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Abstract 

Object oriented dependable server applications often rely on fault tolerance schemes, which are 

comprised of different replication policies for the constituent objects (composite replication 

schemes). This paper introduces a simulation-based evaluation approach for quantifying the 

tradeoffs between fault-tolerance overhead and fault tolerance effectiveness in composite 

replication schemes. Compared to other evaluation approaches: (a) we do not use the well-known 

reliability blocks based simulation, but a hybrid reliability and system’s traffic simulation and (b) 

we make a clear distinction between the measures used for the fault-affected service response 

times from those used for the fault-unaffected ones. The first mentioned feature allows taking 

into account additional concerns other than fault tolerance, like for example load balancing and 

multithreading. The second feature renders the proposed approach suitable for design studies that 

aim to determine either optimal replication properties for the constituent objects or Quality of 

Service (QoS) guarantees for the perceived service response times. We obtain results for a case 

system model, based on different assumptions on what happens when server-objects fail (loss 

scenarios). The presented results give insight in the design of composite method request-retry 

schemes with appropriate request timeouts. 
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1. Introduction 

In dependable applications fault tolerance often grounds on the utilization of redundant 

processing for minimizing loss of computation in the presence of non-recurrent faults. Common 

sources of faults that do not recur after recovery are: insufficient memory, media failures, power 

outages, network failures and the non-determinism introduced either by distributed timers or the 

use of multithreading. 

Fault tolerance schemes for object-oriented applications are possibly comprised of different 

replication policies for the constituent objects. We call them composite replication schemes. 

According to the recently published OMG FT-CORBA specification ([19]), the replication 

policy assigned to an object can be either active, warm passive or cold passive replication and is 

customized by a set of behavioral properties (number of replicas, checkpoint/state transfer 

interval, request-retry timeout etc) with values that are found to be appropriate for the used fault-

detection setting. 

In dependable server applications, where fault tolerance is attained via composite replication 

schemes, the perceived quality of service (QoS) is dominated by characteristic tradeoff concerns 

between fault tolerance overhead and fault tolerance effectiveness: (i) excessively frequent 

checkpoints (if any) result in performance degradation, while deficient checkpoints incur 

expensive recovery and (ii) excessively frequent invocation request-retry timeouts cause high 

overhead costs and do not improve fault-tolerance effectiveness. 

The perceived QoS is also determined by the system’s method call dependencies, because the 

callers are blocked until they get the invoked method replies. 

A composite replication scheme may be combined with a request assignment strategy for load 

balancing to provide possibly agreed QoS guarantees. Checkpoints and state transfers between 

object replicas, as well as object replica recoveries affect the invoked requests’ dispatching and 

for this reason influence the performance of the applied load balancing. 
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In this computational context, when an application has to conform to possibly agreed QoS 

guarantees regarding service response times, the published reliability blocks based evaluation 

techniques ([9]) are inadequate.  

The current work proposes a hybrid reliability and system’s traffic simulation: events taking 

place in different time scales - like transient faults, which by definition are rare events and 

service request arrivals that are not rare events - are simulated together in the same experiment. 

This allows taking into account complex interactions that are otherwise attributed to diverse 

design concerns (fault tolerance, load balancing and multithreading). Also, the proposed 

reliability and system’s traffic simulation allows evaluation of measures other than reliability 

(response times, throughput etc). 

In current work, we make a clear distinction between the measures used for the fault-affected 

service response times from those used for the fault-unaffected ones. The former class of 

response times takes into account the effects of recovery, i.e. the amount of computation lost due 

to rollbacks and/or object state transfers as a result of the occurred object faults. Their mean 

quantifies the achieved fault-tolerance effectiveness. The latter class of response times includes 

the vast majority of serviced requests. These are the requests that are not influenced by the 

occurred object faults (which by definition are rare events), but take into account the overhead 

costs due to checkpointing and object state transfers incurred by the applied composite 

replication scheme. Their mean characterizes the resulted fault-tolerance performance.   

The perceived quality of service (QoS) and the associated guarantees are concerned with both 

classes of service requests. However, our aim is to not only provide yet another “working” 

evaluation approach: the separate quantification of fault tolerance performance and fault 

tolerance effectiveness gives insight into the most influential performance and effectiveness 

tradeoffs and the complex interactions due to the system’s method call dependencies. As a 

consequence, the proposed evaluation approach may be the cornerstone of systematic QoS 

design methods as for example the one we introduced in [10]. 
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In current paper we provide formal definitions of the so-called fault affected and fault unaffected 

service response times and we describe the prototype simulator that implements the proposed 

evaluation approach. We provide results for a case system model, based on different assumptions 

for what happens when server-objects fail (loss scenarios). The obtained results give insight in 

the design of composite service request-retry schemes with appropriate object-request timeouts. 

Section 2 outlines some closely related evaluation approaches. Section 3 describes the adopted 

computational model, the assumed object fault assumptions and the developed prototype 

simulator. Section 4 provides a formal description of the proposed evaluation approach. Section 

5 introduces the used case system model and summarizes the obtained fault-tolerance 

performance and fault-tolerance effectiveness results. Finally, we conclude with a discussion on 

the perspectives of the proposed evaluation approach.   

 

2. Related work 

Analytic performance models for software replication have focused on the evaluation of process-

based replication ([6]) and are not appropriate for applications where fault tolerance involves 

different replication policies for the constituent objects. 

In [3], the authors introduce an analytic model termed as Fault-Tolerant Layered Queueing 

Network (FTLQN), for efficiently predicting the performability in two specific classes of fault-

tolerant client-server systems. Performability estimation is based on efficient layered queueing 

network models that are combined with AND-OR graph analysis. 

Simulation-based performance evaluation of fault tolerance has been previously reported in [23] 

and [22]. The first mentioned article refers to the evaluation of process-based message logging, 

checkpointing and recovery schemes, whereas the second one introduces an approach for relative 

performance comparison of different checkpointing and recovery protocols. None is focused on 

the evaluation of replication schemes comprised of possibly different replication policies for the 

constituent objects. 
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Worth to mention is the work published in [14], where the authors propose a hybrid 

mathematical programming and analytic evaluation algorithm for a trade-off problem that is not 

directly related to fault-tolerance: to determine process replication or threading levels, such as to 

avoid unnecessary queuing delays for request senders or unnecessary high consumption of 

memory. 

