1
2
} result in the

same state.

It is also worth noting that a pure state can be converted to a density

matrix, i.e., ρ = |φk〉 〈φk| for some k. Hence the density matrix ρ can be

used to represent both a pure and a mixed state in a single Hilbert Space.

2.3. Measurement

Measurement is the process of measuring the physical property of a sys-

tem, such as the momentum or position of a particle. Measurement is as-

sociated with a set of possible values. Prior to the measurement, there is

uncertainly in the system in that it takes all possible measurement values

simultaneously. After the measurement, the system collapses onto precisely

one value, and the uncertainly on the system state is hence removed.

The mathematical concept that controls the measurement is an observable

Ô, which is a self-joint square matrix, i.e., Ô = ÔH . Under the eigenvalue

decomposition, the eigenstates {|λi〉} of Ô form a complete orthogonal basis

of the Hilbert Space H, while the eigenvalues {λi} correspond to the possible

values the system can take after measurement.

Suppose a density matrix ρ represents the system before measurement.

The probability pi that the system takes the value of λi is then computed by

Born’s rule [26] as below:

pi = tr(ρ |λi〉 〈λi|) = 〈λi| ρ |λi〉 (3)
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Since {|λi〉 〈λi|} are a complete orthogonal basis, the resulting probabilities

{pi} form a classical probability distribution with
∑
pi = 1. Therefore, after

the measurement, at probability pi, one can observe the system taking value

λi, and the system collapses onto state |λi〉.
Since the system collapses onto a certain eigenstate |λi〉 after measure-

ment, applying the same observable onto the post-measurement state will

always lead to the same state |λi〉. However, if the same observable Ô is

applied to infinite copies of the same system ρ, the observed values will then

submit to the classical probability distribution {pi}. Moreover, the statisti-

cal ensemble of the post-measurement states can be represented as a mixed

state

ρ̂ =
∑

i

pi |λi〉 〈λi| (4)

2.4. Composite Quantum System

Composite Quantum System is the system consisting of more than indi-

vidual quantum systems. Let us consider a two-particle system composed

of system A and B with Hilbert Spaces HA and HB respectively. Then

the composite system is defined on the Hilbert Space HAB = HA ⊗ HB,

which is a tensor product of the two systems. Essentially, for a set of basis

states {|ei〉A}dimA
i=1 and {|fj〉B}

dimB
j=1 for systems A and B, HAB is spanned by

the basis states {|ei〉A |fj〉B}
dimAdimB
i=1j=1 . |ei〉A |fj〉B is a simplified notation of

the tensor product |ei〉A ⊗ |fj〉B, where the tensor product of two matrices

A = [Aij] and B = [Bkl] is A⊗ B = [AijB]. Following Sec. 2.1 and 2.2, su-

perposition state |ψ〉 and mixed state ρ can be defined likewise for composite
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quantum systems, but the dimension of those states is the multiplication of

individual system dimensions, e.g. dimA × dimB for the example above.

2.4.1. Entanglement

Entanglement describes the state of a composite quantum system in such

a way that the measurement outcome on a subsystem does have impact to

the outcomes of other subsystems [27]. For example, the polarization of two

photons can be entangled so that the polarization of one photon changes the

polarization of the other, even though they are a large distance away from

each other [28].

Mathematically speaking, entanglement means that the state of a com-

posite quantum system is not separable, i.e., cannot be factored as a product

of individual system states. For a pure state |ψ〉 ∈ HAB, |ψ〉 is separable if

and only if there exists |ψA〉 ∈ HA and |ψB〉 ∈ HB such that

|ψ〉 = |ψA〉 |ψB〉 , (5)

otherwise |ψ〉 is called an entangled state. The concept of entanglement also

holds for mixed states. A mixed state ρ ∈ HAB is separable if and only if it

can be written as

ρ =
∑

i

wiρ
A
i ⊗ ρBi (6)

where wi ∈ R, ρAi ∈ HA and ρBi ∈ HB for any i. When ρ cannot be

decomposed as above, it is entangled and hence called an entangled mixed

state.

Entanglement induces a profound difference between quantum correla-

tion, which is computed for one single system, and classical correlation, which
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is computed for an ensemble. Consider one system in superposed state and

one variable. In QT, the uncertainty of the measurement of the variable is

derived from superposition. If the superposed system consists of two sub-

systems tensored together, the correlation between the observation of the

variable in one subsystem and the observation of the variable in the other

subsystem is caused by the fact that the two systems are combined in one

single system. When entanglement exists, the (quantum) correlation can

violate some statistical inequalities that cannot be violated when classical

correlation is computed.

2.4.2. Reduced Density Matrix

Reduced Density Matrix is used to construct representations of subsys-

tems from a composite quantum system [29]. Suppose we have a state

ρ ∈ HAB for a bi-particle system composed of systems A and B. We would

like to know the statistical equivalence of ρ on only one system A, i.e., ρA.

That is to say, we need to find the density matrix ρA of system A so that

applying any measurement M ∈ HA onto it yields the same result as apply-

ing the measurement M ⊗ I on the composite system state ρ with system B

unchanged. Following Eq. 3, we have

tr(MρA) = tr((M ⊗ IB)ρ), ∀M ∈ HA (7)

The solution ρA of the above equation is obtained by takingthe partial

trace of ρ over system B:

ρA = trB(ρ) (8)
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Where the partial trace is defined as follows: suppose ρ can be expressed as

ρ =
∑

ijkl cijkl |ei〉A 〈ej|⊗|fk〉B 〈fl|, then ρA = trB(ρ) =
∑

ijkl cijkl 〈fl|fk〉 |ei〉 〈ej|.
In the matrix form, this stands for computing traces for all blocks corre-

sponding to each subsystem division. Fig. 2 shows the case of taking the

partial trace over a two-qubit system state. Since the partial trace operation

obeys commutative law, the reduced density matrix can be properly defined

over any subset of a composite system of an arbitrary scale (i.e., number of

systems).

Figure 2: Illustration of partial trace. The left-hand side is a density matrix of a two-qubit

system. The partial trace is performed over system B. The right hand side shows the

resulting 2 by 2 reduced density matrix of system A.

The reduced density matrix is indispensable in the analysis of composite

quantum systems [29]. It has a wide range of applications, of which a typ-

ical example is quantum teleportation in the quantum communication area.

In this work, the reduced density matrix allows us to understand the way

unimodal judgments compose the final sentiment judgment. Concretely, by

means of a reduced density matrix, we are able to generate the sentiment

prediction results for any bimodal and unimodal features, as outlined in Sec-

tion 6.5.
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3. Related Works

3.1. Multimodal Sentiment Analysis

Prior works conduct multimodal sentiment analysis by fusing different

modalities either on the feature level or on the decision level.

Decision-level approaches conduct sentiment analysis based on each indi-

vidual modality first, and then propose different mechanisms to merge uni-

modal sentiment decisions to the final decision, including averaging [30], ma-

jority voting [31], weighted sum [32] or a learnable model [33]. Decision-level

fusion models are often light-weight, flexible, and scale well to the number

of modalities. However, the low-level interactions across different modalities

are ignored, which adversely affects performance.

