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Two Approaches to Partial-nodes-based State
Estimation for Delayed Complex Networks with
Intermittent Measurement Transmissions

Fuad E. Alsaadi, Zidong Wang, and Abdulhameed F. Alkhateeb

Abstract—This paper is concerned with the state estimation
problem for delayed complex dynamic networks with non-
identical local dynamical systems. The state estimation ison-
ducted based on constrained information of the measurement
outputs. Specifically, the network outputs are available oly from
a portion of network nodes, and such outputs are transmitted
from the network nodes to the estimator in an intermittent
way. By utilizing the Halanay inequality method as well as tke
average dwell-time approach, two sets of sufficient conditns are
established that ensure the error dynamics of the state estiation
to converge to zero exponentially, and explicit expressianof the
estimator gains are further characterized. Finally, a numeical
example is presented to demonstrate the effectiveness ofeth
proposed approaches.

Index Terms—State estimation; complex networks; partial-
nodes-based measurement; intermittent transmission.

I. INTRODUCTION

utilizing the available output information. Generally sge
ing, the Luenberger observeland the recursive estimator
are two common structures of the state estimators [3], [4],
[15], [19], [40]-[42]. The former requires constructing an
observer to track system states, while the latter givesraiti
state estimates. In recent years, state estimation prshiem
complex networks have aroused considerable researcleshter
[14], [20], [21], [25]-[27], [44], and inspiring results ha
been reported for various complex networks, e.g. delayed
complex networks [25], [47], stochastic complex netwos [
[37], [38], and complex networks subject to network-inddice
phenomena [10].

It is worth noting that, in the aforementioned work, an
implicitly assumption is that the measurement outputs are
available fromall network nodes for the state estimation tasks.
This assumption might hold for low-dimensional systems or
complex networks with small amount of nodes, where the

In the past few decades, complex networks have attracte@asurement outputs are easily accessible from economic
increasing attention from both science and engineerinddiel reasons. Unfortunately, for complex networks of large escal

Mathematically, a network is represented as a graph thaith an excessive number of nodes, measuring the outputs of
consists of nodes (or vertices) representing the objects alirnetwork nodes can be expensive and sometimes imprhctica
agents in the network, and a set of edges (links or connegjtiom fact, it is often the case that we can only acquire network

representing the interactions (or relations) of the nodgg%],

outputs from just a small portion of nodes. Thus, it is dédea

[17], [18], [28], [29]. Common examples of networks includdo estimate all network states via measurements of a fractio
the Internet, the World Wide Web, and social networks. Duef nodes, which results in the so-called partial-nodesthas
to complicated links and interactions between nodes, cexnp(PNB) state estimation, and a number of results have been
networks exhibit abundant dynamical behaviors (e.g. syavailable in the literature [7], [20], [21], [26], [39].
chronization and spatiotemporal chaos) that have receaved On the other hand, communication constraint is ubiquitous

constant research interest [2], [8], [16], [31], [46].

in control systems. In the implementation of system cordrol

In practical applications, the knowledge of the states ofsfate estimation, a common case is that the signal is traiesini
system is crucially important for certain tasks or purposes anintermittentway, which is either for the sake of saving
Unfortunately, the system states are not always easy to riesources or due to hardware limitations [12], [32]-[35}it@
measured (or observed) directly. Instead of the systerassta few results on control/estimation with intermittent meas
in most cases, what can be accessed are system outpiugats have been published in the literature on various sopic
s/measurements. Thus, the state estimation problem arisesh as synchronization control [24], [44], [45] and Kalman
out of the desire to estimate unmeasurable system statesfilbgring [11], [14], [22], [30], [48]. Nevertheless, to theest
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of our knowledge, little progress has been made on the PNB
estimation problem for complex networks with communicatio
constraints, and this constitutes our main motivation.

The main contribution of this paper can be highlighted as

follows.

