
1

Evaluation of composite object replication schemes for dependable server

applications

 Panagiotis Katsaros Nantia Iakovidou Theodoros Soldatos

Department of Informatics

Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

tel.: +30-2310-998532, fax.: +30-2310-998419

{ katsaros, niakovid, thsoldat}@csd.auth.gr

2

Abstract

Object oriented dependable server applications often rely on fault tolerance schemes, which are

comprised of different replication policies for the constituent objects (composite replication

schemes). This paper introduces a simulation-based evaluation approach for quantifying the

tradeoffs between fault-tolerance overhead and fault tolerance effectiveness in composite

replication schemes. Compared to other evaluation approaches: (a) we do not use the well-known

reliability blocks based simulation, but a hybrid reliability and system’s traffic simulation and (b)

we make a clear distinction between the measures used for the fault-affected service response

times from those used for the fault-unaffected ones. The first mentioned feature allows taking

into account additional concerns other than fault tolerance, like for example load balancing and

multithreading. The second feature renders the proposed approach suitable for design studies that

aim to determine either optimal replication properties for the constituent objects or Quality of

Service (QoS) guarantees for the perceived service response times. We obtain results for a case

system model, based on different assumptions on what happens when server-objects fail (loss

scenarios). The presented results give insight in the design of composite method request-retry

schemes with appropriate request timeouts.

KEYWORDS: Fault-tolerance, Performance, Quality of Service, Distributed objects, Simulation

3

1. Introduction

In dependable applications fault tolerance often grounds on the utilization of redundant

processing for minimizing loss of computation in the presence of non-recurrent faults. Common

sources of faults that do not recur after recovery are: insufficient memory, media failures, power

outages, network failures and the non-determinism introduced either by distributed timers or the

use of multithreading.

Fault tolerance schemes for object-oriented applications are possibly comprised of different

replication policies for the constituent objects. We call them composite replication schemes.

According to the recently published OMG FT-CORBA specification ([19]), the replication

policy assigned to an object can be either active, warm passive or cold passive replication and is

customized by a set of behavioral properties (number of replicas, checkpoint/state transfer

interval, request-retry timeout etc) with values that are found to be appropriate for the used fault-

detection setting.

In dependable server applications, where fault tolerance is attained via composite replication

schemes, the perceived quality of service (QoS) is dominated by characteristic tradeoff concerns

between fault tolerance overhead and fault tolerance effectiveness: (i) excessively frequent

checkpoints (if any) result in performance degradation, while deficient checkpoints incur

expensive recovery and (ii) excessively frequent invocation request-retry timeouts cause high

overhead costs and do not improve fault-tolerance effectiveness.

The perceived QoS is also determined by the system’s method call dependencies, because the

callers are blocked until they get the invoked method replies.

A composite replication scheme may be combined with a request assignment strategy for load

balancing to provide possibly agreed QoS guarantees. Checkpoints and state transfers between

object replicas, as well as object replica recoveries affect the invoked requests’ dispatching and

for this reason influence the performance of the applied load balancing.

4

In this computational context, when an application has to conform to possibly agreed QoS

guarantees regarding service response times, the published reliability blocks based evaluation

techniques ([9]) are inadequate.

The current work proposes a hybrid reliability and system’s traffic simulation: events taking

place in different time scales - like transient faults, which by definition are rare events and

service request arrivals that are not rare events - are simulated together in the same experiment.

This allows taking into account complex interactions that are otherwise attributed to diverse

design concerns (fault tolerance, load balancing and multithreading). Also, the proposed

reliability and system’s traffic simulation allows evaluation of measures other than reliability

(response times, throughput etc).

In current work, we make a clear distinction between the measures used for the fault-affected

service response times from those used for the fault-unaffected ones. The former class of

response times takes into account the effects of recovery, i.e. the amount of computation lost due

to rollbacks and/or object state transfers as a result of the occurred object faults. Their mean

quantifies the achieved fault-tolerance effectiveness. The latter class of response times includes

the vast majority of serviced requests. These are the requests that are not influenced by the

occurred object faults (which by definition are rare events), but take into account the overhead

costs due to checkpointing and object state transfers incurred by the applied composite

replication scheme. Their mean characterizes the resulted fault-tolerance performance.

The perceived quality of service (QoS) and the associated guarantees are concerned with both

classes of service requests. However, our aim is to not only provide yet another “working”

evaluation approach: the separate quantification of fault tolerance performance and fault

tolerance effectiveness gives insight into the most influential performance and effectiveness

tradeoffs and the complex interactions due to the system’s method call dependencies. As a

consequence, the proposed evaluation approach may be the cornerstone of systematic QoS

design methods as for example the one we introduced in [10].

5

In current paper we provide formal definitions of the so-called fault affected and fault unaffected

service response times and we describe the prototype simulator that implements the proposed

evaluation approach. We provide results for a case system model, based on different assumptions

for what happens when server-objects fail (loss scenarios). The obtained results give insight in

the design of composite service request-retry schemes with appropriate object-request timeouts.

Section 2 outlines some closely related evaluation approaches. Section 3 describes the adopted

computational model, the assumed object fault assumptions and the developed prototype

simulator. Section 4 provides a formal description of the proposed evaluation approach. Section

5 introduces the used case system model and summarizes the obtained fault-tolerance

performance and fault-tolerance effectiveness results. Finally, we conclude with a discussion on

the perspectives of the proposed evaluation approach.

2. Related work

Analytic performance models for software replication have focused on the evaluation of process-

based replication ([6]) and are not appropriate for applications where fault tolerance involves

different replication policies for the constituent objects.

In [3], the authors introduce an analytic model termed as Fault-Tolerant Layered Queueing

Network (FTLQN), for efficiently predicting the performability in two specific classes of fault-

tolerant client-server systems. Performability estimation is based on efficient layered queueing

network models that are combined with AND-OR graph analysis.

Simulation-based performance evaluation of fault tolerance has been previously reported in [23]

and [22]. The first mentioned article refers to the evaluation of process-based message logging,

checkpointing and recovery schemes, whereas the second one introduces an approach for relative

performance comparison of different checkpointing and recovery protocols. None is focused on

the evaluation of replication schemes comprised of possibly different replication policies for the

constituent objects.

6

Worth to mention is the work published in [14], where the authors propose a hybrid

mathematical programming and analytic evaluation algorithm for a trade-off problem that is not

directly related to fault-tolerance: to determine process replication or threading levels, such as to

avoid unnecessary queuing delays for request senders or unnecessary high consumption of

memory.