 

3. The prototype simulator 

The prototype simulator we introduce in this section reflects the need to keep the set of model’s 

parameters and the set of simulated event types as small as possible and at the same time to 

provide credible results that give insight into the most influential fault tolerance tradeoff 

concerns. The models’ level of abstraction is perceived by the set of parameters used (see the 

case study in Section 5) and takes into account the hardware as well as the software resource 

contention caused by the applied composite replication scheme. The credibility of the produced 

results is ensured by the applied simulation output analysis (section 5). The resulted accuracy, as 

in any simulation study, depends on the availability of appropriate resource consumption and 

fault occurrence data. 

Although a detailed description of the developed simulator is beyond the scope of this paper, we 

proceed to the description of the functionality that we believe is necessary to introduce the 

proposed evaluation approach. The prototype tool is a standalone application developed in C++, 

which features an extensible object-oriented design and does not make use of special 

components and libraries. The simulator’s description refers to the adopted computational model, 

the simulated object fault models, the behavioral specifications of the implemented object 

replication policies and the assumed fault detection setting. 

 

3.1 Computational model 
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Object replication is studied in the context of the OMG Core Object Model ([20]) including the 

assumptions adopted in the OMG FT-CORBA specification ([21]).  

An object is characterized by its distinct object identity, which is immutable, persists for as long 

as the object exists and is independent of the object’s properties or behavior. Each object owns or 

does not own a state and a set of methods. 

Each method has a signature that includes the method’s name, the set of parameters and the set 

of results. A method invocation, also called request, can list some parameters on behalf of a 

requester (client) and can cause the method to return results. The methods of an object constitute 

the only way to change its state.  

We only consider the use of synchronous method invocations: the object requiring the execution 

of the invoked method (requester) stops executing and waits for the invoked execution to 

terminate and the reply to return. Upon reception of the reply, the sender resumes. A 

computation invoked in a server application object (service object) will be called service request 

and is possible to involve one or more synchronous and possibly nested requests to other objects. 

We adopt the “at-most-once” invocation semantics of the OMG Core Object Model, which 

means that each request is executed at most once. Duplicate method invocations due to 

replication or request-retry are detected and suppressed. 

In OMG FT-CORBA, fault-tolerance is based on the creation and management of multiple object 

replicas as a single object group. The client objects invoke methods on the server object group 

and one or more members of the server group execute the methods and return their responses to 

the clients, just like a conventional object. 

We do not place any assumptions about the network topology. For the protocols making up the 

interprocess communication we adopt the OMG FT-CORBA assumption that they provide 

totally ordered delivery of requests to the replicas of each object. 

Strong replica consistency (OMG FT-CORBA): even in the presence of faults, as members of an 

object group execute a sequence of methods invoked on the object group, its behavior is logically 
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equivalent to that of a single fault-free object processing the same sequence of method 

invocations. For each object, strong replica consistency retains an appropriate context that 

depends on the object group’s replication policy (active, warm passive or cold passive). 

Although the proposed evaluation approach is open to take into account different multithreading 

possibilities, the prototype simulator implements the thread-per-object concurrency approach 

([26]), where a single thread executes all invocations on an object replica. 

We assume deterministic behavior of the underlying operating system. Ordering of dispatched 

method invocations at the application programming level is not allowed. Finally, the application 

either does not make use of system calls returning processor-specific information or such calls 

are handled by an appropriate mechanism without introducing non-determinism. 

Load balancing is used as a mean to show the potentiality of the proposed approach to take into 

account additional design concerns, other than fault tolerance. We do not distinguish between 

centralized or distributed load balancing. Load information (if applicable) is provided by the 

underlying middleware infrastructure, which also works out request assignment to the available 

service objects in a transparent and fault tolerant manner (as in [27] and [13]). 

State consistency management across object groups, where service requests are assigned, 

violates the principle of application transparency, due to its dependence on the application of 

interest. Thus, we are restricted to load balancing strategies with no consistency management 

costs: the synthetic workload scenario used in our case study assumes request assignment to the 

stateless service objects on a round-robin basis.  

 

3.2 Simulated object fault models 

We model faults that do not recur after recovery and are eventually manifested as transient 

object faults. Application objects conform to the fail-stop model ([25]), which means that they 

fail by crashing, without emission of spurious messages. Commission faults as for example 

Byzantine faults, where an object generates incorrect results are not addressed. 
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We allow modeling of network faults, where the client does not detect the fault and receives no 

reply. However, as in the related OMG FT-CORBA specification, we exclude network-

partitioning faults that separate the hosts of the system into two or more sets. 

In general, when a service object fails, the already queued requests are not lost. All requests 

arriving while the object is down are queued. For the passively replicated objects that own a state 

we have also implemented the following types of omission fault scenarios (loss behavior):  

a. When the object fails, no requests previously accepted in the queue are lost but all 

requests arriving while the object is down are lost. 

b. When the object fails, the requests currently in service, if any, are lost and the 

requests arriving while the object is down are also lost. 

c. At the instant the server object fails, the requests currently in service, if any, are lost 

and the requests arriving while the object is down are queued. 

d. At the time the server object fails, the already queued requests are lost and the 

requests arriving while the object is down are also lost. 

e. At the time the server object fails, the already queued requests are lost, but the 

requests arriving while the object is down are queued. 

As in OMG FT-CORBA, the prototype simulator supports a request-retry timeout mechanism as 

a mean to mask network and recipient omission faults, where the client-side does not detect the 

problem and receives no reply. A request-retry incurs overhead processing for re-invoking the 

(possibly lost) request.  

The prototype simulator allows: (i) to take into account different fault propagation scenarios, (ii) 

to use alternative object fault - repair distributions and (iii) to apply load-dependent fault models, 

like for example those used in [7]. 

 

3.3 Object replication 
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In active replication all the object group replicas execute each invocation independently, but in 

the same order (state N in Figure 1). Object replicas maintain exactly the same state and in case 

of a fault in one replica (state F in Figure 1), the simulated application continues with the results 

provided by the other replicas, without having to wait for fault detection and recovery (state R in 

Figure 1).  
 

 

N F

ST_WAITST
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STATE
TRANSFER

FAULT
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RESTARTED

FAULT

STATE
TRANSFER
COMPLETE

 

Figure 1 Object replica in an actively replicated object group 
 

Strong replica consistency for active replication means that, at the end of each method invocation 

on the object group, all the group members have the same state. Each group member responds to 

all incoming requests, but duplicate requests/replies are detected and suppressed, thus delivering 

only a single request/reply to the destination object. 

