
Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution

Qing Ma1 Junjun Jiang1,2* Xianming Liu1,2 Jiayi Ma3
1Harbin Institute of Technology 2Peng Cheng Laboratory 3Wuhan University

Abstract

To solve the ill-posed problem of hyperspectral image
super-resolution (HSISR), an usually method is to use the
prior information of the hyperspectral images (HSIs) as
a regularization term to constrain the objective function.
Model-based methods using hand-crafted priors cannot
fully characterize the properties of HSIs. Learning-based
methods usually use a convolutional neural network (CNN)
to learn the implicit priors of HSIs. However, the learn-
ing ability of CNN is limited, it only considers the spatial
characteristics of the HSIs and ignores the spectral char-
acteristics, and convolution is not effective for long-range
dependency modeling. There is still a lot of room for im-
provement. In this paper, we propose a novel HSISR method
that uses Transformer instead of CNN to learn the prior of
HSIs. Specifically, we first use the proximal gradient algo-
rithm to solve the HSISR model, and then use an unfolding
network to simulate the iterative solution processes. The
self-attention layer of Transformer makes it have the ability
of spatial global interaction. In addition, we add 3D-CNN
behind the Transformer layers to better explore the spatio-
spectral correlation of HSIs. Both quantitative and visual
results on two widely used HSI datasets and the real-world
dataset demonstrate that the proposed method achieves a
considerable gain compared to all the mainstream algo-
rithms including the most competitive conventional methods
and the recently proposed deep learning-based methods.

1. Introduction
Hyperspectral images (HSIs) have high spectral resolu-

tion and are widely used in various computer vision tasks,
including target recognition and tracking [28, 33], medical
image processing [1], and remote sensing [6, 17]. While
the HSI can achieve a high spectral resolution with contigu-
ous and narrow bands, its spatial resolution is usually much
coarser than that of the RGB images in our daily life. This
is due to the fact that the dense spectral bands in the hyper-
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spectral sensors make a limited amount of photons reached
one narrow spectral window averagely. The low spatial res-
olution of the HSI captured by the sensor greatly limits its
value for application. A natural solution is to instead cap-
ture a low-resolution (LR) HSI and a high-resolution (HR)
multispectral image (MSI), e.g., RGB image, and fuse them
into a resultant image with high spatial and spectral reso-
lution simultaneously. This procedure is referred to as hy-
perspectral multispectral image fusion (HS/MS fusion) or
hyperspectral super-resolution.

Traditional HS/MS fusion methods employ prior knowl-
edge of HSIs as regularizer to solve such a seriously ill-
posed problem, e.g., sparse representation [2, 12, 21], low-
rank prior [35, 51], non-local [8, 44, 52] and self-similarity
[19]. They have achieved better and better performance, be-
cause these priors are getting closer and closer to the essen-
tial characteristics of the data. However, the prior knowl-
edge is predefined manually and is born with the following
shortcomings. On the one hand, a high level of wisdom is
required. On the other hand, these hand-crafted priors have
limitations and often fail to reflect all the characteristics of
the data. These severely restrict the performance and gen-
eralization ability of the optimization-based methods men-
tioned above.

Given the recent advances in deep learning, many con-
volutional neural networks (CNNs) based image super-
resolution approaches have garnered attention recently. To
solve the above problems of traditional HS/MS fusion meth-
ods, some researchers use deep learning to cope with the
fusion based HSISR problem. Unlike traditional methods
of manually designing a prior, these deep learning-based
methods embrace a large amount of data to learn data-driven
priors, greatly improving the fusion performance. Re-
searchers have proposed some specialized modules, such as
spatial attentions, channel attentions, and joint ones, to ex-
ploit the spatial, spectral, or spatio-spectral priors of HSIs.
To take advantage of the observation model and address
the gap between the optimization-based and learning-based
methods, most recently, a series of HS/MS fusion methods
based on unfolding networks have been proposed. For ex-
ample, Xie et al. [43] proposed an effective unfolding net-
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work based on MHF-net, which first constructs an MS/HS
fusion model and then builds the proposed network by un-
folding the proximal gradient algorithm to solve the pro-
posed model. Wang et al. [37] proposed the DBIN model,
where the estimation of the observation model and the fu-
sion process is optimized iteratively and alternatively during
the super-resolution reconstruction. Dong et al. [14] pro-
posed an approach based on MoG-DCN, an iterative HSISR
algorithm based on a deep HSI denoiser to leverage both
domain knowledge likelihood and deep image prior. Es-
sentially, these methods all try to cast the HS/MS fusion
optimization problem into joint learning of the observation
model and a deep denoiser prior. The intrinsic difference
among the above three tasks lies in how to model the de-
noiser prior. MHF-net and DBIN stack several ResBlocks
[20] to model the data prior, while MoG-DCN leverages a
relatively complex U-net [30] to exploit the prior.

