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Abstract

The implementation of anomaly detection systems represents a key problem
that has been focusing the efforts of scientific community. In this context,
the use one-class techniques to model a training set of non-anomalous objects
can play a significant role. One common approach to face the one-class
problem is based on determining the geometric boundaries of the target set.
More specifically, the use of convex hull combined with random projections
offers good results but presents low performance when it is applied to non-
convex sets. Then, this work proposes a new method that face this issue
by implementing non-convex boundaries over each projection. The proposal
was assessed and compared with the most common one-class techniques, over
different sets, obtaining successful results.

Keywords: One-class, Anomaly detection, Projection methods, Convex
Hull, Boundary, Limits

∗Esteban Jove
Email addresses: esteban.jove@udc.es (Esteban Jove),
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1. Introduction

Over the past decades, the use of classifiers has been commonly applied to
solve a wide range of problems in many different fields, such as medicine [1]
or industrial systems [2], among others [3]. The classification process consists
of assigning an object to its class or category, where the object is defined by a
set of feature values [4]. Typically, a classification problem can not be solved
using simple known rules [5]. Thus, the classifier implementation must face
a learning process from a set of training objects. Once it is obtained, it is
able to label unseen future objects.

Depending on the number of classes to be assigned, the classification
can be binary or multi-class. In both cases, significant amount of instances
belonging to each category must be ensured to achieve a good classifier [4].
However, in many applications, it is possible to obtain the training objects
only from one class, because obtaining data from other classes is expensive,
difficult, or even impossible [6]. All these cases, that may represent critical
unknown events, or system failures belong to the non-target class or negative
class. This kind of problems, where the objects can be assigned to a known
class (target or positive class) or to the rest of possible classes (non-target or
negative class), is defined as one-class classification [7, 8], novelty detection
[9] or outlier detection [10, 11]. The main concern in one-class classification
tasks is to obtain a proper description of the target class from the training
set, due to the lack of information about the outliers behavior [7].

From a given set of objects, corresponding to the target class, different
approaches can be considered to face the issue of one-class classification: den-
sity methods, reconstruction methods and boundary methods [4, 12]. The
most direct method to achieve a one-class classification is based on estab-
lishing a threshold in the density estimation of the training data. The use of
different density distributions, such as Gaussian, Poisson or Parzen Density,
have been proven to be successful [7]. However, a significantly high amount of
training data is needed to achieve good results. Figure 1 shows the threshold
level over a one-dimensional Gaussian distribution. If a future object does
not exceed the threshold distribution, it is classified as outlier.

Another common approach to achieve the novelty detection is based on
reconstruction methods. With this method, a model is implemented from
the training data with the aim of minimizing the reconstruction error. Once
the model is obtained, objects from non-target class would lead to high re-
construction error, and the outlier shoud be detected. This approach has
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Figure 1: Outlier detection using Gaussian distribution

Figure 2: General approach for reconstruction method

been validated with different techniques, such as k-means, Self-Organization
Maps (SOM), Learning Vector Quantization (LVQ), Principal Component
Analysis or Autoencoder Networks. Figure 2 shows the main basis of this
approach, where the real input u is compared with the reconstructed input
uR.

The last one-class approach consists of determining the spatial limits of
the training instances [4]. Hence, once the boundaries are set, the criteria
to identify a non-target class object, is based on the distance to the decision
boundary. In comparison with density methods, this approach can give better
results when the training data size is low. The use of One-Class Support
Vector Machine (OCSVM), maps the data into a high-dimensional space
and then, a hyper-plane that maximizes the distance between the data and
the origin is obtained. A similar process is followed with Support Vector
Data Description (SVDD), but in this case, a hyper-sphere is implemented
instead of a hyper-plane [7].