1) A novel state estimation framework is developed where
the estimator is constructed based on the outputs just
form a fraction of network nodes (rather than all the
nodes), and the output signals are transmitted to the
estimator in an intermittent way.
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2) The desired estimators are designed by separately usihi (¢) a

the Halanay inequality approach and the average dwell-g¢ =Aidi(t) + f(2:(t) + g(i(t — 7)) — CZ L5 (1),
time (ADT) approach. In both cases, sufficient condi- i l<i<N =1 3
tions are derived to ensure the exponential stability of otl=sisH, (3¢)

the corresponding error dynamics. _ whered;(t) is the estimate of;(t), and K; € R"*™ is the
3) A comparison is made between sufficient conditionsstimator gain matrix to be designed.

derived from the Halanay inequality approach and the penote by, () = &;(t) — 2,(t) the estimation error. Then,

ADT approach. from (1) and (3), it is clear that the estimation eregf?)
satisfies
[I. PROBLEM FORMULATION dei(t)

Consider the following delayed dynamical complex network d¢ =(Ai = KiC)eit) + f(it)) + 5(ealt = 7))

with N nodes described by N
— CZlijFEj(t), te [ST, sT + Tl], 1 <1< ZQ,
=1

dz;(t) N -
C}t =A;xi(t) + f(@: () + g(zi(t — 7)) — CZ liTz;(t), (4a)
=1 N
i=12:0 N, @ T i)+ ) + el =) — el ),
where z;(t) = (zi1(t), zia(t), - - ,:cm(t))T denotes the n- e lsT+ T (s+ )], 1<i< ZOZ’ZI (4b)

dimensional state vector of théh node;A; is a real constant
matrix; f,g : R® — R™ are continuous nonlinear vector- de;(t) - _
valued functions; is the time delay; and. £ (I; ;) is the ¢ =Aiei(t) + flei(t) + glei(t — 7)) = Czlijreﬂ'(ﬂ’
Laplacian matrix of the network (1) with ; < 0 (j # ¢) and
lii = =>4 liy Itis well-known thatl; ; < 0 if there is
a directed edge from nodg to nodei, otherwisel; ; = 0. wheref(si(t)) = f(&:(1) — f(z:(t), and §lei(t — 7)) =
I' = diag(y1,72, -+ ,¥) > 0 is an inner-coupling diagonalg(@_(t_ 7)) — flai(t — 7).
matrix linking the jth state variable of each node~if # 0. For (4), we denote (1) — (aT(t) T(#), - el (t))T'
Remark 1:Notice that the individual local dynamical nodes ot 1 . Estimator 3) isl said ?o be a&x;:)o];ential state

n ”e‘WOTk (1.) are heteroggneous. Therelforg, in this paper, estimatorof the complex network (1) if there exist constants
state estimation problem will be coped with in a more generilj

scenario. Our goal is to estimate states of network (1) via’ >0, ju> 0 such that (4) satisfies
measurements from a portion of network nodes. lim |E(t)] < Mg exp(—put).

Assume that the outputs of the firlgt nodes are available. tmroe
To reduce unnecessary consumption of limited communieatio In this paper, our objective is to design the exponentidésta
resource or for other reasons, it is also assumed that tipeipugstimator for network (1). All the measurement information
signals are transmitted in @ntermittentway. To be specific, available to us is just from a fraction of network nodes. Be-
the output of node (1 < i < ly) is described as sides, the measurement outputs are received in an intentitt
way. By means of the Halanay inequality method and the ADT
approach, respectively, the sufficient conditions arebdistaed

i=lg+1<i<N, (4c)

