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Abstract

An important decision in software projects is when to stop testing. Decision support tools for this have been built using causal models
represented by Bayesian Networks (BNs), incorporating empirical data and expert judgement. Previously, this required a custom BN for
each development lifecycle. We describe a more general approach that allows causal models to be applied to any lifecycle. The approach
evolved through collaborative projects and captures significant commercial input. For projects within the range of the models, defect
predictions are very accurate. This approach enables decision-makers to reason in a way that is not possible with regression-based
models.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In [8] we reviewed the various approaches to software
defect prediction. We concluded that traditional statistical
approaches, such as using regression modelling alone, were
inadequate. We proposed that causal models were needed
for more accurate predictions. We described a simple
Bayesian Net (BN) as an example of the kind of causal
model needed for this purpose. Since then a number of
authors, for example [3,7,24], have used BNs in various
related aspects of software engineering management. Our
own research has extended the use of BNs to more general
software project management [13]. However, the original
motivation of more accurate software defect prediction
has continued to be an important focus of our research

and this paper describes some of the most recent results
in this area.

Following on from the early ideas presented in [8], in
[12] we have shown how BNs can be used to predict the
number of software defects remaining undetected after test-
ing. This work led to the AID tool [22] developed in part-
nership with Philips, and used to predict software defects in
consumer electronic products. Project managers use a BN-
based tool such as AID to help decide when to stop testing
and release software, trading-off the time for additional
testing against the likely benefit.

Rather than relying only on data from previous projects,
this work uses causal models of the Project Manager’s
understanding, covering mechanisms such as:

• poor quality development increases the number of
defects likely to be present,

• high quality testing increases the proportion of defects
found.
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Causal models are important because they allow all the
evidence to be taken into account, even when different
evidence conflicts. Suppose that few defects are found
during testing – does this mean that testing is poor or that
development was outstanding and the software has few
defects to find? Regression-based models of software
defects are little help to a Project Manager who must
decide between these alternatives [8]. BN models allow
back propagation of evidence to show the most likely
causes of a given outcome. Data from previous projects
are used to build the BN, with expert judgements on the
strength of each causal mechanism.

In this paper, we extend the earlier work by describing a
much more flexible and general method of using BNs for
defect prediction. We also describe how the AgenaRisk
[1] toolset is used to create an effective decision support sys-
tem from the BN. An important limitation of the earlier
work was the need to build a different BN for each software
development lifecycle – to reflect both the differing number
of testing stages in the lifecycle and the differing metrics
data available. Given the work required to build a BN, this
severely limits the practicality of the approach. To over-
come this limitation, we describe a BN that models the
creation and detection of software defects without commit-
ment to a particular development lifecycle. We then show
how a software development organisation can adapt this
BN to their development lifecycle and metrics data with
much less effort than is needed to build a tailored BN from
scratch.

The contents of the remainder of the paper are as
follows: in Section 2 we introduce BNs and show how they
are used for causal modelling in software engineering. Sec-
tion 3 introduces the idea of a ‘phase’ as a sub-part of a
software lifecycle and shows how several phase models
can be combined to model different lifecycles. The phase
model is described in detail in Section 4; Section 5 shows
how it is adapted to different development lifecycles. An
experimental validation of defect predictions is described
in Section 6.

2. Defect prediction with BNs

2.1. Bayesian nets

A Bayesian net [14] (BN) is a directed acyclic graph
(such as that shown in Fig. 1) together with an associated
set of probability tables. The nodes represent uncertain
variables and the arcs represent the causal/relevance rela-
tionships between the variables. We have adopted the con-
vention in this paper that a dotted margin around a node
indicates that it is a ‘‘link’’ node. The semantics of these
nodes will be discussed in Section 3.2.

The BN of Fig. 1 forms a causal model of the process of
inserting, finding and fixing software defects. The variable
‘effective KLOC implemented’ represents the complexity-
adjusted size of the functionality implemented: as the

amount of functionality increases the number of potential
defects rises. In this version of the model, KLOC is used
as a surrogate for Function Points (FP). Function points
are the preferred measure of program size since they can
be estimated on the basis of a functional specification.
However, most of the companies involved in the validation
of this model did not use FPs and, since the validation was
retrospective, KLOC measures were readily available. The
model can deal with either KLOC or FPs using appropriate
conversions (based on empirical data by Jones [15,16]).