An effective method to obtain the approximated boundaries of a target
class is based on the convex hull of the training set [13, 14]. In this case, the
novelty detection is solved from a geometrical point of view, using the dataset
convex hull [4]. An outlier detection process in R2 is shown in Figure 3. The
grey points represent the training instances, the green point represents a test
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Figure 3: Novelty detection in R2 using convex hull

data belonging to the target class and the red point is an outlier.
This method leads to good performance in one-class classification tasks

[15]. However, the convex hull definition in high-dimensional spaces is com-
putationally expensive [16]. In [13], a convex hull approximation of a given
dataset is obtained from p random 2D projections, reducing significantly the
computational cost. The most critical weakness of this method appears when
the dataset has non-convex nature, especially when the outliers lie inside the
convex surface. This paper proposes a new method that solves the problem
of determining the limits of non-convex datasets. The proposal was validated
by testing different convex and non-convex sets, obtaining successful results
in general terms.

The paper is structured as follows: after the present introduction, the
motivation of this work is described. Section 3 provides a detailed expla-
nation about the proposed method. Then, the experiments and results are
shown in Section 4. Finally, the conclusions and future works are listed.

2. Motivation

This section provides a general overview of the one-class technique based
on convex hull calculation, whose limitations represent the main motivation
of this work. As explained in Section 1, it is possible to define the limits
of a target class from a set of training objects using its convex hull. The
convex hull CH of a dataset D ∈ Rn is known as the minimum convex set

4



that contains all points, according to Equation 1 [14].

CH(D) =


|D|∑
i=1

βixi | (∀i : βi ≥ 0) ∧
|D|∑
i=1

βi = 1, xi ∈ D

 (1)

Once the convex hull CH(D) is calculated, the outlier is detected when
a new object does not belong to the hull. This method can provide good
performance if the dataset does not have anomalous objects, since the ap-
pearance of outliers in the training set may lead to an inaccurate decision
model [17]. Thus, the size of the convex hull can be modified using a param-
eter λ ∈ [0,+∞), according to Equation 2 [18].

vλ : {λv + (1− λ)c | v ∈ CH(D)} (2)

Where v contains the vertexes of the original convex hull with respect
to the center c = (1/D)

∑
i xi,∀i = 1, . . . , |D|, and vλ contains the modified

vertexes of the convex hull. From this equation, it is concluded that val-
ues of λ greater than 1 expand the convex hull and lower than 1, contract
it. An example of this feature is shown in Figure 4, where the dots repre-
sent the original convex hull, the diamonds delimit the enlarged convex hull
and the squares represent the area contracted. This vertexes modification is
performed from the center, identified with a cross.

Figure 4: Enlargement and contraction of a convex hull

However, this approach presents two main weaknesses: the computational
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Figure 5: Novelty detection using the approximate convex hull

cost and the wrong performance with non-convex sets. The calculation of the
convex hull of a high-dimension dataset requires a significant computational
cost [13]. If a dataset is composed of N samples in Rn, the cost estimation
of the convex hull calculation is O(N (n/2)+1) [13]. This problem is solved by
using the Approximate Polytope Ensemble (APE) technique. This technique
consists of making p random 2D projections of the original dataset. Then,
for each 2D projection, the convex hull is calculated. Once the convex hull
is modeled, the criteria used to determine the nature of a test data is the
following: if the point is out of at least one of these projections, it is labeled
as outlier. The main idea of this approach can be seen in Figure 5, where a
dataset in R3 is projected in two 2D planes, where the red dot represents an
outlier. In this case, the novelty detection is correctly achieved because the
red dot is out of the convex hull of projection #2.

Despite the good performance shown by this method [13, 14, 12], its use in
non-convex sets, may lead to unsuccessful classification. When the dataset
is not convex, there are significant cases where the approximate polytope
does not detect the anomalous points. This inaccurate classification would
happen when the outliers are well separate from initial dataset but they lie
inside the convex hull. An example of this situation with a c-shaped set is
shown in Figure 6. In this case, the anomaly, represented with a red dot, can
not be detected.
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Figure 6: Novelty detection using the approximate convex hull

3. Non-Convex Boundary over Projections

This work proposes the Non-Convex Boundary over Projections (NCBoP)
method that aims to avoid the main weaknesses of APE described in previous
section. To achieve this objective, once p random projections are made, the
convex hull calculation is replaced by a non-convex polygon that will be the
border of the points projected over each of those auxiliary planes π1, . . . , πp.
The main idea of this novel method when applied over a non-convex set in R3

can be seen in Figure 7. Then, this section describes the proposed technique
to build the non-convex polygon as well as its mathematical aspects.

