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Abstract

Data fabric is an automated and Al-driven data fusion approach
to accomplish data management unification without moving data
to a centralized location for solving complex data problems. In a
Federated learning architecture, the global model is trained based
on the learned parameters of several local models that eliminate
the necessity of moving data to a centralized repository for ma-
chine learning. This paper introduces a secure approach for med-
ical image analysis using federated learning and partially homo-
morphic encryption within a distributed data fabric architecture.
With this method, multiple parties can collaborate in training a
machine-learning model without exchanging raw data but using
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the learned or fused features. The approach complies with laws
and regulations such as HIPAA and GDPR, ensuring the privacy
and security of the data. The study demonstrates the method’s ef-
fectiveness through a case study on pituitary tumor classification,
achieving a significant level of accuracy. However, the primary
focus of the study is on the development and evaluation of feder-
ated learning and partially homomorphic encryption as tools for
secure medical image analysis. The results highlight the potential
of these techniques to be applied to other privacy-sensitive do-
mains and contribute to the growing body of research on secure
and privacy-preserving machine learning.

Keywords: Data Fabric, Federated Learning, Partially Homomorphic
Encryption, Data Fusion, Data Lake

1. Inroduction

Artificial intelligence (AI) has emerged as an indispensable component
of our everyday lives, particularly within the realm of healthcare. To har-
ness the full potential of Al in healthcare, it becomes imperative to obtain
substantial quantities of meticulously curated data. Nevertheless, the preser-
vation and examination of healthcare data encounter notable impediments
due to the privacy and sensitivity associated with it. The sheer magnitude of
healthcare data is frequently substantial, primarily attributable to the abun-
dance of image-based data. Moreover, the preservation of the confidentiality
of healthcare data is paramount, considering its personal and delicate nature.

To address these challenges, we have built an advanced data fabric archi-
tecture that brings together healthcare centers in a region and stores patient
data and diagnoses in a secure and privacy-preserving manner. Data fabric is
a data fusion [34], 7] and integration approach to accomplish data manage-
ment unification through analytics and AI. The proposed approach utilizes
federated learning and partially homomorphic encryption [38] to allow for
collaborative machine learning on encrypted data, while still maintaining
compliance with laws and regulations such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) [I] and the General Data Protection
Regulation (GDPR) Act 2018 [2].

In this study, we have used pituitary tumor classification as a case study,
employing various deep-learning models such as VGG16, VGG19, ResNet50,



and ResNet152. Our results show promising potential for the use of feder-
ated learning [34] and partially homomorphic encryption in secure medical
image analysis. Specifically, we achieved good performance with VGG16
and VGG19 models, while ResNet50 and ResNet152 achieved lower accu-
racy and precision for both classes. However, our custom CNN architecture
outperformed all of these pre-trained models in almost every metric that we
used. Our findings contribute to the growing body of research on secure and
privacy-preserving [35, 36] machine learning [39] and demonstrate the poten-
tial for these techniques to be applied in other privacy-sensitive domains.

1.1. Motiwation

In the field of medical image analysis, ensuring the security of sensitive
patient data is of utmost importance. However, with the increasing use of
machine learning and deep learning techniques for medical image analysis,
there is a pressing need for an effective and secure architecture to handle
such data. Previous studies have shown that the use of conventional security
measures, such as encryption and access control, is not enough to ensure the
privacy of patient data in the context of machine learning and deep learning
operations. In addition, the use of traditional centralized architectures for
processing medical image data can be slow and resource-intensive, which can
further compromise the security of the data.

Therefore, there is a clear need for a new, advanced data fabric architec-
ture that is specifically designed to handle the unique challenges of securing
medical image data while also supporting efficient machine learning and deep
learning operations. This research aims to address this gap in the current
state of the art by proposing and evaluating a novel architecture that is ca-
pable of effectively securing medical image data while also enabling fast and
accurate machine learning and deep learning operations.

1.2. Research Problems

The integration of data into healthcare has the potential to improve the
prediction of diseases and epidemics, enhance treatment outcomes, and pre-
vent premature deaths. However, the confidentiality of healthcare data and
the complexity of managing large and diverse datasets pose significant chal-
lenges to the integration of data into healthcare. Ensuring data security and
privacy is of utmost importance, as security breaches in healthcare are on
the rise. According to a study [3], there were 3,033 data breaches reported
between 2010 and 2019, resulting in the exposure of 255.18 million records of



data. Furthermore, the substantial volume of healthcare data presents chal-
lenges in terms of efficient processing, storage, and communication. Conven-
tional methods may prove inadequate when confronted with the magnitude
of the data at hand. In one proposed solution [4], a big data healthcare cloud
would host clinical, financial, social, physical, and psychological data from
patients in a centralized location. However, proper governance of the data
cloud is necessary to effectively work with and analyze complex data.

In this study, we aim to address these challenges by proposing an ad-
vanced data fabric architecture that brings together healthcare centers in a re-
gion and stores patient data and diagnoses in a secure and privacy-preserving
manner using federated learning and partially homomorphic encryption. We
demonstrate the effectiveness of our approach using pituitary tumor classi-
fication as a case study. However, the primary focus of our work is on the
development and evaluation of federated learning and partially homomorphic
encryption as tools for secure medical image analysis in the healthcare sector.