In this paper, we try to design a more powerful network
that can fully extract the priors of HSIs. We observe that
the HSIs are three-dimensional data cubes, and their priors
can be divided into two aspects: spatial priors and spectral
priors. We need to design appropriate networks for these
two aspects to better learn the priors of HSIs. We pro-
pose to use Transformer [34] to learn the spatial prior of
HSIs. The self-attention mechanism in the Transformer re-
quires each pixel of the image to pay attention to each other
pixel, so that Transformer has long-range modeling capa-
bilities and has achieved good performance in many visual
tasks. It is very suitable for extracting the spatial prior of
HSIs. As for the spectral prior, 3D-CNN is a natural and
effective choice. It can pay attention to the correlation of
spatio-spectra while learning spectral priors. Keeping these
in mind, we propose an HS/MS fusion model, namely 3D-
CNN and Transformer prior network (3DT-Net). We first
use the proximal gradient algorithm to solve the optimiza-
tion problem with the observation models of LR-HSIs and
HR-MSIs, and then we unfold the iterative process of the
proximal gradient algorithm into a multistage network. Par-
ticularly, in each iteration, unlike previous learning-based
methods that construct 2D-CNN to learn priors, we design a
3D-CNN and Transformer network with Swin Transformer
layers [25] to exploit spatial priors and 3D convolutional
layers to exploit spatio-spectral correlation priors. Experi-
mental results have shown that the proposed 3DT-Net out-
performs many recently proposed HS/MS fusion methods.

2. Related Work

In this section, we introduce related existing methods,
particularly focusing prior modeling in hyperspectral image
super-resolution and vision Transformer.

2.1. Prior Modeling in HSISR

HSIs super-resolution is an ill-posed problem, a common
solution is to choose a prior or regularization to constrain
the optimization equation. Various priors have been already
exploited to regularize the HSIs Super-resolution problem.
In [27], Frosti et al. used total variation to regularize an
ill-posed problem dictated by a widely used explicit im-
age formation model. Considering that HSIs are redundant
in nature, sparse prior can be used to constrain the spatial
and spectral correlation of HSIs. Wei et al. [40] designed
a sparse regularization term, relying on a decomposition
of the scene on a set of dictionaries. In [2], Akhtar et al.
proposed a generic Bayesian sparse coding strategy to be
used with Bayesian dictionaries learned with the Beta pro-
cess. In addition, spectral unmixing prior [41, 47] and self-
similarity [19] are also often used to address HSISR. The
main drawback of these methods is the quality of the recov-
ered HSIs highly depend on whether the selected prior is
appropriate. In addition, it requires manual tweaking of its
balancing parameters between the data term and prior term.

In recent years, deep learning have pushed forward the
frontier of many computer vision tasks, including image
classification and object detection [18, 20], image retrieval
[29], and so on. Inspired by these representative work, us-
ing deep learning methods to accomplish the HS/MS fusion
has attracted wide attention. Different from the traditional
method of manual design a prior, the deep learning-based
methods use a large amount of data to learn data-driven pri-
ors. Dian et al. [10] combined traditional methods with
deep learning methods. They first initialize the HR-HSI
by solving a Sylvester equation, and then use deep CNN
to learn the priors of the target HR-HSI. Xie et al. [43] and
Wu Wang et al. [37] used ResNet to learn HSIs priors. Dian
et al. [11] proposed using a CNN denoiser to regularize the
HS/MS fusion model. In [14], Dong et al. proposed us-
ing U-net to replace ResNet to learn a denoising prior for
HS/MS fusion.