The ‘probability of avoiding defect in development’
determines ‘defects in’ from ‘Potential defects given specifi-
cation and documentation adequacy’. This number repre-
sents the number of defects (before testing) that are in
the new code that has been implemented. However, insert-
ed defects may be found and fixed: the residual defects are
those remaining after testing.

There is a probability table for each node, specifying
how the probability of each state of the variable depends
on the states of its parents. Some of these are deterministic
(in the sense that they introduce no new uncertainty): for
example ‘Residual defects’ is simply the numerical differ-
ence between ‘Defects in’ and ‘Defects fixed’. In other
cases, we can use standard statistical functions: for example
the process of finding defects is modelled as a sequence of
independent experiments, one for each defect present, using
the ‘Probability of finding a defect’ as a characteristic of the
testing process.

Defects found = B(Defects inserted,Prob finding a defect)
where B(n,p) is the Binomial distribution for n trials

with probability p.

Fig. 1. BN for defect prediction.
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Some nodes are defined as ranked nodes. These have a
discrete set of states such as: ‘‘very low’’, ‘‘low’’, ‘‘medi-
um’’, ‘‘high’’, ‘‘very high’’. Such nodes are useful when cap-
turing expert judgement, where a simple, qualitative
description is required. However, because this judgment
is also intended to indicate degree, it is represented by an
underlying real number in the range [0..1]. An example is
the ‘Quality of spec and doc PRE’ node in Fig. 4. Its chil-
dren incorporate the [0..1] value of their parent into expres-
sions which determine their conditional probability tables.
However, the correspondence between qualitative degree
and quantitative value is not always straightforward. For
example, the ‘Quality of spec and doc POST’ node in
Fig. 4 uses a partitioned expression on one of its parents
to create distinct conditional probability tables correspond-
ing to each parent state.

For variables without parents the table just contains the
prior probabilities of each state.

The BN represents the complete joint probability distri-
bution – assigning a probability to each combination of
states of all the variables – but in a factored form, greatly
reducing the space needed. When the states of some vari-
ables are known, the joint probability distribution can be
recalculated conditioned on this ‘evidence’ and the updated
marginal probability distribution over the states of each
variable can be observed.

The quality of the development and testing processes is
represented in the BN of Fig. 1 by four variables over the 0
to 1 interval:

• probability of avoiding specification defects,
• probability of avoiding defects in development,
• probability of finding defects,
• probability of fixing defects.

The BN in Fig. 1 is a simplified version of the BN at the
heart of a decision support system for software defects, dis-
cussed below. None of these probability variables (or the
‘Effective KLOC implemented’ variable) are entered direct-
ly by the user: instead, these variables have further parents
modelling the causes of process quality as we describe in
Section 4.

2.2. Decision support with BNs

Although the underlying theory (Bayesian probability)
has been around for a long time, executing realistic BN
models was only first made possible in the late 1980s as a
result of breakthrough algorithms and software tools that
implement them [14]. Methods for building large-scale
BNs are even more recent [9,21] but it is only such work
that has made it possible to apply BNs to the problems
of software engineering.

Drawing on this work in various commercial projects
with Agena, Fenton and Neil have built BN-based applica-
tions that have proved the technology is both viable and
effective. Several of these applications have been related

to systems or software assessment. Especially significant
was the TRACS tool [20] to assess vehicle reliability for
QinetiQ (on behalf of the UK Ministry of Defence) and
the AID tool [11,22] to predict software defects in consum-
er electronic products for Philips. Much of the modelling
work described here was done as part of the MODIST pro-
ject [13], which extends the ideas in AID. The toolset imple-
mentation has been based on Agena’s AgenaRisk
technology that was extended to incorporate recent devel-
opments in building large-scale BNs that was undertaken
in the SCULLY, SIMP and SCORE projects [9].

Three features of AgenaRisk are especially critical for
building this kind of model:

• Continuous nodes do not have to be discretised manual-
ly. Part of the problem in creating BN models is deter-
mining the discretisation intervals for numeric nodes.
After the MODIST project, the AgenaRisk toolset was
updated to automatically discretise – allocating more
refined intervals to greater probability masses.