3.1. Mathematical background

The first problem that needs to be solved is to check if a point is com-
pletely within a non-convex polygon. Before moving on to the solution of
this problem, let us first check whether a point is to the left or to the right
of a line segment.

Lemma 3.1. Let (a, b) be a line segment with coordinates of the end points
of the segment (x1, y1) and (x2, y2) respectively. Let p = (x, y) be a point
somewhere in the plane XY , and let

Ax+By + C = 0 (3)
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Figure 7: Novelty detection using Non-convex polygon

be the equation of the segment where A = −(y2 − y1), B = (x2 − x1), C =
−(Ax1 −By1).
Then, a point p = (x, y) lies on the left of the line segment given by A,B and
C if,

Ax+By + C > 0 (4)

a point lies on the right of the line segment given by A,B and C if,

Ax+By + C < 0 (5)

Finally, the point lies exactly on the line if,

Ax+By + C = 0 (6)

Since a polygon is a combination of more than two line segments, the aim
is to check if the point lies inside the polygon

Lemma 3.2. Let a1, · · · , an be a convex polygon. The point p = (xy) is
inside the polygon if it lies on the left of edges a1a2, · · · , an−1an, ana1.

Proof. Follows from Lemma 3.1.
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Remark. It is drown a horizontal ray originating from the point p and extend
it towards infinity in the right direction, and then, it is counted the number of
intersection the ray makes with the edges of the polygon. A point p = (x, y)
lies inside a non-convex polygon if the number of intersection is even, the
point is outside the polygon, otherwise it is inside the polygon.

Proof. Follows from Lemma 3.2.

3.2. Algorithm description

Let’s describe the algorithm designed to build a non-convex polygon that
is the border of the cloud of points projected in the auxiliary planes. This
algorithm has been designed supporting us in the following works [19, 20, 21].
The step by step working of the algorithm on the point set P is given below.

Let P = {P0, P1, · · · , Pn} be a set of points in the plane XY . The algo-
rithm’s first step is to find the starting point from which the non-convex pole
is going to be built. Next, the polygon will be built so that this is the bor-
der of the non-convex hull. The detailed steps of the algorithm are enlisted
below.

1. Find the point (p0) with the lowest y-coordinate. If a tie occurs, select
the point with the lowest x-coordinate.

2. Find the k-nearest points to the current point. For this, the vectors
P0Pi with i ∈ {1, · · · , } are made and the shortest euclidean distance
in the real plane is sought.

3. Sort the k-nearest points based on the polar angle, that is, the angle
made by the line with the x-axis. This way, you will find the Pi with
i ∈ {1, · · · , n} point with the lowest polar angle. To determine if the
segment P0P1 or the segment P0P3 makes the greater angle with the axis
x, it is calculated the vector product of the vectors P1P0 and P1P3. If
the cross product is positive, it means that the vector P1P0 is clockwise
from the vector P1P3 with respect to the x axis. This indicates that
the angle made by the P1P3 vector is greater.

4. After classification, the furthest point from P0 is kept and all other
points are removed.

5. The first two points of the list are always on the non-convex hull. It
its maintained a stack data structure to keep track of the non-convex
hull vertices. It is pushed these two points and the next point P3 on
the list into the stack.
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6. Now let’s see if the next point in the list turns left or right (lemma 3.1)
from the two points at the top of the stack. If it turns to the left, it
pushed this object into the stack. If it turns right, the item from the top
of the stack is removed and the process is repeated for the remaining
items.

7. Loop to number 2 until come back to P0, then, go next step.

8. The criteria to decide if the algorithm must be stopped, takes into con-
sideration whether all the points are either in the non-convex polygon
created by the algorithm (lemma 3.1), or inside the non-convex poly-
gon (lemma 3.2). In the case that all the points are inside or in the
polygon, the algorithm ends. Otherwise, it looks for the point closest
to the point outside the polygon and then, a new iteration starts in
step 2.