2.2. Vision Transformer

Transformer was proposed by Vaswani et al. [34] for
NLP. Since directly replacing the CNN convolution layers
with Transformer layers to process images will bring a huge
computational burden, the early methods are to augment a
standard CNN model with Transformer layers [5,32,38,46].
Recently, Chen et al. [7] proposed a backbone model IPT
for image restoration based on Transformer. However, IPT
has a huge amount of parameters and calculations, and it
is very difficult to train such a model. In order to solve
the problem of large amount of calculation when using the
Transformer to process image tasks, Dosovitskiy et al. [15]
proposed to split the training image into a sequence of im-
age patches. However, [15] cannot handle high-resolution
images, due to its low-resolution feature maps and the

2



𝐷! 𝑃!
Stage 1

𝐷" 𝑃"
Stage 2

𝐷# 𝑃#
Stage K

𝑋(%) 𝑋(") 𝑋($) 𝑋(%&") 𝑋(#)

𝑌
𝑍

𝑋(')

𝑍

𝑌

𝑋('(!)

D

P

Data module

Prior module

Stage k+1

𝐶

𝑍(')

𝑌(')𝑅

𝐶! 𝜂
&𝑋(')−

−

−

𝑅!
P

Figure 1. The flowchart of our proposed 3DT-Net deep unrolling framework.

quadratic increase in complexity with image size. Follow
up [15], Liu et al. proposed Swin Transformer [25], a hi-
erarchical Transformer whose representation is computed
with Shifted windows. Swin Transformer can not only pro-
cess high-resolution images like CNN, but also has the ad-
vantage of Transformer to model long-range dependency.
In [24], an image restoration Transformer was developed
based on Swin Transformer, which achieves state-of-the-art
performance in various image reconstruction tasks.

3. Proposed Method

3.1. Model Formulation

In this paper, we use lowercase letters to denote scalars,
use bold letters to denote matrices, and use curlycue to de-
note tensors. Specially, letY ∈ RW×H×s represent the HR-
MSI and Z ∈ Rw×h×S represent the LR-HSI. The goal of
HSISR is to combine information coming from an LR-HSI
and an HR-MSI. The former has high spectral resolution,
with S spectral bands, but low geometric resolution with w
and h being image width and height, respectively. The lat-
ter has high spatial resolution with W and H being image
width and height, respectively, but a low spectral resolution
s. We aim to estimate a fused image X ∈ RW×H×S with
both high spatial and high spectral resolution.

If we reshape the spatio-spectral data-cube Y , Z and
X to their matrix formulations, i.e., Y ∈ RWH×s, Z ∈
Rwh×S , and X ∈ RWH×S , the observation models for the

HR-MSI and LR-HSI can be written as follows:

Y = XR, (1)
Z = CX. (2)

where R ∈ RS×s is the spectral response function of the
multispectral sensor, C ∈ Rwh×WH represents the degra-
dation operator which is often assumed to be composed of a
cyclic convolution operator and a down-sampling matrix.
We can obtain X by solving the following optimization
problem

min
X

1

2
‖XR− Y ‖2F +

1

2
‖CX −Z‖2F + λf(X). (3)

where the first and second terms are fidelity terms and the
third term is a regularization term which represents prior
knowledge of X . In the conventional HS/MS fusion meth-
ods, most of the priors are hand-crafted based on empirical
observation, such as sparse priors [12, 21], low-rank priors
[35, 51], self-similarity [19]. Although they have achieved
promising results, but they only use a certain property of
hyperspectral images, and it is difficult to apply to a variety
of hyperspectral images. Pioneering works [14,37,43] have
proved that the performance of data-driven priors exceeds
that of hand-crafted priors. Therefore, in this work, we use
a network to learn the data-driven implicit prior.