• The notion of ‘ranked nodes’ with a range of pre-defined
functions makes it easy for domain experts to build very
large tables that otherwise would have to be constructed
manually.

• Probability tables are generated from numerical and
statistical expressions by simulation. The expression giv-
en above using the binomial distribution is not only the
conceptual model but also how the model is specified.
A user specifies that a node has an NPT that has a
binomial distribution dependent upon its parents. The
simulation algorithm then converges upon a suitably dis-
cretised approximation to the true continuous distribu-
tion [23].

2.3. Building the BN model

Like all BNs, the defect model was built using a mixture
of data and expert judgements. Understanding cause and
effect is a basic form of human knowledge underlying our
decisions. For example, a project manager knows that
more rigorous testing increases the number – and propor-
tion of – defects found during testing and therefore reduces
the number remaining in the delivered software.

It is obvious that the relationship is not the other way
round. However, it is equally obvious that we need to take
into account whatever evidence we have about: the likely
number of defects in the software following development;
the capabilities of the team; and the adequacy of the time
allowed. The expert’s understanding of cause and effect is
used to connect the variables of the net with arcs drawn
from cause to effect.

To ensure that our model is consistent with these empir-
ical findings, the probability tables in the net are construct-
ed using data, whenever it is available. However, when
there is missing data, or the data does not take account
of all the causal influences, expert judgement must be used
as well.

34 N. Fenton et al. / Information and Software Technology 49 (2007) 32–43



2.4. Object Oriented Bayesian nets

Creating large Bayesian nets, consisting of many repeti-
tions of similar collections of nodes, is a straightforward
but highly laborious process. Object Oriented Bayesian
nets (OOBN) simplify this task by creating predefined sub-
nets, known as Classes. Instances of these net classes are
known as Risk Objects. The theory underlying this
approach was presented by Koller and Pfeffer [18], and
the practical implications outlined by Bangsø and Wuille-
min [2]. The utility of OOBNs will be demonstrated in
our approach to modelling software lifecycles.

3. Varying the lifecycle

When we describe defects being inserted in ‘implementa-
tion’ and removed in ‘testing’ we are referring to the activ-
ities that make up the software development lifecycle. We
need to fit a decision support system to the lifecycle being
used, but practical lifecycles vary greatly. In this section,
we describe how this can be achieved without having to
build a bespoke BN for every different lifecycle. The solu-
tion has two steps: the idea of a lifecycle ‘phase’ modelled
by a BN and a method of linking separate phase models
into a model for an entire lifecycle.

3.1. A lifecycle phase

We model a development lifecycle as made up from
‘phases’, but a phase is not a fixed development process
as in the traditional waterfall lifecycle. Instead, a phase
can consist of any number and combination of develop-
ment activities. For example, in the ‘incremental delivery’
approach the phases could correspond to the code incre-
ments. Each phase then includes all the development
activities: specification, design, coding and testing. Even
in a traditional waterfall lifecycle it is likely that a phase
includes more than one activity with, for example, the
testing phase involving some new design and coding
work.

The incremental and waterfall models are just two ends
of a continuum. To cover all parts of this continuum, we
consider all phases to include one or more of the following
development activities:

• Specification/documentation: This covers any activity
whose objective is to understand or describe some exist-
ing or proposed functionality. It includes: requirements
gathering, writing, reviewing, or changing any documen-
tation (other than comments in code).

• Development (or more simply coding): This covers any
activity that starts with some predefined requirements
(however vague) and ends with executable code.

• Testing and rework: This covers any activity that
involves executing code in such a way that defects
are found and noted; it also includes fixing known
defects.

The phase BN includes all these activities, allowing the
extent of each activity in any actual phase to be adjusted.
In the most general case, a software project will consist
of a combination of these phases. In Section 4 we describe
the BN model for one phase in more detail. First, in the
next section, we describe how multiple instances of the
BN are linked to model an arbitrary lifecycle.

3.2. Linking phases: Dynamic BNs

Whatever the development lifecycle, the main objective
is: given information about current and past phases we
would like to be able to predict attributes of quality for
future phases. We therefore think of the set of phases as
a time series that defines the project overall. This is readily
expressed as a Dynamic Bayesian Network (DBN) [2].
Multiple instances of a single risk object class are chained
together, with instances representing consecutive time
frames. A DBN allows time-indexed variables: in each time
frame one of the parents of a time-indexed variable is the
variable from the previous time frame. Fig. 2 shows how
this is applied when the quality attribute is the number of
residual defects.