Ci:vi(t), te [ST, ST+T1), 1< <lp;

yi(t) =4 0 telsT+ T, (s +1)7T), 1 S_i < lo; such that the error dynamical system (4) is exponentially
0, telsT (s+1)T), lo+1<i< Nv(z) stable. Furthermore, the corresponding gain matricesiaeea g
. explicitly.
wherey;(t) = (yi1 (1), yi2 (1), -+ Yim, (1)) € R™ (1 <m; < pHCty
n) is the output of theith node,C; € R™i*™ is known, T
stands for the output transmission peridd, is the duration Il. "M AIN RESULTS AND PROOFS
time of output transmission over a period, d@he-7; denoted  |n this section, we shall deal with the PNB estimation
by T is the transmission intermission. problem of network (1) by the Halanay inequality method and
For network (1) and measurement (2), we construct tiige ADT approach, respectively.
following state estimator. For a vector-valued functiop defined over the intervai —
A N 7,t], denotep, by ¢.(s) = o(t +s), —7 < s < 0, with the
dai(t) _, 5 S (f— 7)) — Ta. norm |¢;| £ su lo(t + 5)|.
=Aidi(t) + f(@:() + g(@i(t — 7)) — ¢ > 1T (t) % P_r<s<o ¥
dt = The following two lemmas are used in the derivation of the
+ Ki(yi(t) — Cida(t)), main res“'ts-([ 3l [45]) du: | )
. Lemma 1 ( [13], [45]): Lett >ty andu: [tg — T, +00) —
<i< . .
te[sT,sT+ ] 1<i<lh, N (32) [0,+00) be a continuous function. Suppose that- ¢ > 0
dz;(t . . . . andw satisfy the following scalar differential inequality:
PO A1)+ @)+ 9(it - 7)) — e DTy, 2 SV 0 fualty
=1 du(t)

R SRS G
te[sT+Ti,(s+1)T), 1<i<ly, (3b) g = ~pult) +dludl, ®)
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then

U(t) < |ut0| eXp(_’Y(t - tO))v t 2 to, (6)

where~ is the unique positive solution of the equation
v —p+qexp(yr) = 0.

Lemma 2 ( [13], [45]): Lett > ¢y andu: [to — T, +00) —
[0,4+00) be a continuous function. Suppose that 0,q > 0
andu satisfy the following scalar differential inequality:

du(t)
dt

< pult) + qlud, (")

then
u(t) < ug, exp((p + q)(t —to)), t > to. (8)

Assumption 1:The nonlinear vector-valued functioffisand
g are continuous and satisfy

|f(x) = f(y)] < V1lx —yl,
l9(x) — g(y)| < Dalz —yl,

whered, andv¥, are known constant scalars.

Ve, y € R,
Ve, y e R,

)
(10)

A. Halanay inequality method

In this subsection, we will discuss the existence of the
exponential state estimator based on the Halanay inegualit

method.
In the sequel, for notational convenience, we denote
A =diag(Ay, As, -+, An),
O =diag(wy,wa, -+, Wiy ),
K =diag(Ky, Ko, , K,),
C =diag(Cy, Cy, -+, Cy, ),
_ [K
w=a).
A =A—KC.

Theorem 1:Assume thatr < min{7y,7 — T1}. Then,

under Assumption 1, estimator (3) is an exponential state
estimator for network (1) if there exist a matri, scalar

parameters), > 0, anddy > 0 such that

A + AL —c¢(L®T)

— (LT @) + (Jo + 291 +92)1 <0, (11)
A+ AT —e(LaT) —c(L" ®T)

+ (= o + 201 + 92)1 <0, (12)
(T, —7)—o(T —Ty) >0, (13)

where~ is the unique positive solution of the equation
v — g+ g exp(yT) =0, (14)
and

0="1Vo + Vs (15)

Proof: To begin with, choose the following Lyapunov
function

(16)

N
V(t) = [E@)]* = Zaz‘(t)ET

Then, the time derivative oP(¢) along the trajectory of (4)
can be piecewisely calculated as follows.
1) Whent € [sT, sT + T3], one has

lo N
Vt)=2zsf(t)a +2 Y e

i=lp+1
= 225
N
+g(at—1) =) lijFEj(f)}

=1
+2Z

i=lp+1

N
+glat—1) =) lijFEj(f)}

=1

[ (A; — K;C)ei(t) + Flei(t)