Since the specific form of the prior is not specified,
the regularization term is usually non-smooth and non-
differentiable functions of the outputs. Therefore, in this
paper we use a proximal gradient algorithm [4] to solve Eq.
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(3). Let L(X) = g(X) + λf(X), where g(X) is differen-
tiable (includes the first two terms of Eq. (3)) and λf(X) is
non-differentiable. The proximal gradient algorithm mini-
mizes Eq. (3) by iterating the following equation until con-
vergence:

X(k+1) = proxληf (X
(k) − η5 g(X(k))), (4)

where η plays the role of step size, and proxληf (·) is a prox-
imal operator dependent on λ, η and f . Since5g(X(k)) =

(X(k)R − Y )RT + CT (CX − Z), we substitute it into
Eq. (4) to obtain the following optimization problem that
can be solved iteratively:

X(k+1) = proxληf (X
(k) − η(X(k)R− Y )RT +CT (CX(k) −Z)).

(5)

3.2. Optimization-based Unfolding Network

Conventional proximal gradient algorithm requires many
iterations to converge and is computationally expensive.
Moreover, the step size η has to be selected by hand and
it is difficult to find the optimal η. To overcome these short-
comings, recent works [13, 14, 43] used a deep unfolding
network to unfold the iterative optimization steps into a se-
ries of networks. These models have been trend-setting and
promising in solving the inverse problems. The methods
based on deep unfolding strategy have the fundamental ad-
vantages of interpretability, fewer parameters, and fast con-
vergence. We derive our motivation from these works and
design a deep unfolding network to solve the optimization
Eq. (5).

Before solving Eq. (5), we first present the physical
meaning of matrix operations in this paper: the left mul-
tiplication matrix represents the spatial transformation of
the input, and the right multiplication matrix represents the
channel transformation of the input. Then we unfold the it-
eration Eq. (5) into the following equivalent four sequential
parts:

Y (k) = X(k)R− Y , (6)

Z(k) = CX(k) −Z, (7)

X̂
(k)

= η(Y (k)RT +CTZ(k)), (8)

X(k+1) = proxληf (X
(k) − X̂

(k)
), (9)

where in Eq. (6), R ∈ RS×s represents channel decrease
operator, which can be performed by using some convolu-
tion layers. The simplest way is to apply the 1 × 1 con-
volution to decrease the channel number from S to s. In
this paper, we leverage the more flexible 3× 3 convolution
layer to achieve this. In Eq. (7), C ∈ Rwh×WH repre-
sents the spatial downsampling operator, we perform it by
several 2D convolution layers with kernel stride 2 and thus

each 2D convolution layer carrying out 2 times downsam-
pling. RT ∈ Rs×S in Eq. (8) represents channel increase
operator, we perform it by using the 3× 3 convolution lay-
ers in a similar vein. CT ∈ RHW×wh represents an upsam-
pling operator, and we perform it by several 2D transposed
convolution layers [16] with each 2D transposed convolu-
tion layer carrying out 2 times upsampling. Since it is al-
most impossible to find the best η by hand, we set η to be
a learnable parameter and update it as the backward prop-
agation of errors. In Eq. (9), proxληf (·) is a proximal op-
erator used to model the image prior. For the simple prior
modeling, such as the l-norm regularization for sparse rep-
resentation, the proximal is tractable and can be modeled in
closed-form through soft-thresholding and shrinkage based
unrolling network [50]. More details about the prior net-
work will be introduced in the next section.

Motivated by the proximal gradient iterations in Eq. (6)-
(9), we can now perform these invert linear inverse tasks
by efficient network architectures. Fig. 1 shows the archi-
tecture of the proposed network. The observations Y and
Z forms the inputs for all iterations, which together with
the output X(k) of the previous iteration form the variable
for the current iteration. The network contains K iteration
stages, and each iteration stage is composed of a data mod-
ule (corresponding to Eq. (6)-(8)) and a prior module (cor-
responding to Eq. (6)-(9)), which is modeled via an effi-
cient network architecture, as will be elaborated in the next
section. In the first stage (i.e., k = 1), we perform Bicu-
bic upsampling on LR-HSI Z to initialize X(0). To reduce
the number of parameters, we share the parameters for dif-
ferent stages. Therefore, the proximal map will be mod-
eled by unrolling the proximal gradient iterations through a
recurrent-like architecture [26]. To avoid information loss
during transmissions between iterations, inspired by some
previous works [14, 42] we propose to densely connect the
hierarchical feature maps from the previous prior module to
the subsequent prior modules, as shown in Fig. 1.