The dynamic variable is shown with a dashed boundary.
We construct the DBN with two nodes for each time-in-
dexed variable: the value in the previous time frame is
the ‘input’ node (here ‘Residual defects pre’) and it has
no parents in the net. The node representing the value in
this time frame is called the ‘output node’ (here ‘Residual
defects post’). Note that the variable for the current time
frame ‘Residual defects post’ depends on the one for the
previous time frame, but as an ancestor rather than as a
parent since it is clearer to represent the model with the
intermediate variable ‘Total defects in’.

Fig. 2. A dynamic BN modelling a software lifecycle.
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As well as defects, we also model the documentation qual-
ity as a time-varying quality attribute. Recall that documen-
tation includes specification, which even in iterative
developments is often prepared in one phase-level and imple-
mented in a later phase. We consider specification errors as
defects so a phase in which documentation is the main activ-
ity may lead to an important incremental change in docu-
mentation quality that is passed on to the next phase.

4. Modelling a single phase

We describe the ‘phase-level BN’, which models a single
software development phase, first giving an overview and
then describing two parts of the BN in more detail.

4.1. Overview

The phase BN is constructed from five classes.

• One of three activity classes: specification and documen-
tation, design and development, or test and rework.

• The scale of ‘‘New functionality’’ developed in this
phase.

• The defect prediction model.

Fig. 3 shows a single object instantiation of each of these
classes. This object view of the single phase model repre-
sents the BN in abstract terms. The inner details of each
class are not shown – only the input and output nodes
are visible. In this view, a class is represented by its inter-
face to other classes.

Triangular arrow heads represent input nodes within a
class, whereas rounded arrow tails represent output nodes.
Lines represent input node instantiation, i.e. the output
node of one object instantiates (replaces) the input node
of the connected object. Input nodes effectively act as
parameters for a BN class.

Note that not all input nodes are instantiated by output
nodes from another object. Input nodes have a default
probability distribution associated with them. However

this is rarely used. More often, unattached input nodes
are initialised using explicit observations.

For example ‘‘Residual defects pre’’ is used to account
for defects remaining from previous phases. If this is the
first or only phase, then it should be explicitly initialised
to zero.

The BN classes are:

• New Functionality Implemented. Since we are to build
and test some software we may be implementing some
new functionality in this phase. This class provides a
measure of the size of this functionality.

• Specification and Documentation. This class is concerned
with measuring the amount of specification and docu-
mentation work in the phase, the quality of the specifi-
cation process and determining the change in the
quality of the documentation as a result of the work
done in the phase (modelled as a time-indexed variable).

• Design and Development. This class models the quality of
the design and development process, which influences
the probability of inserting each of the potential defects
into the software.

• Testing and Rework. This class models the quality of the
testing process and the rework process, influencing the
probabilities of finding and fixing defects.

Defect Insertion and Discovery. This class follows the
pattern already described in Section 2.1, adapted to handle
changes to the number of defects using a time-indexed var-
iable. The amount of ‘new functionality implemented’ will
influence the inherent number of defects in the new code.
We distinguish between potential defects from poor speci-
fication and ‘inherent potential defects’, which are indepen-
dent of the specification.

4.2. Specification and Documentation

Fig. 4 shows the Specification and Documentation class.
Before implementing any functionality there is assumed to
be some specification of it. If we are lucky this specification

Fig. 3. Objects in the phase BN.
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will be a well-written document at the appropriate level of
detail. However, in many cases it may be nothing more
than a vague statement of requirements. Generally, there-
fore, there may be work that needs to be done on the spec-
ification as part of this lifecycle phase.

The ‘scale of all new specification and documentation
work in this phase’ and ‘spec & doc process quality’ will
determine the ‘adequacy of documentation for new func-
tionality (after spec work this phase)’ that is being imple-
mented in this phase. If, for example, there is very little
new functionality (and so the ‘scale of new specification
and documentation work’ is low) then, even if the ‘spec
& doc process quality’ is poor, it is likely that adequacy
of documentation will be sufficient. On the other hand, if
there is a lot of new functionality the scale of new specifi-
cation and documentation work is likely to be high, which
means that the process quality will need to be good in order
for the documentation to be adequate.