Feature-level methods construct a joint representation by considering

the interaction of multimodal data, and perform sentiment classification on

its basis. Considering the time-series format of the benchmarking multi-

modal sentiment analysis datasets, researchers have exploited recurrent neu-

ral structures like Long-Short Term Memory (LSTM) to perform a feature-

level fusion. Beyond simple concatenation of input features (EF-LSTM)

per timestamp or fusion of output hidden units of unimodal LSTMs (LF-

LSTM), more complicated fusion strategies have been developed to capture

inter-modal interactions. Typically, a hybrid memory is constructed from

the hidden units of each modality at a previous timestamp and fed as an

additional input of the next timestamp [3, 4, 5, 6].

Inspired by the notable success achieved by the encoder-decoder struc-

tures in sequence-to-sequence (seq2seq) learning, attempts have also been

made to “translate” the representation of a single sentence under one modal-
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ity to the representation under another, and take the hidden unit as the

joint representation of the sentence [7, 8]. For example, the multimodal

cyclic translation network (MCTN) [7] applies a seq2seq component to ob-

tain a joint representation of two modalities, and feed the joint representa-

tion into another seq2seq structure with the third modality to produce the

trimodal representation. Multimodal Transformer (MulT) [8] takes a dif-

ferent approach by directly computing the inter-modal representations via

the encoder of Transformer [34], resulting in a simpler but better-performed

network. The structure of Transformer encoder has led to the success of pre-

trained language models [35, 36] by effectively capturing word interactions.

Based on pre-trained language models, an approach to integrating visual and

acoustic features into the pre-trained word-level textual features has recently

been proposed [14] to suit the multimodal context. Since the pre-trained lan-

guage model well-capture word semantics by training on a large corpus, their

multimodal adaptations (MAG-XLNet, MAG-Bert) beat all existing models

on multimodal sentiment analysis.

Tensor-based approaches have also been employed to fuse multimodal

features. Amongst these models, unimodal features have been merged on

the sentence level (TFN [1], LMF [2], MRRF [9]), word level (T2FN) [10],

or in a hierarchical manner (HFFN) [11] to form a tensorized representation

for a multimodal sentence. Based on the representation, fully connected

networks [1] or tensor decomposition strategies [2, 9] have been employed to

generate sentiment decisions.

For the other approaches, Tsai et al. [13] build multimodal representations

by factorizing the joint distribution of multimodal data into discriminative
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factors and modality-specific factors. The constructed Multimodal Factor-

izational Model (MFM) is essentially an autoencoder, which is capable of

integrating any existing algorithm as an encoder that performs multimodal

discriminative learning. The additional modality-specific factors bring about

performance gain over existing models on six multimodal sentiment analysis

datasets. Chaturvedi et al. [37] recently present a new view of the problem,

where fuzzy logic is employed to characterize the partial or mixed sentiment.

Inspired by this, a convolutional fuzzy sentiment framework is built to map

a multimodal sample to fuzzy memberships over four sentiment dimensions

and produce sentiment decisions accordingly.

In summary, prior approaches are focused on fusing multimodal informa-

tion on the feature level. LSTM-based methods do not have an explicit and

separate component for handling intra- and inter-modal interactions but com-

bine unimodal features in a per-timestamp manner. Seq2seq-based models

construct inter-modal interactions based on correlations of individual word

representations in different modalities, largely ignoring the word order in-

formation. Tensor-based methods mostly compute the tensor product of

unimodal sentence representation to obtain the multimodal sentence repre-

sentation, while the fine-grained word-level interaction across the modalities

is absent. The three types of models suffer from a common interpretability is-

sue, in that the implementation consists of plain neural network components

which are hard to understand by humans. The inter-modal hybrid memory,

the inter-modal interaction strategy, and the tensor decomposition strategies

are crucial to model inter-modal interactions, but they are encapsulated in

black-box-like structures without mappings to concrete concepts beforehand.
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In contrast, we present a fundamentally novel framework for this par-

ticular task. We adopt quantum notions to explicitly tackle intra-modal

interactions between words on the feature level and inter-modal interactions

on the decision level. At the design phase, the network could be understood

as a quantum-like multi-system state preparation and measurement process.

This process also allows for a classical interpretation in which the decisions

made unimodal and bimodal systems can be produced from the trimodal net-

work, and the entangled pattern over the three modalities can be understood.

By implementation, our model conducts word-level tensor fusion based on

complex-valued multimodal word representations, which could be viewed as

an extended version of tensor-based approaches.

It is worth noting that there is also research focusing on the unaligned

data and proposing finer-level modeling of sub-word acoustic and visual dy-

namics (RAVEN) [12]. However, since we only target aligned sentences, it

is beyond the scope of this paper. We are also aware of sentic blending [38],

which is a scalable methodology for fusing multiple cognitive and affective

recognition modules in a real-time manner. Our model targets a simpler

scenario where the multimodal features of a whole sentence are fed into the

model to produce the sentiment label. We will adapt our model to support

real-time sentiment analysis in the future.

3.2. Quantum-inspired Models for Multimodal Tasks

Up till now, preliminary studies [23, 24, 39] have been conducted for

addressing multimodal tasks with quantum inspiration.

Wang et al. [39] build a multimodal image retrieval system by viewing
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visual-textual documents as non-separable composite systems of image and

text and formulating queries as measurements that computes the relevance

scores of each multimodal document. However, since the correlation between

textual and visual systems are computed by simple statistical methods, the

system works no better than a simple concatenation of image and text rep-

resentations.

Zhang et al. [23] predict sentiment for an image based on its visual content

and corresponding textual descriptions. A density matrix is constructed for

both an image and a sentence, and the matrices are used to predict the

sentiment respectively. Then a decision-level fusion is applied inspired by

quantum superposition. The model is not an end-to-end quantum-driven

pipeline nor a supervised approach, so it is limited in terms of both efficiency

and effectiveness.

Gkoumas et al. [24] investigate the non-classical correlations between de-

cisions made by texts and images by examining the violation of the CHSH

inequality, but no violation has been observed.

This work hence contributes to the field of quantum-inspired multimodal

analysis in both theory and implementation. An end-to-end quantum-inspired

framework for tackling a multimodal task is constructed, and a multimodal

fusion is conducted down at the word level. Furthermore, this model is the

first to introduce complex values to implement the quantum process into the

multimodal context on the implementation level.
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3.3. Quantum-inspired Models for Text Analysis

The application of quantum theory to IR begins with the book written

by Rijsbergen [40], which provides a theoretical framework for formulating

IR concepts based on the mathematical formalism of quantum physics. Mo-

tivated by this pioneering work, some researchers try to capture the inherent

ambiguities in the document relevance judgment. Based on the formula-

tion of a document as a superposition of relevance and irrelevance, the in-

terference between documents is captured by investigating the double-slit

experiment [41] or two-round measurements [42]. Other works [43] seek to

exploit entanglement for modeling the interaction between user and docu-

ment. Apart from the empirical research, preliminary investigations have

also been carried out on detecting the quantum phenomena in user relevance

judgments [44].