3.3. 3D-CNN and Transformer Prior Network

For these deep unfolding networks, the proximal oper-
ator is usually modeled as a deep neural model, which re-
sembles the projection from the (noisy) observation onto
the manifold (where the true image lies in) of visually
plausible images. Therefore, the proximal operator can be
seen as a denoiser that gradually removes the artifacts from
the noisy observation. Pioneering works (e.g., DBIN [37],
MHF-net [43], MoG-DCN [14] etc.) usually used a sub-
network to learn this operation. In DBIN [37] and MHF-
net [43], the authors adopted ResNet to learn this proximal
operator and attained satisfactory performance. Recently,
MoG-DCN [14] proposed to use U-net [30] as the backbone
network architecture to learn this proximal operator which
achieves the SOTA performance on the HS/MS fusion task.
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Figure 2. Illustration of the network architecture of the proposed 3D-CNN and Transformer Prior (3DT) module. LN and MLP, are the
LayerNorm and MultiLayer Perceptron layers, respectively. W-MSA and SW-MSA represent the window based multi-head self-attention
using regular and shifted window partitioning configurations, respectively.

From these works, it is easy to analyze that the performance
of the selected prior estimation network is the essential fac-
tor that determines the performance of the entire HS/MS
fusion network. Therefore, in this paper, we take the ex-
isting method one step further and propose a new denoiser
prior learning network based on 3D-CNN and Transformer
network, which introduces the powerful Transformer [34]
structure into the prior learning network.

The architecture of the 3D-CNN and Transformer prior
network is illustrated in Fig. 2. The main components of the
3D-CNN and Transformer prior network are Swin Trans-
former layer (STL) and 3D convolution layer. The STL
was proposed for the first time in [25]. It has long-range
modeling capabilities like the original Transformer, and the
amount of calculations is much smaller than that of the orig-
inal Transformer. Therefore, it is a very good choice for
learning data priors. However, STL is designed for natural
RGB images. It fully considers the spatial self-similarity of
the image, but does not consider the spectral correlation of
the HSI data. Therefore, it is not appropriate to directly use
STL to learn the priors of 3D HSIs. To address this prob-
lem, we use 3D convolutional layers to learn the spectral
priors of HSIs. Compared with filters in 2D convolution,
filters in 3D convolution are more flexible in the channel di-
mension, making it more suitable for exploring the spatio-
spectral correlation of HSIs.

3.4. Training Details

We resort to the L1 loss to train our network

L = ‖X(K) −X‖1, (10)

where X(K) is the final output HR-HSI. X is the ground
truth HR-HSI.

In our implementation, we initialize η with a uniform
distribution in [0, 1] and in each stage are updated with
gradient-based method. We use Adam optimizer [22] with
β1 = 0.9, β2 = 0.999, ε = 10−8 to train the network
for 250000 iterations with a batch size of 8. We set each
epoch to have 2500 iterations, thus there are 100 epochs.
The learning rate is initialized as 0.0001. We implement
and train our network using Pytorch framework with an
NVIDIA Tesla V100 GPU.

4. Experiments and Analyses
In this section, we compare our proposed method with

eight other state-of-the-art methods including four tradi-
tional methods, e.g., Hysure [31]1, NSSR [12]2, CSTF
[23]3, LTTR [9]4, and four recently proposed deep learning-
based methods, e.g., CNN-FUS [11]5, MHF-net [43]6,
DBIN [37]7, MoG-DCN [14]8. As for objective compar-
isons, we use four picture quality indices (PQIs) to evalu-
ate the performance of different methods, including peak
signal-to-noise ratio (PSNR), SAM [48], erreur relative

1https://github.com/alfaiate/HySure
2http://see.xidian.edu.cn/faculty/wsdong/HSI SR Project.htm
3https://github.com/renweidian/CSTF
4https://github.com/renweidian/LTTR
5https://github.com/renweidian/CNN-FUS
6https://github.com/XieQi2015/MHF-net
7https://github.com/wwhappylife/Deep-Blind-Hyperspectral-Image-

Fusion
8https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-

Image-Super-resolution
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Table 1. Influence of the number of iterations for our 3DT-Net.

