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Abstract

We address the problem of multi-modal object tracking in video and explore various options of fusing the complementary infor-
mation conveyed by the visible (RGB) and thermal infrared (TIR) modalities including pixel-level, feature-level and decision-level
fusion. Specifically, different from the existing methods, paradigm of image fusion task is heeded for fusion at pixel level. Feature-
level fusion is fulfilled by attention mechanism with channels excited optionally. Besides, at decision level, a novel fusion strategy
is put forward since an effortless averaging configuration has shown the superiority. The effectiveness of the proposed decision-level
fusion strategy owes to a number of innovative contributions, including a dynamic weighting of the RGB and TIR contributions
and a linear template update operation. A variant of which produced the winning tracker at the Visual Object Tracking Chal-
lenge 2020 (VOT-RGBT2020). The concurrent exploration of innovative pixel- and feature-level fusion strategies highlights the
advantages of the proposed decision-level fusion method. Extensive experimental results on three challenging datasets, i.e., GTOT,
VOT-RGBT2019, and VOT-RGBT2020, demonstrate the effectiveness and robustness of the proposed method, compared to the
state-of-the-art approaches. Code will be shared at https://github.com/Zhangyong-Tang/DFAT.
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1. Introduction

Visual object tracking, aiming at predicting the state of a
target of interest in video sequences, is a fundamental task in
computer vision. It has received considerable attention over the
past decades owing to its wide range of applications, such as
robotics [1], video surveillance [2] and pedestrian tracking [3],
to name a few. Generally, visible spectrum (RGB) and thermal
infrared (TIR) tracking are two sub-tasks in visual object track-
ing. RGB data contains more detailed perceptual information
about the scenario, but the tracking performance is sensitively
affected by challenging appearance variations, such as illumi-
nation, blur, and occlusion. On the contrary, the TIR channel is
more robust against lighting conditions, but with less discrimi-
native power owing to thermal crossover and insufficient texture
details. Hence, there is a major scope for taking advantage of
the complementary information provided by these two modal-
ities to design a robust tracker. This multi-modal approach is .
called RGBT tracking. —— DFAT Baseline Groundtruth

With the development of RGB and thermal infrared all-in-
one devices, RGBT tracking has become an important research
topic in the visual tracking community. Figure 1: Qualitative comparison between our method (DFAT) and Baseline,

In general, the existing approaches mainly conduct the cross- with ground tmt.h on the VOT-RGBT2019 [4] dataset. Respectively, f.rames
modal fusion of the RGB and TIR content at pixel [6] or feature sampled from video sequences bus6, facel, and woman89 are shown in the

} R X X first, second and third rows of the figure. Here *Baseline’ means SiamRPN++
level [7, 8]. Pixel-level fusion directly concatenates the infor-  (RGBT), which is the multi-modal extension of SiamRPN++ [5] in RGBT
mation from one modality with the other at the tracking input  tracking.
stage. This coarse fusion strategy endows the same importance
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for the salient and low-frequency clues existed in both RGB and
TIR data. However, following the tracking framework, salient
parts are supposed to be more important than low-frequency
parts.

In contrast, feature-level fusion performs the fusion process-
ing in an embedded way, enabling integrated feature extraction
by deep neural networks. Typically, the neural networks are
trained on one dataset and tested on other datasets, e.g., trained
on RGBT234 [9] and tested on GTOT [10]. However, in the
VOT-RGBT challenge [4], GTOT is the largest RGBT dataset
permitted for model training. The number of video sequences
in the other two RGBT datasets, i.e., LITIV [11] and OSU-CT
[12], is less than 20 and no more than 20000 image pairs are
contained in these three datasets. Consequently, since there is
an inadequate amount of training data, it is impossible to guar-
antee the network would have a sufficient capacity to handle
general scene content after training on the available RGBT se-
quences. The deep learning trackers designed by using a small
number of training videos (limited to 65 sequences in total) will
have to be lightweight, with a high risk of over-fitting. The re-
sulting solutions are unable to deliver discriminative represen-
tations for both RGB and TIR images. In conclusion, the lack
of annotated RGBT tracking data limits the representation ca-
pacity of the networks and compromises the efficiency of the
embedded-level feature fusion.

Different from the above strategies, fusion at decision level
has not been extensively studied in RGBT tracking. Traditional
correlation filter (CF) [13] based trackers, like [14], adopt only
hand-crafted features to calculate the responses for both modal-
ities, which are then directly fused to predict the target location.
This approach is less effective when the target undergoes severe
appearance variation. In addition, advanced RGB trackers, such
as [15] and [16], are equipped with pre-trained feature extrac-
tors to get better embeddings and improve the tracking perfor-
mance. Although it has recently been demonstrated that single
modality trackers have excellent properties after allocated supe-
rior feature extractors, extending their success to RGBT track-
ing through decision-level fusion is still a challenge. Since there
exists a gap between the imaging mechanism of RGB and TIR
modalities.

Considering the aforementioned concerns that fusion at all
these three stages have their shortcomings, we investigate
three fusion strategies (fusion at pixel-level, feature-level, and
decision-level) and perform a comprehensive comparison of
their different characteristics in the RGBT tracking scenario.
Specifically, at pixel-level, inconsistent with the naive addi-
tion/concatenation operator used in existing methods, we intro-
duce a general image fusion method to get the fused image with
different focuses lying on the salient and low-frequency parts.
For online feature-level fusion, adaptive fusion weights are em-
ployed to merge the information from the two spectra. Before
that, to eliminate the feature noise and redundancy, different
from the Weighted Random Selection strategy (WRS) [17] used
in [8], an adaptive selection method is conducted to suppress the
channels with lower discrimination by channel attention mech-
anism. For fusion at decision level, originally, the results from
both classification and regression branches are simply averaged

for the comparison with fusion at the other two stages. How-
ever, under the constraint of limited amount of data, it is unex-
pected that although conducted by a primitive fusion strategy,
decision-level fusion has already shown its superiority against
fusion at pixel and feature levels. Furthermore, decision-level
fusion has already been verified effective in other multi-modal
tasks [18].