Other researchers attempt to borrow the quantum probabilistic frame-

work to represent documents and queries. The Quantum Language Model

(QLM) [45] is one of the most successful applications of quantum formalism

to IR. QLM builds a density matrix for representing both a document and

a query, which is estimated from the pure states of word occurrences and

word dependencies in a maximum likelihood estimation algorithm. The doc-

uments are ranked according to the VN-divergence of the document density

matrices over the query density matrix. QLM achieves an exciting success

on ad-hoc retrieval tasks, and spurs later work to extend the original QLM

for enhanced performance and expanded applications, such as investigation

of quantum entanglement [46] and adoption to session search [47].

Researchers have also applied quantum-inspired models to NLP. A large
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body of work contributes to quantum-theoretical modeling for compositional

meaning [48, 49, 50]. The meaning of each word is represented as a lexi-

cal density matrix constructed by combining all the related words in certain

contexts. Based on word representations, word ambiguity and semantic en-

tailment have been addressed with a quantum theoretical approach. Zhang

et al. [51] build neural networks to learn high-level interactions of question

and answer based on their entangled state representations for question an-

swering (QA). [22, 21, 20] leverage quantum superposition and mixture to

model correlations between linguistic features and construct complex-valued

language representations by neural networks. The representation leads to

improved performance and enhanced interpretability.

To sum up, quantum-inspired approaches have been widely applied in

text modeling, especially in modeling the interactions between fundamental

linguistic units, such as words, sentences, concepts, or documents. By em-

ploying superposition and entanglement, a principled approach is naturally

present to combine the cross-feature interactions with the textual features in

a unified representation. However, the prior works are mostly unsupervised

models, which do not support learning from a large amount of data. As a

result, even though significant improvements have been observed over strong

baselines, the models are not as competitive as state-of-the-art neural-based

models.

This work follows [22, 21, 20] to borrow the concept of superposition and

mixture to model intra-modal interactions. The multimodality nature of the

data, however, calls for modeling of interactions across different modalities.

Therefore, we extend the prior quantum-inspired framework for text to suit
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the multimodal context and model each modality as a particle in a many-

particle system. On its basis, the concept of entanglement is employed as a

formulation of inter-modal interactions.

4. Problem Formulation and Notation

Multimodal sentiment analysis aims to predict the sentiment of a multi-

modal input sentence. A multimodal sentiment analysis dataset contains N

video segments X = (X1, ..., XN). Each segment Xi is associated with tex-

tual, visual, and acoustic features Xi = (X t
i , X

v
i , X

a
i ) as well as a sentiment

label yi. A common preprocessing step is to align the three modalities of

data in terms of words, and then zero-pad the segments to obtain time-series

data of the same length L. After this step, the textual, visual, and acous-

tic features of the i-th segment are X t
i = (t1i , ..., t

L
i ), Xa

i = (a1i , ..., a
L
i ) and

Xv
i = (v1i , ..., v

L
i ) respectively. Essentially, the multimodal sentiment analysis

task is to establish a mapping f that maps each segment Xi to the sentiment

yi entailed in it.

5. Quantum-inspired Multimodal Fusion Framework

We now present the quantum-inspired framework for multimodal senti-

ment analysis. Since Hilbert Space is the mathematical foundation of any

quantum-theoretical framework, it is necessary to define the Hilbert Space.

In the remaining part of the section, we define the Hilbert Space grounding

the proposed framework and introduce the formulation of words, sentences,

and sentiment decisions.
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5.1. Multimodal Hilbert Space

We generally view a multimodal sentence as a composite quantum system

of individual modalities. Hence, in our framework, the Hilbert Space is a

composition of unimodal Hilbert Spaces for single modalities, hence referred

to as Multimodal Hilbert Space Hmm. In multimodal sentiment analysis, we

focus exclusively on the textual, visual, and acoustic modalities. However, it

is worth noting that our framework is general and could be adapted to any

number of modalities.

Suppose Ht,Hv,Ha denote the Hilbert Space for textual, visual, and

acoustic modalities spanned by the basis states {|eti〉}tdimi=1 , {|evj 〉}vdimj=1 and

{|eak〉}adimk=1 , respectively. Hmm is then expressed as Hmm = Ht ⊗ Hv ⊗ Ht

with a set of basis states {|eti〉 ⊗ |evj 〉 ⊗ |eak〉}tdimvdimadimi=1j=1k=1 . The basis can be

re-written as {|emml 〉}tdim×vdim×adiml=1 for simplification purposes, where each

|emml 〉 is a tensor product of |eti〉, |evj 〉, |eak〉 for some i, j, k. Fig. 3 shows

the multimodal Hilbert Space in the composition of three individual Hilbert

Spaces.

Classically, each unimodal basis state corresponds to a particular uni-

modal feature dimension. Hence, a multimodal basis state uniquely reflects

a set of unimodal feature dimensions in combination. All possible combina-

tions of unimodal features are taken into consideration by basis states. A

sufficient interaction between features from different modalities is therefore

in place.

5.2. Word State

A word w is formulated as a pure state |w〉 on Hmm. Since a word is

associated with a textual, visual and acoustic feature vector, we are able to
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Figure 3: The Multimodal Hilbert Space Hmm composed of textual, visual and acoustic

Hilbert Space Ht,Hv,Ha. |etj〉 , |evj 〉 , |eaj 〉 , |emm
j 〉 denotes a basis state of Ht,Hv,Ha,Hmm

respectively.

construct its unimodal state representation |wt〉, |wv〉 and |wa〉 in Ht, Hv, Ha

respectively. It is then an open issue to construct |w〉 based on the respective

unimodal states of w. In this work, we assume |w〉 to be a product state of

unimodal states, i.e., |w〉 = |wt〉 ⊗ |wv〉 ⊗ |wa〉, as shown in Fig. 4. This

simple strategy is employed for the reasons below:

• By implementation, it gives rise to a tensor-based fusion of multimodal

signals, which is believed to be a meaningful and useful approach to

capture inter-modal interactions [2, 1, 9]. In particular, it explicitly ag-

gregates features of three modalities by means of multiplication, while

other models instead rely on additional structures to fuse unimodal

features in a more implicit manner.

• When uttering one word or one sentence, a person may aim at ex-
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Figure 4: Multimodal Word Representation. Each color indicates one word. The multi-

modal word state |w〉 for word w is a tensor product of its unimodal states |wt〉, |wv〉 and

|wa〉.

pressing different sentiments under different situations. A single word

has different multimodal representations under different visual-acoustic

contexts based on word-dependent textual representation and word-

independent visual and acoustic representations. As a result, different

sentiments of a specific word or sentence can be accounted for by this

multimodal word representation.