This class shows the use of ‘indicator’ nodes: for exam-
ple the experience of the staff is an indicator of the process
quality. Indicators can easily be tailored to match the infor-
mation available in the software development environment
– see Section 5.

4.3. Testing and rework

Fig. 5 shows the testing and rework class. The better the
testing process the more likely we are to find defects. We
may or may not decide to fix the defects found in testing
in this phase; the success of such fixes will depend on the

‘probability of fixing defect’. The two probabilities are used
to update the number of residual defects in the ‘Defect
Insertion and Discovery’ class and to predict the number
of residual defects at the start of any subsequent phase in
which further development and/or testing of the software
takes place.

4.4. Variations on the phase model

We can easily construct phase models that exclude any
of the development activities already described. For exam-
ple, a phase that includes only specification or documenta-
tion is modelled by an instance of the ‘‘Specification and
documentation’’ class connected to an instance of the
‘‘Defect Insertion and Discovery’’ class.

The new functionality implemented is set to zero, and
the development, testing and rework effort to zero. This
ensures that the information about defects is not changed
(since without coding or testing defects are neither intro-
duced nor removed).

However, it is irksome for users to enter dummy informa-
tion to ensure that certain variables are set to zero, so we
introduced a predefined set of variants of the phase BN
model. These explicitly model the cases where at least one
of the software development activities is not undertaken.

1. Specification/documentation and development carried
out in the phase, but not testing.

2. Specification/documentation and testing carried out in
the phase, but not development.

Fig. 4. Specification and documentation class.
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3. Development and testing carried out in the phase, but
not specification/documentation.

4. Only specification/documentation carried out in the
phase.

5. Only development carried out in the phase, and
6. Only testing carried out in the phase.

These BNs are constructed by selecting the relevant clas-
ses and omitting those that are irrelevant. The BN modelling
the general case is known as the ‘all activities’ phase BN.

5. Application methodology

There are two steps for applying the defect prediction
model to a specific software development environment.

1. Choose the ‘indicators’ used to judge the qualities of the
different processes.

2. Link together phase BNs to model the full lifecycle.

5.1. Quality indicators

Indicator variables used in the BN can be customised to
match the indicators used within the organisation. As well
as editing names given to an indicator in the questionnaire,
its probability table can be adjusted. The formula language
of the AgenaRisk toolset makes this feasible. Consider, for
example, the ‘Testing process quality’ (TPQ) shown in
Fig. 5. The suggested indicators are:

• Quality of documented test cases.
• Testing process well defined.
• Testing staff experienced.

Fig. 5. Testing and rework class.

The process quality and the indicator values are
judged on a five-point scale from ‘very low’ to ‘very
high’, corresponding to an underlying 0..1 numeric range.
Values are judged relative to the norm for the develop-
ment environment. To set up the indicators, an expert
need only judge its ‘strength’ as an indicator of the
underlying quality attribute. Given that the process qual-
ity really is high, how certain is it that the staff will be
experienced?

We have found the truncated normal distribution [4]
useful for creating a probability expressing an expert’s
assessment of the ‘strength’ of an indicator. The truncated
normal distribution is simply a normal distribution which
has been truncated at both ends and the result renormal-
ized to give a total probability of unity. The distribution
has the advantage that it can model probability distribu-
tions which do not tend to zero at either extreme, as well
as offering great flexibility in the variety of distribution
shapes which can be achieved.

For example, suppose:
Testing process well defined = TNormal(‘TPQ’,0.6)
Testing staff experience = TNormal(‘TPQ’,0.2)
(the truncation points have been omitted). This

expresses the judgement that the staff experience is the
stronger indicator, since it has a smaller variance param-
eter (0.2) than the other indicator. In both cases the mean
value of the indicator is given by the parent process
quality.

5.2. Lifecycle modelling

We show two examples of how the phase BN and its
variants can be linked to model different lifecycles.
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5.2.1. Iterative development

An incremental software lifecycle is modelled by a series
of the ‘all activities’ phase BN. Fig. 6 shows this as it is dis-
played in the AgenaRisk toolset.