Drawing on this, we propose an adaptive decision-level fu-
sion strategy for accurate RGBT tracking (DFAT) in an end-
to-end framework, whose tracking results are intuitively pre-
sented in Fig. 1. To address the problem of insufficient quantity
of annotated RGBT data for model training, we use only the
RGB sequences to train the tracking network offline and per-
form cross-modal fusion in the online tracking stage. More
specifically, we use publicly available large datasets of anno-
tated RGB images, e.g., COCO [19] and YouTube-VOS [20]
for network training. For decision-level fusion, based on the
observation that the response scores of RGB images are higher
than those of TIR images in most sequences, which is caused by
the optical difference between RGB and TIR imaging principle,
we design a novel strategy that focuses on suppressing the bias
between these two modalities. Fig. 6 also gives an intuitive il-
lustration of the bias. To this end, we assign an adaptive weight,
which is specified for debiasing, to each modality to harmonise
the complementary multi-modal appearance. As demonstrated
by the experiments, the proposed DFAT effectively exploits the
synergies of the two modalities, delivering superior tracking
performance, as compared to other fusion strategies.

Our contributions can be summarized as follows:

e As potential alternatives, we concurrently investigate three
innovative pixel-level, feature-level and decision-level fu-
sion methods for RGBT tracking, with the results showing
that the decision-level fusion is significantly superior.

e In the context of the limited availability of annotated
RGBT datasets for training a multi-modal tracker, using
the Siamese network trained on RGB videos for embed-
ding both modalities, RGB and TIR, we propose an online
adaptive decision-level fusion method to excavate the hid-
den complementaries. A variant of the proposed tracker
won the VOT-RGBT (2020) Challenge.

e Based on the experimental phenomenon that the gap be-
tween RGB and TIR modalities leads to classification bias,
which is displayed in Fig. 6, a dynamic weighting method-
ology of the RGB and TIR contributions is developed at
decision level.

e The experimental results on the VOT-RGBT2019 and
GTOT datasets demonstrate that our method, DFAT,
achieves promising performance. Moreover, on the VOT-
RGBT2020 dataset [21], DFAT defines the new state-of-
the-art in RGBT tracking.

The rest of this paper is organised as follows. The related
work and the proposed method are discussed in Section II and
Section III. Extensive experiments and comprehensive analysis



of the experimental results are reported in Section IV. Finally, a
conclusion on the research findings is drawn in Section V.

2. Related work

As mentioned above, RGBT tracking, aiming at fusing the
complementary information between RGB and TIR modalities,
is a sub-task of visual object tracking. In this section, we briefly
introduce the relevant tracking approaches with single and mul-
tiple modalities.

2.1. Tracking with Single Modality

RGB tracking is the most fundamental sub-task in visual ob-
ject tracking [15, 16, 22, 23, 24]. Among its numerous mod-
elling techniques, trackers based on Siamese networks are the
widely studied in the recent deep learning paradigm. SiamFC
[25], which is the seminal work that introduced Siamese net-
works into object tracking, uses an end-to-end network trained
offline to learn a general similarity metric without a fully con-
nected layer. To obtain more accurate predictions for the target
bounding box, Region Proposal Network (RPN) [26] is firstly
utilized in SiamRPN [27]. The above-mentioned trackers only
use features from the output of one specific CNN layer, while
features from different CNN layers exhibit unequal spatial res-
olution and semantic extent. To mitigate this problem, C-RPN
[28] uses cascaded RPN blocks to combine high-level seman-
tics with low-level spatial information. Besides, to address
the issue that Siamese-based methods can not make full use
of deeper and wider architectures, SiamRPN++ [5] presents a
spatially-aware sampling strategy designed to exhibit adapta-
tion between the deeper network and the basic Siamese formu-
lation. To this end, ResNet-50 [29] is employed as the back-
bone of SiamRPN++, achieving improved performance com-
pared with AlexNet backbones.

TIR tracking is also a hot topic in visual object tracking
[30, 31]. Different from Siamese-based RGB trackers, most
TIR trackers model the target with only handcrafted features
rather than deep networks. Many TIR trackers, as in [32], are
simple extensions of RGB trackers. For example, SRDCFir
extends SRDCF [33] to TIR tracking by introducing motion
features while using the same modelling technique. EBT [34]
uses a trained Support Vector Machine (SVM) classifier to re-
rank the edge boxes, thus obtaining instance-specific proposals.
Similarly, DSLT [35] combines motion features with edge and
Histogram of Oriented Gradients (HOG) [36] features, achiev-
ing real-time tracking in the Fourier domain. In principle, TIR
trackers seldomly use neural networks to extract features, since
there is insufficient data to train a network to learn a satisfac-
tory representation for the TIR modality. To this end, ECO-tir
[37], based on the RGB tracker ECO [38], generates a synthetic
TIR dataset from existing RGB datasets by a Generative Ad-
versarial Network (GAN) [39]. The modality-specific informa-
tion learned from the generated TIR data contributes to its ([6])
favourable results on VOT-RGBT2019 [4] dataset. To enhance
the robustness, MLSSNet [40] regards tracking as a matching
problem and proposes a multi-level similarity model, which in-
corporates global and local similarities. Besides proposing a

tracking algorithm, MLSSNet also provided the first large scale
TIR dataset, containing 430 video sequences. Similarly, MM-
Net [31] uses a multi-task architecture to integrate the class-
level and fine-grained features. The authors also released a
dataset consisting of 30 classes and over 1100 video sequences
for TIR tracking.