5.3. Sentence State

We formulate a sentence as a mixture of individual word states {|w〉} in

the sentence. The mixed state ρ ∈ Hmm of a sentence is produced by the

individual word states in the sentence in the form of a weighted quadratic
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Figure 5: Our framework. Each colored ball indicates a word in the multimodal sentence,

represented as a unit vector of the same color in the Multimodal Hilbert Space. The

sentence is represented by a mixed state visualized as a black ellipse. The eigenstates

of the observable are unit vectors in black color. The squared length of the intersection

between each unit vector and the ellipse (in red) is the measurement probability for the

respective eigenstate. The sentence sentiment representation is composed of all probability

values represented by red balls.

summation:

ρ =
∑

i

λi |wi〉 〈wi| (9)

where {λi} are convex coefficients, i.e.,
∑

i λi = 1 in order to guarantee

Tr(ρ) = 1. λi is a word-dependent weight that reflects the importance of the

word wi in the sentence. The sentence mixed state ρ is visualized as an ellipse

constructed by unit vectors of words in the sentence in Fig. 5. The ellipse

representation is due to the fact that a density matrix assigns a probability

measure on the Hilbert Space from the quantum probability point of view.

Please refer to [19] for a detailed explanation.

Even though a density matrix is constructed from a particular set of

word weights, it corresponds to many possible mixture weights of the same

set of words (Sec. 2.2). As a result, it is capable of formulating different
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word combinations under different contexts. As a probability measure on the

Multimodal Hilbert Space, the density matrix is a sentence representation in

terms of unimodal features in combination from a classical perspective. The

representation is a separable state rather than an entangled state, because ρ

can be re-written as

ρ =
∑

i

λi(|wti〉 ⊗ |wvi 〉 ⊗ |wai 〉)(〈wti| ⊗ 〈wvi | ⊗ 〈wai |) (10)

=
∑

i

λi(|wti〉 〈wti|)⊗ (|wvi 〉 〈wvi |)⊗ (|wai 〉 〈wai |)

=
∑

i

λiρ
t
i ⊗ ρvi ⊗ ρai

where ρmi = |wmi 〉 〈wmi | ∈ Hm for m ∈ {t, v, a}. From Sec. 2.4.1, ρ is separa-

ble with respect to the three unimodal Hilbert Spaces by definition. Conse-

quently, the framework considers word-level interactions via the concepts of

mixture and superposition on the feature level, while the interactions across

different modalities are largely absent from the feature level. Instead, the

inter-modal interactions are implemented in the sentiment decision process,

as outlined in the next paragraphs.

5.4. Sentiment Measurement

Based on the multimodal sentence representation, a component is needed

to operationalize the sentiment judgment process. To this aim, we link sen-

timent judgment to quantum measurement and “measure” the “sentiment

state” of a multimodal sentence.

We hypothesize that there are K sentiment-related aspects or topics,

such as the aspects of aspect-based sentiment analysis. The sentence will
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collapse onto one of them after the measurement. The probabilities over

the aspects after repeating the measurements can be seen as a sentimental

characterization of a multimodal sentence, which could be used to determine

the sentence sentiment.

Mathematically, the multimodal observable Ômm is associated with a

set of aspect ids {k}Kk=1 as eigenvalues and a set of aspect representations

{|vk〉}Kk=1 as eigenstates. Hence Ômm can be expressed as

Ômm =
∑

k

k |vk〉 〈vk| . (11)

After the experiment, the multimodal sentence ρ will collapse onto the

k-th aspect at a likelihood of pk:

pk = 〈vk| ρ |vk〉 (12)

The final sentiment judgment is given based on the clues from each

sentiment-related aspect, and the probability values {pk}Kk=1 are taken to

generate the sentence sentiment. In Fig. 5, a set of unit-norm vectors is asso-

ciated with the observable Ômm. The squared lengths of their intersections

with the density matrix ellipse ρ are the measurement probabilities {pk}Kk=1

that reflect sentence sentiment.

It is worth noting that each sentiment-related aspect is a pure state |vk〉,
which is always (i.e., at probability 1) an entangled state of the three uni-

modal systems. Hence, the aspects are abstract concepts over the whole

multimodal space that can hardly be mapped to human-understandable no-

tions. Instead, each aspect can be seen as a multimodal sentiment decision

in entanglement of unimodal sentiment decisions. The observable Ômm is
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uniquely represented by the eigenstates {|vk〉}Kk=1. In the rest of the paper,

we use {|vk〉}Kk=1 and Ômm interchangeably to represent an observable.

The way unimodal sentiment decisions are aggregated can be displayed

with the help of a reduced density matrix. The reduced density matrix allows

us to obtain the statistically equivalent observable for bimodal and unimodal

systems so that the decisions entailed in the trimodal system can be inferred

by applying the observable onto the respective sentence representation. The

details of this process are introduced in Sec. 6.5.

6. Complex-valued Network for Multimodal Sentiment Analysis

This section outlines the neural network implementation of our quantum-

inspired multimodal fusion framework for multimodal sentiment analysis.

Complex values are pivotal to the formulation of quantum concepts, so our

network is composed of complex-valued units as an authentic formulation of

the quantum-inspired multimodal fusion process. Fig. 6 shows the architec-

ture of the network. Next, we introduce the way to handle complex values

for each network component, so that the network weights could be learned

in the same way as any classical neural networks.

6.1. Complex-valued Multimodal Word Embedding

As previously introduced, the multimodal word state is |wi〉 = |wti〉 ⊗
|wvi 〉 ⊗ |wai 〉 in the Multimodal Hilbert Space. The task is to map real-

valued input features to complex-valued unit vectors for each word under

each modality. To this aim, we adopt the modulus-argument form for a
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Figure 6: The quantum-inspired multimodal fusion network. The multimodal word states

are obtained via complex-valued multimodal word embedding. The local context states

are constructed from individual word states under the global weighting and local mixture

strategy. The multimodal observable is applied to each context state in the measurement

step, and the obtained probability matrix is row-wise max-pooled and passed to a neural

network to produce the final sentiment.

complex number. Each unimodal state for a word w is represented as

|w〉 = r1e
iθ1 |e1〉+ ...+ rne

iθn |en〉 (13)

= [r1e
iθ1 , ..., rne

iθn ],

where i is the imaginary number satisfying i2 = −1, the moduli R =

[r1, ..., rn] form a real unit vector, and the arguments Θ = {θ1, ..., θn} are

in [−π, π] each. In the modulus-argument form, any operation on the com-

plex numbers will lead to a non-linear combination of the constituent moduli

and arguments. If the moduli and arguments could be appropriately as-

signed with different features, a non-linear feature combination is naturally

29

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
produced.

Different policies are employed to assign the moduli and arguments from

the input features for different modalities. The textual modality possesses a

word-dependent distributed representation, while the features for non-textual

modalities are word-independent and non-trainable. Therefore, the moduli

Rt = [rt1, ..., r
t
n] for w are constructed from the pre-trained word embedding

E(w) via a deep neural network Dt, while the moduli of visual and acoustic

modalities Rv, Ra are obtained via deep neural networks Dv and Da from the

respective input feature vectors Vw and Aw (note that they do not depend on

word w). Precisely, Rt = N(Dt(E(w))), Rv = N(Dv(Vw)), Ra = N(Da(Aw))

with N(·) as the vector L2-normalization function. In line with the Ten-

sor Fusion Network [1], Dt is composed of an LSTM layer followed by two

fully connected layers, while Dv and Da are three stacked fully connected

layers. They mainly serve as dimension reduction models, ensuring that

the dimensionality of the multimodal Hilbert Space is computationally af-

fordable. Moreover, the textual LSTM structure memorizes the sequence

information, complementing the quantum-inspired framework that ignores

word order. This step produces a low-dimensional representation Rt, Rv and

Ra for the moduli. They are then unit-normalized to meet the unit-norm

constraints.