Fig. 7 shows an example of the predicted defects for this
model. The three diagrams show the marginal distributions
for the ‘Residual defects post’ variable in each of the three
iterations. All three increments include all activities. How-
ever in increment 1 most of the effort is given to specifica-
tion, whereas in increment 3, most of the effort is in testing
and rework.

In increment 1, the defects before the start of the phase
is set to zero and the new functionality to 5 KLOC. As this
is mostly specification, the number of defects introduced is
relatively low, with a median value of 93.

The marginal distribution for ‘residual defects post’ in
iteration 1 becomes the prior distribution for ‘residual
defects pre’ in iteration 2. As this is mostly development
(it adds 25 KLOC of new functionality), the largest num-
ber of defects are introduced during this iteration. The
marginal distribution of ‘residual defects post’ in iteration
2 has a median value of 335.

Fig. 6. An incremental development lifecycle.
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This marginal distribution in turn becomes the prior dis-
tribution for the ‘residual defects pre’ in iteration 3. Only 5
KLOC of new functionality is introduced in this increment.
The number of residual defects falls from increment 2 to
increment 3 as a result of the testing effort.

5.2.2. A waterfall example with integration

The example in Fig. 8 shows a waterfall lifecycle but
with initial development of modules 1 and 2, including
some low-level testing, done by two separate teams, for
example modelling development at different sites or the
use of subcontractors.

The initial development follows different lifecycles: the
two phases for module 1 being ‘specification, development
but no testing’ followed by ‘testing only’, while module 2

has a specification only initial phase. This difference may
represent the different way that metrics data is gathered
at the two sites as well as actual lifecycle differences.

The ‘join’ class combines the defect estimates for the two
modules, taking account of their relative size, before two
phases of testing applied to the system as a whole. This
example also shows that user trials can be modelled as a
‘testing only’ phase.

5.3. Toolset

Our experience from earlier commercial projects is that
project managers and other users who are not BN experts
do not wish to use a BN directly via a general purpose BN
editor. Instead, the BN needs to be hidden behind a more
specialised user interface. The toolset provided by Agena-
Risk is actually an application generator that enables tool-
set users to tailor both the underlying BN models and the
user interface that is provided to the end-users when the
application is generated.

The main functions provided to the end-user are:

1. Observations can be entered using a questionnaire inter-
face, where questions correspond to BN variables. Each
question includes an explanation and the user can select
a state (if the number of states is small) or enter a num-
ber (if the states of the variable are intervals in a numeric
range). Answers given are collected into ‘scenarios’ that
can be named and saved. At least one scenario is created
for each software development project but it is possible
to create and compare multiple scenarios for a project.

2. Predictions are displayed as probability distributions
and as summary statistics (mean, median, variance).
Distributions are displayed either as bar charts or as line
graphs (see Fig. 7) depending on the type of variable and
the number of states. The predictions for several scenar-
ios can be superimposed for ease of comparison. Sum-
mary statistics can be exported to a spreadsheet.

The questionnaires shown to the end user can be config-
ured widely. For example, questions can be grouped and
ordered arbitrarily and the question text is fully editable.
Not all variables need have a question, allowing any BN
variable to be hidden from the end user.

Fig. 7. Defects predicted at each increment of the incremental lifecycle.

Fig. 8. A more complex lifecycle with two teams.
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6. Validation

The toolset and models have been widely trialled by var-
ious commercial organisations, including those involved in
the MODIST project [13], namely Philips, Israel Aircraft
Industries (Tel Aviv) and QinetiQ (Malvern). In addition,
Philips has recently completed a retrospective trial of 30
projects carried out at Bangalore.

6.1. Aim and methodology

The aim of the recent Philips trial (2004–2005) was to
evaluate the accuracy of the defect prediction BN capabil-
ities in software projects. Initially, 116 consumer electron-
ics software projects completed between 2001 and 2004
were assessed for inclusion in the trial against the following
criteria:

• reliable data was available,
• project resulted in a commercial product,
• the size of the project was within the scope of the mod-

el’s data ranges,
• some key people from the project were still available for

interview,
• the projects should represent a range of product

domains and a variety of design layers, including user
interface, intermediate and driver layers.

Thirty projects were identified as suitable for the trial,
based on these criteria.

