N

N
N

HAL

open science

Goal-oriented test data generation for pointer programs
Arnaud Gotlieb, Tristan Denmat, Bernard Botella

» To cite this version:

Arnaud Gotlieb, Tristan Denmat, Bernard Botella.
pointer programs. Information and Software Technology, 2007, 49 (9-10), pp.1030-1044.
10.1016/j.infsof.2006.10.016 . inria-00540297

HAL 1d: inria-00540297
https://inria.hal.science/inria-00540297
Submitted on 26 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Goal-oriented test data generation for

https://inria.hal.science/inria-00540297
https://hal.archives-ouvertes.fr

Goal-oriented test data generation for pointer
programs

Arnaud Gotlieb®*, Tristan Denmat ?, Bernard BotellaP.

aJRISA / INRIA Campus Beaulieu 35042 Rennes Cedez, France
YTHALES AEROSPACE 78851 Elancourt Cedex, France

Abstract

Automatic test data generation leads to the identification of input values on which
a selected path or a selected branch is executed within a program (path-oriented
vs goal-oriented methods). In both cases, several approaches based on constraint
solving exist, but in the presence of pointer variables only path-oriented methods
have been proposed. Pointers are responsible for the existence of conditional aliasing
problems that usually provoke the failure of the goal-oriented test data generation
process. In this paper, we propose an overall constraint-based method that ex-
ploits the results of an intraprocedural points-to analysis and provides two specific
constraint combinators for automatically generating goal-oriented test data. This
approach correctly handles multi-levels stack-directed pointers that are mainly used
in C programs. The method has been fully implemented in the test data generation
tool INKA and first experiences in applying it to a variety of existing programs are
presented.

Key words: Goal-oriented test data generation, Constraint Logic Programming,
Static Single Assignment form, pointer variables

1 Introduction

Goal-oriented test data generation leads to identify input values on which a
selected branch in a program is executed. The presence of pointer variables
introduces technical difficulties making the extension of current goal-oriented
test data generation methods a challenging task.

* Corresponding author
Email address: Arnaud.Gotlieb@irisa.fr (Arnaud Gotlieb).

Preprint submitted to Information and Software Technology 13th October 2006

int f(int i, int j, int c) {
1. int* p = &j;
2. if (¢ == 1)
3. p = &i;
4. i=0;
D. *p = 1;
6. if (1 !'=0)
7.

Figure 1. A conditional aliasing problem

What is exactly the problem? In imperative programs, a dereferenced pointer
and a variable may refer to the same (stack-based) memory location at some
program point (a.k.a. an aliasing problem). This can be due either to a state-
ment in the code where a pointer variable is assigned the address of another
variable or to a relation over the pointer input values of a function. In the
former case, the dependence may be conditioned by the control flow: a deref-
erenced pointer may be aliased with a variable only if some conditions that
depend on the flow are satisfied. We call this situation a conditional aliasing
problem. For example in the C code of Fig.1, *p may be aliased to i or j at
statement 5. Consider the problem of generating a test datum that reaches
branch 6-7. If the assignment of statement 5 is considered to have no effect
on variable 7, then the branch 6-7 will be declared as unreachable by an auto-
mated test data generator as ¢ = 0 and 7 # 0 are contradictory. However, this
is incorrect if the flow passes through statement 3 as, in this case, p points
to 7 and then 7 is assigned to 1 at statement 5, which satisfies the decision of
branch 6-7. On the contrary, if statement 5 is considered to be able to modify
any pointed variable in the program, then the test data generation process
suspends as it cannot decide whether 7 # 0 is satisfied or not. In this example,
it is worth noticing that reaching branch 6-7 requires ¢ = 1 to be satisfied,
which is a necessary (and sufficent) condition to solve this problem. Note that
when a path is selected first, the pointing relations are all known and such
conditional aliasing problems are trivially handled, but if the selected path is
infeasible then this must be demonstrated before switching to another choice
and carrying on the process.

Contributions. In this paper, we propose to extend an existing constraint-
based goal-oriented method [1,2] to take into account conditional pointer alias-
ing problems. Firstly, we propose the definition of a Static Single Assignment
form (SSA)[3] in the presence of pointer variables. This SSA form integrates
the results of an intraprocedural flow—sensitive pointer analysis in order to
reveal the hidden definitions realized by dereferenced pointers. In the example
of Fig.1, such an analysis says that p points either to i or j at statement 5.
Secondly, we proposed the definition of two specific constraint combinators
that model the existing relations between dereferenced pointers and variables.

In order to reach branch 6-7 in the example, these combinators correctly en-
tail that ¢ = 1. In this paper, we formally present the operational semantics
of these combinators under the form of guarded constraints, and we detail
our implementation while providing preliminary experimental results. As a
consequence, this paper introduces an overall goal-oriented method able to
correctly deal with programs that contain conditional pointer aliasing prob-
lems and (multi-level) pointers toward stack memory locations. Note however
that our approach suffers from the following restriction: it cannot handle accu-
rately dynamic allocated structures when dynamic allocation is placed within
the body of an unbounded loop. This restriction should be minimized by the
fact that in most critical systems (military and civil avionic, railway and au-
tomotive industries, etc.) dynamic allocation is prohibited [4].

Outline of the paper. In Section 2, the background on our constraint-based
technique is recalled. Section 3 gives an overview of the approach on a motivat-
ing example. Section 4 details the Pointer-SSA form while section 5 presents
two specific combinators used to model pointer use and definition. Section
6 reports on the experimental results we obtained with our implementation
in the test data generator INKA and Section 7 discusses related work. Fi-
nally, Section 8 recalls the contributions of the paper and indicates several
perspectives.

2 Background

Constraint-based test data generation. Originally introduced by DeMillo
and Offut in the context of mutation testing [5], Constraint-Based Test data
generation (CBT) aims at exploiting constraint satisfaction techniques to gen-
erate test data able to reach a selected branch in a program under test. The
method builds a constraint system associated to a given branch and then
tries to solve the system by using domain reduction techniques. Several tools
support CBT: the Godrzilla system [6,7] exploits a dynamic domain reduc-
tion technique to reach mutation operators in Fortran programs, INKA [1,2]
uses Static Single Assignment form and Constraint Logic Programming (CLP)
techniques over finite domains to generate test data for the structural coverage
of C programs, and ATGen [8] exploits symbolic execution for structural cov-
erage of Spark ADA programs. Recently, INKA has been improved to handle
floating-point computations [9], function calls and structures [10]. Although
these CBT’s implementations have proved to be useful to address non-trivial
academic and industrial test data generation problems (including loops, ar-
rays, structures, bitwise operations and so on) it is worth noticing that none
of them was able to deal correctly with pointer aliasing problems.