The way to initialize arguments for each modality is as follows: for textual

modality, we initialize the arguments of sentiment words regarding their re-

spective sentiment polarity. In particular, a positive word is initialized with

a zero vector, and a negative word is initialized with a vector of π, while

non-sentiment words are assigned with a vector of π/2 for their respective
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textual arguments. The assumption behind this is that the individual word

sentiment influences the sentence sentiment, and we aim at leveraging the

word sentiment by linking it with the textual arguments. Here we map an

argument to the sentiment with the cosine function so that the arguments

of π, π/2, 0 are mapped to -1,0,1, indicating a negative, neutral and posi-

tive sentiment respectively. Since only a rough estimation of word sentiment

is present in a sentiment dictionary, it is used as initial values of the argu-

ments subject to fine-tuning together with the other network components.

For the non-textual modalities, the arguments Θv and Θa are set to be word-

dependent. Even though the non-textual representation is word-independent,

different representations of the same word may still share some information

that possibly helps to make the sentiment judgment. Hence we build the

quantum-inspired framework to learn the arguments Θv and Θa respectively

based on unimodal features. The learned arguments are used as initial values

of arguments that are fine-tuned on the trimodal data.

6.2. Mixture

In the previous section, we have outlined the formulation of a sentence as

a mixture of individual words following Eq. 2. To adapt this step to the mul-

timodal sentiment analysis scenario, one needs to answer the crucial question

of determining the word-dependent weights {λi} in Eq. 2. Furthermore, the

sentiment of the sentence is often determined by local contexts, i.e., consecu-

tive words within local windows, rather than the whole sentence. Therefore,

another issue falls on the identification of contexts that provide crucial clues

to judge the sentiment.

In this paper, we address both issues through global weighting and local
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mixture, which has been taken for constructing text-based language represen-

tation [22]. Essentially, we assign a global weight to each word and use the

global weights to determine the density matrices for local word contexts. As

for the weighting scheme, the weight Λi of a the word wi should be composed

of its weights under all three modalities. Hence, we apply a weighted sum of

unimodal weights to compute Λi:

Λi = βtΛ
t
i + βvΛ

v
i + βaΛ

a
i (14)

where Λt
i = ||Dt(E(wi))||2, Λv

i = ||Dv(Vwi
)||2, Λa

i = ||Da(Awi
)||2 are the L2-

norms of the contracted textual, visual and acoustic feature vectors of wi

respectively. {βm ∈ [0, 1],m ∈ {t, v, a}} are modality-specific weights that

sum up to 1.

The weighting scheme is followed by the local mixture of words in the

multimodal sentence. Specifically, a set of local contexts are identified, and

the words in each context c are mixed in a quantum manner (i.e., Eq. 2) to

produce a density matrix ρc. The mixture weights are produced by softmax-

normalizing the word weights within each context so that the outcome of

the mixture is always a legal density matrix. The approach to extract local

contexts from the sentence is an open issue. In this work, we apply sliding

windows of varying lengths through the whole sentence, each producing a

density matrix representing a local n-gram. Hence, rather than a single den-

sity matrix, a set of matrices are produced by the local mixture component.

In the measurement step, the most representative contexts are identified in

a data-driven fashion,as outlined in Sec. 6.3.

It is worth noting that the L2-norms of feature vectors are used to fit
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the construction of complex-valued word embedding. In order to ensure that

each unimodal representation can be interpreted as a pure state, vector L2-

normalization is applied, and vector norms are hence discarded. The vector

norm somehow reflects the semantic intensity, which may be indicative of

the combination of words in a local context. From a quantum perspective,

the absolute number of each pure state should be considered when mixed

together.

6.3. Measurement

The measurement component needs to handle a set of C density matrices

{ρc} for local contexts, and identify the discriminating contexts to senti-

ment classification. To achieve this purpose, a single observable {|vk〉}Kk=1

is performed to the set of density matrices, each generating a set of proba-

bility values via Eq. 3. As a result, a K-by-C matrix of probability values

is produced by the measurement, each entry corresponding to the likelihood

of a local context collapsing to an eigenstate. Then a row-wise maximum

pooling is conducted to get the most similar local context for each of the

K sentiment-related aspects. The respective probabilities, i.e., the K maxi-

mum probability values, are treated as the sentence sentiment representation.

A neural network Dout is built on its basis to produce the final sentiment

prediction of the multimodal sentence.

We aim to learn the eigenstates or sentiment-related aspects {|vk〉}Kk=1

from the data, as it is difficult to map them to concrete notions beforehand.

A deviation from the standard definition of observable is then employed:

the set of eigenstates do not necessarily form an orthonormal basis of the

Multimodal Hilbert Space, but are instead of a predefined number of K
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and not hard-coded as orthogonal to each other. The reasons are two-fold.

On the one hand, different abstract sentiment-related aspects are not nec-

essarily independent of each other in practice. On the other hand, it is not

computationally affordable to ensure mutual orthogonality of measurement

states during training, even though there are already algorithms for training

mutually orthogonal vectors [52, 53].

6.4. Network Learning

The network weights include word embeddings E, arguments Θt, Θa, Θv,

modality-specific weights {βm ∈ [0, 1],m ∈ {t, v, a}}, observable {|vk〉}Kk=1,

and neural network weights Dt, Da, Dv and Dout. Note that the mixture step

does not contain any trainable weights.

As for the initialization, E is initialized with existing word embedding.

The textual arguments Θt is initialized in a word sentiment related manner

as introduced in Sec. 6.1. In order to initialize the visual and acoustic argu-

ments, we pre-train the framework on respective unimodal data consisting of

a dimension reduction network, a global mixture of all words in the sentence,

a measurement component and the output network Dout with random ini-

tialized argument. The eigenstates in the observable have random-initialized

arguments and random-initialized unit-norm moduli.

During training, the moduli and arguments of complex-valued inputs are

trained separately with unit-norm constraints imposed on the moduli part.

The intermediate complex-valued layers are implemented with real and imag-

inary parts for inputs and outputs, in order to back-propagate the loss func-

tion to real and imaginary parts separately.
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6.5. Network Interpretation

Our network captures multimodal interactions by borrowing concepts

from quantum theory. For the quantum-like process to be understandable for

human beings, we propose an approach to interpret the network. Essentially,

the model captures word interactions via superposition and intermodal inter-

actions through entanglement. Both levels of interactions could be explicitly

understood from the learned trimodal model as follows:

I) The unimodal and bimodal decisions entailed in the learned model can

be computed for a target sample. The unimodal word states and weights can

be computed from the learned model, allowing us to compute global word

weights via Eq. 14 for any subset of the three modalities, and then the mixed

state of any local context on its basis. The corresponding observable for

the respective modalities is computed by taking the reduced density matrix

(Sec. 2.4.2) of the learned eigenstates so that the measurement can be applied

to the set of obtained density matrices. The probabilities are row-wise max-

pooled and passed to the learned Dout to generate the sentiment label for the

target subset of modalities.