(1) |Aiei(t) + Flea(t)

—225 V(A4; — K;Cp)e;i(t —I—QZ (t)A;e(t
1=lp+1
+2Zs t)) + gles(t —7))]
17)

—2¢ Z el (t) Z lijle;(t)
=1 =1

Utilizing the Cauchy inequality and Assumption 1, we
obtain

2e] (1) f(ei(t)) < 20es()]| fi(t)] < 201lei(t)]?,  (18)
and
2T (1) g(es(t — 7)) < 2eq(t Hf] gi(t—71) )‘
< 2dsfe;(t)]ei(t — 7))
< Da(lei(t)? + et = 7)%).  (19)
Therefore, it follows that
267 (1)[F(e4(t)) + d(ea(t = 7))]
<(201 4+ 92)e] (Wei(t) + Voef (t —T)ei(t — 7). (20)

Substituting (20) into (17) yields

)+2 Z Ajegi(t

V(t) <2 el (t)(Ai - KiCi)eilt

=1 i=lp+1
N
+y [(2191 +99)eT (#)ei(t) + Do (t — Tei(t — 7)
= N N
—2¢Y (1)) 1Te;(t) (21)
=1 =1
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Note that In fact, it follows from (26) that
N N
S F 0D e (1) = E° (L @ TIEN), V0 = Mlesp(an. fort € 0. 1l 29
i=1 1=1 Whent € [ Ty, T, from (27) and (28), it is also clear that,
then (21) can be rewritten as V(t) < Vry | explo(t — T1))
V(t) <ET(t)[Ax + AR —e(L@T) — (LT ®T) < |Volexp(o(t — T1) — v(T1 — 7)) (29)

+ (o + 201 + 92) IJE(D) In general, it can be derived by induction that, fore
—9oET(ME) + 0ET (t—T)E(t — 7). (22) [sT, sT + T4,

Applying the condition (11) to (22) leads to V(t) < Vol exp(—v(t — sT) — sy(T) — 7) 4 so(T — T1)),

V(t) < —0oET(B)E() + 92T (t — T)E(t — 7), (30)
and fort € [sT + Ty, (s+ 1)T],

: V(t) < Vol exp(o(t — sT —T1)

which implies

V(t) S —190V(t) + 192V(t - T). (23)
- | —(s+ DTy — 1) +so(T —T1)).  (31)
2) Whent € [sT + T4, (s + 1)T7, similar to previous steps,
we have For all t € [0, 4+00), one infers from (30) and (31) that
. N VT —7) —o(T —Th)
V() =2l Beilt) V(t) < [Vl exp ( - — t
i=1 T (Th —
N + %) (32)
=23 T ()| Aseilt) + f(ei(t), eat — » _
;EZ ( )[ eilh) + f(Eilt), ealt = 7)) Noticing thatV(t) = |£(¢)|?, we arrive at
N
YTy —7)—o(T =T
3t Te (0] £0)] < g0l exp (- 11D eI =T,
=1 _
T PR
T - T ($)e.
<2y el (A=) + ) [(2191 +95)eT (e (1) ) T ) — o —T)
i=1 i=1 = My exp ( — t), (33)
N N 2T
+ Dol (t — T)ei(t — T)} —2ey el ()Y 1iTei(t) where My = |€o| exp (VT1(27% -n)_ -
. . e = Remark 2:In Theorem 1, sufficient conditions for the ex-
=& () [j4+“4 —e(L®T) —c(L” ®T) istence of an exponential estimator are derived based on a
+ (— Jo + 201 + 192)[]5(15) given Lyapunov function. Such an Lyapunov function might
+ DET(R)E) + 02T (t — T)E( — 7). (24) Cause some _conser\{atism. Th_erefolre,.how to redgce such
conservatism is a topic of practical significance that istivor
Substituting the condition (12) to (24) yields further study.
V() < DoET (1)E() + 26T (¢ — PE(E — 7), Remark 3:In Theorem 1, condition (13) can be rewritten
() < BoET(OE(H) + 9:E7 (¢~ )E(t =) asy(L — Z) — o(1 — L) > 0, from which we can see that
which implies condition (13) requires the time of the output transmisgmn
. - take a great proportion, which is in agreement of the common
V() < GoV(t) + 9Vt — 7). (25) oo o PP g