When an object replica is recovered, a state transfer (and checkpoint) from a live replica is 

accomplished (state ST in Figure 1). Since an object state transfer requires operational 

quiescence in participating replicas, the state transfer is postponed (state ST_WAIT in Figure 1) 

when all other replicas are in-between an invocation service. If, in the course of recovery or a 

state transfer, object replicas receive additional invocations, all of them are queued locally and 

subsequently applied to them. 

Cold or warm passive replication assumes that during fault-free operation, only one member - 

the primary (Figure 2a) - of the object group executes the methods invoked on the group. The 

state of the primary and the sequence of the invoked methods are recorded in a message log, 

according to the applied checkpoint properties.  



11 

 

 

STATE
TRANSFER
COMPLETE

P:N P:F

P:RP:ST

FAULT RESTART AS
BACKUP

RESTART AS
PRIMARY

REPLAYED
LOG

STATE
TRANSFER

BECOME THE
PRIMARY

FAULT

FA
ULT

(b)

REPLAY THE
LOGG

 

STATE
TRANSFER
COMPLETE

B:N B:F

B:RB:ST

FAULT

RESTART AS
BACKUP

RESTART
AS BACKUP

STATE
TRANSFER FAULT

FA
ULT

(a)

BECOME THE
PRIMARY

STATE
TRANSFER

 

(a) primary object replica (b) backup object replica 

Figure 2 Warm passive replication with one backup object 
 

A checkpoint/state transfer is postponed when the primary is in-between an invocation service or 

it happens to be blocked, waiting for a response. In the course of a checkpoint or a state transfer 

activity, new invocations may be received, but they cannot be processed, before the end of it. 

Strong replica consistency implies that at the end of a checkpoint/state transfer (transitions 

P:ST→P:N and B:ST→B:N in Figure 2), all replicas own or have access to the same state. In the 

presence of a fault (state P:F in Figure 2a), a backup replica is promoted to be the new primary 

(transition B:N→P:R). The state of the new primary is restored to the state of the old one, by 

reloading the last saved checkpoint and subsequently reapplying the request messages that have 

been recorded in the message log. This implies that a client can re-invoke a request on a server 

and receive a reply to that request, but as we already noted without risk that the method will be 

executed more than once.  

In cold passive replication, the backup replicas are not activated. When the current primary fails, 

a new one is selected and then activated. In warm passive replication, the backups have been 

already activated and their states are continuously synchronized with the primary replica’s state, 

according to the specified frequency of state transfers. 

Resource consumption for checkpoints and state transfers depends on the object state size and on 

the processing speed of the slowest participating object replica. 
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3.4 Fault detection 

In fault tolerant systems, the fault detector that monitors an application object is usually located, 

for efficiency, on the same host as that of the object. A global fault detector that is replicated for 

fault tolerance monitors the local fault detectors. It has been found ([6]) that fault monitoring 

causes an approximate 5% increase, in the processor (of a Pentium-II based 200+ MHz machine) 

utilization, for about 500 milliseconds.  

In our prototype simulator, each object is periodically checked, according to a specified time 

interval that represents the sum of the fault monitoring interval plus the time allowed for 

subsequent response from the object, to determine whether it is faulty. The forenamed overhead 

processing is included in the system model’s workload and is raised proportionately to the used 

fault-monitoring interval.  

 

4. Fault tolerance performance and fault tolerance effectiveness 

A distributed system is composed of multiple objects o1, o2, . . ., on. Each object oi, 1≤i ≤ n is 

replicated either according to the active replication policy of Figure 1 with k object replicas, 

kar
i

ar
i

ar
i ooo ,...,, 21  or alternatively, according to the passive replication policy of Figure 2, with one 

primary replica prim
io  and one backup back

io . 

An object’s methods io
lop , 1 ≤ l ≤ #(methods of oi) may be synchronously invoked by remote 

method invocations. A method invocation is represented by an ordered pair of a request and a 

reply message (rq( io
lop ), rp( io

lop )), for simplicity denoted ( io
lrq , io

lrp ). 

On receipt of a io
lrq  the request is queued in the queues of all replicas r

io , denoted by Q( r
io ), 

where r ∈ {arj | 1 ≤ j ≤ #( r
io )} ∪ {prim}. Each r

io  is placed on a separate object server and 

queued requests are served in FIFO ordering under a single thread of control. However, the 

proposed approach can also be extended for application in other multithreading cases. If r= prim, 

executed requests io
lrq  are appended to a local log queue logi. 
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Let io
plop ,  (p∈ℵ) denote a method invocation instance of io

lop . Each io
plop ,  may further invoke 

another method instance to
psop , , with 1 ≤ s ≤ #(methods of ot), 1 ≤ t ≤ n, t ≠ i and this is the case 

of a nested invocation, where io
plop ,  is blocked up to the reception of to

psrp , . Access to a simulated 

object’s state is performed by primitive read/write messages that induce computational resource 

consumption, but they are not included in the methods’ message sequence specifications. 

A message sequence specification for io
lop , 1 ≤ l ≤ #(methods of oi) is given as a total order 

relation < over the set  

MsgSeq( io
lop ) = { to

sop | 1 ≤ s ≤#(methods of ot), 1 ≤ t ≤ n and t ≠ i} 

of nested invocations generated by io
lop . This set is empty when io

lop  causes exclusively 

read/write operations on the state of the simulated oi and no nested invocations. A method 1
1
to

sop  

is referred to as preceding another method 2
2
to

sop  ( 1
1
to

sop  < 2
2
to

sop ) if and only if 2
2
to

srq  may be sent 

only after 1
1
to

srp  is already received. 

A global state S of the system consists of all local log queues logi and local queues  

Q( r
io ) with r ∈ {arm | 1 ≤ m ≤ #( r

io )} ∪ {prim, back} and 1 ≤ i ≤ n 

plus the values of ∑
=

n

i

r
io

1

)(#3  additional boolean variables that are defined as follows: 

• crash
i

r
: these variables are initially false and become true at the time that r

io becomes 

faulty. 

• failed
i

r
: these variables are initially false and become true when the system detects that 

crash
i

r
= true. 

• recovered
i

r
: these variables are initially true to indicate that prim

io  reflects the object state 

of having executed all io
qsrq , ∈ logi, with 1≤ s ≤ #(methods of oi). In any other case 

recovered
i

r
 is false. 

