
MOBMAS - A methodology for ontology-based multi-agent
systems development

Author:
Tran, Quynh Nhu

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/23631

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/24254 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/https://doi.org/10.26190/unsworks/23631
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/24254
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

MOBMAS
- A Methodology For

Ontology-Based Multi-Agent Systems

Development

by

Quynh Nhu Tran
B. Sc. (Hons), University of Newcastle, Australia

Submitted in total fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

July 2005

School of Information Systems, Technology and Management

The University of New South Wales

Australia

i

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no material previously published or written by another person, nor material

which to a substantial extent has been accepted for the award of any other degree or

diploma at The University of New South Wales or any other educational institution,

except where due acknowledgement is made in the thesis. Any contribution made to the

resarch by others, with whom I have worked at The University of New South Wales or

elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,

except to the extent that assistance from others in the project’s design and conception or

in style, presentation and linguistic expression is acknowledged.

Quynh Nhu Tran

ii

ABSTRACT

“Agent-based systems are one of the most vibrant and important areas of research and

development to have emerged in information technology in the 1990s” (Luck et al.

2003). The use of agents as a metaphor for designing and constructing software systems

represents an innovative movement in the field of software engineering: “Agent-

Oriented Software Engineering (AOSE)” (Lind 2000; Luck et al. 2003).

This research contributes to the evolution of AOSE by proposing a comprehensive

ontology-based methodology for the analysis and design of Multi-Agent Systems

(MAS). The methodology is named MOBMAS, which stands for “Methodology for

Ontology-Based MASs”. A major improvement of MOBMAS over the existing agent-

oriented MAS development methodologies is its explicit and extensive support for

ontology-based MAS development. Ontologies have been widely acknowledged for

their significant benefits to interoperability, reusability, MAS development activities

(such as system analysis and agent knowledge modelling) and MAS operation (such as

agent communication and reasoning). Recognising these desirable ontology’s benefits,

MOBMAS endeavours to identify and implement the various ways in which ontologies

can be used in the MAS development process and integrated into the MAS model

definitions. In so doing, MOBMAS has exploited ontologies to enhance its MAS

development process and MAS development product with various strengths. These

strengths include those ontology’s benefits listed above, and those additional benefits

uncovered by MOBMAS, e.g. support for verification and validation, extendibility,

maintainability and reliability. Compared to the numerous existing agent-oriented

methodologies, MOBMAS is the first that explicitly and extensively investigates the

diverse potential advantages of ontologies in MAS development, and which is able to

implement these potential advantages via an ontology-based MAS development process

and a set of ontology-based MAS model definitions.

Another major contribution of MOBMAS to the field of AOSE is its ability to address

all key concerns of MAS development in one methodological framework. The

methodology provides support for a comprehensive list of methodological requirements,

iii

which are important to agent-oriented analysis and design, but which may not be well-

supported by the current methodologies. These methodological requirements were

identified and validated by this research from three sources: the existing agent-oriented

methodologies, the existing evaluation frameworks for agent-oriented methodologies

and conventional system development methodologies, and a survey of practitioners and

researchers in the field of AOSE. MOBMAS supports the identified methodological

requirements by combining the strengths of the existing agent-oriented methodologies

(i.e. by reusing and enhancing the various strong techniques and model definitions of

the existing methodologies where appropriate), and by proposing new techniques and

model definitions where necessary.

The process of developing MOBMAS consisted of three sequential research activities.

The first activity identified and validated a list of methodological requirements for an

Agent Oriented Software Engineering methodology as mentioned above. The second

research activity developed MOBMAS by specifying a development process, a set of

techniques and a set of model definitions for supporting the identified methodological

requirements. The final research activity evaluated and refined MOBMAS by collecting

expert reviews on the methodology, using the methodology on an application and

conducting a feature analysis of the methodology.

iv

ACKNOWLEDGEMENTS

First and foremost, I wish to express my deepest gratitude to Prof. Graham Low, my

supervisor of this PhD dissertation, for his valuable guidance and dedication to every

stage of my research. It can be said that apart from myself, he is the one who has read

my dissertation the most often. His meticulous comments on every page of my writing,

and his enthusiastic attention to every step of my research, have resulted in significant

corrections and improvements to my work. His devotion is sincerely appreciated.