The primary objective of this study is to address the research question:

How effective and practical is the implementation of advanced data fabric
architecture using federated learning and partially homomorphic encryption
for secure medical image analysis in the healthcare sector?

1.8. Contributions

Through our work, we show a fully-fledged data fabric architecture based
on healthcare data can be built whilst complying with privacy regulations
and maintaining good accuracy scores. Our main contribution is threefold:

e We propose an advanced data fabric architecture for storing and col-
laborating and fusing healthcare data in an encrypted form by using
Partial Homomorphic Encryption (PHE) and sharing it with other par-
ties without revealing its content. In this architecture, medical images
of various patients/clients are encrypted on the client side and these
encrypted images are then used as inputs for deep learning models,
enabling the models to learn and classify tumors. Subsequently, the
system collects the classified tumor data for further analysis and pro-
cessing. Further processing of data is done in its encrypted state. Here,
The raw data was encrypted and generated to local weights using the
local FL. Model before getting global attention. Therefore even if the
data was backtracked the end result will produce nothing but an en-
crypted image. Thus, this architecture provides a secure and efficient
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mechanism for processing encrypted data, while preserving data pri-
vacy and confidentiality regulations such as HIPAA and GDPR.

e The proposed federated learning framework enables multiple clients to
collaboratively train machine learning models on their respective data
and then store the local updates, unlike the existing general federated
learning frameworks which function on real-time local and global up-
dates. Our framework offers the flexibility to modify, scale, merge or
select the local model updates before using them into the global model.
In this way, the framework we proposed facilitates the systematic ex-
change of model updates between the local and global models.

e Moreover, we have tailored a convolutional neural network (CNN) ar-
chitecture, inspired by VGG16 and VGG19, with a smaller input size,
resulting in a reduced parameter size compared to the aforementioned
models. This customization enables enhanced efficiency by reducing
computational complexity, particularly when leveraging Partially Ho-
momorphic Encryption (PHE) techniques.

e We further evaluate the proposed approach by implementing a proto-
type of the homomorphic encryption-based data fabric and the feder-
ated learning framework. The assessment indicates that the suggested
method offers an effective and reliable data fusion for sharing and an-
alyzing data securely. The experimental results demonstrate that the
proposed approach achieves satisfactory accuracy in the collaborative
training of machine learning models, even when the data is encrypted.

2. Literature Review

Data fabric architecture is a relatively new concept that has already been
utilized by notable organizations, including IBM, for data fusion, manage-
ment, and unification purposes. Despite its potential benefits, there is limited
research available on the implementation of this architecture in the healthcare
system. Due to the sensitive nature of healthcare, developing a secure data
fabric architecture can present challenges. This chapter examines various
data architectures, processes, and encryption methods that can be employed
to ensure the security of healthcare data.

There are a few works that are related to the architecture we are working
on. They are described below:



In [9], the authors describe a proof-of-concept implementation that uses
the Hyperledger Fabric framework. They claim that this concept is capable
of storing patient records effectively with keeping all the privacy protocols
intact. Lastly, they compare the read-write times according to their claim.

In [I0], Roehrs et al. divide personal health record (PHR) information
into data blocks that may appear to be centrally stored but are actually dis-
tributed among participating devices. The authors claim that their proposed
openPHR protocol is practical, flexible, and scalable for adoption by mul-
tiple organizations. Although the authors provide a detailed architecture,
questions have been raised about the feasibility of their approach, especially
regarding security and privacy concerns. It is important to note that PHRs
are controlled by patients, while electronic health records (EHRs) are man-
aged by healthcare institutions. Nevertheless, EHRs and PHRs are electron-
ically stored and distributed and can be assessed based on metrics such as
performance, scalability, privacy protection, and compliance with the GDPR.

In [I1], the MeDShare platform shares several similarities with PRE-
HEALTH [9]. However, the authors do not explicitly specify the underlying
blockchain framework. Additionally, their emphasis is more on examining
the fundamental components of blockchain technology, including data blocks
and smart contracts, rather than presenting a practical solution.

Ming and Zhang [12] present an effective privacy-preserving access control
(PPAC) strategy for cloud-based EHR systems. Their approach utilizes the
cuckoo filter and an innovative attribute-based signcryption (ABSC) mech-
anism to achieve both anonymity and computational efficiency. The authors
offer comprehensive assurances of privacy and conduct thorough performance
evaluations for comparison. However, it is uncertain whether their approach
complies with the GDPR regulations.

In [13], Fu et al. mainly focus on sharing data among different partici-
pants safely. Using Hyperledger Fabric, they propose a more secure decen-
tralized distributed data storage over traditional centralized data for SKA
data due to high management costs and low credible traceability. The SKA
Data Management Alliance significantly reduces costs and improves the over-
all security of its data by adopting this distributed storage system.