3. The prototype simulator

The prototype simulator we introduce in this section reflects the need to keep the set of model’s

parameters and the set of simulated event types as small as possible and at the same time to

provide credible results that give insight into the most influential fault tolerance tradeoff

concerns. The models’ level of abstraction is perceived by the set of parameters used (see the

case study in Section 5) and takes into account the hardware as well as the software resource

contention caused by the applied composite replication scheme. The credibility of the produced

results is ensured by the applied simulation output analysis (section 5). The resulted accuracy, as

in any simulation study, depends on the availability of appropriate resource consumption and

fault occurrence data.

Although a detailed description of the developed simulator is beyond the scope of this paper, we

proceed to the description of the functionality that we believe is necessary to introduce the

proposed evaluation approach. The prototype tool is a standalone application developed in C++,

which features an extensible object-oriented design and does not make use of special

components and libraries. The simulator’s description refers to the adopted computational model,

the simulated object fault models, the behavioral specifications of the implemented object

replication policies and the assumed fault detection setting.

3.1 Computational model

7

Object replication is studied in the context of the OMG Core Object Model ([20]) including the

assumptions adopted in the OMG FT-CORBA specification ([21]).

An object is characterized by its distinct object identity, which is immutable, persists for as long

as the object exists and is independent of the object’s properties or behavior. Each object owns or

does not own a state and a set of methods.

Each method has a signature that includes the method’s name, the set of parameters and the set

of results. A method invocation, also called request, can list some parameters on behalf of a

requester (client) and can cause the method to return results. The methods of an object constitute

the only way to change its state.

We only consider the use of synchronous method invocations: the object requiring the execution

of the invoked method (requester) stops executing and waits for the invoked execution to

terminate and the reply to return. Upon reception of the reply, the sender resumes. A

computation invoked in a server application object (service object) will be called service request

and is possible to involve one or more synchronous and possibly nested requests to other objects.

We adopt the “at-most-once” invocation semantics of the OMG Core Object Model, which

means that each request is executed at most once. Duplicate method invocations due to

replication or request-retry are detected and suppressed.

In OMG FT-CORBA, fault-tolerance is based on the creation and management of multiple object

replicas as a single object group. The client objects invoke methods on the server object group

and one or more members of the server group execute the methods and return their responses to

the clients, just like a conventional object.

We do not place any assumptions about the network topology. For the protocols making up the

interprocess communication we adopt the OMG FT-CORBA assumption that they provide

totally ordered delivery of requests to the replicas of each object.

Strong replica consistency (OMG FT-CORBA): even in the presence of faults, as members of an

object group execute a sequence of methods invoked on the object group, its behavior is logically

8

equivalent to that of a single fault-free object processing the same sequence of method

invocations. For each object, strong replica consistency retains an appropriate context that

depends on the object group’s replication policy (active, warm passive or cold passive).

Although the proposed evaluation approach is open to take into account different multithreading

possibilities, the prototype simulator implements the thread-per-object concurrency approach

([26]), where a single thread executes all invocations on an object replica.

We assume deterministic behavior of the underlying operating system. Ordering of dispatched

method invocations at the application programming level is not allowed. Finally, the application

either does not make use of system calls returning processor-specific information or such calls

are handled by an appropriate mechanism without introducing non-determinism.

Load balancing is used as a mean to show the potentiality of the proposed approach to take into

account additional design concerns, other than fault tolerance. We do not distinguish between

centralized or distributed load balancing. Load information (if applicable) is provided by the

underlying middleware infrastructure, which also works out request assignment to the available

service objects in a transparent and fault tolerant manner (as in [27] and [13]).

State consistency management across object groups, where service requests are assigned,

violates the principle of application transparency, due to its dependence on the application of

interest. Thus, we are restricted to load balancing strategies with no consistency management

costs: the synthetic workload scenario used in our case study assumes request assignment to the

stateless service objects on a round-robin basis.

3.2 Simulated object fault models

We model faults that do not recur after recovery and are eventually manifested as transient

object faults. Application objects conform to the fail-stop model ([25]), which means that they

fail by crashing, without emission of spurious messages. Commission faults as for example

Byzantine faults, where an object generates incorrect results are not addressed.

9

We allow modeling of network faults, where the client does not detect the fault and receives no

reply. However, as in the related OMG FT-CORBA specification, we exclude network-

partitioning faults that separate the hosts of the system into two or more sets.

In general, when a service object fails, the already queued requests are not lost. All requests

arriving while the object is down are queued. For the passively replicated objects that own a state

we have also implemented the following types of omission fault scenarios (loss behavior):

a. When the object fails, no requests previously accepted in the queue are lost but all

requests arriving while the object is down are lost.

b. When the object fails, the requests currently in service, if any, are lost and the

requests arriving while the object is down are also lost.

c. At the instant the server object fails, the requests currently in service, if any, are lost

and the requests arriving while the object is down are queued.

d. At the time the server object fails, the already queued requests are lost and the

requests arriving while the object is down are also lost.

e. At the time the server object fails, the already queued requests are lost, but the

requests arriving while the object is down are queued.

As in OMG FT-CORBA, the prototype simulator supports a request-retry timeout mechanism as

a mean to mask network and recipient omission faults, where the client-side does not detect the

problem and receives no reply. A request-retry incurs overhead processing for re-invoking the

(possibly lost) request.

The prototype simulator allows: (i) to take into account different fault propagation scenarios, (ii)

to use alternative object fault - repair distributions and (iii) to apply load-dependent fault models,

like for example those used in [7].

3.3 Object replication

10

In active replication all the object group replicas execute each invocation independently, but in

the same order (state N in Figure 1). Object replicas maintain exactly the same state and in case

of a fault in one replica (state F in Figure 1), the simulated application continues with the results

provided by the other replicas, without having to wait for fault detection and recovery (state R in

Figure 1).

N F

ST_WAITST

FAULT
FAULT

DETECTION

STATE
TRANSFER

FAULT

FA
ULT

R

RESTARTED

FAULT

STATE
TRANSFER
COMPLETE

Figure 1 Object replica in an actively replicated object group

Strong replica consistency for active replication means that, at the end of each method invocation

on the object group, all the group members have the same state. Each group member responds to

all incoming requests, but duplicate requests/replies are detected and suppressed, thus delivering

only a single request/reply to the destination object.

When an object replica is recovered, a state transfer (and checkpoint) from a live replica is

accomplished (state ST in Figure 1). Since an object state transfer requires operational

quiescence in participating replicas, the state transfer is postponed (state ST_WAIT in Figure 1)

when all other replicas are in-between an invocation service. If, in the course of recovery or a

state transfer, object replicas receive additional invocations, all of them are queued locally and

subsequently applied to them.