I also wish to express special thanks to Prof. Mary-Anne Williams for her wholehearted

support at various important stages of my research. I am thankful especially for her

valuable help in finding the topic for my research, adverstising for my survey,

reviewing MOBMAS and offering important suggestions for improvement.

I am very much indebted to Dr. Ghassan Beydoun for his generous devotion of time and

effort to review my dissertation. His insightful advices have helped to notably improve

the dissertation’s coherence and completeness. I also sincerely thank Prof. Brian

Henderson-Sellers and Dr. Cesar Gonzalez-Perez for their enthusiastic and dedicated

involvement in the evaluation of MOBMAS. Their constructive criticisms were truly

valuable to the methodology. It is with much gratitude that I thank Mr. (soon to be Dr.)

Vincent Pang for the countless times when he offered his generous support and

assistance to me during my research, including his help with the binding of this thesis.

My appreciation extends to the Faculty of Economics and Commerce at The University

of New South Wales, who awarded me the “Faculty Postgraduate Research

Scholarship”. Without its financial support, this research would not have been possible.

Last but not least, I am forever thankful to my mother Tuyet Anh Thi Duong, my father

Nam Duc Tran and my sister Dr. Giao Quynh Tran for their never-ending and

immeasurable love, understanding and support. Above all, I am truly grateful to God for

His amazing grace and everything that He has blessed me, including the blessing of the

most wonderful mother and father that I have. This dissertation is dedicated to them.

v

TABLE OF CONTENTS

ABSTRACT ...ii

ACKNOWLEDGEMENTS...iv

TABLE OF CONTENTS..v

LIST OF FIGURES ...xi

LIST OF TABLES ..xv

LIST OF ABBREVIATIONS ..xvii

CHAPTER 1. INTRODUCTION ..1

1.1. INTRODUCTION ...1

1.2. BACKGROUND AND MOTIVATIONS ..1

1.3. RESEARCH OBJECTIVE..4

1.4. SIGNIFICANCE OF THE RESEARCH ..5
1.4.1. Application Domains of MOBMAS... 7

1.5. RESEARCH DESIGN ..9

1.6. ORGANISATION OF THE DISSERTATION ..10

1.7. SUMMARY ..11

CHAPTER 2. BACKGROUND OF AGENTS AND ONTOLOGY.........................12

2.1. INTRODUCTION...12

2.2. AGENT TECHNOLOGY AND MAS..12
2.2.1. Definition of Agent ... 12
2.2.2. Definition of MAS .. 14
2.2.3. Motivations for Agents and MASs ... 14
2.2.4. Limitations of Agents and MASs ... 17

2.3. ONTOLOGY...17
2.3.1. Definition of Ontology.. 17
2.3.2. Motivations for Ontologies in MAS ... 18

2.3.2.1. Benefits of ontologies to interoperability... 19
2.3.2.2. Benefits of ontologies to reusability... 21
2.3.2.3. Benefits of ontologies to MAS development activities ... 22
2.3.2.4. Benefits of ontologies to MAS operation ... 24

2.3.3. Typology of Ontology... 28

vi

2.3.4. Ontology Representation Languages .. 29
2.3.4.1. Textual representation languages .. 30
2.3.4.2. Graphical representation languages ... 32