An initial global state S0 is the global state in which all Q( r
io ) and logi do not have queued 

requests (empty) and the additional boolean variables are set to their initial values. An event is an 
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action that changes the global state of the system from S to S΄. We will use the notation e(S) = S΄ 

to denote that e occurs in global state S and results in global state S΄.  

We specify chk_init, send, timeout, respond, crash, failed, restart and chk_end event types by the 

following notation: 

• chk_init( 1r
io , 2r

io ) denotes the event whereby a checkpoint/state transfer request 2,1 rr
ic  

between 1r
io  and  2r

io  is placed second in the order of queues Q( 1r
io ) and Q( 2r

io ) (or at 

the head of them in case of empty queue(s)). 

• send( 1r
io , jo , jo

plrq , , nf) denotes the event whereby 1r
io  sends jo

plrq ,  to all queues  

Q( 2r
jo ), r2 ∈ {arm | 1 ≤ m ≤ #( r

jo )} ∪ {prim}, 

 where p∈ℵ and jo
lop  is a member of the message sequence of the request at the head 

 of Q( 1r
io ). In the absence of network fault (nf = false) a send event changes the local 

 queue(s) Q( 2r
jo ) if jo

plrq , ∉ Q( 2r
jo ) and crash

j

r2
 is false, by appending the request 

 message jo
plrq , . If jo

plrq , ∉ Q( 2r
jo ) and crash

j

r2
 is true  then Q( 2r

jo ) changes or does not 

 change depending on the applied omission fault scenario (section 3.2). Finally, the 

 event timeout( 1r
io , jo

plrq , ) is scheduled to occur, if it is required by the applied request-

 retry policy. 

• timeout( 1r
io , jo

plrq , ) denotes the event whereby a request-retry timeout for jo
plrq ,  occurs. 

The event send( 1r
io , jo , jo

plrq , ) takes place and a new timeout( 1r
io , jo

plrq , ) is then 

scheduled. 

• resp( 1r
io , 2r

jo , jo
plrp , , nf) denotes the event whereby 2r

jo  responds with jo
plrp ,  to 1r

io  for 

some r2 ∈ {arm | 1 ≤ m ≤ #( r
jo )} ∪ {prim}. In the absence of network fault (nf = false) 

scheduled timeout( r
io , jo

plrq , ) events (if any) are canceled for all r ∈ {arm | 1 ≤ m ≤ 

#( r
io )} ∪ {prim} and not only for r1. The local queue Q( 2r

jo ) changes by removing 

jo
plrq ,  from the head and if r2 = prim then jo

plrq ,  is appended to logj. If the next request is 

some jo
qsrq , , then 2r

jo  proceeds to executing jo
qsrq , , based on MsgSeq( jo

sop ). If the next 
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request is some 2,3 rr
jc , then 2r

jo  is blocked until 2,3 rr
jc  is also placed at the head of 

Q( 3r
jo ). A chk_end( 2,3 rr

jc ) event is then scheduled to occur. 

• crash( r
io ) denotes the event whereby crash

i

r
 becomes true. This models the occurrence 

of a fault in r
io . Potential resp( r

io , 1r
jo , jo

plrp , ) and timeout( r
io , jo

plrq , ) events are ignored. If 

r = prim then Q( r
io ) is changed according to the applied omission fault scenario 

(section 3.2). 

• failed( r
io ) denotes the event whereby failed

i

r
 becomes true. A recovery of r

io  is then set 

up: in all replication cases, a restart( r
io ) event is scheduled.  

In the passive replication of Figure 2, if r = prim and crash
i

back
 is false, then Q( r

io ) is 

 copied to Q( back
io ), back

io  becomes prim
io  and r becomes back. This change results in  

failed
i

prim
= crash

i

prim
= false and failed

i

back
= crash

i

back
= true 

If #( io
qsrq , ∈ logi | 1 ≤ s ≤ #(methods of oi)) > 0 then recovered

i

prim
 becomes false and 

 the variable keeps this value while prim
io  has not yet replayed all io

qsrq , ∈logi. When 

 recovered
i

prim
 changes to true, logi is emptied. 

• restart( r
io ) denotes the event whereby crash

i

r
 and failed

i

r
 become false. 

• chk_end( 2,1 rr
ic ) denotes the event whereby 2,1 rr

ic  is removed from 1r
io  and 2r

io . If r1, r2 are 

not back, they proceed to the execution of the next request jo
qsrq ,  based on MsgSeq( jo

sop ). 

All forenamed events are atomic and each event affects only the relevant local queues and the 

relevant boolean variables. Thus, if crash
i

r
 is false in the global state S, when send( r

io , jo , jo
plrq , ) 

occurs, then crash
i

r
 is also false in the resulting global state S΄. 

 

Definition 4.1:  A run of the system is an infinite sequence of global states   

run = (S0, S1, S2, . . .) 

where S0 is an initial global state and there exists a sequence of events (e0, e1, e2, 

. . .) such that ∀i ≥ 0, ei (Si)= Si+1.  
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The history of run is the sequence of events Hrun= (e0, e1, e2, . . .) such that 

∀i≥0, ei (Si)= Si+1. 

 

Table 1 Glossary of notation 
r
io    object replica r of oi  

arj   active replica j of some object 

prim  the primary object replica of a  

   passively replicated object 

back   the backup object replica of a  

   passively replicated object 
io
plop ,   a method instance of io

lop  with  

   1≤ l ≤ #(methods of oi) 

( io
plrq , , io

plrp , ) an ordered pair of request and  

   reply messages that collectively  

   represent the execution of io
plop ,  

logi   the log queue of a passively  

   replicated oi 

Q( r
io )  the local queue of requests in r

io  

MsgSeq( io
lop ) the totally ordered set of nested  

   invocations to
sop  generated by io

lop  

r
icrash   there is an object fault at r

io   
r
ifailed   a fault at r

io  has been detected 
r
ieredre cov  

r
io  reflects the object state of 

   having executed all io
qsrq , ∈logi  

2,1 rr
ic   request for checkpointing/state 

   transfer between 1r
io  and 2r

io   

run   an infinite sequence of global 

   states S0, S1, . . . 