In the CBT approach of [1,2], the selection of a branch in the C function leads

to set up a Constraint Logic Programming request built with the control-
dependencies [11]. Control-dependencies are decisions that must be evaluated
to “true” to reach a selected branch. In well-structured programs (without
goto statement), they can easily be computed [12], even if they must be
determined dynamically for the loop statements. In the example of Fig.1,
the control-dependency associated to branch 6-7 is just ¢ # 0. In addition,
type declarations are translated into domain constraints. For example, using
a signed 32-bits integer x as an input variable leads to set up the following do-
main constraint: X € —231..231 — 1. The last phase of the test data generation
process consists in solving the resulting CLP request by using the techniques
described in section 2.2. As the semantics of the program is modeled faith-
fully, a solution of the CLP request is correctly interpreted as a test datum
that reaches the selected branch. In cases where the solving process shows
that there is no solution, then the selected branch is declared unreachable.
This approach has been implemented in the INKA tool [13] and evaluated on
a set of academic and reasonably-sized industrial problems [2]. In [14], we also
proposed to use this framework to generate test data that violate high-level
properties called metamorphic-relations [15].

Our approach is based on the use of Static Single Assignment form [3] and Con-
straint Logic Programming over finite domains [16]. It is worth noticing that
generating test data for reaching a given decision within a program requires
to solve the problem of destructive assignment in imperative programming,
e.g. to convert ¢ = 7 + 1 into a relation of the form i, = 7; + 1 where iy, 4;
corresponds to distinct variables. In our approach, we proposed to use SSA
for such a task several years ago [1].

2.1 SSA form

The SSA form is a semantically equivalent version of a program that respects
the following principle : each variable has a unique definition and every use of
this variable is reached by the definition. Every program can be transformed
into SSA by renaming the uses and definitions of the variables. For example
i =1+ 1;j = j =1 is transformed into iy = i1 4+ 1; jo = j1 * i3. At the junction
nodes of the control structures, SSA introduces special assignments called ¢-
functions, to merge several definitions of the same variable : vz = ¢(vq, v3)
assigns the value of v; in vz if the flow comes from the first branch of the
decision, the value of vy otherwise. SSA has been used in several applications
area such as optimizing compilers, automatic parallelization, static analysis
and automatic test data generation [1,2,17]. For convenience throughout the
paper, we will write a list of successive ¢-functions with a single statement over
vectors of variables : x5 = ¢(21,2¢), .., 22 = ¢(21, 20) <= U3 = (07, 0)) where

Z;
v; denotes a vector |...|. SSA provides special expressions to handle arrays :

Zq
access(a, k) which evaluates to the k' element of a, and update(ay, j,v) which

evaluates to an array a; which has the same size and the same elements as a,
except for j where value is v.

2.2 The CLP(FD) framework

Following the definitions of [16], a CLP(FD) program is a set of clauses of the
form A :— B where A is a user-defined constraint and B is a a sequence of either
primitive constraints or combinators calls ' . Such a sequence is called a query.
Primitive constraints are built with variables, domains, arithmetical operators
in { +,—, x,\ } and relations { >, > =, #, < < }. In general, variables of the
CLP(FD) program (called FD_variables) take their values into a non-empty
finite set of integers.

Combinators are language constructs expressing a high-level relation between
other constraints. They can be either built-in or user-defined constraint de-
pending on the CLP(FD) interpreter that is used. For example, the combinator
element (7, L, V) is built-in in the CLP(FD) library of Sicstus Prolog [18] : it
holds if V' is the I*" element in the list L of FD_variables.

When considered for solving, a CLP(FD) query leads to build dynamically a
constraint system, which is made of variables, domains and constraints. Note
that constraint solving over finite domains is NP-hard hence some approxi-
mations are usually performed before going into a brute force approach. In-
formally speaking, the solving process of a constraint system is based on 1) a
constraint propagation mechanism which makes use of the constraints to prune
the search space, 2) a constraint entailment mechanism which tries to infer
new constraints from existing ones, 3) a labeling process which explores the
search tree by making assumptions in order to find solutions to the constraint
system.

Constraint propagation. During this process, primitive constraints and
combinators are incrementally introduced into a propagation queue. An it-
erative algorithm considers each constraint one by one into this queue by
filtering the domains of FD _variables of their inconsistent values. Filtering al-
gorithms consider usually only the bounds of the domains. When the domain

! Throughout the paper, we will use the Prolog syntax for CLP(FD) programs

of a FD_variable is pruned then the algorithm reintroduces in the queue all
the constraints where this FD _variable appears (awaked constraints) to propa-
gate this information. The algorithm iterates until the queue becomes empty,
which corresponds to a state where no more pruning can be performed (a
fixpoint). When selected in the propagation queue, each constraint is added
into a constraint—store which memorizes all the considered constraints. The
constraint—store is contradictory if the domain of at least one FD _variable be-
comes empty during the propagation.

Constraint entailment. Some constraints are designed to include condi-
tional information. These constraints are defined with the help of guarded—
constraints, noted Cy; — C5. During constraint propagation, if C is entailed
then C5 is introduced into the propagation queue, allowing so to dynami-
cally enrich the constraint system. When the constraint C'; is disentailed then
the guarded—constraint Cy — (5 is just removed from the constraint-—store.
Otherwise, the guarded—constraint is suspended until being awaked by the
constraint propagation mechanism.

Variable labeling. As it is usually the case with finite domain constraint
solvers, constraint propagation does not ensure that the set of constraints is
satisfiable when a fixpoint is reached. One must resort to enumerate to get
particular solutions. This labeling procedure tries to give a value to every
FD_variable one by one and propagates throughout the constraint system.
This is done recursively until all the FD_variables are instantiated. It is noted
labeling([X1, .., X,]) where X7, .., X, is a n—tuple of FD_variables to instan-
tiate. If this valuation leads to a contradiction then the procedure backtracks
to other possible values. The valuation is done according to some strategies
of choice of FD_variables and values. A simple one consists in selecting the
minimum value of the domain of the first unbounded FD_variable. Of course
other more sophisticated strategies can be used.

2.8 Combinators for program analysis

Based on the CLP(FD) framework, our approach consists in translating every
statement into a constraint or a specific combinator. In [1], we introduced such
combinators for the conditional and the iterative statements. Let us recall in
this subsection the semantics of these combinators.

Conditional statement. The conditional statement is treated with the
(user—defined) combinator ite/6?%. Arguments of ite/6 are made of the vari-

2 where /6 denotes the arity of the combinator

Original C code

int foo(int){

int foo(int 4){

int j,k,r,*p ; int j,k,rxp ;

1. 7=0; Jj1=0;

2. k=0; k1 =03

3. p=&j; p1=&j;

4. if (i<6) if (i<6)

5. j=2; Jo=2;

else else

6. p =&k ; p2 = &k ;

J3 J2
= ¢(

p3 p1

7. r=x%p;

8. xp=r*xi;

9. if(j>8)

if (ja>8)
10.