Cold or warm passive replication assumes that during fault-free operation, only one member -

the primary (Figure 2a) - of the object group executes the methods invoked on the group. The

state of the primary and the sequence of the invoked methods are recorded in a message log,

according to the applied checkpoint properties.

11

STATE
TRANSFER
COMPLETE

P:N P:F

P:RP:ST

FAULT RESTART AS
BACKUP

RESTART AS
PRIMARY

REPLAYED
LOG

STATE
TRANSFER

BECOME THE
PRIMARY

FAULT

FA
ULT

(b)

REPLAY THE
LOGG

STATE
TRANSFER
COMPLETE

B:N B:F

B:RB:ST

FAULT

RESTART AS
BACKUP

RESTART
AS BACKUP

STATE
TRANSFER FAULT

FA
ULT

(a)

BECOME THE
PRIMARY

STATE
TRANSFER

(a) primary object replica (b) backup object replica

Figure 2 Warm passive replication with one backup object

A checkpoint/state transfer is postponed when the primary is in-between an invocation service or

it happens to be blocked, waiting for a response. In the course of a checkpoint or a state transfer

activity, new invocations may be received, but they cannot be processed, before the end of it.

Strong replica consistency implies that at the end of a checkpoint/state transfer (transitions

P:ST→P:N and B:ST→B:N in Figure 2), all replicas own or have access to the same state. In the

presence of a fault (state P:F in Figure 2a), a backup replica is promoted to be the new primary

(transition B:N→P:R). The state of the new primary is restored to the state of the old one, by

reloading the last saved checkpoint and subsequently reapplying the request messages that have

been recorded in the message log. This implies that a client can re-invoke a request on a server

and receive a reply to that request, but as we already noted without risk that the method will be

executed more than once.

In cold passive replication, the backup replicas are not activated. When the current primary fails,

a new one is selected and then activated. In warm passive replication, the backups have been

already activated and their states are continuously synchronized with the primary replica’s state,

according to the specified frequency of state transfers.

Resource consumption for checkpoints and state transfers depends on the object state size and on

the processing speed of the slowest participating object replica.

12

3.4 Fault detection

In fault tolerant systems, the fault detector that monitors an application object is usually located,

for efficiency, on the same host as that of the object. A global fault detector that is replicated for

fault tolerance monitors the local fault detectors. It has been found ([6]) that fault monitoring

causes an approximate 5% increase, in the processor (of a Pentium-II based 200+ MHz machine)

utilization, for about 500 milliseconds.

In our prototype simulator, each object is periodically checked, according to a specified time

interval that represents the sum of the fault monitoring interval plus the time allowed for

subsequent response from the object, to determine whether it is faulty. The forenamed overhead

processing is included in the system model’s workload and is raised proportionately to the used

fault-monitoring interval.

4. Fault tolerance performance and fault tolerance effectiveness

A distributed system is composed of multiple objects o1, o2, . . ., on. Each object oi, 1≤i ≤ n is

replicated either according to the active replication policy of Figure 1 with k object replicas,

kar
i

ar
i

ar
i ooo ,...,, 21 or alternatively, according to the passive replication policy of Figure 2, with one

primary replica prim
io and one backup back

io .

An object’s methods io
lop , 1 ≤ l ≤ #(methods of oi) may be synchronously invoked by remote

method invocations. A method invocation is represented by an ordered pair of a request and a

reply message (rq(io
lop), rp(io

lop)), for simplicity denoted (io
lrq , io

lrp).

On receipt of a io
lrq the request is queued in the queues of all replicas r

io , denoted by Q(r
io),

where r ∈ {arj | 1 ≤ j ≤ #(r
io)} ∪ {prim}. Each r

io is placed on a separate object server and

queued requests are served in FIFO ordering under a single thread of control. However, the

proposed approach can also be extended for application in other multithreading cases. If r= prim,

executed requests io
lrq are appended to a local log queue logi.

13

Let io
plop , (p∈ℵ) denote a method invocation instance of io

lop . Each io
plop , may further invoke

another method instance to
psop , , with 1 ≤ s ≤ #(methods of ot), 1 ≤ t ≤ n, t ≠ i and this is the case

of a nested invocation, where io
plop , is blocked up to the reception of to

psrp , . Access to a simulated

object’s state is performed by primitive read/write messages that induce computational resource

consumption, but they are not included in the methods’ message sequence specifications.

A message sequence specification for io
lop , 1 ≤ l ≤ #(methods of oi) is given as a total order

relation < over the set

MsgSeq(io
lop) = { to

sop | 1 ≤ s ≤#(methods of ot), 1 ≤ t ≤ n and t ≠ i}

of nested invocations generated by io
lop . This set is empty when io

lop causes exclusively

read/write operations on the state of the simulated oi and no nested invocations. A method 1
1
to

sop

is referred to as preceding another method 2
2
to

sop (1
1
to

sop < 2
2
to

sop) if and only if 2
2
to

srq may be sent

only after 1
1
to

srp is already received.

A global state S of the system consists of all local log queues logi and local queues

Q(r
io) with r ∈ {arm | 1 ≤ m ≤ #(r

io)} ∪ {prim, back} and 1 ≤ i ≤ n

plus the values of ∑
=

n

i

r
io

1

)(#3 additional boolean variables that are defined as follows:

• crash
i

r
: these variables are initially false and become true at the time that r

io becomes

faulty.

• failed
i

r
: these variables are initially false and become true when the system detects that

crash
i

r
= true.

• recovered
i

r
: these variables are initially true to indicate that prim

io reflects the object state

of having executed all io
qsrq , ∈ logi, with 1≤ s ≤ #(methods of oi). In any other case

recovered
i

r
 is false.

An initial global state S0 is the global state in which all Q(r
io) and logi do not have queued

requests (empty) and the additional boolean variables are set to their initial values. An event is an

14

action that changes the global state of the system from S to S΄. We will use the notation e(S) = S΄

to denote that e occurs in global state S and results in global state S΄.

We specify chk_init, send, timeout, respond, crash, failed, restart and chk_end event types by the

following notation:

• chk_init(1r
io , 2r

io) denotes the event whereby a checkpoint/state transfer request 2,1 rr
ic

between 1r
io and 2r

io is placed second in the order of queues Q(1r
io) and Q(2r

io) (or at

the head of them in case of empty queue(s)).

• send(1r
io , jo , jo

plrq , , nf) denotes the event whereby 1r
io sends jo

plrq , to all queues

Q(2r
jo), r2 ∈ {arm | 1 ≤ m ≤ #(r

jo)} ∪ {prim},

 where p∈ℵ and jo
lop is a member of the message sequence of the request at the head

 of Q(1r
io). In the absence of network fault (nf = false) a send event changes the local

 queue(s) Q(2r
jo) if jo

plrq , ∉ Q(2r
jo) and crash

j

r2
 is false, by appending the request

 message jo
plrq , . If jo

plrq , ∉ Q(2r
jo) and crash

j

r2
 is true then Q(2r

jo) changes or does not

 change depending on the applied omission fault scenario (section 3.2). Finally, the

 event timeout(1r
io , jo

plrq ,) is scheduled to occur, if it is required by the applied request-

 retry policy.