Hrun  history of run: a sequence of 

   events e0, e1,  . . such that ∀i≥0, 

   ei(Si) = Si + 1 

Si = φ  predicate φ holds in global state 

   Si  

F_AFFECTED( io
plrq , ,oj)           

   boolean predicate indicating that 

   io
plrq ,  is affected by a fault at oj 

 

For any run run, Hrun is uniquely determined and also, run can be constructed from the history 

Hrun and the initial global state S0. 

As we already noted, we make a clear distinction between the measures used for the fault-

affected service response times from those used for the fault-unaffected ones. The fault-affected 

service requests reflect the effects of recovery (fault-tolerance effectiveness). The fault-

unaffected service requests include the overhead processing caused by the applied composite 

replication scheme and for this reason their mean characterizes the resulted fault-tolerance 

performance. 

 



17 

Definition 4.2:  A synchronous request jo
plrq ,  to a passively replicated object is affected by a 

fault at prim
jo  in run and the boolean predicate F_AFFECTED( jo

plrq , , jo ) 

becomes true if and only if 

Hrun=(e0; x; eu= send( r
io , jo , jo

plrq , , false); y; ev= resp( r
io , prim

jo , jo
plrp , , nf); w) 

where x, y finite sequences of events with eu∉x, ev is the first resp event with nf 

being either true or false and w an infinite sequence of events such that either: 

i. Su= ¬crash
j

prim
 and #(crash( prim

jo )∈ y) > 0 or 

ii. Su= (crash
j

prim
 ∨ ¬recovered

j

prim
) or 

iii. Su= (∃ jo
qsrq , ∈ Q( prim

jo ), 1 ≤ s ≤ #(methods of oj) such that 

Sv=F_AFFECTED( jo
qsrq , , jo )) 

If Sv= F_AFFECTED( jo
plrq , , jo ) and Sv= (∃ io

pdrq ,  at the head of Q( r
io ), such 

that jo
lop ∈ MsgSeq( io

dop ), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #( r
io )} ∪ {prim}, 

1≤ d ≤ #(methods of oi)), then Sv+1= F_AFFECTED( io
pdrq , , jo ). 

 

The first condition reflects the case whereby jo
plrq ,  is sent to an operational prim

jo  and crash
j

prim
 

changes to true before the occurrence of the expected resp event. The second condition reflects 

the case whereby jo
plrq ,  is sent to a prim

jo , that is not yet operational as a result of a crash( r
jo ) 

event. The third condition reflects the case whereby jo
plrq ,  is queued behind a jo

qsrq ,  that is 

eventually affected by a crash( prim
jo ) event. If jo

plrq ,  is a nested invocation generated by io
pdrq ,  at 

r
io , then io

pdrq ,  is also affected by the crash( prim
jo ) event. 

 

Definition 4.3: A synchronous request jo
plrq ,  to an actively replicated object is affected by a fault 

at some 1r
jo  in run and the boolean predicate F_AFFECTED( jo

plrq , , jo ) becomes 

true if and only if 

Hrun=(e0; x; eu= send( r
io , jo , jo

plrq , , false); y; ev= resp( r
io , 2r

jo , jo
plrp , , nf); w) 
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where x, y finite sequences of events with eu∉x, ev is the first resp event with 

r2∈{arm | 1 ≤ m ≤ #( r
jo )} and nf being either true or false and w an infinite 

sequence of events such that either: 

i. #(chk_end( 2,1 rr
jc )∈ y) > 0 and r1 ≠ r2 or 

ii. #(crash( 1r
jo )∈ y) > 0 with r2 = r1 or 

iii. Su= (∃ jo
qsrq ,  in all Q( 1r

jo ), r1∈{arm | 1 ≤ m ≤ #( r
jo )}, 1 ≤ s ≤ #(methods of oj), 

such that Sv= F_AFFECTED( jo
qsrq , , jo )) 

If Sv= F_AFFECTED( jo
plrq , , jo ) and Sv= (∃ io

pdrq ,  at the head of Q( r
io ), such that 

jo
lop ∈ MsgSeq( io

dop ), with i ≤ n, i ≠ j, r∈{arm | 1≤ m ≤ #( r
io )} ∪ {prim}, 1≤ d ≤ 

#(methods of oi)), then Sv+1= F_AFFECTED( io
pdrq , , jo ). 

 

The first condition reflects the case whereby jo
plrq ,  has been blocked, in order to realize a state 

transfer for a replica recovery. The second condition reflects the case whereby 1r
jo  is the first 

replica involved in a resp( r
io , 1r

jo , jo
plrp , , nf) event, but has previously become faulty in y. The 

third condition reflects the case whereby jo
plrq ,  is queued behind another request jo

qsrq ,  that is 

eventually affected by a fault at some 1r
jo . 

 

Definition 4.4: A synchronous request jo
plrq ,  is included in the class of the fault-affected requests 

in run if and only if 

Hrun=(e0; x; eu= send( r
io , jo , jo

plrq , , false); y; ev= resp( r
io , 2r

jo , jo
plrp , , nf); w) 

where x, y finite sequences of events with eu∉x, ev is the first resp event with 

r2∈{arm | 1 ≤ m ≤ #( r
jo )} ∪ {prim}, nf being either true or false and w is an 

infinite sequence of events such that either: 

i. Sv=F_AFFECTED( jo
plrq , , jo ) or 

ii. Sv= (∃ io
sop ∈ MsgSeq( jo

lop ), 1 ≤ s ≤ #(methods of oi), 1 ≤ i ≤ n, i ≠ j and 

F_AFFECTED( io
psrq , , to ) for some 1 ≤ t ≤ n, t ≠ j) 
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iii. ∃ resp( 1r
to , 2r

jo , jo
qsrp , , false)∈ y for some 1r

to , 1 ≤ s ≤ #(methods of oj) such 

that  

Sv= F_AFFECTED( jo
qsrq , , uo ), for some 1 ≤ u ≤ n 

 Events resp( r
io , 3r

jo , jo
qlrp , , nf)∈ w with r3 ≠ r2 do not change the classification 

of jo
qlrq , . 

 

The first condition reflects the case whereby jo
plrq ,  is affected by a fault at some r

jo . The second 

condition reflects the case whereby one of the nested invocations generated by jo
plrq ,  is affected 

by a fault at to , for some 1 ≤ t ≤ n, t ≠ j. Finally, the third condition reflects the case whereby 

jo
plrq ,  is queued behind a jo

qsrq ,  that is eventually affected by a fault at uo , for some 1 ≤ u ≤ n. All 

other jo
plrq ,  (p∈ℵ) in run, are included in the class of the fault-unaffected requests. 