Now we can proceed with the estimate on the asymptotical
behavior ofV'(¢) based on the results of the steps 1) and 2)8. Average Dwell-Time approach

First, notingvo > v> and using Lemma 1, one has from In the previous subsection, the existence of an exponential

(23) that estimator is discussed via the Halanay inequality method. |
V(t) < Vi, exp(—(t —to)), t >tg >0, (26) Theorem 1, a restricted condition (< min{7%,7 — T4} )
) ) - ) is imposed on time delays, which might limit the application
where- is an unique positive solution to of the results in Theorem 1. This restriction is lifted in the

following theorem based on the ADT approach.
Theorem 2:Let matricesk;(1 < i < 3) and constant scalar
Also, from (25) and Lemma 2, we obtain o > 0 be given. Then, under Assumption 1, estimator (3) is
an exponential estimator of network (1) if there exist twtsse
V() < Vig exple(t —to)), £ 2 t0 20, (27) of positive matricesP; = diag(Py;, Py, ..., Pn;) and Q; =
wherep = 9y +19,. Then, as in [13], [45], the evolution law of diag(Qu, Q2 -, Qm). two positive diagonal matriceA =
V(t) can be obtained by means of the mathematical inductiatiag(d1, d2, ..., ) and X = diag(o1, 02, ...,on), and scalar

v — Y+ Iz exp(y7) = 0.
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constantsk; > 0, ko > 0, w > 0, u > 1 such that the
following inequalities hold:

Q1 < ki, Qp < kKol (34)
Pi < uPj, Qi < pQy, fori,j=1,2, (35)
velp o) <o (36)
52 [7512 _81’39} <0, (37)
0;—?—1%“—5(1—%»0, (38)

where
II=P Ak + A%;’Pl + aPy + 'Pl(A_l @ I)P1

+ 03 AR I) 4 k193] — P (LRT) — (LY @ T)Py,
= Po A+ ATPQ + (a — w)PQ + 'PQ(271 X I)PQ

+ 93 (E @) + kW3] — cPo(L@T) — (LT @ T) Py,
B =—a+ w,
and K, Ax are defined as before.
Proof: Rewrite (4) in the following compact form:
dE(t
L _axew) + FEem) + e )
—co(L@D)E(), t e [sT,sT+Ty), (39a)
deE(t -
) Ak + FEw) + O - )
—c(L@D)E®), te[sT+ T, (s+1)T), (39b)

T

(fT(ﬁl(f)),fT(ﬁz(f))a-.wa(&zch(f))) ;
(9" (e1(1)), 3" (e2(t), -, g7 (en (1))

where F(E(t))
andG(£(t)) =

Different from the Lyapunov function in Theorem 1, con-

struct the following piecewise Lyapunov-Krasovskii fuiocial

V(t) = Vi(t) + Valt) (40)
where, fort € [sT,sT + T1),
Vi(t) =ET()PLE(t) = ZNJ el () Puei(t) (41)
Va(t) = / ea“—“éT(;(e))Qléw(e»d@, (42)
and fort € [sT + T1, (s + 1)T),
Vi(t) =T ()P2E(t) = is?(t)ﬂgsi (1), (43)
Va(t) = /t tT e*O=OGT(£(0))02G(£(0))d, (44)

Then, the time derivative of(¢) along the trajectory of (39)
can be piecewisely calculated as
1) Whent € [sT, sT + Ty), one has
V(1)