2.4. SUMMARY ..34

CHAPTER 3. REVIEW OF EXISTING MAS DEVELOPMENT
METHODOLOGIES ..35

3.1. INTRODUCTION...35

3.2. DESCRIPTION OF EXISTING MAS DEVELOPMENT METHODOLOGIES
...35

3.2.1. MASE .. 36
3.2.2. MASSIVE.. 40
3.2.3. SODA .. 43
3.2.4. GAIA ... 44
3.2.5. MESSAGE .. 47
3.2.6. Methodology for BDI Agents (BDIM)... 49
3.2.7. INGENIAS .. 53
3.2.8. Methodology with High-Level and Intermediate Levels (HLIM) 55
3.2.9. Methodology for Enterprise Integration (MEI) .. 57
3.2.10. PROMETHEUS .. 59
3.2.11. PASSI .. 62
3.2.12. ADELFE.. 65
3.2.13. COMOMAS .. 68
3.2.14. MAS-CommonKADS ... 70
3.2.15. CASSIOPEIA.. 72
3.2.16. TROPOS.. 74

3.3. GENERAL LIMITATIONS OF EXISTING MAS DEVELOPMENT
METHODOLOGIES ...77
3.3.1. Limitations Regarding MAS Analysis and Design .. 78
3.3.2. Limitations Regarding Support for Ontology-Based MAS Development........................... 81

3.4. SUMMARY ..84

CHAPTER 4. RESEARCH DESIGN..85

4.1. INTRODUCTION...85

4.2. RESEARCH OBJECTIVE..85

4.3. RESEARCH ACTIVITIES ...87

4.4. RESEARCH ACTIVITY 1 – IDENTIFY METHODOLOGICAL
REQUIREMENTS OF MOBMAS..91
4.4.1. Step 1 – Identify “Potential” Requirements of MOBMAS.. 91
4.4.2. Step 2 – Conduct a Survey on Practitioners and Researchers in the Field of AOSE 92
4.4.3. Step 3 – Perform a Feature Analysis on Existing AOSE Methodologies............................ 93
4.4.4. Step 4 – Identify Ontology-Related Steps From Amongst the Required MOBMAS’ Steps
.. 94

4.5. RESEARCH ACTIVITY 2 – DEVELOP MOBMAS ..95

vii

4.6. RESEARCH ACTIVITY 3 – EVALUATE AND REFINE MOBMAS97
4.6.1. Step 1 – Obtain Expert Reviews ... 97
4.6.2. Step 2 – Use MOBMAS on a Test Application.. 97
4.6.3. Step 3 – Perform a Feature Analysis on MOBMAS .. 98

4.7. SUMMARY ..99

CHAPTER 5. METHODOLOGICAL REQUIREMENTS OF MOBMAS100

5.1. INTRODUCTION...100

5.2. IDENTIFICATION OF POTENTIAL REQUIREMENTS OF MOBMAS101
5.2.1. Identification of Potential Features... 101

5.2.1.1. Evaluation frameworks for AOSE methodologies ... 102
5.2.1.2. Evaluation frameworks for conventional development methodologies 105
5.2.1.3. Potential features of MOBMAS.. 108

5.2.1.3.a. Potential features for MOBMAS development process 108
5.2.1.3.b. Potential features for MOBMAS model definitions .. 109
5.2.1.3.c Potential agent properties to be captured/represented in MOBMAS model kinds
.. 109
5.2.1.3.d. Potential features for MOBMAS as a whole... 110

5.2.2. Identification of Potential Steps.. 110
5.2.2.1. Potential Problem Domain Analysis steps... 112
5.2.2.2. Potential Agent Interaction Design steps .. 112
5.2.2.3. Potential Agent Internal Design steps ... 112
5.2.2.4. Potential Overall System Design steps .. 112

5.2.3. Identification of Potential Modelling Concepts.. 113
5.2.3.1. Potential Problem Domain concepts ... 114
5.2.3.2. Potential Agent concepts .. 114
5.2.3.3. Potential Agent Interaction concepts... 114
5.2.3.4. Potential Overall System Design concepts .. 114

5.3. SURVEY...115
5.3.1. Survey Procedure .. 115
5.3.2. Survey Questionnaire .. 117
5.3.3. Survey Testing... 119
5.3.4. Statistical Analysis and Results .. 120

5.3.4.1. Part 1 – Demographic and professional characteristics of respondents.................. 121
5.3.4.2. Part 2 – Rating and order ranking of Features ... 123
5.3.4.3. Part 3 – Rating and order ranking of Steps... 127
5.3.4.4. Part 4 – Rating and order ranking of Modelling Concepts....................................... 128
5.3.4.5. Part 5 – Recommendations on AOSE methodological issues 130