A service request is affected by the occurred faults, if at least one of the generated requests 

becomes fault-affected or if it is queued behind another service request that becomes fault-

affected. We propose evaluation of fault-tolerance effectiveness and fault-tolerance performance 

based on the mean response times for the fault-affected and the fault-unaffected service requests. 

In our hybrid reliability and system’s traffic simulation it is also possible to produce typical 

system reliability and service availability estimates. However, we believe that traffic-based 

measures that are defined separately for the fault-affected and the fault-unaffected service 

requests are more powerful in capturing the essence of the most influential fault-tolerance 

performance and effectiveness tradeoffs.  

As a design mean, the proposed evaluation approach can be exploited in the following two ways: 

• To determine the minimum fault-affected service times (optimum effectiveness) that 

a composite replication scheme can yield, for any possible combination of values 

for the considered replication parameters. In candidate schemes that are composed 

of possibly different replication policies, their optimum effectiveness configuration 

is the only mean that makes feasible the comparison between them. We prefer the 
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selection of the composite replication scheme that fulfills the set QoS design goal at 

the lowest cost (best fault-tolerance performance). 

• To determine appropriate values for the considered replication parameters, with 

respect to the set QoS design goals (not the optimum effectiveness ones). This is 

done by an appropriate trade-off analysis, where, for each potential change against 

the considered base replication scheme, we trade the potential improvements in the 

fault-affected service requests, against the overhead imposed to the fault-unaffected 

ones. For a composite replication scheme, such an analysis converges to the values 

combination that fulfills the set design goals at the lowest possible cost. 

The proposed evaluation approach has been already exploited in [10], to found a systematic QoS 

design method that aims at the selection of appropriate checkpoint/state transfer intervals for the 

passively replicated objects. The optimum effectiveness configurations for the candidate 

composite replication schemes are determined by simulation metamodeling and optimization 

([11]), in the frame of an appropriately selected uniform experimental design ([28]). Finally, the 

proposed trade-off decision-making procedure allows the selection of low-cost checkpoint/state 

transfer intervals, with respect to the set design goals. 

In current paper, the formally specified evaluation approach and the developed prototype tool are 

used to give insight into another influential fault-tolerance performance and effectiveness 

tradeoff: the fact that excessively frequent request-retry timeouts for the constituent objects cause 

high overhead costs and do not improve fault-tolerance effectiveness.  

 

5. A case system study 

The results reported in this section unfold one of the tradeoff problems that are inherent in the 

design of a composite replication scheme: excessively frequent request-retry timeouts cause high 

overhead costs and do not improve fault-tolerance effectiveness. We aim to give insight in the 

selection of effective request-retry timeouts to mask (non-partitioning) network faults and 
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different types of omission faults (from those described in section 3.2), where the client does not 

detect the fault and receives no reply. As we already noted, the description and experimentation 

with a systematic QoS design method (optimum effectiveness finding and trade-off analysis), 

which exploits the proposed evaluation approach, is treated elsewhere for a different trade-off 

problem. 

The considered synthetic workload scenario includes an actively replicated object and allows for 

a range of combinations of omission faults and request-retry policies. The system model is 

comprised of four (4) stateless service objects (obj0, obj5, obj6, obj7) that are instances of 

the class SrvRequestAccepting and implement the provided service by invoking methods 

in four (4) different state owning objects (obj1, obj2, obj3, obj4) as shown in Figure 3. 

Received type-1 and type-2 service requests are assigned to the available service objects (obj0, 

obj5, obj6, obj7) on a round-robin basis (Table 2).  
 

 

:SrvRequestAccepting obj1:Class A

obj2:Class Bobj3:Class C obj4:Class D

[type1 request] 1.1:

[type1 request] 1.3:

[type2 request] 1.2:
[type1 request] 1.2:

[type2 request] 1.1:

[type1 request] 1.2.1:

1:

 

Figure 3 Objects’ collaboration diagram 
 

Table 2 System’s computational setting 

service objects:  objX:SrvRequestAccepting (X=0, 5, 6, 7) no state 
backend objects: obj1, obj2, obj3, obj4 own state 
multithreading: thread-per-object 
service requests assignment 
(load balancing): 

per-request load balancing:  
requests are assigned to objX (X=0, 5, 6, 7) on a round robin basis 

 
5.1 The simulated composite replication scheme and the system’s traffic and object fault models  

The four (4) stateless service objects (obj0, obj5, obj6, obj7), as well as obj2, obj3 and 

obj4 are replicated according to the warm passive replication policy (with a single backup) 
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shown in Figure 2. Obj1 is replicated according to the active replication policy (with two 

replicas) shown in Figure 1.  

Table 3 summarizes the used system’s traffic and resource consumption parameters. Resource 

consumption depends on the speed and the load of the hosts, where the object servers are placed. 

Also, since we did not want to burden our model with extra parameters that are not related to the 

fault-tolerance performance and effectiveness tradeoffs, we assumed that the available network 

bandwidth is large enough, so that network latency variations as a consequence of bandwidth 

contention are not significant. Log-induced replayed requests do not cause re-execution of re-

invoked requests, but result in a retransmission of the already computed responses. Finally, 

resource consumption for the checkpoints and the state transfers depends on the object state sizes 

and the computational capacity of the underlying hosts (state transfer speeds). 
 

Table 3 System’s traffic and resource consumption parameters 

system’s traffic parameters 
(exponential with means) 

 

type 1 request arrivals (sec)   2.5 
type 2 request arrivals (sec)    2.5 

object replicas: 
resource consumption parameters 

rep10 
obj1 

rep11 
obj1 

rep20 
obj2 

rep21 
obj2 

rep30 
obj3 

rep31 
obj3 

rep40 
obj4 

rep41 
obj4 

repX0 
objX 

repX1 
objX 

type 1 requests service times  
(exponential with means) 

0.52 0.52 0.25 (*) 0.25 (*) 0.7 0.7 0.32 0.32 0.05 (*) 0.05 (*) 

type 2 requests service times 
(exponential with means) 

- - 0.28 0.28 0.7 0.7 - - 0.05 (*) 0.05 (*) 

log-replayed re-invoked requests 
(exponential with means) 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - 

object state sizes (KB) 0.9 0.7 0.5 0.6 - - 
state transfer speed -sec/KB 
(exponential with means) 