Model PSNR SAM ERGAS SSIM
3DT-Net (K = 1) 49.35 2.40 0.53 0.995
3DT-Net (K = 2) 50.26 2.13 0.50 0.996
3DT-Net (K = 3) 50.93 2.01 0.45 0.996
3DT-Net (K = 4) 50.91 2.05 0.46 0.996

globale adimensionnelle de synthèse (ERGAS) [36] and
structure similarity (SSIM) [39]. PSNR and SSIM are cal-
culated on each 2D spatial image, which evaluate the simi-
larity between the recovered HSI and the ground truth based
on MSE and structural consistency, respectively. SAM cal-
culates the average angle between spectrum vectors of the
recovered HSI and the ground truth. ERGAS reflects the
overall quality of the recovered HSI. Smaller values of ER-
GAS and SAM suggest better results, while larger values of
PSNR and SSIM imply better results.

4.1. Training Datasets

We evaluate our proposed method on two publicly sim-
ulated hyperspectral imaging datasets including the CAVE
[45]9 and the Harvard [3]10. For real data experiments, we
use WV-211.

The CAVE database consists of 32 indoor images cap-
tured under controlled illumination with spatial size of
512× 512, including 31 spectral bands of 10 nm wide, cov-
ering the visible spectrum from 400 to 700nm. We follow
the same setting as [14], the HR-MSI (RGB image) is gener-
ated by integrating all the ground truth HR-HSI bands with
the same simulated spectral response function R of a Nikon
D700 camera12, and the LR-HSI can obtained by first ap-
plying an anti-aliasing 8×8 Gaussian filter with a standard
deviation of 2 to the original HR-HSIs followed by a down-
sampling along both the horizontal and vertical dimensions
with the scaling factor of 8. We select the first 20 samples
and randomly extract 64×64 overlapped patches from them
as reference HR-HSIs for training. Thus, the HR-HSIs, HR-
MSIs and LR-HSIs are of sizes 64× 64× 31, 64× 64× 3,
8 × 8 × 31, respectively. The remaining 12 samples of the
database are used for testing.

The Harvard database contains 50 indoor and outdoor
images recorded under daylight illumination with spatial
size of 1, 040 × 1, 392, including 31 spectral bands of 10
nm wide, covering the visible spectrum from 400 to 700nm.
Then we use the same method as CAVE database to get the
HR-MSI and LR-HSI. We select the first 30 samples and

9http://www.cs.columbia.edu/CAVE/databases/
10http://vision.seas.harvard.edu/hyperspec/d2x5g3/
11https://www.harrisgeospatial.com/Data-Imagery/Satellite-

Imagery/High-Resolution/WorldView-2
12http://www.maxmax.com/spectral response.htm

Table 2. Ablation study on the prior network with different setting.

Network Para(M) PSNR SAM ERGAS SSIM
ResNet 6.75 48.29 2.51 0.60 0.995
U-net 6.70 49.71 2.28 0.50 0.996

Transformer 3.46 50.76 2.07 0.46 0.996
3DT-Net 3.46 50.93 2.01 0.45 0.996

randomly extract 64× 64 overlapped patches from them as
reference HR-HSIs for training. Thus, the HR-HSIs, HR-
MSIs and LR-HSIs are of sizes 64× 64× 31, 64× 64× 3,
8 × 8 × 31, respectively. The remaining 20 samples of the
database are used for testing.

The WV-2 database contains a LR-HSI of size 419 ×
658× 8 and an HR-MSI of size 1676× 2632× 3, while the
ground truth HR-HSI is unavailable. We follow the same
setting as [43] to generate the training data. We select the
top half part of the HR-MSI 836 × 2632 × 3 and LR-HSI
209 × 658 × 8 as training data and exploit the remaining
parts of the data set as testing data. We use the Wald’s pro-
tocol [49] to generate the training samples. We divide the
training data into 256×256×3 overlapped HR-MSI patches
and 64×64×8 overlapped LR-HSI patches. Then we down-
sampling HR-MSI and LR-HSI patches into size 64×64×3
and 16× 16× 8 as the input HR-MSI and LR-HSI, respec-
tively. Note that the original 64 × 64 × 8 HSI is taken as
ground truth.