=V (t) + V1), (45)

where

Vi(t) =267 (1P E (1)

F(E®) +GEE—T))
(46)

=267 (1)P1 [ AKcE(t) +
(L ® 1“)5(75)} ,
and

Vo (t)

—a/t DG (£(0)Q1G(E(0))db
+ATEM)QGED)
—TGT(ERX —T)QGER 7))
:—oﬂ?z(t)jr GT(EM)QGE®))
— TG (E(t =) QG(E(t — 7))
In (46), it is clear that
25T( )PLE(E())

(47)

[6; el (t) P Puel () + 018ie] (t)e:(t)]

(with Lemma 1
= ETWPI AT @ D)P1E®R) + 9IET (1) (A @ T)E().
Similarly, in (47), one has fron@; < ;[ that

GT(E)QGE®) <mGT(E() QG(E(R))
< m92ET(HE(T).

Substituting (46)—(49) into (45) leads to

(48)

(49)

V(t) + aV(t)
=ET(t)[PrAKk + ALP1L+ aPL + Pi(AT @ )Py
+92(ARI) + k1951 — P (L ®T)
— (LT @T)P1]E() + 25T( HYPLG(E(t — 7))
— e TGT(E(t — 7)) G(E(t— 7))
= £M(B)pE(t) <0,

where&(t) = [E7(1), GT(E(t—7))]".
2) Whent € [sT + T1,(s + 1)T), the time derivative of

(50)

V(t) along the trajectory of (39) can be calculated as follows:

Vi(t) =267 ()2 [ AE(t) + F(E(1) + G(E(t — 7))

L ® 1“)5(15)} , (51)
and
Va(t) = — aVs(t) + GT(E(1) QG(E®M)
— e GT(E(t—T7))QGE(t-1).  (52)

Similar to (48) and (49), we have

26T ()P F (E(1))
<ETMP(Z @ DPLE) + 2ET (1) (X @ DE(L), (53)
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and
GT(E() QG (E(1)) < mat3ET (HE(1). (54)
From (51)—(54), one infers

V) + (o — w)V(1)

= ET () [P2A + AP+ aPy + Po(S 1 @ )P,
+ 93X R 1) + ko3l — wPy — cPa(L ®T)
—c(L@D)P]E(t) + 25T( HP.GE(t — 7))
—eTGT(E (t —7))Q:G(E(t - 7))

= T (H)Pe(t) <0. (55)

Now, we can analyze the convergencelit). First, from
(50) and (55), we have

V(t) < —aV(t), t € [sT, sT+T)), (56)
V() < V() te ST+ Ty, (s+1)T),  (57)
where 3 = @ — «, which implies that
V(t) < Verexp(—a(t — sT)), t € [sT, sT +T1), (58)
V(t) < Veryr, exp(B(t — sT —T1)),

te[sT+Ty, (s+1)T). (59)
Thus, whert € [0, T7), one has
V(t) < Vo exp(—at). (60)

DenoteV, - = lim,_,,- ;. Noting (35), it is clear that
Vsrir, < ,LLVST+Tf5 (61)

and

Vst < mV(s41)1-- (62)
Then, whent € [Ty, T), it follows from (1) that
V(t) < Vi, exp(B(t — Th))
< pVp- exp(B(t — T1))
< Wy exp(—aTh) exp(B(t — Th))
= poexp(—aTi + B(t — Th)). (63)
Similarly, whent € [T, T + T1),
V(t) < Vrexp(—a(t — T))
< pVr- exp(—a(t = T))
< pVoexp(—a(t —T) —aTy + B(T = Ty)), (64)
and whent € [T + Ty, 2T),
V(t) < Vrir, exp(B(t — T —T4))
< (Vg g exp(B(t = T — T))

< iVoexp(B(t =T —Tr) = 20T1 + (T = Th)).
(65)

By induction, we have the following results
V(t) < p**Voexp(—alt — sT) — saTy + sB(T — T1)),
t € [sT, sT +Ty), (66)