Our architecture utilizes federated learning to train deep learning models.
In our research, we have come across some related studies that are somewhat
aligned with our work. Here are brief descriptions of these studies:

In [I6], the authors propose a secured model of federated learning using
homomorphic encryption and attempt to classify Covid-19 using X-Ray im-
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ages. They secure the federated process and claim that sensitive information
can fall into the hands of attackers if the DL process is not secured. They do
not encrypt the dataset but rather encrypt the weight matrix used in feder-
ated learning. They claim to achieve an accuracy of 84.00% with a precision
of 86.89%.

It is obvious that with the vast growth of artificial intelligence and big
data, contradictions between user data policy and data policy also grow
proportionally. That is why in [18], the authors come up with a vertical
federated learning system for Bayesian machine learning using homomorphic
encryption. Their model can be compared with 90% of models trained by
a single union server. Additionally, their system can be used in education,
finance, medicine, risk controls, and other fields.

Here are some additional studies that are relevant to our research and
have been reviewed and summarized below:

In [19], the authors provide insights into the difficulties of medical data
analysis and security and propose a solution based on a decentralized archi-
tecture. They utilize the Exonum framework. In their proposed architec-
ture, they separate the whole system into two parts - 'Closed Information’
and 'Open Information.” In the closed part, encrypted data is stored in
a blockchain, while in the open part, non-encrypted service-related data is
stored.

Zhang et al. [20] propose a meaningful usage of optimizing Electronic
Health Records (EHRs) using big data analytics. Here, they propose an
insight into how to improve electronic health records using three methods:
Data Collection, Data Storage, and Data Utilization. Firstly, in the data
collection method, records are divided into structured and unstructured data.
Structured data includes demographics, health status, lab results, billing,
etc., while surgical videos or diagnosis notes fall under unstructured data.
After collecting, they propose a transformation engine where data is moved,
cleaned, merged, and validated, and is stored in DBMS, Cloud, or NoSQL.
Finally, transformed data is processed using mapping and reduction, and
stream computing and in-database analytics are used for generating reporting
systems, which help achieve a meaningful usage of EHRs using big data
analytics. However, the authors also map out the limitations of this research,
and emphasize that it lays the foundation for interesting opportunities in the
future.

In [23], the authors introduce a novel big data platform that can redesign
modern medical data and bring an effective and quick solution to the health-
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care system. They propose a system that is lightning-fast, supports stream
processing, and integrates with both NoSQL and RDBMS. This process aims
to exploit open-source technologies as much as possible and build the sys-
tem on top of them. The core of the system is Spark core, and to utilize it,
the system uses the Spark framework with real-time graphical image process-
ing. For handling structured data, the authors propose SparkSQL Structured
Data and MLib Machine Learning for classifying the data.

In [24], the authors describe an architecture where an improvised big data
model is involved to create a cloud computing environment for healthcare.
In this process, huge amounts of data from medical sources and processes are
collected in cloud storage, and real-time analysis is done using cloud com-
puting for better accuracy. The Healthcare Data Management Framework
is built on Hadoop Clusters and certain key components. Semantic Prac-
titioner, Big data container and processing layer, Query formulator, Batch
scheduling, and Data reader are examples of such tools. This architecture is
also open to implementing various cryptographic techniques on the Cloud.

2.1. Background Studies
2.2. Data Fabric

According to Gartner [5], Data Fabric is a unified and integrated platform
that enables data discovery, fusion and integration, management, and access
across multiple environments. It provides a consistent and scalable approach
to managing data assets that are distributed across various locations, such
as on-premises, cloud, and edge computing. Data Fabric helps organizations
to simplify and optimize their data management processes, reduce data silos,
and enable real-time access to data. It also supports the creation of a self-
service data marketplace, allowing users to discover, share, and consume
data in a secure and governed manner. Data Fabric is increasingly becoming
a critical component of modern data architectures, as organizations seek to
manage the growing volume, velocity, and variety of data generated by digital
business initiatives.

In our research, we are utilizing homomorphic encryption to classify pitu-
itary tumors from MRI images in our dataset. We have used a Data Fabric
architecture to store the weights of different machine-learning models as en-
crypted data. The ML models are run on client PCs, and the resulting
encrypted data is saved in our Data Lake. Using homomorphic encryption, a
server PC can perform computations on the encrypted data, allowing for the
creation of a homogeneous global model. The server can then provide users
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with the requested results without compromising the privacy of the MRI
images. This approach benefits from the Data Fabric’s ability to provide
a unified and integrated platform that enables data discovery, integration,
management, and access across multiple environments. By utilizing homo-
morphic encryption and a Data Fabric architecture, we can classify pitu-
itary tumors from MRI images in a privacy-preserving manner, contributing
to the development of more secure and privacy-preserving medical imaging
technologies.

2.2.1. Vanilla Architecture of Data Fabric
i) Accessing Data:

(a)

Data Collecting and Encryption: Data is a volatile resource,
and Medical Data is considered highly sensitive as it can contain
personally identifiable information such as names, addresses, dates
of birth, and medical records which can be exploited if they fell into
wrong hands. To comply with this shortcoming, in this architec-
ture, data is neither collected nor stored in a central server which
may possess the risk of data leakage.

Here, firstly, to ensure privacy and reduce data volatility, medical
data from various users are first selected and then encrypted with
Partially Homomorphic Encryption (PHE). Subsequently, the en-
crypted data is selected to train the model locally for collecting
updated model weights. The data of each user is generated and
stored locally, without being transferred to the central server. In-
stead, the generated model updates are stored and merged for the
global model formation.