2.2. Tracking with Multiple Modalities

Nowadays, tracking with multi-modal inputs draws increas-
ing attention, such as RGBT [41] and RGB-Depth tracking
[42]. And the former, RGBT tracking, is thoroughly discussed
in this paper. Joint visual object tracking in RGB and TIR
modalities has been proposed to create more robust solutions
in practical scenarios . The core issue of multi-modal tracking
is to merge the information from both modalities efficiently. In
this subsection, RGBT trackers will be introduced according to
the fusion strategies.

In general, fusion at pixel level is fulfilled in an add-up fash-
ion. [43] uses averaging technique and achieves satisfactory
visualisation while [44] employs Dual-Tree Complex Wavelet
Transforms (DT-CWT) [45], obtaining higher performance in
its quantitative experiments. In recent years, seldom trackers
explore the fusion stage at pixel-level because of the existence
of misalignment between RGB and TIR image pixels. A simple
concatenation operator is utilized for pixel-level fusion in [6] to
manifest the superiority of its fusion strategy.

The most widely used fusion strategy is applied at the fea-
ture level. Adaptive weights are obtained in [10] by calculat-
ing reconstruction residues in the Bayesian filtering framework.
Similarly, the weights in [46] are acquired by the learned classi-
fiers for each modality under the max-margin principle. How-
ever, intuitively, feature-level fusion should be accomplished
deeper in an end-to-end framework. To this end, [47] pro-
poses a lightweight fusion sub-network, which consists of two
convolutional layers, to accomplish feature selection for accu-
rate RGBT tracking. FANet [48], similarly, utilizes multi-layer
features, whose spatial resolutions are unified by max pool-
ing. To improve the representation capacity, an adaptive fu-
sion sub-network is applied to suppress channels with less re-
liability. DAPNet [8] simultaneously integrates all the chosen
layers and modalities by using an adaptive fusion module re-
cursively, achieving feature pruning by global average pooling
to reduce redundancy and noise. Further, DAFNet [49] inte-
grates the adaptive fusion sub-network from [48] and realizes
quality-aware fusion in each layer between the two modali-
ties. To achieve fine-grained fusion, MANet [7] divides fea-
tures into three categories (modality-specific, modality-shared,
and instance-specific), exploiting a more exhaustive feature-
level fusion approach to get robust feature representation by
multiple adaptors. On account of the efficiency of Siamese
structure in RGB tracking, SiamFT [50] primarily brings in this
structure to RGBT tracking and learns fusion weights from the
medium-term calculated response maps. Furthermore, based
on dynamic Siamese network [51], a multi-layer fusion strat-
egy is adopted in DSiamMFT [52] to enrich the semantic in-
formation of target in both modalities. To integrate the tempo-
ral clues, CMPP [53] achieves pattern propagation spatially for
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Figure 2: Tllustration of the proposed DFAT method. Here *Cls’ and "Reg’ represent classification and regression branches respectively. The left part describes the
architecture of the feature extraction network ("Net’). The outputs from three convolutional layers are first projected into a common space by neck modules and then
input into the corresponding RPN blocks. The features from different RPN blocks are modulated by adaptive weights within *Net’. An overview of the proposed
method (DFAT) is on the right. The outputs of "Net’ modules from both modalities are fused at the ’Decision-level Fusion’ module by Eq. (2). And the final result is
obtained after the "Postprocessor’. We update the template every 10 frames. For convenience, the dimensionality of feature representation is defined by the number
of channels and the spatial resolution. Thus, the shorthand notation (3,255) signifies that the size of the input is 3x255x255.

inter-modal and temporally for intra-modal by cross-modal at-
tention. A multi-branch architecture is employed in CAT [54]
for target appearance modelling in allusion to the modality-
specific and modality-shared challenges, which totally count to
5. Unlike DAPNet [8] and DAFNet [49] keep only the fused
features retained, TFNet [55] designs a trident architecture for
better excavating the modality-specific information. Constraint
to the limited RGBT data, the trackers aforementioned are all
equipped with lightweight feature extractors. To make better
use of deep neural networks, one option is to generate TIR data
from existing RGB data [37]. It has been shown in [6] that, with
the dataset synthesized from GOT-10k, better performance is
obtained. However, we argue that synthesized data can not ade-
quately represent the real TIR data in terms of content and tex-
ture. Besides, there are some low-level topics which regard the
RGBT tracking as a downstream task to verify their robustness
and generalization like RFN-Nest [56]

Lastly, seldom trackers pay attention to the fusion at the deci-
sion level. [57] and [14] use KL Divergence to estimate the re-
liability and achieve adaptive fusion after the response maps of
both modalities are available. [6] sums up the scores from dif-
ferent modalities roughly and only obtains similar results com-
pared with pixel-level fusion. Once the response maps are cal-
culated from appearance trackers, [58] learns local and global
weights from the original image patch via a lightweight net-
work. Then the decision-level fusion is applied in a pixel-wise
manner.

However, in this work, we explore fusion at all the three lo-
cations. For pixel-level fusion, unlike [6] and [58], we adopt an
advanced image fusion method, MDLatLRR[59], to separate
the detailed and salient information from paired RGBT images.

The salient information is averaged directly while the detailed
information is fused by nuclear-norm, and both of them are inte-
grated to get the final fused image. For fusion at feature level, a
feature selection method is designed based on channel attention
mechanism while this in [8] and [55] is carried out by WRS.
Furthermore, spatial attention mechanism is also considered for
the cross-modal fusion. Decision-level fusion, experimentally,
is proved to be the best under the background of our method.
Specifically, our adaptive fusion weights are learned based on
the hypothesis that there is supposed to be a gap between the
training RGB and testing TIR data, which is illustrated in Fig.
6. Compared with IMMAC, VGGNet is used as the feature ex-
tractor in JMMAC while ResNet-50 in our method, which is
demonstrated to be better and can extract features with more
discrimination most of the time. Besides, the weight matrix is
learned from input image patches in JMMAC and our weight
scalar is acquired conveniently and rapidly from the classifica-
tion results. A more comprehensive comparison of multi-modal
fusion is contained in this work since fusion at the pixel level is
not involved in IMMAC.