4.2. Ablation Study

In this section, we conduct simulated experiments to
show the effectiveness of our network in three aspects: the
influence of stage number K, the effectiveness of 3D-CNN
and Transformer prior network, and the effectiveness of 3D-
CNN over 2D-CNN.
Effect of stage number K. To explore the impact of the
number of unfolded stages on the HSISR performance, we
report the performance of the proposed 3DT-Net with dif-
ferent stage number K. Table 1 shows the average results
over 12 testing HSIs. Here, the bold values represent the
best result, and the results with underlines denote the sec-
ond best. From the table, we can observe that as the num-
ber of iterations increases, the performance of PSNR and
SSIM will increase, but when K>3, the performance of
PSNR and SSIM will decrease. This shows that our method
can quickly converge after several iterations, but the perfor-
mance may not be improved when the iteration is increased,
because the network is too complex and it will be difficult
to train to obtain the optimal solution. In the following ex-
periments, we choose K = 3 in our implementation.
Effect of 3D-CNN and Transformer prior network. To
verify the effectiveness of 3D-CNN and Transformer prior
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(a) GT and RGB (b) Hysure (c) CNN-FUS (d) MHF-net (e) DBIN (f) MoG-DCN (g) 3DT-Net

Figure 3. Qualitative results of the CAVE datasets at band 31. Top row: Ground truth and reconstructed images by 6 comparison methods,
with a demarcated areas zoomed in 4 times for easy observation. Bottom row: RGB and the error images of the result obtain by the 6
competing methods.

Table 3. Quantitative comparisons of different approaches over 10
testing images from the CAVE dataset with respect to four PQIs.

Method PSNR SAM ERGAS SSIM
Hysure [31] 40.06 9.66 1.30 0.976
NSSR [12] 44.07 4.35 0.82 0.987
CSTF [23] 42.41 5.04 0.87 0.979
LTTR [9] 45.89 2.97 0.66 0.994

CNN-FUS [11] 44.21 4.04 0.82 0.989
MHF-net [43] 46.31 3.39 0.64 0.994

DBIN [37] 48.82 2.09 0.50 0.996
MoG-DCN [14] 49.89 2.04 0.45 0.996

3DT-Net 50.93 2.01 0.45 0.996

network, we use the ResNet prior network adopted in
[37, 43] and U-net prior network adopted in [14] to replace
the proposed 3D-CNN and Transformer prior network, re-
spectively. Considering the powerful long-range modeling
ability of Transformer, it only needs very few parameters
to achieve strong performance. We use the U-net prior
network proposed in [14] as the best U-net prior network
(its parameter amount may lager than our method), rather
than requiring that the parameters of the U-net prior net-
work must be the same as these of the 3D-CNN and Trans-
former prior network. For fair comparison of ResNet, we
let the parameters of ResNet prior network the same as the
U-net prior network. From Table 2, we can see that the
PSNR value of Transformer prior network is 1.05 dB higher
than that of the U-net prior network, and the parameters
are only half of the U-net prior network. After the intro-
duction of 3D convolutional layers (the only difference be-
tween Transformer and 3DT-Net), the PSNR performance
increased again by 0.17 dB, which proves that 3D convo-
lutional layers can better extract the spatio-spectral correla-
tion priors.

Table 4. Quantitative comparisons of different approaches over 20
testing images from the Harvard dataset with respect to four PQIs.