II) The multimodal sentiment judgment for any word or word combina-

tion can be inferred from the learned model. With the learned observable and

output network Dout, the sentiment label for any density matrix ρ ∈ Hmm

can be produced. A word adopts a density matrix representation (Sec. 2.2).

The density matrix of any combination of words, such as local contexts, can

also be computed as a mixture of word states, with mixture weights being

softmax-normalized global word weights. Hence we can check the sentiment

for each word or word combination determined by the learned model.
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The point that the learned model could be directly leveraged to generate

results for part of the data is crucial to address the interpretability issue

because that refers to the model’s authentic behavior. When the models

require re-training on the subset of data, on the other hand, the result cannot

be safely interpreted as the performance of the original model anymore. In

the multimodal sentiment analysis context, if a trimodal network needs to be

re-trained to predict sentiments for unimodal or bimodal data, it will remain

doubtful whether the results could be used to “interpret” the behavior of the

original trimodal model on the unimodal or bimodal systems.

However, instead of directly taking the learned network to give predic-

tions, most prior work in this field requires re-training the model based on

unimodal and bimodal data. In particular, LSTM-based approaches involve

concatenations of unimodal hidden units to produce the inter-modal dynam-

ics, so one cannot directly apply the component to a bimodal and unimodal

case due to the dimension inconsistency. In MulT and tensor-based ap-

proaches, the shape of multimodal sentence representation is relevant to the

number of modalities, so the neural structures should be re-trained to pre-

dict sentiments based on bimodal and unimodal representations. MCTN

has a single-directional structure for the second seq-to-seq component, so it

could only be used to predict part of the bimodal and trimodal sentiment,

depending on the order of the modalities put into modeling.

To the best of the authors’ knowledge, LMF is the only prior model that

facilitates direct computation of unimodal and bimodal sentiments from the

learned trimodal network. Unfortunately, an analysis of such a property is

missing from the original LMF paper. This work identifies this property of
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Dataset Train Test Validation

CMU-MOSI 1284 686 229

CMU-MOSEI 16265 4643 1869

Table 1: Splits for CMU-MOSI and CMU-MOSEI datasets.

our model, and presents the exact prediction results of the trimodal network

on unimodal and bimodal data in Sec. 8.3.

7. Experimental Setup

The experiments are conducted on two state-of-the-art benchmarking

video sentiment analysis datasets, namely CMU-MOSI [25] and CMU-MOSEI [6].

CMU-MOSI is a human multimodal sentiment analysis dataset consisting of

2,199 short monologue video clips (each lasting the duration of a sentence).

Acoustic and visual features of CMU-MOSI are extracted at a sampling rate

of 12.5 and 15 Hz respectively, while textual data are segmented per word.

CMU-MOSEI is a sentiment and emotion analysis dataset made up of 22777

movie review video clips taken from YouTube. The unaligned CMU-MOSEI

sequences are extracted at a sampling rate of 20 Hz for acoustic and 15 Hz

for visual signals. The visual and acoustic modalities are then aligned with

the words [54]. Human annotators are recruited to label each sample with a

sentiment score from -3 (strongly negative) to 3 (strongly positive) for both

datasets. The splits of the datasets are given in Tab. 1.

We notice that different versions of the same dataset are used in the

literature, containing different sequence lengths and feature dimensions. For

a transparent and reproducible experiment, we clarify our approach to clean
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and merge the datasets.

We begin with the datasets in the Github repository of the MulT [8]

model, which only contains word vectors instead of original words. Since our

model requires word-specific embedding and weighting strategies, we decipher

words from the given word vectors by cross-checking with different versions of

pre-trained 300-dimensional glove embeddings. It turns out that CMU-MOSI

and CMU-MOSEI use different dictionaries for the glove embeddings, which

leads to unidentified words in CMU-MOSEI. In order to acquire the missing

words, we refer to the version of CMU-MOSEI data from CMU-Multimodal

SDK 1, which contains the original words but some important words are

missing for many samples. By merging the two versions of data, we are able

to obtain a clean and complete version of CMU-MOSEI with original words

as the textual features. The final datasets have a 35-dim feature and a 74-

dim acoustic feature for each word. The lengths of sentences are normalized

to 50. The datasets are available upon request.

To evaluate the proposed model, we conduct a comprehensive comparison

with the following baseline models:

1. Early-Fusion LSTM (EF-LSTM). This model concatenates the in-

put textual, acoustic and visual features at each timestamp, and builds

an LSTM to construct sentence-level multimodal representation. The

last hidden state is taken to predict the sentiment. It is broadly used

as a baseline model by prior works.

2. Late-Fusion LSTM (LF-LSTM). This model builds an LSTM for

1https://github.com/A2Zadeh/CMU-MultimodalSDK.git
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textual, acoustic and visual inputs separately, and concatenates the

last hidden state of the three LSTMs as the sentence-level multimodal

representation. It is taken to predict the sentiment. It is broadly used

as a baseline model by prior works.

3. Multi-Attention Recurrent Network (MARN) [4]. This model

captures inter-modal dynamics at each timestamp. A multi-attention

block is built to construct an inter-modal representation based on hid-

den states of the previous timestamp and fed into the inputs of the

current timestamp. The inter-modal representation and hidden states

of the last timestamp are concatenated as the multimodal sentence

representation and used to classify the sentiment.

4. Memory Fusion Network (MFN) [5]. This is a typical memory

fusion network that builds a multimodal gated memory component, and

the memory cell is updated along with the evolution of the hidden states

of three unimodal LSTMs. The final memory cell is concatenated with

the last hidden states of unimodal LSTMs as the multimodal sentence

representation used to classify the sentiment.

5. Tensor Fusion Network (TFN) [1]. This model extracts unimodal

sentence representations with different neural network structures, and

computes the tensor product of the unimodal vectors as the multimodal

sentence representation. An additional value of 1 is appended to each

unimodal vector, such that the final tensor product also entails inter-

actions among a subset of the modalities. The tensor product is then

flattened and used to classify the sentiment.

6. Low-rank Multimodal Fusion (LMF) [2]. This model adopts the
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same procedure as TFN to construct the multimodal representation

but then computes the inner product between the three-order tensor

with a weight tensor with a low separation rank to produce a low-

dimension vector output. With tensor decomposition, the inner prod-

uct is converted to the inner product of unimodal features with respec-

tive weights. The vector is used to classify the sentiment.

7. Multimodal Transformer (MulT) [8]. This model encodes inter-

modal attention into an enriched unimodal representation. The multi-

head attention block in [34] is adopted to learn the inter-modal at-

tention. The unimodal representations are concatenated as the mul-

timodal representation, which is used to predict the sentiment of the

sentence.

The above baselines have good coverage of the main types of models on the

multimodal sentiment analysis task, including the vanilla LSTM early-fusion

and late-fusion strategies, existing LSTM-based inter-modal dynamic fusion

models, tensor-based approaches and a seq-to-seq-based model. MFM [13]

is excluded from the experiment because it is a generic structure, and all

the aforementioned models can be integrated as an encoder of the structure.