Master Data Management: Following the generation of local
model updates and subsequent merging of data, feature selection
is employed as a means of optimizing and enhancing efficiency. By
selecting the most relevant features or weights, the dimensionality
of the data can be reduced, facilitating ease of analysis. More-
over, feature selection mitigates the risk of overfitting, improves
model accuracy, and reduces computational costs, thereby achiev-
ing heightened efficiency through the utilization of a reduced train-
ing dataset.

FedMax, FedAvg, and FedMin are optimization algorithms used in
Federated Learning for feature selection. In all three algorithms,



updated model weights are sent to the server/stored for future us-
age. However, in the case of FedMax, the server/user selects the
model with the highest accuracy while it chooses the lowest loss
model for FedMin and an average of all models for FedAvg.

In our architecture, we selected FedMax as our feature selection al-
gorithm to select important and relevant model weights as it showed
more accuracy and efficiency compared to FedAvg and FedMin.
The selected data is collected and kept together as “Master Data”.

ii) Managing Life Cycle:

(a) Governance: Data governance is an essential component of data
fabric architecture. Data fabric architecture is an approach to
data management that enables organizations to manage and pro-
cess data from multiple sources, locations, and formats. It provides
a unified view of data across the organization and supports various
data processing requirements, such as data integration, analytics,
and artificial intelligence.

Data governance in data fabric architecture refers to the policies,
processes, and standards that organizations implement to manage
their data assets effectively. Data governance helps organizations
ensure that their data is accurate, consistent, and compliant with
regulatory requirements. It also helps organizations manage data
privacy, security, and access.

The following are some key considerations for data governance in
data fabric architecture:

Data quality: Data governance policies should include measures
to ensure data quality, such as data profiling, data cleansing, and
data validation.

Metadata management: Data governance policies should in-
clude metadata management to ensure that data is properly tagged,
categorized, and classified. Metadata helps organizations under-
stand the meaning and context of their data and facilitates data
discovery and reuse.

Data privacy and security: Data governance policies should
include measures to ensure data privacy and security, such as access
controls, data encryption, and data masking.

Data lineage: Data governance policies should include data lin-
eage to track the origin, transformation, and movement of data
across the organization. Data lineage helps organizations under-
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stand how data is used and facilitates compliance with regulatory
requirements.
Data ownership and stewardship: Data governance policies
should define data ownership and stewardship to ensure that data is
managed and maintained by the appropriate individuals and teams.
(b) Compliance: Data compliance refers to adhering to relevant
laws, regulations, and industry standards related to the handling,
processing, and storage of data. In the context of data fabric, data
compliance refers to ensuring that data is managed in accordance
with these requirements across the entire data fabric. To ensure
data compliance in a data fabric, it is necessary to establish poli-
cies and procedures that cover the entire data lifecycle, from data
ingestion to archival and deletion. Personal data must be collected,
processed, and stored in compliance with privacy regulations such
as GDPR, CCPA, HIPAA, etc.
In this architecture, the feature selected weights were trained on
various models such as VGG16, VGG19, ResNet 50, ResNet 152,
etc. and updates are stored in a data lake structurally based on
models they were trained on complying with HIPAA regulations.
iii) Exposing Data: Data exposure refers to making data available for con-
sumption and analysis by users or applications within an organization.
Exposing data in a data fabric involves providing access to the data for
authorized users or applications. There are several ways to expose data
in a data fabric, including:
APIs: Application Programming Interfaces (APIs) enable applications
to access and retrieve data from the data fabric.
Data Catalogs: A data catalog provides a searchable inventory of data
assets in the data fabric. Users can discover and access data assets
through the data catalog.
Self-Service Analytics: A self-service analytics platform enables users
to create their own queries and reports using the data available in the
data fabric.
Data Virtualization: Data virtualization enables users to access and
combine data from multiple sources as if it were in a single location.

2.3. Federated Learning
Federated Learning is a distributed machine learning technique that en-
ables multiple clients to collaboratively learn a shared model without ex-
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Figure 1: Vanilla Architecture of Data Fabric

changing their raw data. This technique has gained popularity in recent
years due to its ability to preserve data privacy and security while improv-
ing model performance. In Federated Learning, each client trains a local
model using its own data and then sends the local model weights to a central
server. The central server then aggregates the local model weights to up-
date a global model that is shared among all clients. This process continues
iteratively until the global model achieves the desired level of accuracy. Ac-
cording to the report [6], Federated Learning has been successfully applied
to various domains, such as speech recognition, natural language processing,
and healthcare, where data privacy is a major concern.
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Algorithm 1 Federated Learning Process

1: Initialize global model

2: Split data into shards and distribute among clients

3: for iin range(num_communication_rounds) do

4: Initialize local model

Send local model to each client

for client in clients_data do
client.model.train(client.data)

end for

Clients send updates to the global model

10: Scale updates by the weight scaling factor

11: Aggregate updates using FedMax

12: global_model.update_weights(maz(updates)

X weight_scaling_factors)
13: end for

2.4. Homomorphic Encryption

A cryptographic method called homomorphic encryption enables math-
ematical operations to be carried out on ciphertext without exposing the
underlying plaintext. In our research, we used partially homomorphic en-
cryption to encrypt sensitive medical images, specifically brain MRI scans.