• timeout(1r
io , jo

plrq ,) denotes the event whereby a request-retry timeout for jo
plrq , occurs.

The event send(1r
io , jo , jo

plrq ,) takes place and a new timeout(1r
io , jo

plrq ,) is then

scheduled.

• resp(1r
io , 2r

jo , jo
plrp , , nf) denotes the event whereby 2r

jo responds with jo
plrp , to 1r

io for

some r2 ∈ {arm | 1 ≤ m ≤ #(r
jo)} ∪ {prim}. In the absence of network fault (nf = false)

scheduled timeout(r
io , jo

plrq ,) events (if any) are canceled for all r ∈ {arm | 1 ≤ m ≤

#(r
io)} ∪ {prim} and not only for r1. The local queue Q(2r

jo) changes by removing

jo
plrq , from the head and if r2 = prim then jo

plrq , is appended to logj. If the next request is

some jo
qsrq , , then 2r

jo proceeds to executing jo
qsrq , , based on MsgSeq(jo

sop). If the next

15

request is some 2,3 rr
jc , then 2r

jo is blocked until 2,3 rr
jc is also placed at the head of

Q(3r
jo). A chk_end(2,3 rr

jc) event is then scheduled to occur.

• crash(r
io) denotes the event whereby crash

i

r
 becomes true. This models the occurrence

of a fault in r
io . Potential resp(r

io , 1r
jo , jo

plrp ,) and timeout(r
io , jo

plrq ,) events are ignored. If

r = prim then Q(r
io) is changed according to the applied omission fault scenario

(section 3.2).

• failed(r
io) denotes the event whereby failed

i

r
 becomes true. A recovery of r

io is then set

up: in all replication cases, a restart(r
io) event is scheduled.

In the passive replication of Figure 2, if r = prim and crash
i

back
 is false, then Q(r

io) is

 copied to Q(back
io), back

io becomes prim
io and r becomes back. This change results in

failed
i

prim
= crash

i

prim
= false and failed

i

back
= crash

i

back
= true

If #(io
qsrq , ∈ logi | 1 ≤ s ≤ #(methods of oi)) > 0 then recovered

i

prim
 becomes false and

 the variable keeps this value while prim
io has not yet replayed all io

qsrq , ∈logi. When

 recovered
i

prim
 changes to true, logi is emptied.

• restart(r
io) denotes the event whereby crash

i

r
 and failed

i

r
 become false.

• chk_end(2,1 rr
ic) denotes the event whereby 2,1 rr

ic is removed from 1r
io and 2r

io . If r1, r2 are

not back, they proceed to the execution of the next request jo
qsrq , based on MsgSeq(jo

sop).

All forenamed events are atomic and each event affects only the relevant local queues and the

relevant boolean variables. Thus, if crash
i

r
 is false in the global state S, when send(r

io , jo , jo
plrq ,)

occurs, then crash
i

r
 is also false in the resulting global state S΄.

Definition 4.1: A run of the system is an infinite sequence of global states

run = (S0, S1, S2, . . .)

where S0 is an initial global state and there exists a sequence of events (e0, e1, e2,

. . .) such that ∀i ≥ 0, ei (Si)= Si+1.

16

The history of run is the sequence of events Hrun= (e0, e1, e2, . . .) such that

∀i≥0, ei (Si)= Si+1.

Table 1 Glossary of notation
r
io object replica r of oi

arj active replica j of some object

prim the primary object replica of a

 passively replicated object

back the backup object replica of a

 passively replicated object
io
plop , a method instance of io

lop with

 1≤ l ≤ #(methods of oi)

(io
plrq , , io

plrp ,) an ordered pair of request and

 reply messages that collectively

 represent the execution of io
plop ,

logi the log queue of a passively

 replicated oi

Q(r
io) the local queue of requests in r

io

MsgSeq(io
lop) the totally ordered set of nested

 invocations to
sop generated by io

lop

r
icrash there is an object fault at r

io
r
ifailed a fault at r

io has been detected
r
ieredre cov

r
io reflects the object state of

 having executed all io
qsrq , ∈logi

2,1 rr
ic request for checkpointing/state

 transfer between 1r
io and 2r

io

run an infinite sequence of global

 states S0, S1, . . .

Hrun history of run: a sequence of

 events e0, e1, . . such that ∀i≥0,

 ei(Si) = Si + 1

Si = φ predicate φ holds in global state

 Si

F_AFFECTED(io
plrq , ,oj)

 boolean predicate indicating that

 io
plrq , is affected by a fault at oj

For any run run, Hrun is uniquely determined and also, run can be constructed from the history

Hrun and the initial global state S0.

As we already noted, we make a clear distinction between the measures used for the fault-

affected service response times from those used for the fault-unaffected ones. The fault-affected

service requests reflect the effects of recovery (fault-tolerance effectiveness). The fault-

unaffected service requests include the overhead processing caused by the applied composite

replication scheme and for this reason their mean characterizes the resulted fault-tolerance

performance.

17

Definition 4.2: A synchronous request jo
plrq , to a passively replicated object is affected by a

fault at prim
jo in run and the boolean predicate F_AFFECTED(jo

plrq , , jo)

becomes true if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq , , false); y; ev= resp(r
io , prim

jo , jo
plrp , , nf); w)

where x, y finite sequences of events with eu∉x, ev is the first resp event with nf

being either true or false and w an infinite sequence of events such that either:

i. Su= ¬crash
j

prim
 and #(crash(prim

jo)∈ y) > 0 or

ii. Su= (crash
j

prim
 ∨ ¬recovered

j

prim
) or

iii. Su= (∃ jo
qsrq , ∈ Q(prim

jo), 1 ≤ s ≤ #(methods of oj) such that

Sv=F_AFFECTED(jo
qsrq , , jo))

If Sv= F_AFFECTED(jo
plrq , , jo) and Sv= (∃ io

pdrq , at the head of Q(r
io), such

that jo
lop ∈ MsgSeq(io

dop), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #(r
io)} ∪ {prim},

1≤ d ≤ #(methods of oi)), then Sv+1= F_AFFECTED(io
pdrq , , jo).