V(t

) < Vg exp(B(t — sT —Th) — (s + 1)aTy
+s8(T —T)), te[sT+Ty, (s+1)T)

From (66), it follows that, for € [sT, sT + T1),

(67)

. . 2lnp oy Ty
V() < Oexp( Tt — STt + sTH(1 — ?))
~ oy 2Inp T aTl
<o (= (7~ = — A=)+ ).
(68)
Next, from (67), it is not difficult to see that, fdre [sT +
Tla (S + 1)T)
V(t) < p®* PV exp(B(t — sT —T) — (s + 1)aTy
+s8(T — T1))
oy 2Inp T
<uexp (- (S - —E - B0 - 2))t). (69)
From (68) and (69), we obtain
- - T 21n,u T?
V(t)SMVoeXP(—(aT —5(1—?))t+ T)
(70)
Setting
\ _\/ Vo expla )
0 min{/\min (7)1)7 Amin(PQ)}7
we can conclude that
T | T
E(t) < Moexp(— (- 28 Ba_ %))t). (71)

2T T 2

Therefore, the estimation errors converge exponentially t
zero, and the proof of this theorem is now complete. m

In Theorem 2, the exponential convergence of the estimator
has been analyzed with known gains. Now, let us turn to the
design problem of estimator (3).

Theorem 3:Under Assumption 1, for a given constant
scalara > 0, estimator (3) is an exponential state estimator of
network (1) if there exist two sets of positive matricBs =

diag(Pli, Pgl',

,Pni), Qi = diag(Qui; Qai, ..., @ni), tWo
positive diagonal matricedA = diag(dy, 0o, ...,
diag(o1,09,...,0n), @ matrix X = diag Xy, Xo, ...,

dny) andX =

Xig)s

constant scalarg; > 0, ko > 0, @ > 0, © > 1 such that
the following inequalities hold:

where

Q1 < ril, Qs < kol
Pi < pPj, Qi < pQy, fori,j=1,2,

[= P1 P
VAP T, 0 | <o,
| P1 0 -A®I

EEE: Py

v £ 732 —eT QQ 0 S O,
732 0 X1

oty Inp B T

- _ P
o7 T Um0

E=Px +Pk+aP; +97(A 1)
+r193] — P (L&T) — (LT @ T)Py,

(72)
(73)

(74)

(75)

(76)
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FEPAT AR (@ i ] Ko |-0.04T2 94080 |, o = 8.8672, G0 = 76771
+ 1pU3l — cPo(L&T) = o(LT @ T)P, Ctoer sos0 |
f=—a+w

By the Newton-Raphson method for solving transcendental
equation (14), we obtain an approximation of the unique

. . - o A ; i .. :
with Px = PA-XC, X' = 0} - In this case, the estimator ,nqiive solution:y = 0.5682. Take T = 49, T} = 46,7 = 3.

gain K; is designed by Then, it can be verified that condition (13) is satisfied. Eher
. fore, from Theorem (1), the estimation error approaches to
Ki=PF X (77) zero exponentially.

Proof: The result follows readily from Theorem 2, andth In fa![(_:t, Ithe nﬁmer:cca[{|3|rr_l1_ulabtlon 'S N agr_e;_ement with the
the proof is therefore omitted here. - eoretical result perfectly. To be more specific, we ranigom

Remark 4:In this paper, the state estimation problem ha%hc')ﬁ]zetotrwznfjettshecg t'rr:g'a: X?htj'gi ];C])cr t::ee nré?tvgcr)lr(ks?:tg g]ne q
been investigated under the circumstance that the outp %' ! evoluti new .
estimate are shown in Fig. 1 and Fig 2, respectively.

are available only from a fraction of network nodes, an urthermore, estimation errors are depicted in Fig. 3, Wwhic
signals are transmitted in an intermittent way. Two appheac ’ pict 9. 2,
t%réow such errors converge to 0 exponentially.