Pointer—SSA form

CLP(FD) program

where &j = 21 and &k = 22

foo(I, Ja,...) -
Ie—231.2% 1
J1 =0,
K; =0,
P =21,
Ja = 2
Py = 22)
21 J3
Ry = QU(P:‘;’))7
22 K,
R2 Rl * I

Figure 2. An example, its PSSA form and the generated CLP(FD) program

ables that appear in the ¢-functions and the constraints generated from the
then— and the else— parts of the statement. Other combinators may be nested
in the arguments of ite/6. An SSA if_else statement: if (exp) { stmt } else

{ stmt } v = (v, 01)

is converted into ite(c, vy, U1, U3, Crpen, Crise) Where ¢ is a primitive—constraint
generated by the analysis of ezp, and Crpep, (resp. Cpise) is a set of constraints

generated by the analysis of the then—part (resp. else-part).

Definition 1 ite/6

Declarative semantics: ite(c, vy, 01, V3, Crpen, Crise) 08 true iff

(¢ A Crpen N3 = 09) V (e A Cgise A5 = 07)

Operational semantics:

ite (C, Vo, U1, V2, C’Thena CE‘lse)

rewrites to the following guarded-constraints:

(& > C’Then A U_é — UT)
¢ — Cpise N3 = 17

(e A Crpen N5 = 05) — ¢ A Cgise N\ 05
—|(_|C N CE‘lse A U2 = 1) —r CcA\ C1Then A U?
(C/\CThen /\U_é = Uo) O] (_'C/\CElse/\Ug 1

—

)

The former two guarded—constraints result from the operational semantics of
the if_else statement whereas the three latter allow more effective deductions.
Particularly, the last constraint contains the constructive disjunction operator
W. This operator joins the results computed in both branches of the condi-

) [Xl) |:X2:| ,X[) = 1,X1 = 3) hOldS then

the constructive disjunction operator leads to deduce that X, € {1,3}. Note
that the ite/6 combinator is awaked by the solver when the domain of at least
one of its variable has changed. For example, learning that X, > 2 prunes the
domain of X5 to {3}, awakes the combinator and triggers its third guarded—
constraint, as the constraint X, # X is entailed by dom(Xy) N dom(Xz) = 0.
Hence, the constraint —C' is added to the constraint store and the ite combi-
nator is removed from it.

tional. For example, if ite(C, {XO

Iterative statement. The SSA while statement

v5 = ¢(vp,v1) while (exp) { stmt } is treated with the recursive user-
defined combinator w(c, U, 97, U3, Cpody). When evaluating w/5, it is necessary
to allow the generation of new constraints and new variables with the help of
a substitution mechanism. w/5 is defined as?:

Definition 2 w/5

Declarative semantics: w(c, 0y, 01,03, Cpoay) s true iff
(e A Cpoay Nu(e, 7,03, 03, Cpody)) V (mC A 05 = 1)

Operational semantics: w(c, vy, U1, V2, Cpoay) rewrites to
¢ — (Coay Nw(c, 01,03, 03, Cpody))
¢ — Uy = Up
(e A Cpogy) — (e A 05 = vp)
~(me Aoy = 03) — (¢ A Cogy N (e, 01,03, U2, Cody))
(e A Cpogy ANu(e, 7,03, 03, Cpody)) W (e A 05 = 1)

Note that the vector v3 is a vector of fresh variables. The first two guarded—
constraints come from the operational semantics of a while in an imperative
language. The last two come from the following observations: first, if the con-
straints extracted from the body are proved to be contradictory with the
current constraint system then the loop cannot be entered; second, if any
variable possesses distinct values before and after the execution of the while
statement, then the loop must be entered at least once.

3 For the sake of clarity, the constraint ¢ generated through the substitution mech-
anism is not distinguished from c itself

3 An overview of the approach

Consider the task of generating a test datum on which branch 9-10 is executed
in the C program of Fig.2. The process is composed of three main steps. The
first step aims at generating the Pointer SSA form (PSSA), which is given in
the second column of Fig.2. The definition of PSSA is mainly based on two
ideas:

(1) to exploit the results of a specific pointer analysis, namely a points-to
analysis, in order to perform all the hidden definitions. A points-to anal-
ysis is a static analysis that determines the set of memory locations that
can be accessed through pointer dereferences. For every variable p of
pointer type, a points-to analysis computes a set of variables that may
be pointed by p during the execution. For example, at statement 7 of
function foo, a points-to analysis says that p can (only) points to j or k.
Note that the analysis usually overestimates the set of pointing relations
that could exist during execution.

(2) to introduce two new forms of ¢—functions to model the dereferencing
process. A ¢,—function models the use of a dereferenced pointer: it returns
one of its arguments depending on the points-to relations. For example,
at statement 7,

&j| s . : e : :
bu(p3, ,) returns j3 if p points to j while it returns k; if p points
&k| |k
to k.
¢pq—functions are used to reveal the hidden definitions realized through
dereferenced pointers. At statement 8,
Ja &j s . S . .
= ¢q(ps, ,T1 %1,), assigns 71 % i to jy if p points to j and
ko &k k1
j3 otherwise, it assigns rq * ¢ to ko if p points to k£ and k; otherwise.

The second step of our approach translates the PSSA form into a CLP(FD)
clause as shown in the third column of Fig.2. The clause head takes I and J,
as arguments. [refers to the FD_variable generated for the input variable 7,
whereas J, refers to the variable that determines whether the branch 9-10 is
executed or not. In this translation, each variable address is associated to a
unique integer, noted &j for a SSA-variable j;. (&j = 21, &k = 22 where 21
and 22 correspond to internal symbol table keys*) and specific CLP(FD) com-
binators extend ¢, and ¢, functions. These combinators maintain a relation
between their arguments. So, partial information such as the variation
domain of an argument, can be exploited to shrink the domain of the others.

4 Keys from 0 to 20 are reserved to special symbols. For example, 0 represents the
NULL pointer

Note that the ¢4 combinator is related to the IsAlias function that was for-
merly introduced by Cytron and Gershbein [19] to realize hidden definitions
in SSA form. Our approach distinguishes by providing relations and not only
functions to model the use and definition of dereferenced pointers.

Finally, the last step consists in generating a request by making use of the
control-dependencies of the program. Reaching branch 9-10 in the C code of
the example requires J; > 8 hence the request shown in Fig.3 is generated. In

7— Jy > 8,foo(I, Jy).

I=5; /* first solution and forces backtracking */

no /* no other solution */

Figure 3. A test data generation request

this example, the result of the request says that there exists only a single test

datum (i = 5) satisfying the request. If we examine the resolution process,

we see that the three constraints J; € {0,2} (deduced by the ite operator),
Jy 21 J3)

Jy > 8 and = (I)d(Pg,, ,RQ,) entails P =21 and Jy = Ry
K, 22 K,

as dom(J3) N dom(Jy) = 0. As a consequence, P3 = P, is refuted and the

then—part of the conditional must be executed leading to I < 6. Finally, the

constraints iy = J3 and Ry = Ry % I implies I > 4 which leads to I = 5 as

the only solution.