4. Experiments and results

In this section, the different experiments carried out and the achieved
results are presented.

4.1. Performance assessment of the proposal

To validate the non-convex proposal, it was compared with the most
typical one-class techniques, including the Approximate Polytope Ensemble,
whose performance improvement is sought. The techniques were tested with
different hyperparameter values with the aim of selecting the best possible
configuration. These are summarized next:

• Approximate Polytope Ensemble (APE) [17].

– Number of projections.

– Expansion parameter.

• Autoencoder Artificial Neural Network (AANN) [22].

– Hidden layer function.

– Number of layers in the hidden layer.

– Outlier fraction in the training set.

• Gaussian Model (GM) [7].
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– Model width.

– Outlier fraction in the training set.

• K-Centers (KC) [23].

– Number of clusters.

– Outlier fraction in the training set.

• K-Means (KM) [6].

– Number of clusters.

– Outlier fraction in the training set.

• K-Nearest Neighbor (KNN) [24, 25].

– Number of neighbors.

– Outlier fraction in the training set.

• Minimum Spanning Trees (MST) [26].

– Length of max paths.

– Outlier fraction in the training set.

• Parzen Density Estimator (PDE) [27].

– Width.

– Outlier fraction in the training set.

• Principal Component Analysis (PCA) [28].

– Components.

– Outlier fraction in the training set.

• Support Vector Data Description (SVDD) [7].

– Kernel Width.

– Outlier fraction in the training set.

These algorithms were trained over two different groups of datasets, whose
main features are detailed in Table 1:
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• Convex and non-convex three-dimensional shapes comprise the first
group: Normal distribution, C-shaped, S-shaped, Y-shaped, and Flower-
shaped. These sets are generated artificially as a part of this work. In
this case, the randomly generated outliers are placed nearby the target
set ensuring by visual inspection that they are outside the positive class
boundaries (Figure 8).

• The second group of sets is collected from real applications, available in
the ODDS benchmark [29]. In this case, the datasets used were: Breast
Cancer Wisconsin, Cardio, Ionosphere, Letter Recognition, Vowels and
Wine. They are chosen because they belong to a significant variety of
fields, with also a wide range of dimensions, as shown in Table 1.

Dataset Instances Target size Outliers Dimension

Normal 10249 10000 249 3
C-Shaped 7649 7500 149 3
S-Shaped 11879 11700 179 3
Y-Shaped 6025 5850 175 3
Flower-Shaped 9143 9000 143 3

Breast Cancer 683 444 239 9
Cardio 1831 1655 176 21
Ionosphere 351 225 126 33
Letter Recognition 1600 1500 100 32
Vowels 1456 1406 50 12
Wine 129 119 10 13

Table 1: Main features of each dataset

To evaluate the performance of the classifier, the Area Under the Re-
ceiving Operating Characteristics Curve (AUC) parameter was taken into
consideration [30]. This parameter, that establishes a relationship between
true positive and false positive rates, presents two main advantages. First,
it is able to offer a single measure of the classifier performance, representing
the probability of classifying as positive a random positive instance [30]. The
second advantage of this parameter is the insensitivity to classes distribution
changes [31], that is a especially relevant feature in one-class problems. A
k − fold cross-validation with k = 10 was implemented to ensure a reliable
measure of each technique performance.
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Figure 8: Representation of the synthetic datasets used to validate the proposal
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4.2. Results

The experiments configuration described above offered the results pre-
sented in this subsection. First, Table 2 shows the best AUC for each tech-
nique and dataset, which is the criteria to choose a configuration. Then, the
time needed to implement the classifier and the time to calculate the nature
of a test sample are shown in Tables 3 and Table 4, respectively.

NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 100.00 100.00 99.57 100.00 99.97 100.00 100.00 100.00 94.95 98.18 99.99
C-Shaped 93.93 85.64 86.02 84.98 96.29 95.29 97.54 98.81 96.39 82.85 99.69
S-Shaped 92.63 80.76 86.02 84.98 96.29 95.57 98.97 98.84 95.92 74.74 94.83
Y-Shaped 98.83 66.42 83.44 61.92 92.96 93.34 97.28 98.17 94.84 62.46 98.61
Flower-Shaped 98.07 60.75 80.72 84.68 89.80 89.70 97.50 98.53 94.69 80.72 93.39

Breast Cancer 95.65 89.87 94.87 95.88 94.80 96.44 96.43 95.95 88.52 94.35 96.35
Cardio 93.96 92.36 88.35 88.88 88.62 90.82 92.18 92.40 53.88 89.00 93.06
Ionosphere 90.69 90.81 90.76 90.19 91.61 90.70 91.19 90.88 53.64 91.94 92.03
Letter Recognition 73.03 70.08 73.20 77.43 61.02 70.62 87.40 86.83 50.50 76.05 73.53
Vowels 91.32 84.61 88.01 89.39 83.45 89.19 96.71 98.00 50.32 89.71 89.11
Wine 98.18 95.46 93.64 97.27 90.96 97.73 96.68 97.68 55.46 95.00 92.73

Table 2: AUC results over the tested datasets

NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 0.55 0.07 1.45 0.03 62.70 0.07 12.96 30.77 20.82 0.30 1631.60
C-Shaped 0.69 6.62 2.19 0.01 34.01 0.04 6.39 13.32 8.97 0.05 401.87
S-Shaped 0.61 2.95 2.19 0.01 34.01 0.18 22.83 67.76 18.80 0.06 1263.21
Y-Shaped 1.02 0.46 1.67 0.01 23.44 0.03 3.81 6.96 3.60 0.05 211.69
Flower-Shaped 11.56 1.00 0.48 0.01 50.78 0.02 8.78 17.39 10.73 0.06 601.70

Breast Cancer 1.20 0.11 0.21 0.01 1.20 0.00 0.01 0.04 0.10 0.02 0.07
Cardio 9.68 0.19 0.17 0.01 1.30 0.01 0.22 0.42 0.49 0.02 5.40
Ionosphere 1.54 0.10 4.05 0.01 0.11 0.01 0.01 0.01 0.04 0.02 0.02
Letter Recognition 12.98 0.29 787.64 0.01 0.92 0.03 0.28 0.61 0.46 0.05 7.98
Vowels 7.96 0.78 1.95 0.00 0.69 0.01 0.16 0.31 0.35 0.02 1.75
Wine 1.47 0.01 1.72 0.01 0.15 0.01 0.01 0.02 0.01 0.04 0.02

Table 3: Training times over the tested datasets

4.3. Statistical analysis

As the main goal of the experiments setup is to validate the proposal, a
statistical analysis is mandatory [32, 33]. In this work, two different statistical
analysis were carried out. First, a Bonferroni-Dunn test was developed to
compare the NCBoP with the rest of conventional one-class techniques [34].
After checking the results achieved over each dataset with a significance level
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NCBoP APE AANN GM KC KM KNN MST PCA PDE SVDD

Normal 25.96 3.18 0.01 0.00 0.12 0.00 0.58 1.71 0.14 0.01 0.14
C-Shaped 45.45 437.98 0.02 0.00 0.16 0.01 0.38 0.71 0.12 0.01 0.01
S-Shaped 26.72 125.09 0.02 0.00 0.16 0.01 0.69 1.96 0.21 0.01 0.12
Y-Shaped 79.67 34.74 0.02 0.01 0.11 0.01 0.25 0.76 0.10 0.01 0.01
Flower-Shaped 655.75 54.97 0.02 0.00 0.15 0.00 0.41 1.01 0.11 0.01 0.19