3. Proposed Method

In this section, we first briefly introduce our baseline method
SiamRPN++ [5], which is a single modality tracker with an
end-to-end training framework. Then, we will discuss our
decision-level fusion strategy as well as fusion at pixel and fea-
ture levels for a comprehensive comparison.



3.1. Baseline Tracker

The framework of SiamRPN++ architecture is displayed in
the left of Fig. 2. In the tracking stage, a typical Siamese tracker
fixes the template features from the first frame and keeps it un-
changed for the rest of tracking frames. When a new frame (in-
stance) comes, SiamRPN++ first extracts multi-layer feature
maps (layer modules) and performs channel reduction (neck
modules). Once the feature embeddings are extracted, the re-
sults of classification (Cls) and regression (Reg) branches from
multiple RPN blocks (R_2, R_3, R_4) can be calculated. In
the baseline tracker, the multi-modal results are directly aver-
aged for fusion. After that, the general *Postprocessor’ is fol-
lowed to acquire the tracking result from the fused classifica-
tion and regression results. Specifically, for the classification
maps, a softmax operator is employed to convert the original
foreground/background response scores into probabilities with
values from the interval [0, 1], intuitively measuring similari-
ties. As for the regression branch, the result returned is trans-
ferred to the bounding box since the offsets between anchors
and ground truth are learned from the given labels. Conse-
quently, the index of the highest value among the normalized
classification scores is selected and its corresponding bounding
box in the regression branch is considered as the final tracking
result.

As for online tracking, SiamRPN++ uses multi-layer fea-
tures to improve the reliability of tracking. The computation
process is defined in the following formulation:

C =) aR (). f(2)),

. M
B =) BRY(f(X). fi(2)

where X and Z are the image patches from an instance and the
exemplar. f; represents the output of the ith neck module after
the ith backbone layer. R¢ and R® denote the classification and
bounding box regression branches respectively in the ith RPN
block. a; and S; are the weights associated with the correspond-
ing branches for the ith layer, RiC and R? , which are also learned
offline. As shown in Fig. 2, SiamRPN++ uses the features from
layer 2-4 and fuses them by utilizing multiple RPN blocks. In
addition, depth-wise cross-correlation is adopted to solve the
parameter distribution imbalance caused by the increased di-
mensions.

As for offline training, SiamRPN++ employs a sampling
strategy with translations to mitigate the constraint that Siamese
trackers are unable to take advantage of deeper networks like
ResNet-50 [29]. Specifically, the basic formulation of the
Siamese framework imposes a strict translation invariance, and
unfortunately, the padding operation is incompatible with this
constraint. Moreover, padding is an essential mechanism to
match the input size specification for deep networks. Based on
an in-depth analysis, SiamRPN++ devises a simple sampling
method that preserves the same spatial resolution for layer 2,
layer 3, and layer4, and works effectively. As a result, deep
networks, such as ResNet-50 [29] and VGGNet [60], achieve
improved performance compared to the original AlexNet [61],
as shown in [62].
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Figure 3: Introduction of pixel-level fusion achieved by MDLatLRR. The
paired RGB and TIR images are first fed into the MDLatLRR module with
the chosen vector manually determinated and the fused output is then sent to
the tracking network.

3.2. Fusion Mechanism

We deliver a brief introduction to our techniques of fusion
at pixel, feature and decision levels respectively. A novel
decision-level fusion strategy, since fusion at decision level per-
forms considerable better results than fusion at pixel and feature
levels, is then described in this subsection and our pipeline is
given in Fig. 2.

Pixel-level fusion: For pixel-level fusion, we do not con-
catenate the image matrices directly as [6] do. Instead, we
choose MDLatLRR [59], which has been proved to be efficient,
to fuse the RGB and TIR images. MDLatLRR uses multi-level
LatLRR-based [63] decomposition to detach the detailed and
salient information from both RGB and TIR images. The low-
frequency parts are fused by weighted averaging while adap-
tive weights are learned for the fusion of detail parts based on
nuclear-norm. Fig. 3 shows the minutiae of pixel-level fusion.
The chosen vector is set in advance to acquire the fused image
at a particular level and only one element is supposed to be ac-
tivated. Particularly, the result from level2 is selected as input
in Fig. 3.

Feature-level fusion: Fusion at feature level is carried out
using attention mechanism. Generally, feature selection is exe-
cuted through channel mechanism within each modality. After
that, spatial and channel attention, combined with normaliza-
tion, is further employed for cross-modal fusion. In particu-
lar, considering the noise and the level of redundancy in deep
features, which are discussed in detail in [16], we apply fea-
ture selection, which involves two parts, i.e., channel saliency
measurement and channel selection, to achieve adaptive fusion.
For assessing the channels, we first employ adaptive pooling
to indicate the significance of the individual channels. In other
words, the discriminatory information conveyed by each chan-
nel is represented by an attention value. For channel selection,
as shown in Fig. 4, we first sort the channels by the learned rep-
resentative scalar in the descending order of its values. We re-
tain the top 80% of channels based on the significance score and
set the others to zero. Subsequently, spatial or channel attention
is conducted by adaptive pooling and results in representative
vectors, from which the final fusion scalars are computed by
mean operator. The operations outlined above are applied after
the neck module, as the projection to a low-dimensional space
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Figure 4: Illustration of the process of feature selection for the fusion of the
two modalities at the feature level, which is embedded in after the neck mod-
ule. Here the channels highlighted with dark green represent those with less
discrimination and are further suppressed.

can decrease noise and suppress redundancy.