The first condition reflects the case whereby jo
plrq , is sent to an operational prim

jo and crash
j

prim

changes to true before the occurrence of the expected resp event. The second condition reflects

the case whereby jo
plrq , is sent to a prim

jo , that is not yet operational as a result of a crash(r
jo)

event. The third condition reflects the case whereby jo
plrq , is queued behind a jo

qsrq , that is

eventually affected by a crash(prim
jo) event. If jo

plrq , is a nested invocation generated by io
pdrq , at

r
io , then io

pdrq , is also affected by the crash(prim
jo) event.

Definition 4.3: A synchronous request jo
plrq , to an actively replicated object is affected by a fault

at some 1r
jo in run and the boolean predicate F_AFFECTED(jo

plrq , , jo) becomes

true if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq , , false); y; ev= resp(r
io , 2r

jo , jo
plrp , , nf); w)

18

where x, y finite sequences of events with eu∉x, ev is the first resp event with

r2∈{arm | 1 ≤ m ≤ #(r
jo)} and nf being either true or false and w an infinite

sequence of events such that either:

i. #(chk_end(2,1 rr
jc)∈ y) > 0 and r1 ≠ r2 or

ii. #(crash(1r
jo)∈ y) > 0 with r2 = r1 or

iii. Su= (∃ jo
qsrq , in all Q(1r

jo), r1∈{arm | 1 ≤ m ≤ #(r
jo)}, 1 ≤ s ≤ #(methods of oj),

such that Sv= F_AFFECTED(jo
qsrq , , jo))

If Sv= F_AFFECTED(jo
plrq , , jo) and Sv= (∃ io

pdrq , at the head of Q(r
io), such that

jo
lop ∈ MsgSeq(io

dop), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #(r
io)} ∪ {prim}, 1≤ d ≤

#(methods of oi)), then Sv+1= F_AFFECTED(io
pdrq , , jo).

The first condition reflects the case whereby jo
plrq , has been blocked, in order to realize a state

transfer for a replica recovery. The second condition reflects the case whereby 1r
jo is the first

replica involved in a resp(r
io , 1r

jo , jo
plrp , , nf) event, but has previously become faulty in y. The

third condition reflects the case whereby jo
plrq , is queued behind another request jo

qsrq , that is

eventually affected by a fault at some 1r
jo .

Definition 4.4: A synchronous request jo
plrq , is included in the class of the fault-affected requests

in run if and only if

Hrun=(e0; x; eu= send(r
io , jo , jo

plrq , , false); y; ev= resp(r
io , 2r

jo , jo
plrp , , nf); w)

where x, y finite sequences of events with eu∉x, ev is the first resp event with

r2∈{arm | 1 ≤ m ≤ #(r
jo)} ∪ {prim}, nf being either true or false and w is an

infinite sequence of events such that either:

i. Sv=F_AFFECTED(jo
plrq , , jo) or

ii. Sv= (∃ io
sop ∈ MsgSeq(jo

lop), 1 ≤ s ≤ #(methods of oi), 1 ≤ i ≤ n, i ≠ j and

F_AFFECTED(io
psrq , , to) for some 1 ≤ t ≤ n, t ≠ j)

19

iii. ∃ resp(1r
to , 2r

jo , jo
qsrp , , false)∈ y for some 1r

to , 1 ≤ s ≤ #(methods of oj) such

that

Sv= F_AFFECTED(jo
qsrq , , uo), for some 1 ≤ u ≤ n

 Events resp(r
io , 3r

jo , jo
qlrp , , nf)∈ w with r3 ≠ r2 do not change the classification

of jo
qlrq , .

The first condition reflects the case whereby jo
plrq , is affected by a fault at some r

jo . The second

condition reflects the case whereby one of the nested invocations generated by jo
plrq , is affected

by a fault at to , for some 1 ≤ t ≤ n, t ≠ j. Finally, the third condition reflects the case whereby

jo
plrq , is queued behind a jo

qsrq , that is eventually affected by a fault at uo , for some 1 ≤ u ≤ n. All

other jo
plrq , (p∈ℵ) in run, are included in the class of the fault-unaffected requests.

A service request is affected by the occurred faults, if at least one of the generated requests

becomes fault-affected or if it is queued behind another service request that becomes fault-

affected. We propose evaluation of fault-tolerance effectiveness and fault-tolerance performance

based on the mean response times for the fault-affected and the fault-unaffected service requests.

In our hybrid reliability and system’s traffic simulation it is also possible to produce typical

system reliability and service availability estimates. However, we believe that traffic-based

measures that are defined separately for the fault-affected and the fault-unaffected service

requests are more powerful in capturing the essence of the most influential fault-tolerance

performance and effectiveness tradeoffs.

As a design mean, the proposed evaluation approach can be exploited in the following two ways:

• To determine the minimum fault-affected service times (optimum effectiveness) that

a composite replication scheme can yield, for any possible combination of values

for the considered replication parameters. In candidate schemes that are composed

of possibly different replication policies, their optimum effectiveness configuration

is the only mean that makes feasible the comparison between them. We prefer the

20

selection of the composite replication scheme that fulfills the set QoS design goal at

the lowest cost (best fault-tolerance performance).

• To determine appropriate values for the considered replication parameters, with

respect to the set QoS design goals (not the optimum effectiveness ones). This is

done by an appropriate trade-off analysis, where, for each potential change against

the considered base replication scheme, we trade the potential improvements in the

fault-affected service requests, against the overhead imposed to the fault-unaffected

ones. For a composite replication scheme, such an analysis converges to the values

combination that fulfills the set design goals at the lowest possible cost.

The proposed evaluation approach has been already exploited in [10], to found a systematic QoS

design method that aims at the selection of appropriate checkpoint/state transfer intervals for the

passively replicated objects. The optimum effectiveness configurations for the candidate

composite replication schemes are determined by simulation metamodeling and optimization

([11]), in the frame of an appropriately selected uniform experimental design ([28]). Finally, the

proposed trade-off decision-making procedure allows the selection of low-cost checkpoint/state

transfer intervals, with respect to the set design goals.

In current paper, the formally specified evaluation approach and the developed prototype tool are

used to give insight into another influential fault-tolerance performance and effectiveness

tradeoff: the fact that excessively frequent request-retry timeouts for the constituent objects cause

high overhead costs and do not improve fault-tolerance effectiveness.

5. A case system study

The results reported in this section unfold one of the tradeoff problems that are inherent in the

design of a composite replication scheme: excessively frequent request-retry timeouts cause high

overhead costs and do not improve fault-tolerance effectiveness. We aim to give insight in the

selection of effective request-retry timeouts to mask (non-partitioning) network faults and

21

different types of omission faults (from those described in section 3.2), where the client does not

detect the fault and receives no reply. As we already noted, the description and experimentation

with a systematic QoS design method (optimum effectiveness finding and trade-off analysis),

which exploits the proposed evaluation approach, is treated elsewhere for a different trade-off

problem.