Breast Cancer 257.70 23.03 0.08 0.02 0.01 0.01 0.02 0.11 0.03 0.01 0.01
Cardio 1703.62 32.77 0.04 2.80 0.03 0.01 0.07 0.82 0.04 0.01 0.01
Ionosphere 637.97 38.61 0.10 0.04 0.04 0.02 0.03 0.22 0.05 0.02 0.02
Letter Recognition 3062.40 68.04 0.10 0.01 0.07 0.03 0.10 1.23 0.09 0.03 0.04
Vowels 2469.40 241.39 0.07 0.01 0.05 0.02 0.07 0.45 0.05 0.01 0.02
Wine 4117.04 25.23 0.88 0.15 0.27 0.35 0.16 0.46 0.26 0.26 0.13

Table 4: Calculation times over the tested datasets

at 5 %, NCBoP only performs significantly better than PDE. The rest of one-
class techniques remain inside the critical difference (CDD) around NCBoP
ranking, as shown in Figure 9.

However, this method is generally conservative, so a Wilcoxon signed-
ranks test is also applied to evaluate the NCBoP performance [34]. This
non-parametric test establishes a comparison between each pair of classifiers
(NCBoP against the rest), taking into consideration the differences over each
dataset, ranking these differences. This test leads to two main conclusions
(p=0.05):

• NCBoP performs significantly better than APE, AANN, GM, KC, PCA
and PDE.

• The null hypothesis of similar performance is accepted for KM, KNN,
MST and SVDD.

4.4. Results overview

This subsection aims to detail an overview of the final results previously
presented. In general terms, the proposed approach presented a successfully
performance with all datasets. Furthermore, it is important to remark that
this novel method overcomes the APE technique in all sets but one, with a
remarkable difference in non-convex sets (C-Schaped, S-Shaped, Y-Shaped
and Flower-Shaped). Then, the weaknesses exposed in the motivation section
seems to be overtaken.

Besides the AUC performance, that has been analysed through the sta-
tistical analysis, it is important to consider the computational cost of each
technique, in terms of training time to achieve each classifier. In this field,
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Figure 9: Graphical representation of Bonferroni-Dunn test (p = 0.05, CD = 3.9697)

NCBoP presents greater values when it is tested over the real dataset instead
of the synthetic datasets, although the synthetic ones have a significantly
more samples. Then, we can conclude that working with high-dimensional
datasets results in greater training times.

The NCBoP presents a main point to be reinforced, which is the time
needed to estimate the label of a new test sample. This situation is con-
sequence of the number of projections configured to achieve the classifier.
Increasing the number of random planes implies an increase in the number
of projections to check if the data belongs to the non-convex polygon.

5. Conclusions and future works

The present research work proposes a novel method to implement one-
class classifiers based on boundary methods. The main idea of this technique
to improve the existing APE algorithm when it is applied over convex and
non-convex sets. With this aim, instead of a convex hull, a non-convex poly-
gon is constructed over each random projection of the training set. The
proposal has been validated over eleven different datasets: five of them cor-
respond to synthetic convex and non-convex three-dimensional sets, and the
six left correspond to datasets from real applications. The proposal is com-
pared with ten typical one-class techniques. After a statistical analysis, it is
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concluded that NCBoP presents performance rates that matches, at least all
of them.

This contribution can present an interesting support to detect deviations
in a wide variety of fields. The increasing competitiveness and the pursuit of
energy efficiency, especially in developed nations, are focusing the attention
in tools that help to detect anomaly situations. Hence, its implementation
can complement predictive and corrective maintenance plans, and it can be
a key part of systems optimization procedures in industries. In this sense,
the low computational cost compared with other cutting edge one-class tech-
niques can be a really interesting feature when the novelty detection system
is implemented using the edge computing methodology.

As future works, there are many lines that can continue with the present
research. First, it could be interesting to think about an online implementa-
tion that could offering the possibility of modifying the non-convex polygons
as the system evolves. To implement this idea, the training time should be
reduced. Then, it could be interesting to perform a preliminary study to de-
termine the proper number of projections based on the number of instances
and variables. Since many systems could present different operating points
corresponding to the target class, which are clearly separate, the implemen-
tation of hybrid topologies could represent a good idea. These topologies
could consist of dividing the target class into different groups using cluster-
ing algorithms.
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