Decision-level fusion: To address the issue raised by the
lack of RGBT data, especially for the VOT-RGBT challenge,
we investigate the merits of fusing at the decision level. Or-
dinarily, RGB and TIR images are simultaneously fed into the
tracking network, with two pairs of outputs received from the
RPN blocks. The averaged results of classification and regres-
sion branches are then fed into the "Postprocessor’. Specifi-
cally, the scores of the classification branch are normalized to
probabilities by a softmax operator. Finally, the bounding box
is determined based on the maximum value of the normalized
scores. The experiments suggest that fusion before normaliza-
tion works better as shown in TABLE 3. For this reason, in this
paper, we focus on fusion before normalization. Although fu-
sion at this stage yields considerable improvements, we find
that the scores produced by RGB images are always greater
than the TIR image scores as shown in Fig. 6(a) and 6(c),
which means that weighting the scores directly may produce
inherently biased results.

Fig. 5 shows the details of our decision-level fusion method.
Since we select the bounding box according to the maximum of
the normalized response scores (classification branch), we first
use ReLU (Rectified Linear Unit) activation [64] to suppress the
locations with a response below zero, which is less likely to be
the selected index paired with the highest similarity. Besides,
we amplify the scores of RGB and TIR images to the same
magnitude by multiplying them by the average value, which is
calculated by GAP (Global Average Pooling) [65], to alleviate
the bias. The final result produced by the classification branch
is weighted by a factor consisting of two parts, i.e., shrink and
scale. Specifically, to maintain the data consistency, we shrink
the zoomed-in data to a magnitude similar to the original scores
by dividing by the sum of average values. To further adjust the
scores after shrinkage, we introduce a hyper-parameter called
the scaling factor, which balances out the relative contributions
of the classification and regression branches. More details of
the above operators are presented in the experimental section.
As for the regression branch, we obtain the fused result in a
similar way.

Decision-level Fusion
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Figure 5: Details of our decision-level fusion module. 'Net’ and "Postproces-
sor’ have already been introduced in Fig. 2 and Section III as parts of the
pipeline. The results from the regression branches are averaged while the re-
sults from the classification branches are adaptively weighted. Here "Modu-
lation’ represents two numerical operations, i.e., shrink and scale, which are
detailed in the description of our decision-level fusion method. Eq. (2) is the
mathematical description of our decision-level fusion.

The decision-level fusion process is formulated as follows:

Br = (11 * Brgp + 421 * Brir)/ (411 + A21)
Cr = 5% (12 * CrgB + 422 * C1r)/(A12 + A22)
A2 = Mcpyp>0(CTIR)

A2 = Mcygy>0(CrgB)

@

where Cr and Bf are respectively the fused results of the clas-
sification and regression branches. Crgp and Bgrgg are the out-
puts of the two branches from the RGB images. Similarly, Cyg
and Rrr are the outputs from the TIR images. M denotes the
‘mean’ operation. Ajp and Ay, are the learned weights, while
A11 and Ap; are fixed throughout the tracking process. s is
the scaling factor. The merits of our DFAT are confirmed by
self-comparison and comparison with state-of-the-art trackers
on the VOT-RGBT2019 dataset presented in the experimental
section.

3.3. Template Update

As confirmed in [66], updating the template is beneficial to
tracking performance, especially in long-term scenarios. Tra-
ditionally, the target of each video sequence is annotated at
the first frame and the appearance model is also learned from
the initial frame. In principle, the target is often subject to ap-
pearance variation throughout the video sequence, which means
a tracker with a constant template would encounter a model
degradation. Consequently, with an attempt to make the tem-
plate exploit temporal clues, in our approach, it is updated by
linear interpolation after the object is located in the current
frame. Specifically, for the embeddings of the three neck mod-
ules, we use a pre-defined learning rate to combine them with
their corresponding historical template embeddings. To prevent
the template from over-fitting, we update the template every 10
frames.
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Figure 6: Visualization of the original classification scores and scores after
debaising.

4. Experiments

In this section, we present the implementation details. The
performance of the fusion strategies developed at the three lev-
els is measured on the VOT-RGBT2019 dataset. In addition, we
also verify the merits of the proposed DFAT on the published
VOT-RGBT2020 and GTOT dataset.

4.1. Implementation Details

Experimental platform: Our method DFAT is implemented
with Pytorch 0.4.1 on a platform with Intel Core 19-9980XE
CPU and NVIDIA GeForce RTX 2080Ti GPU. The speed of
DFAT reaches 20 Frame Per Second (FPS).

Parameters setup: In our experiments, the hyperparameters
A11 and Ay; are set to 0.5 for fusing the results from the regres-
sion branches. To guarantee the scale continuity in the succes-
sive frames, we set the learning rate for updating the width and
height of the bounding box to 0.32. The learning rate for the lin-
ear interpolation update is chosen to be 0.1. The single-channel
TIR images are triplicated to emulate RGB channels and thus
our network can process TIR inputs without any modification.

4.2. Experimental Setup

Network: Our backbone network (ResNet-50) [29] is pre-
trained on ImageNet [67]. The RPN blocks and neck modules
are trained by SGD optimizer on COCO [19] and YouTube-
VOS [20] with the batch size set to 96. A weight decay of
0.0001 and momentum of 0.9 are employed. The learning rate
is warmed up from 0.001 to 0.005 in the first 3 epochs and then
it decays to 0.0025 in the remaining 17 epochs. It is worth not-
ing that the target mask in these two datasets is enabled, which
contributes to the high accuracy of DFAT.

Datasets: Our experiments are evaluated on the VOT-
RGBT2019 [4], VOT-RGBT2020 [21] and GTOT datasets.