The interesting point is that the combinator ®; provokes the assignment of
the pointer variable P;. In this example, numeric information over integer
variables is used to refine pointer relationships.

4 The Pointer—-SSA form (PSSA)

In this section, we introduce the PSSA form as an extension of SSA where
pointer uses and definitions are treated with special functions that are defined
with the help of a points-to analysis. Note that our proposition differs from
other work where the goal is to exploit SSA in order to improve the accuracy
of a points-to analysis [20], as our will is only to preserve the properties of
SSA in the presence of conditional aliasing problems.

10

4.1 A simple language over pointer variables

In this paper, we will confine ourselves to a simple language over pointers:
a structured language over multi-level pointers toward statically named vari-
ables (stack-directed pointers). In programs that use this class of pointers, the
only operations that are allowed on pointers are (multiple) dereferencing (e.g.
x * p), addressing (&¢), pointer assignment (p = ¢), and pointer comparison
(p == q, p! = q). Further, we suppose that programs are structured and do
not contain unconstrained pointer arithmetic, type casting through pointers,
pointers to functions or pointers to dynamically allocated structures. This pa-
per is devoted to the treatment of pointers in the context of automated testing
of C programs at the unit level, meaning that function calls are supposed to
be stubbed or inlined.

4.2 Normalization

Normalizing a function consists in breaking complex statements into a set of
elementary statements by introducing temporary variables. It is well-known
that most C programs can be automatically translated in a program imple-
mented with only a set of fifteen elementary statements [21,22,23]. In partic-
ular, a multi-level dereferenced pointer can be translated into a set of single
dereferenced pointer by introducing temporary variables without modifying
the program semantics. Fig. 4 contains a few examples of normalization that
can easily be generalized to other statements. Note however that normalization
is not required when a statement holds over non-pointer types (for example,
xp = *q does not need to be normalized if p and ¢ are of pointer—to-integer

type).

This normalization process allows to reason on a small number of statements
without any loss of generality. Hence, the treatment of only four assignment
statements are presented: p = &q, p = q, p = *q, *p = q.

4.8 A Points—to analysis

As previously said, a points—to analysis statically collects a set of variables
that may be pointed by the pointers of the program and determines the set of
memory locations that can be accessed through a dereferenced pointer. In our
work, we have chosen a points-to analysis previously introduced by Emami
et al. [21]. In this analysis, a points-to relation is a triple: pto(p, a, de finite)
or pto(p, a, possible) where a denotes a variable pointed by p. In the former
case, p points definitely to a on any control flow path that reaches the state-

11

Original code Normalized code
P = k% *q ; tmp1 = *q ;
tmpg = xtmp ;
P = xtmps ;
xkp=(q; tmp1 = *p;
*tmp1 = q;
*p = &q ; tmp1 = &q;
*p = tmpn;
*p = *q ; tmpy = *q;
*p = tmpn;

Figure 4. Examples of normalization

ment where the pointing relation has been computed. In the latter case, p may
points to a only on some control flow paths. However, the analysis does not
say whether there exists a feasible control flow path that contains the pointing
relation. Points-to relations can be captured by labeled directed graph (V, E),
called the points-to graph. V' denotes the set of vertices that corresponds to
the variables of the program, while F denotes the set of labeled edges asso-
ciated to the points-to relations. There exists an edge between p and a two
variables iff pto(p, a, definite) or pto(p, a, possible) is true. Labels can be ei-
ther symbolic (such as possible or definite) or expressions that denote the
conditions under which the relation holds. This graph is computed on every
statement of the program. Examples of points-to graphs are given in Section 6.
Although it can be very inacurate, a points-to analysis is always conservative,
meaning that if p points to a during an execution of the program then the
results of the points—to analysis contains at least pto(p, a, possible).

Points—to analysis can be either flow-sensitive and flow-insensitive, which is
just a way to control the cost/accuracy tradeoff of the analysis. In the former
case, the order on which the statements are executed is taken into account
and the analysis is computed on each statement of the program. In the second
case, the order is just ignored and the results of the points-to analysis are the
same for all the statements. A flow-sensitive analysis is usually more accurate
than a flow-insensitive but it is also more costly to compute. Fig.5 shows the
difference between these two analyses on a very small piece of C code.

In our approach, we use a flow-sensitive analysis for the two following main
reasons:

(1) when a statement contains a definition of a dereferenced pointer, every

12

C Code Flow-sensitive Flow-insensitive
on statement 3

1l.p=&a; pto(p,a,possible)
2.q=p; pto(p,b,possible)
3.p=&b; pto(p,b,definite) pto(q,a,possible)

pto(q,a,definite) pto(g,b,possible)

Figure 5. Points-to analysis

pointing relation hides a possible definition, hence the accuracy of the
analysis directly plays on the number of hidden definitions;
(2) efficient algorithms exist for structured C functions.

Our method makes use of the syntax-based algorithm given in [21] to compute
a flow-sensitive points—to analysis. In this algorithm, every statement can mod-
ify the pointing relations by maintaining the set of “killed” relations (kill_set)
and the set of relations generated by the statement (gen_set). The notation
for both sets makes use of existentially quantified variables, denoted by “_z”
in this paper. For example, {pto(p, _z, rel)|pto(p, -z, rel) € In} denotes the
set, of all pointing relations associated with p in the set In. Fig.6 presents the
algorithm for elementary statements. For control flow structures, the results of
the analysis on every branch are merged in a single set. In this merge process,
a definite points—to relation can be transformed into a possible one. For loop
statements, a fixpoint is computed by iterating on the body of the loop until
no more modification can be exercised. Fig.7 shows the algorithm that handle
the basic control flow structures. As the total number of possible points-to
relations is bounded in the program (there is no dynamic allocation) and the
merge process can only increase the set of points-to relation, existence and
unicity of the fixpoint can easily be shown.