Partially homomorphic encryption (PHE) is a type of homomorphic en-
cryption that only supports a limited set of mathematical operations, such
as addition or multiplication. By encrypting the medical images using this
technique, we were able to process and analyze the data without exposing
the sensitive information contained within it.

One major benefit of using partially homomorphic encryption in this con-
text is that it ensures the confidentiality of medical data. As medical infor-
mation is often highly sensitive and personal, it is important to protect it
from unauthorized access. By encrypting the data, we were able to securely
process and analyze it without compromising its confidentiality.

In addition, partially homomorphic encryption allows for more efficient
processing of the encrypted data. Because the mathematical operations can
be performed directly on the ciphertext, there is no need to decrypt the data
first, which can be a time-consuming process. This was particularly useful
when working with large datasets or when processing data in real time. [7]

Overall, our use of partially homomorphic encryption proved to be a
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successful and effective method for protecting the confidentiality of sensitive
medical images while still enabling their analysis.

3. Methodology

3.1. Data Description

In our experimental evaluation, we used the dataset [29] named “Brain
MRI Images for Brain Tumor Detection”, available on Kaggleﬂ The dataset
includes a large number of 2D MRI images for the classification of brain
tumors. Brain tumors are classified into three types: Benign, Malignant,
and Pituitary. However, for our selected dataset, images are classified into
two categories; Pituitary Tumor and No Tumor.

From the dataset, 1852 images have been used by us as shown in the
figure below. On the images, we performed encryption and machine learning
techniques for ensuring privacy and achieving desired results.

'https://wuw.kaggle.com/datasets/masoudnickparvar/
brain-tumor-mri-dataset
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Table 1: Comparison among different types of Homomorphic Encryption

Types of Homomorphic
Encryption

Partially Homomorphic
Encryption (PHE)

Somewhat Homomorphic

Encryption (SHE)

Fully Homomorphic
Encryption (FHE)

Supported Operations

Addition or Multiplication

Addition & Multiplication

Arbitrary Computations

Security High Moderate to High High
Computational Efficiency High Moderate Low
Computational Intensity Low Moderate High

Encryption Simple More Complex than PHE Very Complex
Encryption Overhead Low Moderate High
Implementation Ability Easy Moderate Difficult

.
75 o 25 — 100
‘ Public Key Encryption |
.
X o Y — ABC
\ Private Key Encryption |
.
75 o 25 — 100

Figure 3: An Overview of the Homomorphic Encryption
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Figure 4: A few samples of the used Brain Tumor dataset [29]

For preparing our own data fabric to perform MLOps, an image was
selected from the dataset and converted into a Numpy array with its pixel
values. After that, homomorphic encryption was performed on the array to
make the data fabric encrypted. A brief overview is shown in the following
figure.

3.2. Data Preprocessing

To prepare our data we needed to preprocess the whole dataset. Firstly,
we have encrypted our dataset using the Partially Homomorphic Encryption
Algorithm. After that, we resized the images to 128 x 128 dimensions. The
shape of our dataset became (1852, 128, 128). Then we reshaped our dataset
by multiplying the dimensions of individual pixels. Then the shape ultimately
(1852, 15376). For machine learning classifiers we have scaled the image
dataset to value 0 to 1.

3.3. Proposed Model
3.8.1. Advanced Architecture of Data Fabric
i) Accessing Data: Here, initially, to ensure privacy and reduce data
volatility, medical data from various users are first selected and then en-
crypted with Partially Homomorphic Encryption (PHE). Partially Ho-
momorphic Encryption (PHE) enabled us to perform DLOps on the data
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Figure 5: Overview of the encrypted dataset

securely. Subsequently, the encrypted data is selected to train the model
locally for collecting updated model weights. For training, various fed-
erated learning models like VGG16, VGG19, ResNetb0, ResNet152, and
our Custom CNN were used which generated model updates for each
model. The data of each user is generated and stored locally, without
being transferred to the central server. Instead, the local model updates
were stored and merged for the global model formation.

After combining the local model weights, we selected FedMax as our fea-
ture selection algorithm to select important and relevant model weights
as it showed more accuracy and efficiency compared to FedAvg and Fed-
Min. The selected data is collected and kept together as “Master Data”,
with which we will continue our next works.

Managing Life Cycle: Selected model weights were differentiated
based on the models they were trained on. In this case, for example,
updates of the VGG16 model were kept structurally under the “VGG16”
name. This enables effective data governance, as the risks of data in-
consistency and complicated integration across the whole architecture
get lowered. Additionally, organizing data in a structured way ensures
proper usage of data and helps strike a balance between data collabora-
tion and privacy mandates.