On VOT-RGBT2019 and VOT-RGBT2020, which are con-
sisted of 60 video pairs, we use three evaluation measures
named accuracy (A), robustness (R), and Expected Average
Overlap (EAO) to estimate the results. Accuracy is measured in
terms of the overlap of the estimated bounding boxes with the

ground truth, while robustness is inversely proportional to the
failure rate. EAO is the key criterion for evaluating a tracker
in the VOT protocol. Note that a re-start mechanism is em-
ployed when the overlap between the calculated bounding box
and ground truth falls to zero. As the original protocol is prone
to favour the trackers using a larger bounding box, a different
evaluation protocol is adopted in the VOT2020 challenge '. The
reset mechanism is replaced by initialization points referred to
as anchors. Trackers run forward if the start anchor is before
the middle of the video and vice versa. All the anchors are set
manually with an average gap of 50 frames.

GTOT includes 100 video sequences and 15700 frames in
total. Success and precision rate are the two evaluation met-
rics on this dataset. Success rate is the major measurement
which counts the percentage of successfully predicted frames,
whose IoU between their corresponding given bounding boxes
are above a certain threshold, 0.6 in the benchmark. Likewise,
a prediction is considered precise if the distance between its
centre point and the groundtruth is below a threshold, 5 in the
benchmark. After the number of precise frames are obtained,
the precision rate can be computed by dividing 15700.

4.3. Results of Self-Comparison

In this section, we validate our method by self-comparison.
Three fusion mechanisms are discussed in detail. The results
are displayed in TABLE 1, 2 and 3, respectively.

Table 1: The results of pixel-level fusion (Fig. 3) on VOT-RGBT2019 dataset
with MDLatLRR employed as the fusion strategy. (The best result is high-
lighted in bold)

Level  Input Images Results

A R{) EAO (1)
- TIR + TIR 0.6248 0.4531 0.2826
- RGB + RGB 0.6228 0.4481 0.3189
- RGB + TIR 0.6482 0.3784 0.3433
2 Fused + Fused 0.6180 0.4332 0.3120
3 Fused + Fused 0.6199 0.4132 0.3216
2 Fused + TIR 0.6138 0.4182 0.3286
3 Fused + TIR 0.6262 0.3933 0.3481

Pixel-level fusion: For pixel-level fusion, as described in
Fig. 3, we choose the fused images from the second and third
decomposition level of MDLatLRR. The experimental results
are reported in TABLE 1. Here *fused’ means the output im-
age of MDLatLRR. As we can see, the results of images from
level 3 are better than those of level 2. For these two levels, bet-
ter performance is obtained by adding TIR images as the sec-
ond input. The results of the baseline achieved with only TIR
or RGB images reach 0.2826 and 0.3189 on the EAO evalua-
tion metric, respectively. Thanks to the complementary infor-
mation conveyed by the RGB and TIR modalities, the results
of the pixel-level fusion by MDLatLRR show an improvement

Thttps://data.votchallenge.net/vot2020/vot-2020-protocol.pdf



of 3.9% and 0.27%. The outputs from deeper levels of MD-
LatLRR are expected to capture the salient information from
each modality, leading to better performance. Since fused im-
ages are visually close to the RGB modality, we also pair them
with the original TIR image as the input of the tracking network
and an improvement of 2.65% on EAO is obtained. However,
as pixel-level fusion is not suitable for the end-to-end frame-
work, the most corresponding results are lower than the result
of using the original RGB and TIR images as inputs (Baseline),
which is also shown in Fig. 7.

Feature-level fusion: It is expected that fusion at the fea-
ture level will deliver better performance than pixel-level fu-
sion. This is confirmed in our study. Generally, we compute
the fusion weights from the attention vectors, which are pre-
viously obtained by the attention mechanism. Specifically, for
fusion with feature selection, we first employ global max pool-
ing to omit the channels with lower discriminative power and
keep the sequential order immutably (’Selection’). Considering
the feature noise and redundancy, we set the selection rate to
20% so that 80% of the channels are retained. After the type
of attention to be used is selected ("Type’), we obtain the corre-
sponding attention vector with average or max-pooling (’Vec-
tor’). And the representative scalar is supposed to be calculated
from its corresponding attention vector (’Scalar’), which is used
for feature-level fusion after normalization. It can be seen that
by executing feature-level fusion after removing less discrimi-
native channels, we get the best result in robustness (0.2987) as
well as EAO (0.3788) at this fusion level.

Decision-level fusion: For the decision-level fusion, we con-
sider two variants, depending on the positioning of the fusion
step, i.e., before normalization (’Before’) and after normaliza-
tion (’After’). Since the classification scores are restrainted be-
tween 0 and 1 after normalization, the data bias between RGB
and TIR modalities vanishes. We compare the fusion results
at these two variants to confirm our hypothesis. As mentioned
before, another tracker uses decision-level fusion to obtain a re-
liable response map with KL Divergence [14]. This criterion is
well suited for a probabilistic model matching, exemplified by
the case of fusion after normalization. On VOT-RGBT?2019, the
given ground truth comes from the TIR modality. As the paired
RGB and TIR images are not accurately aligned, the misalign-
ment increases the difficulty of handling the problem of fusion
in the regression branch. So we just consider exploiting both
KL Divergence and our method on the classification branch. As
can be seen, the variant with the KL Divergence used after nor-
malization does not achieve a promising result, which is even
worse than adding the two sources of information together with
the weights set to 0.5. This is caused by the labels used in net-
work training not being of a Gaussian-shape matrix, whereas
[14] is a CF-based tracker, with the target response satisfying
this requirement. Thus, KL Divergence performs unsatisfacto-
rily in our framework.

On the other hand, the fusion before normalization is more
effective which also indicates the necessity of debiasing. The
result with weights manually set to 0.5 is 0.3877 on EAO,
achieving a gain of 0.14% compared to the highest result af-
ter normalization. By implanting our method on the classifica-

tion branch, the result of our tracker, which ranks the best in
the self-comparison, reaches 0.3986. We obtain a performance
improvement of 1.09% on EAO and 2.49% in failure rate.