have been applied to establish the conditions ensurina
existence of an exponential estimator. It should be

x108 x10%
out that, though both conditions obtained are suffici ar e |
don’t contain each other, which is illustrated in the n Ty T51
example later. Ty2 52
43 53
IV. A NUMERICAL EXAMPLE
0 0
For the sake of simplicity, we consider a delayed
dynamical network with five nodes and non-identical -051 05
namical systems, where outputs of three nodes are a\ :{
the purpose of estimation, i.d, = 3. The other paral b | . |
are -Ar 15 -1.5f
3 8 =2 e
A=A, =A3=1-8 3 3|, -1 =l =
1 2 -5 e | 2t
251 2.5
—4.4 —-0.2 0.6
Ay =As=[-04 —4 0.5 |, Q= == a5 — = 33—
-1  —-0.0667 —4.3 ! / / ! !

c=2,7=3,I'=1,
25 =15 0 0 -1
—1 2 -1 0 0
L=|0 -1 2 -1 0], (ii) Simulation via ADT approach
0
2

Fig. 1. Evolution of network states

0 0 -1 1 Settinga = 0.3, p = 3, andw = 9.5, and solving the
-1 0 0 -1 LMIs (72)-(75), we have feasible solutions with estimator

ains given as follows:
012022032[(1) (1) 8}7 J J _ i
4.8949 0.4967 6.8527 0.6352
F(@) = g(x) = (0.3(]z1 +2| — |21 — 2|),0.2z2, 0.3z3)" . Ky = [0.1599 54727, Ky = 02132 7.5351|,
. _ _ o 1.2388  1.5266] 1.7183 1.9758
For the functions given above, a direct calculation yielust t '5.6592  0.5286]
v =0, =0.6. _ . K3= 101733 6.4753] .
With these parameters, we proceed with the numerical sim- 14541 1.6957)

ulations to confirm the theoretical results based on therdgla _ _ _ _ _
inequality method and the ADT approach, respectively. _Noting § = —a + @ = 9.2, we find that inequality (13) is
() Simulation via Halanay inequality method violated if the parameter§ andT; are the_ same as b(_efore.
Sol he LMIs (11 4 (12 btain the followi Now, we takel' = 20 and7} = 19.6. Then, it can be verified
olve the s (11) and (12) to obtain the fo OWINGiyat inequality (13) is satisfied with these new parameters.

feasible solutions: According to Theorem 3, the estimation errors converge to
8.5403  —0.0403 9.2243  0.2512 zero exponentially astends to infinity. The simulation result
K; = |—0.0403 85940 |, K, = |—0.2254 9.2071|, is shown in Fig 4, which is completely consistent with the

—1.0559  5.0605 —0.9851 4.9839 developed theory.
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Fig. 3. Evolution of the state estimate

Remark 5:It should be mentioned that parameters in sim-
ulation (i) satisfies the conditions of Theorem 1, but do no
satisfy all conditions of Theorem 3. However, it should aigo
pointed out that Theorem 3 is not applicable to the parameteh]
in simulation (i) sincer < min{7y,7—1T;} does not hold any

Fig. 4. Evolution of state estimation error (ii)

V. CONCLUSIONS

In this paper, we have investigated the estimation problem
for delayed complex networks with non-identical nodes, ighe
the network output information is only from a fraction of
nodes, and the output signals are transmitted intermiigtent
over communications channels. By exploiting the Halanay
inequality method and the ADT approach, respectively, some
sufficient criteria have been established to guaranteetligat
error dynamics is exponentially stable. Finally, a nurredric
example has been presented to demonstrate the effectivenes
of the given estimatorn addition, related topics for further
research work can be listed as follows. 1) The Kalman filgrin
problems for delayed systems with measurement missing,
guantization and censoring; and 2) THg, control problems
for delayed systems with state saturations, measurengingfa
and sensor failures [6], [23], [36], [43].
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