The considered synthetic workload scenario includes an actively replicated object and allows for

a range of combinations of omission faults and request-retry policies. The system model is

comprised of four (4) stateless service objects (obj0, obj5, obj6, obj7) that are instances of

the class SrvRequestAccepting and implement the provided service by invoking methods

in four (4) different state owning objects (obj1, obj2, obj3, obj4) as shown in Figure 3.

Received type-1 and type-2 service requests are assigned to the available service objects (obj0,

obj5, obj6, obj7) on a round-robin basis (Table 2).

:SrvRequestAccepting obj1:Class A

obj2:Class Bobj3:Class C obj4:Class D

[type1 request] 1.1:

[type1 request] 1.3:

[type2 request] 1.2:
[type1 request] 1.2:

[type2 request] 1.1:

[type1 request] 1.2.1:

1:

Figure 3 Objects’ collaboration diagram

Table 2 System’s computational setting

service objects: objX:SrvRequestAccepting (X=0, 5, 6, 7) no state
backend objects: obj1, obj2, obj3, obj4 own state
multithreading: thread-per-object
service requests assignment
(load balancing):

per-request load balancing:
requests are assigned to objX (X=0, 5, 6, 7) on a round robin basis

5.1 The simulated composite replication scheme and the system’s traffic and object fault models

The four (4) stateless service objects (obj0, obj5, obj6, obj7), as well as obj2, obj3 and

obj4 are replicated according to the warm passive replication policy (with a single backup)

22

shown in Figure 2. Obj1 is replicated according to the active replication policy (with two

replicas) shown in Figure 1.

Table 3 summarizes the used system’s traffic and resource consumption parameters. Resource

consumption depends on the speed and the load of the hosts, where the object servers are placed.

Also, since we did not want to burden our model with extra parameters that are not related to the

fault-tolerance performance and effectiveness tradeoffs, we assumed that the available network

bandwidth is large enough, so that network latency variations as a consequence of bandwidth

contention are not significant. Log-induced replayed requests do not cause re-execution of re-

invoked requests, but result in a retransmission of the already computed responses. Finally,

resource consumption for the checkpoints and the state transfers depends on the object state sizes

and the computational capacity of the underlying hosts (state transfer speeds).

Table 3 System’s traffic and resource consumption parameters

system’s traffic parameters
(exponential with means)

type 1 request arrivals (sec) 2.5
type 2 request arrivals (sec) 2.5

object replicas:
resource consumption parameters

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

repX0
objX

repX1
objX

type 1 requests service times
(exponential with means)

0.52 0.52 0.25 (*) 0.25 (*) 0.7 0.7 0.32 0.32 0.05 (*) 0.05 (*)

type 2 requests service times
(exponential with means)

- - 0.28 0.28 0.7 0.7 - - 0.05 (*) 0.05 (*)

log-replayed re-invoked requests
(exponential with means)

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -

object state sizes (KB) 0.9 0.7 0.5 0.6 - -
state transfer speed -sec/KB
(exponential with means)

0.8 0.8 0.6 0.6 0.6 0.6 0.8 0.8 - -

 (*) resource consumption prior to nested requests invocation and following the reception of the last reply

Table 4 summarizes the simulated replication scheme and the considered value combinations for

its replication parameters. We give insight into: (i) the case of a request-with-no-retry policy that

is not possible to mask (non-partitioning) network faults and omission faults and (ii) the

considered three request-retry scenarios, which are accompanied by the related overhead costs

for re-invocation of requests that are possibly lost.

23

Table 4 The simulated composite replication scheme

composite replication scheme obj0 obj1:classA obj2:classB obj3:classC obj4:classD obj5 obj6 obj7
replication: passive

(fig. 2)
active
(fig. 1)

passive
(fig. 2)

passive
(fig. 2)

passive
(fig. 2)

passive
(fig. 2)

passive
(fig. 2)

passive
(fig. 2)

behavioral properties
number of replicas: 2 2 2 2 2 2 2 2
checkpoint/state transfer intervals
(number of requests):

no state - 60 30 90 no state no state no state

simulated request-retry scenarios
(timeouts in sec)
case I:
case II:
case III:

12.0
14.0
16.0

-
-
-

7.0
9.0
11.0

-
-
-

-
-
-

12.0
14.0
16.0

12.0
14.0
16.0

12.0
14.0
16.0

Table 5 summarizes the assumed object replicas allocation to the available object servers. Each

server is placed on a separate host and the applied multithreading is (as specified in Table 2) the

thread-per-object policy.

Table 5 Object replicas placement

object server 1 rep00 (obj0) rep11 (obj1) rep51 (obj5)
object server 2 rep01 (obj0) rep50 (obj5)
object server 3 rep21 (obj2) rep40 (obj4)
object server 4 rep20 (obj2) rep41 (obj4)
object server 5 rep30 (obj3)
object server 6 rep31 (obj3)
object server 7 rep60 (obj6) rep10 (obj1) rep71 (obj7)
object server 8 rep61 (obj6) rep70 (obj7)

Table 6 The simulated object fault models

fault rarity: 21600 sec

object replicas:
repX0
objX

repX1
objX

rep10
obj1

rep11
obj1

rep20
obj2

rep21
obj2

rep30
obj3

rep31
obj3

rep40
obj4

rep41
obj4

fault interarrival times
(exponential)

2*r 2*r 2*r 2*r r r r r 2*r 2*r

replicas restart times
(exponential)

23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0

omission faults (as specified
in section 3.2):
case A:
case B:
case C:

-
-
-

-
-
-

-

(d)
(a)

-

(d)
(a)

-

(d)
(a)

fault monitoring intervals
(sec):

2.0, 4.0, 6.0, 8.0, 10.0, 12.0

Finally, Table 6 specifies the simulated object fault models. We propose the use of parametric

object fault models, since faults are by definition rare events and it is always useful, if not

24

necessary, to report the sensitivity of the obtained results, with respect to the assumed fault rarity

(r). The table specifies fault interarrival times, object replicas restart times and three considered

omission fault scenarios. The considered fault detection settings are summarized by the tested

fault monitoring intervals, which are accompanied by the overhead costs mentioned in section

3.4.

5.2 Simulation results

Special emphasis has been given to the credibility of the produced means, by the use of

appropriate output analysis procedures.

In case of passively replicated service objects we apply a single-run procedure ([18]) that

exploits a representation of the required steady-state estimates in terms of quantities, which are

based on the sample paths between two successive system entries into a selected set of states, say

A. Such a target set of states for the mean response times in a service object, includes any state

where the object’s primary fails and the number of queued requests is 0. A-cycles are not

independent and identically distributed and for this reason we use the batch means estimation.