Ilustrating the details of the decision-level fusion: In or-
der to gain a clear understanding of our decision-level fusion,
we first clarify the three numerical operations, i.e., adaptive
weighting, normalization and scaling. As illustrated in the sec-
ond part of Section III, adaptive weighting method is applied
to reduce the bias, which is visualized in Fig. 6(a) and 6(c),
as well as make better use of the complementary information
from different modalities. We use softmax as the normaliza-
tion method as most Siamese-based trackers do. Actually, the
fused result does not represent the final measure of ’similarity’,
which is of great importance in the Siamese framework [25].
From the fused result, we do not know whether the candidate
anchor is considered positive or not. So the normalization op-
eration is introduced to convert the raw results to probabilities,
which is also consistent with the subsequent operations in the
framework. The scaling factor is instrumental in achieving bet-
ter results in the classification branch, which is discussed in the
fifth part of Section IV.

The experiments demonstrate that fusion at the decision level
is the best mechanism in an end-to-end framework trained with-
out TIR images. Ignoring the method proposed in this paper, a
simple fusion at the decision level achieves 0.3877, which is
merely worse than DFAT. Besides, fusion before normalization
is more effective than fusion after normalization. Moreover,
from Fig. 6(b) and 6(d), it can be seen that the bias is signifi-
cantly reduced after equipped with our debiasing module.

4.4. Comparing to State-of-the-art Trackers

In this section, we verify the merits of our method by com-
paring it to the state-of-the-art trackers. Here the comparative
trackers include JIMMAC [58], SiamDW_T [68], CISRDCEF,
FSRPN, GESBTT, MPAT, mfDimp [6], MANet [7], FANet [48]
and TFNet [55]. All the trackers can be found in [4] except
the last two trackers. TABLE 4 provides the results of trackers
on VOT-RGBT2019 dataset. Our DFAT ranks marginally the
best in accuracy and the second in terms of EAO. RPN is uti-
lized for precise estimation of the bounding box, which proves
that FSRPN and DFAT are both among the top three trackers
in accuracy. As can be seen, a compact mask is a more exact
requirement than the bounding box. So training the network
based on the masks also contributes to the high accuracy of
DFAT. DFAT only falls behind the first place of the published
VOT-RGBT2019 dataset on EAO evaluation and exceeds the
runner-up of about 0.61%. As the robustness displayed in [4] is
different from the value obtained from the vot-toolkit, for com-
pleteness, the exhibited scores for all contrastive trackers are
received by one minus the published scores in [4] and [55].

4.5. Self-Analysis

Ablation study: In this subsection, we perform an analysis
of the impact of each component of our DFAT tracker, i.e., tem-
plate update and adaptive fusion at the decision level. The vi-
sualization is presented in Fig. 7 and Fig. 8, in which *"W/O



Table 2: The results of fusion at feature-level on the VOT-RGBT2019 dataset. ’Selection’ is the flag of whether using feature selection or not. Respectively, ’C” and
’S’ mean channel attention and spatial attention. *Vector’ denotes the pooling method to obtain the attention vector. *Scalar’ represents the manner to acquire the
fusion scalar from its corresponding attention vector. For example, without feature selection, the attention vector for the first line is calculated by average pooling
spatially and then the fusion scalar is obtained by applying a maximum operator to this vector. (The best result is highlighted in bold)

Selection  Type  Vector  Scalar Results

A R{) EAO (D
0 S mean max 0.6570 0.3883 0.3470
0 C mean max 0.6398 0.3136 0.3593
0 S max mean 0.6433 0.3037 0.3615
0 C max mean 0.6350 0.3136 0.3618
1 S max mean 0.6433 0.3037 0.3615
1 C max mean 0.6416 0.2987 0.3788

Table 3: A comparison of the decision-level fusion before and after normalization on the VOT-RGBT2019 dataset. Here 'DF’ means the decision-level fusion
strategy proposed in this paper while ’KLD’ represents KL Divergence. ’After’ and 'Before’ separately denote fusion after and before normalization. (The best

result is highlighted in bold)

Operating bias  Location Fusion Strategy Results
Cls Reg A R EAO (1)
F After KLD KLD 0.6523 0.3385 0.3680
F After KLD 0.5 0.6667 0.3435 0.3656
F After 0.5 0.5 0.6648 0.2788 0.3863
F Before 0.5 0.5 0.6619 0.2788 0.3877
T Before DF DF 0.5978 0.2639 0.3663
T Before DF 0.5 0.6652 0.2539 0.3986
) 1 bias’ is the tracker without bias correction and *W/O update’
0o o o — represents without the update. ’Baseline’ means the extension
a 0. 03980 /O databias| . . . .
o8 g;j S ggl'pdb- of our baseline tracker SiamRPN++ to RGBT tracking while
LI 1: ol i RGB and TIR mean only RGB and TIR images available. Re-
g os e spectively, ’"RGB’ and *'TIR’ means only the visible and thermal
204 L Q| mem infrared data is used as input.
g o M According to the ablation study on the VOT-RGBT2019
S dataset, the trackers with single modality information perform
£ 200 400 600 800 1000 1200

Sequence length
Order

Figure 7: Expected overlap as a function of sequence length and the average
expected overlap (EAO) of all variants.
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Figure 8: The success and precision rates of all variants on GTOT.

undesirable, with the result on RGB being 0.3189 in terms of
EAO. Since our network is trained on RGB datasets, using it
for tracking on the TIR input achieves an even worse result,
the EAO of which is 0.2826. By exploiting the complementary
information between the two modalities, the baseline RGBT
tracker improves from 0.3189 to 0.3433. In the baseline tracker,
a fixed template is employed while the appearance of the target
will change continuously throughout the whole video sequence.
Introducing a simple yet effective update strategy, which is re-
alized by linear interpolation, we generate a more robust tem-
plate and the results gain a 4.44% enhancement compared to
our baseline. By dealing with the preconception, significantly
caused by the method of training, the *"W/O update’ tracker out-
performs our baseline by 2.23%. An intuitive payoff is dis-
played in Fig. 6. As can be seen, the scores of the RGB modal-
ity are not consistently higher than that of the TIR modality.
The specific value will be discussed in the next subsection. Fi-
nally, by taking advantage of these two components jointly, the
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Figure 10: Analysis of the scaling factor on the VOT-RGBT2019 dataset.

best result is achieved, with gains of 1.13% and 3.30% com-
pared to "W/O bias’ and "W/O update’ respectively. The exper-
imental results demonstrate the merits of the template update
and reducing data bias.