4.4 @y— and ¢4— functions in PSSA

ay
In PSSA, ¢,—function models the use of a dereferenced pointer. Let | .. | and
Qn
U1 &ay
denote two vectors of n program’s variables, let | .. | denotes the vector
Up, &a,

of distinct addresses of the first vector and p be a pointer variable, then the

13

// Given statement S and In a set of pointing relations
// process_basic(S, In) returns the set of
// pointing relations after S

Points—to process_basic(Statement S, Points—to In)

Case of
S is of the form p = &q then
kill_set := {pto(p, -x, _rel)|pto(p, x, -rel) € In} ;
gen_set := {pto(p, q,definite)} ;

S is of the form p = ¢ then
kill_set := {pto(p, _z, _rel)|pto(p, -x, -rel) € In} ;
gen_set := {pto(p, -a, _rel)|pto(q, -a, -rel) € In} ;

S is of the form p = *q then
kill set := {pto(p, -z, _rel)|pto(p, _x, rel) € In} ;
gen_set := {pto(p, -b, _rel)|pto(q, -a, -r1) and
pto(_a, b, o) € In} ;
If ry and _ro are definite then
_rel = definite else _rel = possible

S is of the form *p = ¢ then
kill set := {pto(_z, _y, _rel)|pto(p, _x, definite) and
pto(-z, _y, _rel) € In};
gen_set := {pto(_x, _z, _rel)|pto(p, -x, _r1) and
pto(q, -z, -ra) € In} ;
If r; and _ry are definite then
_rel = definite else _rel = possible

returns (Input \ kill_set) U gen_set ;

Figure 6. Flow—sensitive points—to analysis of basic statements

&CLI U1

dy—function ¢, (p, | .. |, |..|) returns v; if p = &a;. Note that each &a; is a

&ay, Up,
distinct constant. In PSSA, ¢,—function models the definition of a dereferenced

&a1 U1
pointer. A ¢,—function ¢4(p, | .. |,expr,|..|), returns a vector of variables

&a, Up,

14

/* Given statement S and In a set of pointing relations */
/* process(S, In) returns the set of relations after S*/

Points—to process(Statement S, Points—to In)
If S is void then returns In

If S is a list of basic statements then
Head := pop(S) /* returns the head of S */
Tail := tail(S) /* returns the tail of S */
Out := process_basic(Head, In) ;
returns process(Tail, Out) ;

If S is of the form [if(C) then S1 else S2]
then
Out_then := process(S1,In) ;
Out_else := process(S2,In) ;
returns merge(Out_then, Out_else) ;

If S is of the form [while(C) do S]
then
do
LastIn := In ;
Out := process(S, In) ;
In := merge(In, Out) ;
while Lastin # In
returns In

Figure 7. Flow-sensitive points—to analysis of control structures

|

where x; = expr if p = &a; and x; = v; for all j # <.

4.5 Building the PSSA form

A few notations are required to describe the algorithm used to build the PSSA
form. When analyzing a statement, p | denotes the last numbered variable as-
sociated to p whereas p 1 denotes the new fresh numbered variable for p. So,
a definition of p is noted p 1 and a use of p is noted p |. If PT'Og denotes
the set of pointing relations available at statement S, then from(p, PTOg)
is the set of variables pointed by p. Formally speaking, from(p, PTOg) =
{_a | pto(p, _a,_) € PTOs}.

15

The algorithm that builds the PSSA form works on each statement by gen-
erating ¢, or ¢4 functions each time a dereferenced pointer is encountered.
Fig.8 contains the algorithm for basic statements obtained after normaliza-
tion, bearing in mind that other statements can easily be deduced from the
treatment of these ones.

/* Given statement S, PT'Og a set of pointing relations*/
/* pointer_ssa(S, Input) returns a statement™/
/* to add to the PSSA form */

Statements pointer_ssa(Statement S, Points—to PTOg)

Case of
S is of the form p = xq then
q := vector_of_addresses(from(q, PTOg)) ;
/* addresses of aliased variables of (xq) */
¥ := vector_of_dereferenced(from(q, PTOg));
/* dereferenced aliased variables of (xq) */

St:= (pt=dulq 1, 7.7 1]));

S is of the form *p = ¢ then
P := vector_of_addresses(from(p, PTOg)) ;
/* addresses of aliased variables of (xp) */
¥ := vector_of_dereferenced(from(p, PTOg));
/* dereferenced aliased variables of (xp) */

St := (V1= dalp |,7,q |,V]))

S is of any other form then
St := SSA(S) ; /* Standard SSA */
return St ;

Figure 8. Algorithm for constructing PSSA

5 Combinators ®, and ¢, in CLP(FD)

As a result of the PSSA translation, the operators '&’ and "*’ of the C lan-
guage have been removed without any loss of semantics. In PSSA, two new
functions have been introduced: ¢,— and ¢,— functions. These functions are
translated into two new relational combinators in the CLP(FD) program. The
definition of these CLP(FD) combinators is based on guarded—constraints as
done for both ite/6 and w/5. The ®, combinator maintains a relation between
a pointer, the set of possibly pointed variables and a variable to be assigned.

16

It exploits the fact that, during an execution, a pointer can only point to a
single variable.

Definition 3 ®_u/4

Declarative semantics : Let X,P,V1,..,V, be FD_variables and let Py, .., P, be

Py Vi
n distinct numeric constants, then X = ®,(P, | .. |, | .. |) is true iff Ji|P =
P, Vi
PANX =V,
Py Vi
Operational semantics : X =0,(P, | .. |,]| .. |)
P, Vi

rewrites to:
dom(X) := dom(X) N (U, dom(V})),

if n =0 then fail else forall i in 1.n do

(P=PF) — X =V,
~(X =ViAP=P)— P#PA
P Vi
P Vi_
X:q)u(Pa o) o)7
Py Vit1
| P | [Va]

The ®,; combinator maintains a relation between a pointer, a variable asso-
ciated to the dereferenced pointer, the set of possibly pointed variables, and
the set of possibly assigned variables.

Definition 4 ®_d/4

Declarative semantics : Let X,P,Vy,..,V, be

FD_variables and Pi,.., P, be n be distinct numeric constants, then | .. | =

17

Py Wi

oy(P,| . |, DP,| .. |) is true iff 3i|P = P, A X; = DP A {X; = V;}yji.
P, Va
X1 P Vi
Operational semantics: | .. | =®4(P, | .. | ,DP, | .. |) rewrites to:
Xy P, Vo

dom(DP) := dom(DP) N (U, dom(X;)),

if n =0 then fail else forall i in 1.n do

dom(X;) := dom(X;) N (dom(DP) U dom(V;))

~(Xi=ViNP#P) — (P=PAX,=DP
MXj = Vitjzi),

~(Xi=DPAP=P) —P#PAX,; =V,

X, P [v,]
X;_ P Vi_
A i—1 :(I)d(P, i—1 .DP, i—1)’
Xit1 Py Vis
i Xn] i P,] i Va]

When p is assigned to an invalid address, then both ®; and ®, combinators
fail during the solving process. As a failure in CLP corresponds to the unsatis-
fiability of the constraint store, this correctly entails that the current subpath
under investigation is non-feasible.

6 Preliminary results

6.1 The InKa tool

We implemented our approach within the test data generator INKA [2,14]. The
tool automatically generates test data for the coverage of structural criteria
such as all statements and all_decisions. It handles a non-trivial subset of the C
and C++ languages [13]. The tool has several other functionalities, such as test

18

coverage measurements, control flow monitoring and test cases management.
It is mainly developed in Prolog, Java and C and makes use of the clp(fd)
library of Sicstus Prolog [18] to solve the test data generation requests. Our
current implementation includes a pointer analyzer, a PSSA form generator
and the design of both combinators &, and ®,.