Therefore, it is fair to experiment with all the models in the absence of MFM

to check their effectiveness.

To ensure a fair comparison, we apply uniform experimental settings for

different models. For all models but LMF, we build the same neural struc-

ture for predicting sentiment based on multimodal sentence representation,

which is composed of two fully connected layers with a rectified linear unit

(ReLU) as the activation function. Since a low-dimension (around 5) vector
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representation is present for LMF as the multimodal representation, one fully

connected layer is used for sentiment prediction for LMF. L1-loss is used as

the loss function. The word embeddings are set trainable and initialized with

glove.840B.300d. The models with pre-trained contextualized word embed-

dings [14] are hence excluded to ensure identical usage of external corpora.

The optimizer is Adam for MulT and RMSprop for the other models, to be

consistent with their source code implementations. A grid search for the best

hyperparameters is performed for all models respectively, and the best per-

formances on the test set are reported out of the total number of 50 searches.

For each search, the model is trained for 100 epochs,and the model with the

lowest validation loss is used to produce the test performance.

The following hyparameters are grid-searched for our proposed quantum-

inspired multimodal fusion (QMF) model: dimension of three modality in-

puts (after dimension reduction network) tdim, vdim, adim in {5, 10, 20}, local

context lengths in powerset of {1, 2, 3, 4}, number of eigenstates for the ob-

servable in {10, 20, 30, 50, 80}, size of the last hidden neuron in {16, 32, 48, 64, 80},
batch size in {32, 64, 96} and learning rate in {0.001, 0.002, 0.005, 0.008, 0.01}.
To commensurate with the main QMF framework, the models for pre-training

the visual and acoustic phases involve tdim, vdim, adim ∈ {5, 10, 20}, size of the

last hidden neuron in {16, 32, 48, 64, 80}, batch size in {32, 64, 96} and learn-

ing rate in {0.001, 0.002, 0.005, 0.008, 0.01} as the grid parameters each.

A series of evaluation metrics are used in the experiment, in agreement

with [6]: 7-class accuracy, binary accuracy, F1 score, mean absolute error

(MAE), and the correlation with human annotation.

The models are implemented in python 3.6.8 and PyTorch 1.0.0. The
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experiments are run on a Linux server with Ubuntu 16.04.5 as the OS envi-

ronment and 4 Nvidia Tesla V100 as the GPU devices. The source code of

this work is available upon request.

8. Results and Discussion

8.1. Performance on Multimodal Sentiment Analysis

The performance on CMU-MOSEI and CMU-MOSI is shown in Tab. 2

and 3 respectively. The bold values refer to the highest performance out of

all the models for a specific metric. For each model, the percentage differ-

ence from the best score (%∆) is shown in parentheses next to its absolute

performance. The best hyperparameters for CMU-MOSEI are tdim = vdim =

adim = 10, local context length l = {1, 3}, the number of eigenstates K = 20,

last hidden layer size h = 48, batch size bs = 32, and learning rate lr = 0.002.

The best settings for CMU-MOSI are tdim = vdim = adim = 10, l = {1, 2},
K = 30, h = 24, bs = 32, and lr = 0.001 respectively.

Both tables indicate close results between our QMF and the best-performed

models in the experiment. In particular, QMF obtains the best performance

in MAE and Correlation and ranks second in binary accuracy and F1 value

on CMU-MOSI. QMF is less competitive on CMU-MOSEI compared to other

models, but it marginally underperforms the best model at a relative differ-

ence of less than 2.5% in all metrics. A significant performance discrepancy

of over 2.5% between QMF and the best model is observed solely in 7-level

accuracy on CMU-MOSI. We posit that it is because CMU-MOSI is a smaller

dataset, and a minor increase in the number of wrong samples may lead to a

non-negligible drop on the 7-level accuracy. In fact, the 7-level accuracy on
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CMU-MOSI has the greatest coefficient of variation out of all metrics, sug-

gesting low stability of this metric. On the larger dataset of CMU-MOSEI,

QMF consistently outperforms MulT on all metrics, which was previously

perceived as the best-performed model in this domain.

Another interesting finding is that different types of prior models, includ-

ing advanced LSTM-based approaches, tensor-based models and seq2seq-

based methods, are close to each other by effectiveness, and consistently

outperform the simple EF-LSTM and LF-LSTM strategies. Even though

similar trends have also been reported in the existing literature, the gaps

observed in this experiment are much smaller. We conjecture that this is

mainly because word embeddings are trained in this experiment while they

were not set as trainable in previous models. Under a fixed word representa-

tion, the complexity of the neural structures may have an enormous impact

on the representation capability of the model and hence influence perfor-

mance. On the other hand, with trainable word embeddings, even a simple

network structure may yield acceptable performance with a large number of

training parameters in the embedding lookup table. This also explains why

MulT was previously perceived as the best model but does not significantly

outperform the remaining models in our experiment.

8.2. Ablation Study

In order to examine the influence of each component in the proposed

model, an ablation study is conducted on the larger of the two datasets,

CMU-MOSEI. Based on the best settings, changes are made only on the re-

spective component, so that the performance difference is a reliable indicator

of the impact of the element.
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Model Acc-7 Acc-2 F1 MAE Corr

Vanilla LSTM

EF-LSTM 0.4753 (2.86%) 0.7921 (2.43%) 0.7895 (2.01%) 0.6560 (3.88%) 0.6268 (5.22%)

LF-LSTM 0.4719 (3.56%) 0.7911 (2.55%) 0.7855 (2.50%) 0.6669 (5.61%) 0.6102 (7.72%)

LSTM+

MARN [4] 0.4837 (1.14%) 0.8090 (0.34%) 0.8014 (0.53%) 0.6310 0.6515 (1.48%)

MFN [5] 0.4448 (9.09%) 0.8031 (1.07%) 0.7925 (1.64%) 0.7044 (11.54%) 0.6562 (0.77%)

Tensor

TFN [1] 0.4893 0.8118 0.8079 0.6465 (2.38%) 0.6515 (1.48%)

LMF [2] 0.4824 (1.41%) 0.8064 (0.67%) 0.8057 (0.27%) 0.6358 (0.68%) 0.6613

Seq-to-Seq

MulT [8] 0.4590 (6.19%) 0.8022 (1.18%) 0.7951 (1.32%) 0.6980 (10.53%) 0.6511 (1.54%)

Ours

QMF 0.4788 (2.15%) 0.8069 (0.60%) 0.7977 (0.99%) 0.6399 (1.33%) 0.6575 (0.57%)

Table 2: Effectiveness on CMU-MOSEI. The best scores out of all the models for a specific

metric are in bold. The percentage difference from the best score (%∆) is shown in

parentheses next to the absolute performance of a model.

To validate the effectiveness of the modulus-argument assignment of complex-

valued embedding, we replace the complex-valued components with their real

counterparts. However, simple removal of the arguments will lead to a de-

crease in parameter scale and may bias the results. In order to eliminate

this effect, the real-valued network QMF-real contains doubled dimensions

tdim = 20, vdim = 20, adim = 20 for unimodal inputs and twice the number of

sentiment-related aspects K = 40.