A questionnaire, based on the AgenaRisk form for
entering observations, was used to collect qualitative and
quantitative information from key project members. These
data were entered into the model to predict the number of
defects found in testing. These predictions were then com-
pared with the actual number of defects found in all testing
phases. Data were collected in two rounds: in the second
round a more detailed interview was conducted with the
‘Quality Leaders’ for each project resulting in improved
data and improved predictions.

The trial used a variant of the ‘all-activities’ phase-level
net. It is important to note that the model was developed in
one development centre but trialled in another. These two
development centres did not share a common corporate
culture or development methodology. Apart from the
involvement of their parent company, they were effectively
separate organisations.

We initially assumed that the data received from Philips
applied to software projects which consisted of a single
development phase.

6.2. Results

Fig. 9 shows the predicted versus the actual defect
counts for the projects in the initial trial.

Although our model shows a strong correlation with
actual defects, its absolute predictive accuracy is poor.

Perfect accuracy would result in all of the data points in
Fig. 9 lying on a line with unit slope and zero intercept.
Our model results differ significantly from the ideal. This
indicates a systematic error in our model.

Our investigation into this error showed the need to
ensure that the model closely matches the situation. For
example, the inaccuracies for projects outside the range
of the default model are largely explained by the ‘defects
pre’ variable, representing the number of defects before
the (one and only) development phase. Unless a value is
explicitly entered here, a default distribution is assumed,
which heavily biased the defect predictions upwards for
the smaller projects and may also bias the prediction down-
wards for larger projects.

Although it is easy to enter a value in the AgenaRisk
toolset, we did not provide a systematic method to deter-
mine the appropriate value. Many of the projects in the tri-
al enhanced existing software, so the initial defects was not
expected to be zero. This problem was easily overcome by
explicitly modelling the pre-existing code, using an initial
stub phase (no specification, development or testing).

This led to the final trial results shown in Fig. 10. As can
be seen, the two phase model resulted in a significantly
more accurate defect prediction model.

It would be perfectly possible to construct a regression
model using the same data set. First we would perform
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an analysis of each variable to determine if the distribution
of its values was symmetric or asymmetric, with a logarith-
mic transformation performed on those with asymmetric
distributions. Variables which were strongly correlated
with one another would then be identified and a decision
made on which to eliminate. If the number of data sets
was still lower than the number of variables, then further
elimination candidates would be identified. Finally we
would be in a position to identify the coefficients of our
regression model based on some ‘‘best fit’’ criteria.

Defect models constructed this way generally produce
good results. We can therefore expect our regression model
to fit the data fairly well. However, we would have no real
understanding of the applicability of such a model outside
of the data set used to create it.

Contrast this with the causal model just described. This
is independent of the data set. There is no need to identify
the shape of variable distributions, nor to determine corre-
lations between variables in order to eliminate some of
them. All of the data can be incorporated, and where it is
absent, prior assumptions used.

7. Conclusions

We have shown how a wide variety of software lifecycles
can be modelled using a Dynamic Bayesian Net, in which
each time frame is a lifecycle ‘phase’ combining all software
development activities in different amounts. This approach
allows a BN for software defect prediction to be tailored to
different software development environments. The Agena-
Risk toolset makes this a practical approach, providing a
formula language with standard statistical distributions
that can be used to change the quality indicators available
in each software development team.

The approach and toolset have been extensively trialled
by industrial partners in a collaborative project. Despite
making little use of the available tailoring capabilities, a
retrospective trial of 30 projects showed a good fit between
predicted and actual defect counts. Once a small amount of
tailoring was undertaken (to take account of the size of any
legacy code in the projects under assessment) the predic-
tions were outstanding (over 93% correlation between pre-
dicted and actual defects).

The AgenaRisk toolset allows the use of large variable
state spaces that are necessary to achieve accurate predic-
tions, with the formula language making the construction
of very large probability tables feasible. The AgenaRisk
toolset also now incorporates dynamic discretisation
[17,19] to overcome the classic BN problem of discretisa-
tion errors that occur when numeric variables have a
widely varying scale.

We have also used BNs to reason about software pro-
jects as a whole [13] and the trade-off between time,
resources and quality. Many of the factors are common
in these two models, covering both the assessment of pro-
cess quality and the product quality achieved and required.
In future, we hope to combine the two models into a single

decision support system for software projects. Part of this
is being done in the eXdecide project [6].
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