Normalized C Code PSSA form
int 1h98(int h) int 1h98(int hg)
int g, * x p,xq, *7; int g, % p,xq, *r ;
1. g=3; g1 =3;
2. q=&h; q = &h ;
3. r=&g; r = &g ;
4. p=&r; p1=&r;
5. if(h<10) if(hg < 10)
6. g=(h+2)x5; g2 = (ho +2) %5
7. p=4&q; p2 = &q ;
93 g2 g1
= ¢(;);
p3 P2 p1
&q q1
8. t=xp; t1 = du(ps, ;);
&r r1
&h ho
tmp = ¢u(t1, ;);
&g 93
9. h=2xg+=xt; h1 = 2% g3 + tmp;
10. if(b > 100) ; if(h1 > 100) ;
11.

Figure 9. Pointer—-SSA form of 1h98

6.2 Fzxperimental evaluation

To evaluate the approach, we generated test data for C functions that contain
conditional pointer aliasing problems. In this paper, we report the experimen-
tal results on several programs extracted from the literature. Two of them
are detailed as they introduce particular technical difficulties for goal-oriented
test data generation. The first program, extracted from [22], is shown in Fig.9
along with its PSSA form. It contains an aliasing problem with two-level indi-
rection pointers when one wants to reach branch 10-11. The points-to graph
computed for program 1h98 at statement 9 by the flow-sensitive points-to anal-
ysis is given by the following diagram:
de finite

q—————h
/ossible %ssible
p t
Xassible \Yssible
de finit
r e finite

g
Fig.10 contains the CLP(FD) program generated for function 1h98 and the re-

quests asking for test data able to reach branch 10-11. The results show that

19

1h98(Ho, H1, ...):-
Hg € —231,231 _ 1,

Gy =3,

Q1 =21,

Ry =22,

Py =23,
G| |G| |G

ite(Ho < 10, | |, | 2|, | P G2 = (Ho +2) x5 Py = 24)
Py Py P

24
T = ®,(Ps,] : lQI]),
23 Ry

ERA
TMP = &,(T1, ,)

H, :2*G3+TMP,
ite(H1 > 100,)

?- Hy > 100,1h98(Ho, Hy,...).
Hp €8..9
?- Hy > 100,1h98(Hy, H1, ...),1abeling([Ho]).

Hyg =8

Figure 10. CLP(FD) program for 1h98

there are only two values for Hj, able to reach branch 10-11. In this example,
the propagation step is so efficient that all the inconsistent values are removed
from the domain of Hy, as shown by both requests. The first one gives the
results of the propagation step: if there exists a value for H, that satisfies the
request, then it belongs to 8..9. The second one makes choices and shows that
both values (8 and 9) are actual solutions.

In the second program given in Fig.11, pointing relationships are modified
within a loop which makes it difficult to analyze. At each iteration, p is assigned
the value of *p that has been computed by the previous iteration. As the
points-to relations are cyclic in this example (a points-to b, b points-to ¢ and ¢
points-to a), the loop iterates over the possible points-to relations. The points-
to graph computed by the flow-sensitive points-to analysis at statement 8 is
as follows:

p

i:Omod(3)l i:\m()dw\i?mod@)

a b c

\J

In this diagram, the edges are labeled by the conditions that hold over 7 in
order to satisfy a given points-to relation. For example, p points-to c iff 7+ =
2mod(3). Hence, statement 9 (p == &c is satisfied) is executed all three loop

20

Normalized C code PSSA form

int jos97(int) int jos97(int ip)

int ok sy kp ke int ik kg Ekp ke
1. p=&a; p1 = &a;
2. a=4&b; a1 = &b ;
3. b= &c; b1 = &c;
4. c=&a ; c1 = &a;

92 0 i1
= ¢()) 5
p3 p1 P2
5. while(7>0) while(i3 > 0)
do do
6. i=i—1; i1 =142 —1;
&a al
7. p=x*p; P2 = ¢u(ps, |&b|, |b1]);
&e c1

8. if(p == &c) if(ps == &c)
9. return 1 ; return 1 ;

else else
10. return 0 ; return 0 ;

Figure 11. PSSA form of function jos97

iterations, starting from the second one. These conditions were determined
manually in order to check our implementation.

Fig.12 contains the CLP(FD) program generated for jos97. The first request
asks for a test datum to be generated to reach branch 8-9. It uses only con-
straint propagation. The second request includes a labeling call. With the first
request, the solver prunes the domain of I to 2..23' — 1, which is, as expected,
a correct over-estimation of the variation domain of I,. Note however that
not all the values of this domain are solutions of the problem. The low bound
of the interval is 2, showing that two non-feasible paths where automatically
detected (paths 1-2-3-4-5-8-9 and 1-2-3-4-5-6-7-5-8-9) by the constraint prop-
agation process. The second request gives the correct solutions through the
backtracking process of Prolog. The values found by the solver correspond to
the values that satisfy the constraint i = 2mod(3). These two requests show
that the pointing relations were correctly propagated by the solving process.

In addition to our results for foo (Fig.2), 1h98 (Fig.9) and jos97 (Fig.11), test
data were generated for several other programs: ow9l extracted from [24],
Im03 from [25], bl98 from [26], a version of the famous trityp program [5]
that contains conditional pointer aliasing problems and a version of the jos97
program in which the number of points-to relation appears as a parameter
and thus, can be easily increased. For each program, we generated a test set
that guarantees the complete coverage of the all_decisions criterion with InKa.
This criterion requires that every decision is covered at least once during the
testing phase. We compared our approach with a random test data generation
technique which blindly generates test data until a given criterion is covered.

21

jOS97(10, P3, R3) -
Ip e —231..231 1,

P =21,
A =22,
B = 23,
Cy =21,
while(

I I I
12 > 0’ 0 9 1 b 2 b
Py Py Ps

I =1 — 1A
21 A
Py =&y (P3, [22] , | B1])
23 Ch

)
ite(Ps; = 23, |:R1] , [32] , |:R3] ;R1=1,Ry =0).

?7- Py = 23,j0s97(Io, P, R).

Ip€2.23 —1
R=1

?- P3 = 23,j0s97(Io, P3, R),labeling([Io]).

Ip=2 /* first solution */
R=1;

In=5 /* second solution */
R=1;

In =8 /* third solution */
R=1;

Ip =11 /* fourth solution */
R=1;

/* all the solutions */

Figure 12. CLP(FD) program for jos97

As random testing can be developed very easily, we argue that every new
automated test data generation technique should be shown to outperform
random testing. Note however that random testing is unable to show the
unfeasibility of a decision, unlike our approach. For random testing, in order
to provide a fair comparison with a randomized technique, we also evaluated
the almost_all_decisions criterion which only requires all but one decisions
being covered.