Furthermore, as the privacy of the data was already ensured in the first
step, the collected model weights already comply with existing privacy
regulations such as HIPAA, GDPR, etc.
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iii) Exposing Data: Since exposing data is a comprehensive approach

where appropriate data access controls, data fusion, and cataloging must
be implemented, we stored all the collected local model updates in a
“Data Lake”. This enabled us to store our raw model weights struc-
turally in their native format. Additionally, since there were huge amounts
of model weights, using a Data Lake helped us to store and process it
easily.
Most importantly, we can also perform MLOps on the Data Lake di-
rectly. On the client side, clients can train their data on the global fed-
erated model and can compare the global weights with the local weights
of that model stored in the data lake and generate the desired output.
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3.3.2. Implemented Federated Learning Framework

As we delve into the world of medical imaging and machine learning,
we have utilized a cutting-edge approach to store the local weights of our
machine learning models using a Data Fabric architecture. This architecture
has allowed us to securely store and manage distributed data across multiple
environments, providing a consistent and scalable approach to managing data
assets.

Our goal was to develop a pituitary tumor classification model that lever-
ages the decentralized data in a privacy-preserving manner, improving the
accuracy of the model while ensuring the privacy of patient information. We
have used the FedMax algorithm, an improvement on the popular FedAvg
algorithm, to compile a global model and local models for the classification
of pituitary tumors from MRI images in our dataset. The FedMax algorithm
considers the model performance of each client and assigns a weighting fac-
tor that allows clients with the best performance to contribute more to the
global model. We have stored the resulting model weights in a data lake,
allowing us to generate a global model and test it using test cases when the
user prompts to show results.
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3.8.8. Comparative Analysis with Related Works

Our work is different from existing approaches as it enables effective and
secure handling of highly sensitive health data through our proposed Data
Fabric architecture. Another advantage of this work is that its privacy-
preserving features (Homormophic encryption) are compliant with GDPR
[30], as it supports the right to be forgotten, as the actual health data is nei-
ther collected nor stored. Rather, after training, the encrypted data which
is collected is stored as model updates. Similarly, it is possible to delete
a client’s data from the data lake upon request. In addition to this, com-
pared to other works, our model also complies with HIPAA guidelines, as
it ensures confidentiality, integrity, and availability of personal health infor-
mation, safeguards data from threats, and protects impermissible access as
mentioned here[I].

The following table displays a comparison between our data fabric archi-
tecture and other existing works that have demonstrated proof-of-concept
implementations, which can be implemented and practical for real-world sce-
narios. In this table, the technology, privacy-preserving features, GDPR and
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HIPAA compliance, and also performance assessment results of each existing
proposal have been provided.

Table 2: Comparative Analysis

Privacy .
Architecture Technology Access Level HIPAA GDPR Performance
Preserving
PREHEALTH [9] | Hyperledger Fabric Private Not Mentioned | Yes Yes Yes
OmniPHR [10] Peer - to - Peer Private No No No Yes
MeDShare [IT] Agnostic Open No No No Yes
Access Control
AC Scheme Private No No Yes Yes
Based EHR [12]
Our Proposed Work Data Fabric Private Yes Yes Yes Yes

3.3.4. Model Specification

i) VGG16: A 16-layered convolutional neural network model trained on
the ImageNet dataset, it is considered to be one of the best models
to date. It is widely regarded for its simple architecture and excellent
image classification performance, retaining 92.7% test accuracy in the
ImageNet dataset, which consists of almost 14 million training images
across a thousand object classes.

As its name suggests, it is composed of 16 layers which include 13 con-
volutional layers and 3 fully connected layers. It comprises 138 million
parameters and uses small convolutional filters and deep architectures to
gain a large receptive field and strong discrimination ability, which helps
in image classification, object detection, and semantic segmentation. To
control overfitting and reduce spatial dimensions, its architecture has
five max pooling layers.

The most unique thing about VGG16 is that it is focused on convolution
layers of 3 x 3 filter with stride 1 and always used the same padding and
max pol layer of 2 x 2 filter with stride 2, and the layers are constantly
arranged over the whole architecture. Due to its high-level feature repre-
sentation, it provides good performance on object detection, fine-grained
image classification, etc. [32]
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Figure 12: VGG16 Model Architecture

VGG19: A variant of the VGG neural network, it is a 19-layer version
of the VGG network and similar to the VGG16 architecture. Compared
to VGG16, it has 5 convolutional layers and 1 fully connected layer. It
has around 143 million parameters and is trained on a dataset with 1.2
million images and 1000 classes.

The function accepts an image of shape (128, 128, 1) as input, and the
image is passed through concatenate layer which concatenates the image
3 times resulting in a tensor with shape (128, 128, 3), this is passed to a
VGG19 model which is a pre-trained convolutional neural network model
that is trained on the ImageNet dataset. The VGG19 model serves as
a feature extractor and it extracts features from the image by stacking
convolutional layers and pooling layers. The output of the final max
pooling layer is then passed through a flattened layer which reshapes the
output tensor into a 2D array. This flattened layer’s output is passed
through a dense layer with 1 unit and a sigmoid activation function, it
produces the final output of the network which represents the predicted
probability of the input image belonging to the target class. [32]
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Figure 13: VGG19 Model Architecture