Successive A-cycle based quantities are grouped into non-overlapping batches and their means

are treated as independent and identically distributed observations. The validity of this

approximation increases with the batch size. The number of A-cycles and the batch size is

determined dynamically, by the Law and Carson sequential control procedure ([12]), on the basis

of the specified relative precision to be achieved.

For system configurations or system loads where it is not easy to identify a set of states, where

system entries occur quite frequently (e.g. actively replicated service objects), we make use of

the well-known independent replications approach.

The results given in the following graphs were produced as 95% confidence intervals with half-

width no more than 3% of the estimated value.

25

An appropriate composite replication scheme retains perspectives for trade-off decision-making

between fault-tolerance performance and fault-tolerance effectiveness, with respect to the ever-

changing QoS needs. In addition, fault-tolerance performance and effectiveness were found to

depend on the system’s load (requests arrival distributions). In the performed experiments, we

assume the service request arrival distributions of Table 3.

Figure 4 presents the obtained mean fault-unaffected response times (performance) and mean

fault-affected response times (effectiveness) for the two types of service requests and the

composite replication scheme of Table 4, when there is no use of request-retry to mask potential

(non-partitioning) network faults and omission faults. There is a notable improvement in fault-

tolerance effectiveness (Figure 4b), when reducing the fault-monitoring interval from 12 sec to 6

sec, but we do not observe significant improvements in tighter fault detection settings. On the

other hand, fault-tolerance performance (Figure 4a) seems to not be significantly affected by the

overhead costs of the applied fault detection setting.

 FAULT TOLERANCE PERFORMANCE
(request-no-retry / no omission faults: case A)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

 FAULT TOLERANCE EFFECTIVENESS
(request-no-retry / no omission faults: case A)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

(a) (b)

Figure 4 Fault-tolerance performance and fault-tolerance effectiveness
for the request-no-retry replication scheme of Table 4

When applying a composite request-retry scheme to mask (non-partitioning) network faults, the

overhead costs for re-invocation of requests that are possibly lost results in worse performance

(Figures 5a, 5c, 5e) and fault-tolerance effectiveness (Figures 5b, 5d, 5f), when compared to

Figure 4.

The request-retry scenario specified as case III in Table 4 (Figures 5a and 5b) allows exploiting

fault monitoring intervals from 6 sec to 12 sec, without significant overhead costs. Tighter fault

26

detection settings burden fault-tolerance performance (Figure 5a) with unacceptably high costs.

When using more frequent request-retry timeouts (case II and case I in Table 4) for the

constituent objects, we observe the same or higher overhead costs (Figures 5c and 5e

respectively) and worse fault-tolerance effectiveness (Figures 5d and 5f respectively). Case I

scenario is characterized by the use of excessively frequent timeouts that appear to result in a

comparatively non-effective request-retry scheme.

 FAULT TOLERANCE PERFORMANCE
(request-retry scenario: III / no omission faults: case A)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

 FAULT TOLERANCE PERFORMANCE
(request-retry scenario: II / no omission faults: case A)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

 FAULT TOLERANCE PERFORMANCE
(request-retry scenario: I / no omission faults: case A)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

(a) (c) (e)

 FAULT TOLERANCE EFFECTIVENESS
(request-retry scenario: III / no omission faults: case A)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

 FAULT TOLERANCE EFFECTIVENESS
(request-retry scenario: II / no omission faults: case A)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

 FAULT TOLERANCE EFFECTIVENESS
(request-retry scenario: I / no omission faults: case A)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

(b) (d) (f)

Figure 5 Fault tolerance performance and fault-tolerance effectiveness for composite replication
schemes with different request-retry timeouts (Table 4)

Finally, we give insight into how performance and effectiveness are affected in different cases of

simulated omission fault models (Figure 6).

Figures 6a and 6b refer to the case B scenario shown in Table 6: when a passively replicated

object fails, the already queued requests are lost and the requests arriving while the object is

down are also lost. We observe slightly improved performance (compared to Figure 5e) as a

consequence of the empty queues found by the fault-unaffected requests arriving in the just

recovered operational primary replicas.

27

Figures 6c and 6d refer to the case C scenario shown in Table 6: when a passively replicated

object fails, no requests previously accepted in the queue are lost, but all requests arriving while

the object is down are lost. Fault-tolerance performance (Figure 6c) is also improved, when

compared to the no-loss case (scenario A of Table 6 and Figure 5e) and is slightly worse, when

compared to the omission fault model of Figure 6a.

 FAULT TOLERANCE PERFORMANCE
(request-retry scenario: I / omission faults scenario: B)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

 FAULT TOLERANCE PERFORMANCE
(request-retry scenario: I / omission faults scenario: C)

2
2,5

3
3,5

4
4,5

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-unaffected type-1
requests
fault-unaffected type-2
requests

(a) (c)

 FAULT TOLERANCE EFFECTIVENESS
(request-retry scenario: I / omission faults scenario: B)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

 FAULT TOLERANCE EFFECTIVENESS
(request-retry scenario: I / omission faults scenario: C)

13
15
17
19
21

2 4 6 8 10 12
fault monitoring intervals (sec)

fault-affected type-1
requests
fault-affected type-2
requests

(b) (d)

Figure 6 Fault tolerance performance and effectiveness under different omission fault scenarios
(Table 6)

Different omission fault models reflect different possibilities of object fault handling for the used

fault-tolerance infrastructure (see for example [1], [4], [8], [15], [17], [24]). We expect more

significant differences in higher system load levels and this has to be taken into account, when

designing composite replication and request-retry schemes that fulfill specific QoS goals.

6. Conclusion

We presented a quantitative evaluation approach for dependable server applications that possibly

have to conform to agreed quality of service (QoS) guarantees for service response times.

Compared to other reliability blocks based evaluation approaches we prefer hybrid reliability and

28

system’s traffic simulation and we focus on response time measures that are separately

quantifying fault-tolerance performance and fault-tolerance effectiveness.

The proposed evaluation approach opens the following perspectives:

• to take into account complex interactions that are otherwise attributed to diverse

design concerns (fault tolerance, load balancing and multithreading),

• to capture the essence of the most influential fault-tolerance trade-offs,

• to support a combined decision-making for replication parameters, such as

checkpoint/state transfer intervals, request-retry timeouts and other,

• to provide estimates for candidate QoS goals that are often agreed between service

providers and customers and

• to explore the perspective of a replication scheme for being adapted in ever-

changing QoS needs.