0.8 0.8 0.6 0.6 0.6 0.6 0.8 0.8 - - 
 

 (*) resource consumption prior to nested requests invocation and following the reception of the last reply 

 

Table 4 summarizes the simulated replication scheme and the considered value combinations for 

its replication parameters. We give insight into: (i) the case of a request-with-no-retry policy that 

is not possible to mask (non-partitioning) network faults and omission faults and (ii) the 

considered three request-retry scenarios, which are accompanied by the related overhead costs 

for re-invocation of requests that are possibly lost. 
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Table 4 The simulated composite replication scheme 

composite replication scheme obj0 obj1:classA obj2:classB obj3:classC obj4:classD obj5 obj6 obj7 
replication: passive 

(fig. 2) 
active 
(fig. 1) 

passive 
(fig. 2) 

passive 
(fig. 2) 

passive 
(fig. 2) 

passive 
(fig. 2) 

passive 
(fig. 2) 

passive 
(fig. 2) 

behavioral properties  
number of replicas: 2 2 2 2 2 2 2 2 
checkpoint/state transfer intervals 
(number of requests): 

no state - 60 30 90 no state no state no state 

simulated request-retry scenarios 
(timeouts in sec) 
case I: 
case II: 
case III: 

 
 

12.0 
14.0 
16.0 

 
 
- 
- 
- 

 
 

7.0 
9.0 
11.0 

 
 
- 
- 
- 

 
 
- 
- 
- 

 
 

12.0 
14.0 
16.0 

 
 

12.0 
14.0 
16.0 

 
 

12.0 
14.0 
16.0 

 

Table 5 summarizes the assumed object replicas allocation to the available object servers. Each 

server is placed on a separate host and the applied multithreading is (as specified in Table 2) the 

thread-per-object policy. 
 

Table 5 Object replicas placement 

object server 1  rep00 (obj0)  rep11 (obj1) rep51 (obj5) 
object server 2  rep01 (obj0)    rep50 (obj5) 
object server 3  rep21 (obj2)  rep40 (obj4) 
object server 4  rep20 (obj2)  rep41 (obj4) 
object server 5  rep30 (obj3) 
object server 6  rep31 (obj3) 
object server 7  rep60 (obj6)  rep10 (obj1) rep71 (obj7) 
object server 8  rep61 (obj6)    rep70 (obj7) 

 

Table 6 The simulated object fault models 

fault rarity:  21600 sec 

object replicas: 
repX0 
objX 

repX1 
objX 

rep10 
obj1 

rep11 
obj1 

rep20 
obj2 

rep21 
obj2 

rep30 
obj3 

rep31 
obj3 

rep40 
obj4 

rep41 
obj4 

fault interarrival times 
(exponential) 

2*r 2*r 2*r 2*r r r r r 2*r 2*r 

replicas restart times 
(exponential) 

23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 

omission faults (as specified 
in section 3.2): 
case A: 
case B: 
case C: 

 
 
- 
- 
- 

 
 
- 
- 
- 

 
 
- 

(d) 
(a) 

 
 
- 

(d) 
(a) 

 
 
- 

(d) 
(a) 

fault monitoring intervals 
(sec): 

2.0, 4.0, 6.0, 8.0, 10.0, 12.0 

 

Finally, Table 6 specifies the simulated object fault models. We propose the use of parametric 

object fault models, since faults are by definition rare events and it is always useful, if not 
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necessary, to report the sensitivity of the obtained results, with respect to the assumed fault rarity 

(r). The table specifies fault interarrival times, object replicas restart times and three considered 

omission fault scenarios. The considered fault detection settings are summarized by the tested 

fault monitoring intervals, which are accompanied by the overhead costs mentioned in section 

3.4. 

 
5.2 Simulation results 

Special emphasis has been given to the credibility of the produced means, by the use of 

appropriate output analysis procedures.  

In case of passively replicated service objects we apply a single-run procedure ([18]) that 

exploits a representation of the required steady-state estimates in terms of quantities, which are 

based on the sample paths between two successive system entries into a selected set of states, say 

A. Such a target set of states for the mean response times in a service object, includes any state 

where the object’s primary fails and the number of queued requests is 0. A-cycles are not 

independent and identically distributed and for this reason we use the batch means estimation. 

Successive A-cycle based quantities are grouped into non-overlapping batches and their means 

are treated as independent and identically distributed observations. The validity of this 

approximation increases with the batch size. The number of A-cycles and the batch size is 

determined dynamically, by the Law and Carson sequential control procedure ([12]), on the basis 

of the specified relative precision to be achieved.  

For system configurations or system loads where it is not easy to identify a set of states, where 

system entries occur quite frequently (e.g. actively replicated service objects), we make use of 

the well-known independent replications approach. 

The results given in the following graphs were produced as 95% confidence intervals with half-

width no more than 3% of the estimated value. 
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An appropriate composite replication scheme retains perspectives for trade-off decision-making 

between fault-tolerance performance and fault-tolerance effectiveness, with respect to the ever-

changing QoS needs. In addition, fault-tolerance performance and effectiveness were found to 

depend on the system’s load (requests arrival distributions). In the performed experiments, we 

assume the service request arrival distributions of Table 3.  

Figure 4 presents the obtained mean fault-unaffected response times (performance) and mean 

fault-affected response times (effectiveness) for the two types of service requests and the 

composite replication scheme of Table 4, when there is no use of request-retry to mask potential 

(non-partitioning) network faults and omission faults. There is a notable improvement in fault-

tolerance effectiveness (Figure 4b), when reducing the fault-monitoring interval from 12 sec to 6 

sec, but we do not observe significant improvements in tighter fault detection settings. On the 

other hand, fault-tolerance performance (Figure 4a) seems to not be significantly affected by the 

overhead costs of the applied fault detection setting. 
 

 FAULT TOLERANCE PERFORMANCE  
(request-no-retry / no omission faults: case A) 

2 
2,5 

3 
3,5 

4 
4,5 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-unaffected type-1 
requests 
fault-unaffected type-2 
requests 

 

 FAULT TOLERANCE EFFECTIVENESS  
(request-no-retry / no omission faults: case A) 

13 
15 
17 
19 
21 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-affected type-1 
requests 
fault-affected type-2 
requests 

 
(a) (b) 

Figure 4 Fault-tolerance performance and fault-tolerance effectiveness  
for the request-no-retry replication scheme of Table 4 

 

When applying a composite request-retry scheme to mask (non-partitioning) network faults, the 

overhead costs for re-invocation of requests that are possibly lost results in worse performance 

(Figures 5a, 5c, 5e) and fault-tolerance effectiveness (Figures 5b, 5d, 5f), when compared to 

Figure 4. 