The results given in Tab.1 were computed on a 1.8Ghz Pentium 4 personal
computer with 512Mb of RAM. In the left side of the table, we report the num-
ber of control flow paths (#p), the number of unfeasible paths (#u) deduced
by a manual analysis, and the maximum number of edges in the points-to
graphs of the program (#a). These parameters give an insight into the diffi-
culty of conditional pointer aliasing problems in the tested programs. Typi-
cally, a path-oriented method would probably fail on a program that contains

22

a lot of non-feasible paths. We also report two statistics automatically com-
puted by the tool: the number of constraints that are dynamically added to
the constraint store (#c) and the number of times a domain is reduced (#pr).
These data characterize respectively the size of the constrained problem and
the pruning capacity of constraints. We report the results computed by InKa
and by the random testing approach. To minimize the development effort and
to provide a fair comparison, we used the constrained program model itself
to implement random testing. Random numbers were generated inside our
tool and tested again the constraint system generated for each program by
following a generate—and-test approach. In the random approach, the vari-
ation domains were shrinked to -1000 .. 1000 and the time allocated to the
evaluation of a single test data was restricted to 4sec of CPU time to avoid
long-term computations. In Tab.1, #td corresponds to the number of test data
generated for the complete coverage of a criterion, and rt corresponds to the
CPU time required to do so. Note that our test data generation strategy is
not optimal and so does not lead necessarily to the minimum number of test
data required for the full coverage of the criterion. For random testing, we re-
peated ten times the experience to avoid the factor of bad “luck” introduced
by the starting point sequence of random numbers. The values that are shown
in the latter columns of Tab. 1 correspond to the mean values of test data
generated and runtime measured for the coverage of the all_decisions and the
almost_all_decisions criteria. When testing objectives were not fulfilled within
1 hour of user time, we stopped the random generation and reported failure
(shown with “-”).

Table 1
Criteria coverage in the presence of conditional aliasing pointers

program features Our approach Random approach
all_decisions all_decisions almost_all_decisions
Programs | #p #u #a #c #pr #td rt(sec) | #td rt(sec) | #td rt(sec)
ow91l 3 0 3 34 259 3 0.5 - - 1417 2.5
1m03 4 2 1 5 27 2 0.1 3278 3.07 2215 1.9
1h98 4 0 6 36 174 2 0.1 1303 1.93 3 0.1
b198 4 0 7 47 1042 3 0.1 3199 4.45 1007 1.4
foo 8 6 2 100 680 2 0.1
trityp 57 43 4 30734 80822 8 5.3 - - 2870 12.1
jos97 00 00 6 106796 117802 2 18.0 5 1.27 2 0.4

6.3 Analysis

In all the cases, our approach achieves the full coverage of the all_decisions,
even when the maximum number of points-to relations is high (bl98) or the
number of infeasible paths is high (trityp) or infinite (jos97). By looking at
the number of prunings, we confirm our intuition that the constraints play

23

an active role in the generation. Let us recall that this number corresponds
to the number of times a domain is pruned by a constraint. The program
jos97 is probably the more demanding as shown by the number of constraints
generated and the number of prunings performed and requires so the great-
est CPU runtime value (18sec). In all other cases, our approach outperforms
random testing in terms of CPU time required to get the coverage of a crite-
rion. The number of test data generated is not significative as our approach
is deterministic while the random testing approach is probabilistic. In some
cases (ow91, foo and trityp), the random testing approach fails to get a test
set that covers the selected criterion. This is due to the fact that several de-
cisions have a very low probability to be satisfied, especially in the presence
of conditional aliasing problems. In our approach, the search of solutions is
“guided” by the constraint solving process, even in the presence of pointers.
We tried to change several parameters in random testing (such as the size of
domains, or the CPU time allocated to the evaluation of a single test data) to
get better results . However, this does not change the quality of results as ex-
amplified by the following evidence. In the trityp program, there is a decision
that corresponds to the event ¢« = j = k where 1, j, k represents the lengths
of a triangle. It is trivial to see that the event which consists to generate a
triple of equal numbers has a very low probability to happen whatever be the
modified parameters. The program jos97 distinguishes by the fact that all its
decisions can be covered very quickly by the random testing approach. Only
5 test data in average are required to do so and the coverage can be obtained
in 1.27sec in average. On the contrary, our approach requires 18sec to set up
and solve the constraint system generated for this program. This is due to the
fact that every time the loop of the program is unrolled, the solving process
examines all the 6 possible points-to relations.

7 Related work

To the best of our knowledge, prior work on automatic goal-oriented test data
generation did not address specifically pointer aliasing problems. However,
several test data generation approaches deal with pointer variables. Korel [27]
proposed exploiting several executions of the program to find a test datum on
which a selected path is executed. Its approach does not suffer from the pointer
aliasing problem as it is based solely on program executions. As a drawback,
this approach cannot detect unsatisfiability of selected paths. More recently,
Visvanathan and Gupta in [28], Marre et al. in [29] and Sai-ngern et al. [30]
addressed the problem of generating test data for C functions with pointers
as input parameters by using symbolic execution and constraint solving tech-
niques. In their approaches, pointer relationships are handled with constraints
on input values and aliasing problems occur only within input data structures.

24

PathCrawler [29] and CUTE [31] are two similar test data generators that try
to cover all the feasible paths of C programs. Both systems work by combining
concrete and symbolic execution. They solve path conditions in order to find
the next test data that will follow a path that improve the current coverage
of the program. All these approaches have in common the need for a path
to be selected first and so fall in the path-oriented methods category. Unlike
path-oriented and among other advantages, goal-oriented methods exploit the
early detection of non-feasible paths to prune the search space made up of all
the paths that reach a given branch [32]. However, unlike path-oriented ones,
goal-oriented methods suffer from the conditional pointer aliasing problem.
Considering all paths that reach a given branch is usually unreasonable as the
number of control flow paths can be exponential on the number of decisions
of the program or even infinite when loops are unbounded. As a consequence,
we argue that goal-oriented methods scale up more easily than path-oriented
methods for programs that contain only pointer variables. The algorithmic
complexity of our approach is strongly related to the maximum number of
possible aliases computed at each point of the program and there are studies
showing this number remain small in general. For example, the experimental
results section of [21] shows this number is almost always less than five. For us,
the main drawback of our approach concerns its weakness to deal with dynamic
allocation. Indeed, allowing dynamic allocation into a while-loop leads to the
creation of a potentially unbounded number of aliases. Hence, the points-to
analysis we used is no more suitable in this case. Note however that dealing
with dynamic allocated structures in a goal-oriented method remains an open
problem and none of the work previously cited addressed it.