A special strategy is introduced to initialize the arguments of three modal-

ities. To check whether it positively affects the model performance, we re-

train the same model with randomly initialized arguments (i.e., QMF-rand-

init) and compare its performance with the original QMF model.
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Model Acc-7 Acc-2 F1 MAE Corr

Vanilla LSTM

EF-LSTM 0.3323 (9.90%) 0.7770 (2.90%) 0.7772 (2.60%) 0.9675 (5.78%) 0.6504 (6.54%)

LF-LSTM 0.3178 (13.83%) 0.7711 (3.63%) 0.7702 (3.48%) 0.9768 (6.80%) 0.6381 (8.31%)

LSTM+

MARN [4] 0.3294 (10.68%) 0.7959 (0.54%) 0.7955 (0.31%) 0.9576 (4.70%) 0.6739 (3.16%)

MFN [5] 0.3236 (12.26%) 0.7851 (1.89%) 0.7838 (1.78%) 0.9684 (5.88%) 0.6380 (8.32%)

Tensor

TFN [1] 0.3586 (2.77%) 0.7784 (2.72%) 0.7785 (2.44%) 0.9642 (5.42%) 0.6591 (5.29%)

LMF [2] 0.3688 0.7872 (1.62%) 0.7871 (1.37%) 0.9409 (2.88%) 0.6595 (5.23%)

Seq-to-Seq

MulT [8] 0.3528 (4.34%) 0.8002 0.7980 0.9407 (2.86%) 0.6911 (0.69%)

Ours

QMF 0.3353 (9.08%) 0.7974 (0.35%) 0.7962 (0.23%) 0.9146 0.6959

Table 3: Effectiveness on CMU-MOSEI. The best scores out of all the models for a specific

metric are in bold. The percentage difference from the best score (%∆) is shown in

parentheses next to the absolute performance of a model.

Another crucial network unit is the local-mixture strategy, where the

density matrices of local contexts are extracted and fed to the measurement.

To justify the use of this component, we run a model with a global mixture of

all words in the sentence (i.e., QMF-global-mixture), with the other setting

unchanged.

Finally, after the measurement results are outputted, a row-wise max-

pooling is conducted to identify the most representative context for each

sentiment-related aspect (i.e., eigenstate). We contrast this strategy with

the row-wise average-pooling (QMF-average-pool), which uses the average

probability of all local contexts to represent the sentence feature with respect

to a particular aspect.
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Models Acc-7 Acc-2 F1 MAE Corr

QMF 0.4788 0.8069 0.7977 0.6399 0.6575

QMF-real 0.4241 0.7301 0.7320 0.7641 0.4682

QMF-rand-init 0.4221 0.7172 0.7278 0.7583 0.5332

QMF-global-mixture 0.4324 0.7237 0.7244 0.7671 0.4215

QMF-average-pool 0.4208 0.7325 0.7401 0.7102 0.5542

Table 4: Ablation Study on CMU-MOSEI.

As shown in Tab. 4, a notable drop in performance is observed for all QMF

variants. This illustrates the usefulness of complex-valued components, ar-

guments initialization strategies, the local mixture strategy, as well as the

max-pooling for measurement results. In particular, the discrepancy with

QMF-real empirically suggests that the complex values in the components

are not merely a doubling of parameters, but bring about a meaningful combi-

nation of the respective features for the modulus and argument parts (which

agrees with Sec. 6.1) that leads to a positive performance gain for the whole

model.

8.3. Interpretation of Multimodal Decision

Our proposed model captures inter-modal interactions on the decision

level, viewing the multimodal sentiment judgment as an entanglement of

unimodal decisions. In order to understand the entangled sentiment deci-

sion, we disentangle the best QMF model on CMU-MOSEI by looking into

the decisions on unimodal and bimodal data implicitly encoded in the tri-

modal sentiment analysis. The particular approach to make this available is

introduced in Section 6.5.
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Models Acc-7 Acc-2 F1 MAE Corr

QMF-trimodal 0.4788 0.8069 0.7977 0.6399 0.6575

QMF-textual 0.3644 0.7629 0.7064 1.1789 0.4949

QMF-visual 0.2893 0.4135 0.1299 0.9400 0.1608

QMF-acoustic 0.2897 0.4137 0.1301 0.9623 0.0313

QMF-textual+visual 0.3923 0.7973 0.7780 0.7800 0.5796

QMF-textual+acoustic 0.3955 0.7971 0.7748 0.7305 0.5509

QMF-visual+acoustic 0.2053 0.2897 0.1301 1.0731 0.2073

Table 5: Unimodal and bimodal sentiment classification result on CMU-MOSEI, entailed

by the best-performed QMF learned by the whole CMU-MOSEI data.

Tab. 5 shows the sentiment prediction results based on all unimodal and

combinations of bimodal features of MOSEI. The results show that the QMF

best predicts the sentiment based on three modalities. When QMF is used

to predict sentiment based on unimodal data, it is able to give a reasonably

accurate prediction for textual features, but barely able to provide any pre-

dictions for visual and acoustic modalities. However, the QMF is able to

give better judgments when combining visual or acoustic features with tex-

tual features, as can be seen from the gradually increased performances in

both textual → textual+visual → textual+visual+acoustic and textual →
textual+acoustic → textual+visual+acoustic paths.

The results above indicate that the textual modality plays a predomi-

nant role in determining the sentiment, while visual and acoustic modalities

are less relevant to the sentence sentiment. This finding is consistent with

the prior work in this field. Furthermore, even if the textual modality carries

the majority of sentiment-related information, complementary information is
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extracted from the visual and acoustic modalities to boost the sentiment pre-

diction capability of textual modality. This process leads to reduced abilities

for the visual and acoustics to predict sentiment independently.

Summary. Overall, our proposed QMF is comparable to SOTA baseline mod-

els on both CMU-MOSEI and CMU-MOSI. The effectiveness is further sup-

ported in an ablation study, where the introduction of complex-valued repre-

sentations, mixture of local contexts, global-mixture of measurement results,

and the initialization method all positively influence the model effectiveness.

Alternatively, we present the model predictions on unimodal and bimodal

features of CMU-MOSEI to achieve an understanding of how unimodal de-

cisions compose an entangled multimodal decision.

9. Conclusion and Future Work

We have built a novel quantum-inspired framework for multimodal senti-

ment analysis. The framework borrows quantum concepts to explicitly model

intra-modal interactions on the feature level and inter-modal interactions on

the decision level. A neural network with complex-valued components is built

to learn both interactions in an end-to-end supervised way. In addition to

obtaining comparable performance to state-of-the-art models, we also con-

tribute an interpretation approach to facilitate understanding of multimodal

interactions from both quantum and classical perspectives.

We also note that the quality of the extracted visual and acoustic fea-

tures is not high. It would be a promising direction to extract clean and

sentiment-sensitive features from non-textual modalities so that the value of

models in this field could be appropriately judged. On the other hand, the
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inconsistency with quantum theory shall be handled for the measurement

component. If a legal observable with an orthogonal basis as eigenstates

and concrete meanings for observed values could be incorporated into the

end-to-end network, the model would be more interpretable and effective.
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