Similarly, on GTOT, the success rate of RGB only tracker is
also higher than the TIR only variant. With multi-modal clues
integrated, the baseline method obtains a success rate of 0.687.
Furthermore, the update and debiasing operators bring an incre-
ment of 2.5% and 1% respectively. Jointly, our DFAT reaches
0.723 on the measurement of success rate and gains 3.6% in
total compared with baseline method.

Analysis of the scaling factor: Generally, as mentioned

10

above, the results from the classification branch is transferred
to [0, 1] after normalization (softmax in this paper). Under this
situation, an incorrect index would be received from the classi-
fication branch if there exists more than one large value (1) in
the normalized scores, caused by rounding errors. This would
result in a rough estimate of the bounding box. To address this
problem, we introduce a scaling factor to modulate the scores
before normalization and amplify the disparity of the normal-
ized scores. This is the reason why the scores handled by our
method are lower than the original scores, as shown in Fig. 6.
To illuminate further the impact of the scaling factor, a sensitiv-
ity analysis is performed on the VOT-RGBT2019 dataset. Fig.
10 reports the experimental results. With the fusion weights
at the regression branch set to 0.5, we find that the worst re-
sult (0.3884) is obtained with a scaling factor of 0.44, while
the tracker with a scaling factor of 0.47 ranks the best (0.4080).
From the results shown, we can conclude that our DFAT is quite
insensitive to the value of the scaling factor.

4.6. Evaluation on the VOT-RGBT2020 Dataset

To validate the merits of our method, we also examine DFAT
on the VOT-RGBT2020 dataset [21] with vot-toolkit 0.2.0.
Each proposed component is also reconfirmed to be effective.
TABLE 5 provides an intuitive comparison for each compo-
nent. Interestingly, the variant "W/O bias’ submitted to the
VOT-RGBT2020 challenge won the championship. Correcting
the data bias, we gain an improvement of 1.05% which raises
the best result to 0.4178 and sets a new state-of-the-art in RGBT
tracking. We also conducted qualitative experiments to assess



Table 4: Tracking results on VOT-RGBT2019 dataset. (The best result is highlighted in bold)

Tracker ~ FANet[48]  TFNet[55] @ GESBTT[4] CISRDCF[4] MPAT[4] MANet[7]  FSRPN[4] mfDimp[6] SiamDW_T[68] JMMAC[58] DFAT
Published ~ TIV2021  TCSVT2021 - - - ICCVW2019 - ICCVW2019 CVPR2019 TIP2021 -

A 0.4724 0.4617 0.6163 0.5215 0.5723 0.5823 0.6362 0.6019 0.6158 0.6649 0.6652

R 0.4922 0.4064 0.3650 0.3096 0.2758 0.2990 0.2931 0.1964 0.2161 0.1789 0.2539

EAO 0.2465 0.2878 0.2896 0.2923 0.3180 0.3463 0.3553 0.3879 0.3925 0.4826 0.3986

Table 5: Tracking results on VOT-RGBT2020 dataset. (The best result is high-
lighted in bold)

Variation  Baseline =~ W/Oupdate =~ W/O bias DFAT
A 0.6751 0.6741 0.6754 0.6796

R 0.7423 0.7415 0.7728 0.7869
EAO 0.3902 0.3937 0.4073 0.4178

the impact of each component and visualize the results in Fig.
9. We show the results on TIR images for clarity. As is evi-
dent, our DFAT achieves the top performance. The "W/O bias’
variant is only marginally worse than DFAT and ranks second,
which demonstrates the necessity of the template update. As
for the experiments in TABLE 5, the scaling factor is still set to
0.5. A more suitable scaling factor can be found to obtain bet-
ter performance. For example, setting the scaling factor to 0.47,
which is found to be the best on the VOT-RGBT2019 dataset,
gains a slight increase of 0.04%.

5. Conclusion

In this paper, we first explore different fusion strategies at
three levels, i.e., pixel-level, feature-level and decision-level,
and the experimental results show that fusion at the decision
level performs the best with only visible data employed for
training. Therefore, we proposed a novel fusion strategy at the
decision level for accurate multi-modal (RGB and TIR) object
tracking (DFAT) in a video sequence. The tracker is built using
the SiamRPN++ architecture trained with RGB data only, but
deployed for embedding both, the RGB and TIR modalities. As
our network is trained using only RGB datasets, TIR images are
copied three times to emulate the network input format of the
RGB channels. The tracking is facilitated by a template updat-
ing mechanism based on a linear target interpolation every 10
frames.

Based on a deep analysis of the outputs of the RPN blocks
of SiamRPN++, we design a novel fusion strategy to merge
the complementary information conveyed by the RGB and TIR
modalities. It involves a dynamic de-biasing of the RGB and
TIR contributions to the classification branch of the network.
The strategy also performs a classification branch scaling to
balance the relative contributions of the classification and re-
gression results. A variant of the proposed decision-level fusion
was the winning entry of the VOT-RGBT(2020) Challenge. The
experimental results on the VOT-RGBT2019, VOT-RGBT2020

and GTOT datasets confirm the effectiveness and robustness of
our method. Moreover, the outcome of the VOT-RGBT2020
challenge also demonstrates that our DFAT represents a new
state-of-the-art in RGBT tracking.
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