iii) ResNet50: ResNet50 is a deep convolutional neural network architec-

ture that is trained on more than a million images from the ImageNet
dataset. It is known for its use of residual blocks, which address the
problem of vanishing gradients in deep networks. These residual blocks
have shortcut connections that bypass one or more layers, allowing gra-
dients to flow more easily and making it possible to train very deep
networks without the problem of vanishing gradients. The architecture
also uses batch normalization layers, which normalize the activation of
the layers, making it possible to train the network more quickly and
effectively. Additionally, the number of filters increases as the network
gets deeper, allowing it to automatically learn more complex features.
ResNet50 is widely used in many computer vision tasks and is commonly
used as a feature extractor for other tasks.
The ResNet50 model is used as a feature extractor in our experiment,
and the output of the final convolutional layer is passed through a flat-
tened layer which reshapes the output tensor into a 2D array. The flat-
tened feature map is then passed through a Dropout layer with a drop
rate of 0.5, which is used for regularization to prevent overfitting. The
dropout layer is optional and could be removed by commenting out the
line. Finally, the output of the dropout layer is passed through a dense
layer with 1 unit and a sigmoid activation function, which is used to
produce the final output of the network, which represents the predicted
probability of the input image belonging to the target class.[31]
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Figure 14: ResNet50 Model Architecture

ResNet152: We also used a ResNet152 architecture model. The ar-
chitecture is composed of a stack of convolutional and pooling layers.
The model accepts an image of shape (128, 128, 3) as input and the
output of the final average pooling layer is passed through a Flatten
layer which reshapes the output tensor into a 2D array. Then, there is a
Dense layer with classes number of units, and softmax activation func-
tion. This dense layer produces the final output of the network which
represents the predicted probability of the input image belonging to dif-
ferent classes. This architecture does not have a dropout layer and the
model is trainable, this means that the model can be fine-tuned with
new data for a different task. [31]
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Figure 15: ResNet152 Model Architecture
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v) Custom CNN: We have customized a convolutional neural network

(CNN) in a similar structure to existing VGG16 and VGG19 models.
It has a total of 16 convolutional layers and 3 fully connected layers.
The architecture starts with an image of size (128, 128, 1) as input and
predicts a binary output. The first Conv2D layer consists of 64 filters of
size 3 x 3, followed by another Conv2D layer of 64 filters of size 3 x 3,
and a max pooling layer with a pool size 2 x 2. The next two layers are
similar, with 128 filters of size 3 x 3 and another max pooling layer. This
is followed by several more pairs of DepthwiseConv2D with a different
number of filters and MaxPooling2D layers that are stacked on top of
each other and learn increasingly complex features from the images.
After two fully connected layers with 4096 units and a dropout of 0.5
applied on each layer, the output is generated with activation “sigmoid”
and Dense Layer 1 unit. Compared to VGG16, our customized CNN
has a deeper architecture with more convolutional layers and is similar
to that of VGG19. It also has a higher number of filters in layers than
VGG16 and VGG19. Additionally, Custom CNN uses a dropout layer
after each fully connected layer, something that is not present in VGG16
and VGG19.

relu”
relu”
"sigmoid"

Flatten

Dense Layer 1 units

Activation =
( output )

Activation

Dense Layer 4096 units
Activation

MaxPooling2D (2x2)
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Figure 16: Custom CNN Model Architecture
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4. Result Analysis

We used homomorphic encrypted MRI data for our experiment. In our
architecture, this part works as data governance. We tested simple machine-
learning algorithms on both encrypted and unencrypted data. We saw on
unencrypted data we were able to get the highest 97.1% accuracy whereas,
on encrypted data, we were able to get the highest 70.12% accuracy. That
shows The approach that we followed to encrypt the data is somewhat usable.

Accuracy on Unencrypted Data Accuracy on encrypted Data

100

5 & & =

S

test_scores in percent
test_scores in percent

r
=3

20
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Figure 17: Performance of tested models on unencrypted and encrypted dataset

For our experiment, we used four different pre-trained deep learning mod-
els - VGG16, VGG19, ResNet50, and ResNet152 - as well as a custom CNN
model that we developed in-house, to classify pituitary tumor and no tumor
from homomorphic encrypted MRI data during federated learning. We eval-
uated the performance of these models using accuracy and F1l-score, as well
as precision for each class. These results are from global models of federated
learning which we used in our architecture.

Accuracy is the proportion of correctly classified cases out of all cases.
In this study, all five models achieved accuracy greater than 50%, indicat-
ing that they performed better than random guessing. The Custom CNN
model achieved the highest accuracy of 83.31%, followed by VGG19 with an
accuracy of 78.58%, VGG16 with an accuracy of 77.25%, ResNet152 with an
accuracy of 65.09%, and ResNet50 with an accuracy of 61.51%.

F1-score is a harmonic mean of precision and recall and is often used as
a measure of overall model performance. Looking at the F1-score results, we
can see that the Custom CNN model achieved the highest score of 83.13%,
followed by VGG19 with an Fl-score of 78.31%, VGG16 with an Fl-score
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of 77.11%, ResNet152 with an Fl-score of 64.46%, and ResNet50 with an

F1-score of 61.45%.