Method PSNR SAM ERGAS SSIM
Hysure [31] 44.26 3.75 1.40 0.983
NSSR [12] 46.08 3.40 1.20 0.985
CSTF [23] 44.98 3.54 1.07 0.980
LTTR [9] 46.86 2.90 1.11 0.987

CNN-FUS [11] 46.05 3.24 1.12 0.985
MHF-net [43] 46.42 3.01 1.09 0.987

DBIN [37] 47.36 2.71 0.97 0.988
MoG-DCN [14] 47.64 2.67 0.91 0.988

3DT-Net 48.05 2.27 0.84 0.991

4.3. Experiments with Simulated Data

The average results in terms of the PSNR, SAM, ERGAS
and SSIM of all the competing methods on the CAVE and
Harvard datasets are reported in Table 3 and Table 4, respec-
tively. From these two tables, it can be seen that the perfor-
mance of deep learning-based methods are better than that
of traditional shallow learning-based methods, which shows
the advantages and representation ability of deep neural net-
works. Clearly, the proposed 3DT-Net method outperforms
all other competing methods by a considerable margin. The
average PSNR value of our method is more than 1.0 dB
and 0.4 dB higher than that of the second best method (i.e.,
the MoG-DCN method) on CAVE and Harvard datasets, re-
spectively.

In Fig. 3 and Fig. 4, we show parts of the reconstructed
HR-HSIs at 700 nm by the competing methods for the test
image real and fake apples from the CAVE dataset and the
test image imgf2 from the Harvard dataset, respectively.
From Fig. 3, we can see that the composite image obtained
by 3DT-Net is the closest to the ground-truth, while the re-
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(a) GT and RGB (b) Hysure (c) CNN-FUS (d) MHF-net (e) DBIN (f) MoG-DCN (g) 3DT-Net

Figure 4. Qualitative results of the Harvard datasets at band 31. Top row: Ground truth and reconstructed images by 6 comparison methods.
Bottom row: RGB and the error images of the result obtain by the 6 competing methods.

(a) HR-MSI (b) LR-HSI (c) MHF-net (d) DBIN (e) MoG-DCN (f) 3DT-Net

Figure 5. Qualitative results of the WV-2 dataset. (a) and (b) are the HR-MSI and LR-HSI of the right bottom area of Roman Colosseum.
We show the composite image of the HSI with bands 5-3-2 as R-G-B. (c)-(f) reconstructed images by 6 comparison methods, with a
demarcated areas zoomed for easy observation.

sults of Hysure and CNN-FUS contain obvious incorrect
structure or spectral distortion. From Fig. 4, we can see
that all the test methods can well reconstruct the HR spatial
structures of the HSI. Obviously, the proposed method per-
forms best in recovering the details of the original HSI and
achieves the smallest reconstruction error.

4.4. Experiments with Real Data

To verify the robustness of our method on real data, a
public dataset of real MSIs called WV-2 are used in our
experiments. In Fig. 5, we show a portion of the fusion
result of the testing data. It can be seen that MHF-net [43]
and DBIN [37] have obvious blur and artifacts. Visual in-
spection clearly shows that the proposed method has better
visual effect.

5. Conclusions

In this paper, we have provided a new deep unfolding
network for hyperspectral image super-resolution based on
proximal gradient algorithm and Transformer prior. Un-
like other deep learning-based HSI super-resolution meth-

ods using CNN to learn the prior of HSIs, our 3DT-Net use
Transformer layers to exploit spatial priors and 3D convo-
lutional layers to exploit spatio-spectral correlation priors.
Compared with CNN, Transformer has long-range model-
ing capabilities and can use fewer parameters to achieve
better performance. 3D convolution slides along the spa-
tial and channel dimensions at the same time, making it
more suitable for exploring the spatio-spectral correlation
of HSIs. Evaluations on two public simulated datasets and
one real datasets both demonstrate that the proposed 3DT-
Net achieves state-of-the-art performance in terms of quan-
titative result and visual quality.

The proposed prior modeling method is general for many
low-level image restoration tasks. In particular, it can be
seamlessly integrated with any method under the Plug-and-
Play framework, especially suitable for processing high-
dimensional data, such as hyperspectral image, video, and
light-field. The limitation of our approach is that it is a lit-
tle more computationally taxing than those convolutional
residual block based network. Therefore, in the future we
will exploit some efficient implementations to extend our
method to other tasks.
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[40] Qi Wei, José Bioucas-Dias, Nicolas Dobigeon, and Jean-
Yves Tourneret. Hyperspectral and multispectral image fu-
sion based on a sparse representation. IEEE Transactions on
Geoscience and Remote Sensing, 53(7):3658–3668, 2015. 2
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