The proposed evaluation approach can also be the cornerstone of systematic QoS design methods

where (i) candidate replication schemes are compared on the basis of their optimum

effectiveness configurations (the single criterion making feasible such a comparison) and (ii) it is

possible to determine low-cost values for the replication parameters of the selected scheme, with

respect to specific QoS design goals.

We believe that hybrid reliability and system’s traffic simulation and the proposed evaluation

approach constitute a valuable and generic tool possible to be exploited in the study of fault-

tolerance performance and fault-tolerance effectiveness in many other contexts (e.g. coordinated

checkpointing and message logging algorithms, transaction-based fault tolerance, component-

based fault tolerance, as in [2] and [5] etc). Finally, the presented approach can also be the

cornerstone of UML-based performance models ([16]) of dependable systems.

References

29

[1] T. Bennani, L. Blain, L. Courtes, J.-C. Fabre, M.-O. Killijian, E. Marsden, F. Taiani,

 Implementing simple replication protocols using CORBA portable interceptors and Java

 serialization, Proceedings of the IEEE/IFIP International Conference on Dependable Systems

 and Networks (DSN 04), IEEE Computer Society Press, Florence, Italy, 2004, pp. 549-554

[2] I. Crnkovic, M. Larsson, Classification of quality attributes for predictability in component-

 based systems, Supplemental Volume of the 2004 International Conference on Dependable

 Systems and Networks, Florence, Italy, 2004, pp. 307-311

[3] O. Das, C. M. Woodside, Evaluating layered distributed software systems with fault-tolerant

 features, Performance Evaluation, 45, 1, 2001, pp. 57-76

[4] P. Felber, R. Guerraoui, A. Schiper, Replication of CORBA Objects, Distributed Systems,

 Lecture Notes in Computer Science 1752, Springer Verlag, 2000, pp. 254-276

[5] J. Fraga, F. Siqueira, F. Favarim, An adaptive fault-tolerant component model, Proceedings of

 the Ninth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems

 (WORDS’03), IEEE Computer Society, Capri Island, Italy, 2003, pp. 179-186

[6] S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, S. Yajnik, Performance and reliability

 evaluation of passive replication schemes in application level fault tolerance, Proceedings of the

 29th Annual International Symposium on Fault-Tolerant Computing, IEEE, Madison, Wisconsin,

 USA, 1999, pp. 322-329

[7] K. K. Goswami, R. K. Iyer, L. Young, DEPEND: A simulation-based environment for system

 level dependability analysis, IEEE Transactions on Computers, 46, 1, 1997, pp. 60-74

[8] R. Guerraoui, P. Eugster, P. Felber, B. Garbinato, K. Mazouni, Experiences with object group

 systems, Software: Practice & Experience, 30, 12, 2000, pp. 1375-1404

[9] E. J. Henley, H. Kumamoto, Reliability engineering and risk assessment, Prentice-Hall, 1981

[10] P. Katsaros, C. Lazos, Optimal object state transfer - recovery policies for fault tolerant

 distributed systems, Proceedings of the IEEE/IFIP International Conference on Dependable

 Systems and Networks (DSN 04), IEEE Computer Society, Florence, Italy, 2004, pp. 762-771

30

[11] P. Katsaros, E. Angelis, C. Lazos, Applied multiresponse metamodeling for queuing network

 simulation experiments: problems and perspectives, Proceedings of the 4th EUROSIM Congress

 on Modelling and Simulation, EUROSIM, Delfts, The Netherlands, 2001

[12] A. M. Law, J. C. Carson, A sequential procedure for determining the length of a steady state

 simulation, Operations Research, Vol. 27, 1979, pp. 1011-1025

[13] M. Lindermeier, Load management for distributed object-oriented environments, International

 Symposium on Distributed Objects and Applications (DOA’00), IEEE, 2000

[14] M. Litoiu, J. Rolia, G. Serazzi, Designing process replication and activation: a quantitative

 approach, IEEE Transactions on Software Engineering, vol. 26, no. 12, pp. 1168-1178, 2000

[15] V. Marangozova, D. Hagimont, An infrastructure for CORBA component replication,

 Proceedings of the 1st IFIP/ACM Working Conference on Component Deployment, Lecture

 Notes in Computer Science, Springer-Verlag, 2002, pp. 222-232

[16] M. Marzolla, Simulation-based performance modeling of UML software architectures, Dottorato

 di Ricerca in Informatica, II Ciclo Nuova Serie, Dipartimento di Informatica, Università Ca'

 Foscari di Venezia, 2003

[17] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith, Strong replica consistency for fault-

 tolerant CORBA applications, Journal of Computer Systems Science and Engineering, CRL

 Publishing, 2002

[18] V. F. Nicola, P. Shahabuddin and M. Nakayama, Techniques for the fast simulation of models

 of highly dependable systems, IEEE Transactions on Reliability, 50, 3, 2001, pp. 246-264

[19] Object Management Group, Fault tolerant CORBA, OMG Technical Committee Document,

 2001-09-29, September 2001

[20] Object Management Group, Object Management Architecture Guide, revision 3.0, OMG

 Technical Committee Document ab/97-05-05, June 1995

31

[21] Object Management Group, The Common Object Request Broker: Architecture and

 Specification, revision 2.3.1, OMG Technical Committee Document formal/99-10-07, October

 1999

[22] H. S. Paul, A. Gupta, R. Badrinath, Performance comparison of checkpoint and recovery

 protocols, Concurrency and Computation: Practice and Experience, 15, 2003, pp. 1363-1386

[23] B. Ramamurthy, S. J. Upadhyaya, R. K. Iyer, An object-oriented test-bed for the evaluation

 of checkpointing and recovery systems, Proceedings of the 27th International Symposium on

 Fault-Tolerant Computing, IEEE, Seattle, WA, USA, 1997, pp. 194-203

[24] Y. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. Karr, P. Rubel, C. Sabnis, W. H. Sanders,

 R. E. Schantz, M. Seri, AQuA: An Adaptive Architecture that Provides Dependable

 Distributed Objects, IEEE Transactions on Computers, Vol. 52, No. 1, 2003, pp. 31-50

[25] R. D. Schlichting, F. B. Schneider, Fail-Stop processors: An approach to designing fault-tolerant

 computing systems, ACM Transactions on Computer Systems, 1, 3, 1983

[26] D. C. Schmidt, Evaluating architectures for multithreaded object request brokers,

 Communications of the ACM, vol. 41, no. 10, pp. 54-60, 1998

[27] T. Schnekenburger, Load balancing in CORBA: A survey of concepts, patterns and

 techniques, The Journal of Supercomputing, 15, 141-161, Kluwer Academic, 2000

[28] Uniform Design web pages, http://www.math.hkbu.edu.hk/UniformDesign/, 2000