8 Conclusion

In this paper, we have presented a new goal-oriented method for generating
automatically test data for programs with multi-level pointer variables. The
method is based 1) on the Pointer SSA form that extends traditional SSA
by integrating the results of an intraprocedural flow-sensitive pointer analysis
and 2) on the design of two CLP combinators that model the relation between
pointers and pointed variables. The next steps of this work will be to study
extensions in several directions. First, our approach could address the problem
of function calls by exploiting the results of an interprocedural pointer anal-
ysis. Although a lot of work has been done in this area, technical problems
remain to handle properly function pointers (second-order programming) and
recursive calls. Second, we would like to extend our approach for pointers that
address the heap. We could use other pointer analysis such as a shape analysis
or dynamic points-to analysis to deal with dynamic allocation. These two ex-
tensions could open the road to the development of a symbolic goal-oriented

25

test data generation method able to deal with real-sized programs.

Acknowledgments

Thanks to Nicky Williams for her helpful comments on an earlier draft of this
paper.

References

1]

[6]

7]

A. Gotlieb, B. Botella, M. Rueher, Automatic test data generation using
constraint solving techniques, in: Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA’98), Clearwater Beach, FL, USA,
1998, pp. 53-62.

A. Gotlieb, B. Botella, M. Rueher, A clp framework for computing structural
test data, in: Proceedings of Computational Logic (CL’2000), LNAT 1891,
London, UK, 2000, pp. 399-413.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, F. Zadeck, Efficently computing
static single assignment form and the control dependence graph, ACM
Transactions on Programming Language and Systems 13 (4) (1991) 451-490.

S. Kowshik, D. Dhurjati, V. Adve, Ensuring code safety without runtime
checks for real-time control systems, in: Proc. of the Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems (CASES’02), Grenoble, FR,
2002.

R. DeMillo, J. Offut, Constraint-based automatic test data generation, IEEE
Transactions on Software Engineering 17 (9) (1991) 900-910.

R. DeMillo, J. Offut, Experimental results from an automatic test case
generator, ACM Transactions on Software Engineering Methodology 2 (2)
(1993) 109-127.

J. Offut, Z. Jin, P. J., The dynamic domain reduction procedure for test data
generation, Software-Practice and Experience 29 (2) (1999) 167-193.

C. Meudec, ATGen: automatic test data generation using constraint logic
programming and symbolic execution, Software Testing, Verification and
Reliability 11 (2) (2001) 81-96.

B. Botella, A. Gotlieb, C. Michel, Symbolic execution of floating-point
computations, The Software Testing, Verification and Reliability journal 16 (2)
(2006) pp 97-121.

[10] A. Gotlieb, B. Botella, M. Watel, Inka: Ten years after the first ideas, in:

19th International Conference on Software, Systems Engineering and their
Applications (ICSSEA’06), Paris, France, 2006.

26

[11] J. Ferrante, K. Ottenstein, J. Warren, The program dependence graph and its
use in optimization, ACM Transactions on Programming Language and Systems
9 (1987) 319-349.

[12] M. Brandis, H. M@ssenbéck, Single-Pass Generation of Static Single- Assignment
Form for Structured Languages, ACM Transactions on Programming Language
and Systems 16 (6) (1994) 1684-1698.

[13] Axlog Ingenierie and Thales Airborne Systems, INKA-V1 User’s Manual
(december 2002).

[14] A. Gotlieb, B. Botella, Automated metamorphic testing, in: 27th IEEE
Annual International Computer Software and Applications Conference
(COMPSAC’03), Dallas, TX, USA, 2003.

[15] T. Chen, T. Tse, Z. Zhou, Fault-based testing in the absence of an oracle, in:
IEEE Int. Comp. Soft. and App. Conf. (COMPSAC), 2001, pp. 172-178.

[16] K. Marriott, P. Stuckey, Programming with Constraints : An Introduction, The
MIT Press, 1998.

[17] N. T. Sy, Y. Deville, Consistency techniques for interprocedural test data
generation, in: ESEC/FSE-11: Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, ACM Press, 2003, pp. 108-117.

[18] M. Carlsson, G. Ottosson, B. Carlson, An open—ended finite domain constraint
solver, in: Proc. of Programming Languages: Implementations, Logics, and
Programs, 1997.

[19] R. Cytron, R. Gershbein, Efficient accommodation of may—alias information
in SSA form, in: Proceedings of Programming Languages Design and
Implementation, ACM, Albuquerque, NM, 1993.

[20] R. Hasti, S. Horwitz, Using static single assignment form to improve flow-
insensitive pointer analysis, in: PLDI ’98: Proc. of conference on Programming
language design and implementation, ACM Press, 1998, pp. 97-105.

[21] E. Emami, R. Ghiya, L. Hendren, Context—sensitive interprocedural points—to
analysis in the presence of function pointers, in: Proceedings of Programming
Languages Design and Implementation, ACM, Orlando, FL, 1994.

[22] C. Lapkowski, L. Hendren, Extended SSA numbering: Introducing SSA
properties to languages with multi-level pointers, in: 7th Proc. of the Conference
on Compilers Construction (CC’98), LNCS 1383 Kai Koshimies (Ed), Lisbon,
Portugal, 1998, pp. 128-143.

[23] R. Ghiya, L. Hendren, Putting pointer analysis to work, in: Proceedings of
Symp. on Principles of Programming Languages, ACM, San Diego, CA, 1998.

[24] T. Ostrand, E. Weyuker, Data flow-based test adequacy analysis for languages
with pointers, in: In Proceedings of the Symposium on Testing, Analysis, and
Verification (TAV’91), 1991, pp. 74-86.

27

[25] V. Livshits, M. Lam, Tracking pointers with path and context sensitivity for bug
detection in C programs, in: ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’03), 2003, pp. 317-326.

[26] D. Binkley, J. Lyle, Application of the pointer state subgraph to static program
slicing, Journal of Systems and Software 40 (1) (1998) 17-27.

[27] B. Korel, Automated software test data generation, IEEE Transactions on
Software Engineering 16 (8) (1990) 870-879.

[28] S. Visvanathan, N. Gupta, Generating test data for functions with pointer
inputs, in: Proceedings of the 17th ITEEE Int. Conf. on Automated Software
Engineering (ASE’02), Edinburgh, UK, 2002.

[29] B. Marre, P. Mouy, N. Williams, On-the-fly generation of k-path tests for c
functions, in: Proceedings of the 19th IEEE Int. Conf. on Automated Software
Engineering (ASE’04), Linz, Austria, 2004.

[30] S. Sai-ngern, C. Lursinap, P. Sophatsathit, An address mapping approach for
test data generation of dynamic linked structures, Information and Software
Technology 47 (2005) 199-214.

[31] K. Sen, D. Marinov, G. Agha, CUTE: A concolic unit testing engine for
C, in: bth joint meeting of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’05), ACM, 2005, pp. 263-272.

[32] R. Ferguson, B. Korel, The chaining approach for software test data generation,
ACM Transactions on Software Engineering Methodology 5 (1) (1996) 63-86.

28