Table 3: Accuracy scores across different models

Model Accuracy Scores Precision Recall
Accuracy F1 - Score Pituitary Tumor No Tumor Pituitary Tumor No Tumor
VGG16 77.25% 77.11% 75.28% 79.22% 80.72% 73.49%
VGG19 78.58% 78.31% 75.82% 81.33% 83.13% 73.49%
ResNet50 61.51% 61.45% 62.38% 60.67% 57.83% 65.06%
ResNet152 65.09% 64.46% 68.18% 62.00% 54.22% 74.70%
Custom CNN 83.31% 83.13% 85.71% 80.90% 79.52% 86.75%

The VGG16 model had a precision of 75.28% for pituitary tumors and
79.22% for no tumors in the binary classification task and 80.72% and 73.49%
recall percentages accordingly. This indicates that the model had a moderate
ability to correctly identify true positive cases, with slightly higher precision
for no tumor cases than for pituitary tumor cases.

True Label

No Tumor

Pituitary Tumor

No Tumor

Predicted Label

Pituitary Tumor

Figure 18: Confusion Matrix of VGG16
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Figure 19: Training History of VGG16

The VGG19 model had the second-highest precision for both classes in
the binary classification task. The precision for the pituitary tumor was
75.82% and for no tumor was 81.33%. The recall percentage is 83.13% and
73.49% for the classes. This suggests that the model had a moderate ability
to correctly identify true positive cases, with slightly higher precision for no
tumor cases than for pituitary tumor cases.
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Figure 20: Confusion Matrix of VGG19
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Figure 21: Training History of VGG19

The ResNet50 model had the lowest precision for both classes in the
binary classification task. The precision for the pituitary tumor was 62.38%
and for no tumor was 60.67% and the recall percentage was 57.83% and
65.06% for the classes. This indicates that the model had a lower ability to
correctly identify true positive cases, with a higher number of false positives
compared to the other models.

No Tumor

True Label

Pituitary Tumor

No Tumor Pituitary Tumor
Predicted Label

Figure 22: Confusion Matrix of ResNet50
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Figure 23: Training History of ResNet50

The ResNet152 model had a precision of 68.18% for pituitary tumors and
62.00% for no tumors in the binary classification task while having 54.22%
and 74.70% recall. This suggests that the model had a lower ability to
correctly identify true positive cases, with a higher number of false positives,
particularly for no tumor cases.
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No Tumor Pituitary Tumor
Predicted Label

Figure 24: Confusion Matrix of ResNet152
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Figure 25: Training History of ResNet152

The Custom CNN model achieved the highest precision for both classes
in the binary classification task. The precision for the pituitary tumor was
85.71% and for no tumor was 80.90%. The recall percentage is 79.52% and
86.75% accordingly. This indicates that the model had a high ability to
correctly identify true positive cases, with a relatively low number of false
positives.
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Figure 26: Confusion Matrix of Custom CNN
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Figure 27: Training History of Custom CNN

The ROC (Receiver Operating Characteristic) curve is a powerful tool
for evaluating the performance of binary classification models. It provides
a graphical representation of the trade-off between true positive rate (TPR)
and false positive rate (FPR) at various threshold settings, allowing you
to choose an appropriate threshold based on your specific needs. A good
classifier should have a ROC curve that is as close as possible to the upper
left corner of the graph, indicating high TPR and low FPR. By analyzing the
ROC curve, you can gain insights into the strengths and weaknesses of your
model and make informed decisions about how to improve its performance.
The ROC curve is widely used in various fields, including medicine, finance,
and machine learning, and is an essential tool for anyone working with binary
classification models. The ROC curves of our used DL models are shown
below:
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Overall, the results suggest that the Custom CNN model performed the
best in classifying pituitary tumors and no tumors from homomorphic en-
crypted MRI data, achieving the highest accuracy, F1l-score, and precision
for both classes. This is particularly notable as the Custom CNN model
was developed in-house, suggesting the potential for further research and
development in this area. However, it is important to note that the use
of partially homomorphic encryption may have influenced the results, and
further research is required to confirm this hypothesis.

5. Conclusion

This research demonstrates an advanced data fabric architecture that
enables data fusion, integration, and model parameters sharing framework
to apply machine learning models without moving the data to a centralized
repository. The Partial Homomorphic EncryptionWe and Federated Learning
ensured data integrity, privacy, and decentralized learning. We explored the
use of pre-trained deep learning models to classify pituitary tumors from ho-
momorphic encrypted MRI data. Our analysis showed that the VGG16 and
VGG19 models outperformed the ResNet50 and ResNet152 models in terms
of accuracy, precision, recall, and Fl-score for both classes. We achieved
overall satisfactory accuracy from VGG16 and VGG19. Out of all of these
pre-trained models, our custom CNN model performed better with 83.31%
accuracy. The reason for the model to perform better is we have made the
model similar to VGG16 and VGG19 while making it much less complex. Our
model has a total of around 15 million parameters compared to 138 million
of VGG16. Despite several significant achievements, the proposed method
can be improved by using Fully Homomorphic Encryption. However, it will
greatly increase the size of the images, which resulted in significant storage
requirements. We have used homogeneous deep learning models for local and
global model training in the federated learning approach. The heterogeneous
learning models can be used for the robust data fabric architecture,
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