The request-retry scenario specified as case III in Table 4 (Figures 5a and 5b) allows exploiting 

fault monitoring intervals from 6 sec to 12 sec, without significant overhead costs. Tighter fault 



26 

detection settings burden fault-tolerance performance (Figure 5a) with unacceptably high costs. 

When using more frequent request-retry timeouts (case II and case I in Table 4) for the 

constituent objects, we observe the same or higher overhead costs (Figures 5c and 5e 

respectively) and worse fault-tolerance effectiveness (Figures 5d and 5f respectively). Case I 

scenario is characterized by the use of excessively frequent timeouts that appear to result in a 

comparatively non-effective request-retry scheme.  
 

 FAULT TOLERANCE PERFORMANCE  
(request-retry scenario: III / no omission faults: case A) 

2 
2,5 

3 
3,5 

4 
4,5 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-unaffected type-1 
requests 
fault-unaffected type-2 
requests 

 FAULT TOLERANCE PERFORMANCE  
(request-retry scenario: II / no omission faults: case A) 

2 
2,5 

3 
3,5 

4 
4,5 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-unaffected type-1 
requests 
fault-unaffected type-2 
requests 

 

 FAULT TOLERANCE PERFORMANCE  
(request-retry scenario: I / no omission faults: case A) 

2 
2,5 

3 
3,5 

4 
4,5 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-unaffected type-1 
requests 
fault-unaffected type-2 
requests 

 
(a) (c) (e) 

 FAULT TOLERANCE EFFECTIVENESS  
(request-retry scenario: III / no omission faults: case A) 

13 
15 
17 
19 
21 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-affected type-1 
requests 
fault-affected type-2 
requests 

 FAULT TOLERANCE EFFECTIVENESS  
(request-retry scenario: II / no omission faults: case A) 

13 
15 
17 
19 
21 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-affected type-1 
requests 
fault-affected type-2 
requests 

 

 FAULT TOLERANCE EFFECTIVENESS  
(request-retry scenario: I / no omission faults: case A) 

13 
15 
17 
19 
21 

2 4 6 8 10 12 
fault monitoring intervals (sec) 

fault-affected type-1 
requests 
fault-affected type-2 
requests 

 
(b) (d) (f) 

Figure 5 Fault tolerance performance and fault-tolerance effectiveness for composite replication 
schemes with different request-retry timeouts (Table 4) 

 

Finally, we give insight into how performance and effectiveness are affected in different cases of 

simulated omission fault models (Figure 6). 

Figures 6a and 6b refer to the case B scenario shown in Table 6: when a passively replicated 

object fails, the already queued requests are lost and the requests arriving while the object is 

down are also lost. We observe slightly improved performance (compared to Figure 5e) as a 

consequence of the empty queues found by the fault-unaffected requests arriving in the just 

recovered operational primary replicas. 
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Figures 6c and 6d refer to the case C scenario shown in Table 6: when a passively replicated 

object fails, no requests previously accepted in the queue are lost, but all requests arriving while 

the object is down are lost. Fault-tolerance performance (Figure 6c) is also improved, when 

compared to the no-loss case (scenario A of Table 6 and Figure 5e) and is slightly worse, when 

compared to the omission fault model of Figure 6a. 
 

 FAULT TOLERANCE PERFORMANCE  
(request-retry scenario: I / omission faults scenario: B) 

2 
2,5 

3 
3,5 

4 
4,5 

2 4 6 8 10 12 
fault monitoring intervals (sec) 
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requests 

 

 FAULT TOLERANCE PERFORMANCE  
(request-retry scenario: I / omission faults scenario: C) 
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(a) (c) 

 FAULT TOLERANCE EFFECTIVENESS  
(request-retry scenario: I / omission faults scenario: B) 
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 FAULT TOLERANCE EFFECTIVENESS  
(request-retry scenario: I / omission faults scenario: C) 
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19 
21 
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fault-affected type-1 
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fault-affected type-2 
requests 

 
(b) (d) 

Figure 6 Fault tolerance performance and effectiveness under different omission fault scenarios 
(Table 6) 

 

Different omission fault models reflect different possibilities of object fault handling for the used 

fault-tolerance infrastructure (see for example [1], [4], [8], [15], [17], [24]). We expect more 

significant differences in higher system load levels and this has to be taken into account, when 

designing composite replication and request-retry schemes that fulfill specific QoS goals. 

 

6. Conclusion 

We presented a quantitative evaluation approach for dependable server applications that possibly 

have to conform to agreed quality of service (QoS) guarantees for service response times. 

Compared to other reliability blocks based evaluation approaches we prefer hybrid reliability and 
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system’s traffic simulation and we focus on response time measures that are separately 

quantifying fault-tolerance performance and fault-tolerance effectiveness. 

The proposed evaluation approach opens the following perspectives: 

• to take into account complex interactions that are otherwise attributed to diverse 

design concerns (fault tolerance, load balancing and multithreading), 

• to capture the essence of the most influential fault-tolerance trade-offs, 

• to support a combined decision-making for replication parameters, such as 

checkpoint/state transfer intervals, request-retry timeouts and other, 

• to provide estimates for candidate QoS goals that are often agreed between service 

providers and customers and 

• to explore the perspective of a replication scheme for being adapted in ever-

changing QoS needs. 

The proposed evaluation approach can also be the cornerstone of systematic QoS design methods 

where (i) candidate replication schemes are compared on the basis of their optimum 

effectiveness configurations (the single criterion making feasible such a comparison) and (ii) it is 

possible to determine low-cost values for the replication parameters of the selected scheme, with 

respect to specific QoS design goals. 

We believe that hybrid reliability and system’s traffic simulation and the proposed evaluation 

approach constitute a valuable and generic tool possible to be exploited in the study of fault-

tolerance performance and fault-tolerance effectiveness in many other contexts (e.g. coordinated 

checkpointing and message logging algorithms, transaction-based fault tolerance, component-

based fault tolerance, as in [2] and [5] etc). Finally, the presented approach can also be the 

cornerstone of UML-based performance models ([16]) of dependable systems. 
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