5.4. FEATURE ANALYSIS OF EXISTING MAS DEVELOPMENT
METHODOLOGIES ...134
5.4.1. Evaluation Framework .. 135
5.4.2. Feature Analysis of Existing MAS Development Methodologies..................................... 139

5.4.2.1. Evaluation of support for Features.. 139
5.4.2.2. Evaluation of support for Steps.. 147
5.4.2.3. Evaluation of support for Modelling Concepts.. 149

5.4.3. Actual Requirements of MOBMAS ... 151
5.4.4. Potential Sources of Techniques and Model Definitions for Supporting MOBMAS’ Actual
Requirements ... 155

5.5. IDENTIFICATION OF ONTOLOGY-RELATED STEPS..............................159

5.6. SUMMARY ..163

viii

CHAPTER 6. DOCUMENTATION OF MOBMAS ...165

6.1. OVERVIEW OF MOBMAS...165
6.1.1. MOBMAS Conceptual Framework .. 166
6.1.2. MOBMAS Development Process ... 170
6.1.3. MOBMAS Model Kinds ... 174
6.1.4. Illustrative Applications .. 177

6.1.4.1. Product search application .. 178
6.1.4.2. Conference program management application ... 178

6.2. ANALYSIS ACTIVITY ...179
6.2.1. Step 1 – Develop System Task Model.. 180

6.2.1.1. Notation of System Task Diagram.. 182
6.2.2. Step 2 – Analyse Organisational Context (Optional) ... 182

6.2.2.1. Develop Organisational Context Model Kind ... 183
6.2.3. Step 3 – Develop Role Model ... 184

6.2.3.1. Identify roles ... 185
6.2.3.1.a. Identify roles from system tasks... 185
6.2.3.1.b. Identify roles from the structure of MAS’ organisational context (optional) .. 187

6.2.3.2. Specify role-tasks.. 188
6.2.3.3. Notation of Role Diagram.. 189

6.2.4. Step 4 – Develop Ontology Model ... 191
6.2.4.1. Develop MAS Application Ontologies ... 193

6.2.4.1.a. Identify input Domain ontologies and Task ontologies for the construction of
MAS Application ontologies .. 193
6.2.4.1.b. Specify ontological mappings between MAS Application ontologies............... 196
6.2.4.1.c. Validate System Task Model and Role Model against Ontology Model 197

6.2.4.2. Language for Ontology Model Kind .. 198
6.2.5. Step 5 – Identify Ontology-Management Role... 200

6.3. MAS ORGANISATION DESIGN ACTIVITY..203
6.3.1. Step 1 – Specify MAS Organisational Structure .. 204

6.3.1.1. Determine MAS organisational structure.. 204
6.3.1.2. Update Role Model... 207

6.3.2. Step 2 – Develop Agent Class Model... 209
6.3.2.1. Identify agent classes.. 209

6.3.2.1.a. Characterise agent class’ dynamics.. 210
6.3.2.2. Notation of Agent Class Model Kind ... 211

6.3.3. Step 3 – Specify Resources (Optional) ... 214
6.3.3.1. Identify resources ... 214
6.3.3.2. Notation of Resource Diagram .. 215
6.3.3.3. Revise Role Model .. 216
6.3.3.4. Update Agent Class Model... 218

6.3.4. Step 4 – Extend Ontology Model to Include Resource Application Ontologies (Optional)
.. 219

6.3.4.1. Specify ontological mappings between Resource Application ontologies And MAS
Application ontologies... 219

6.4. AGENT INTERNAL DESIGN ACTIVITY...221
6.4.1. Step 1 – Specify Agent Class’ Belief Conceptualisation ... 222

6.4.1.1. Specify belief conceptualisation of agent classes .. 223
6.4.1.1.a. Identify ontology commitments of agent classes ... 223

6.4.1.2. Update Agent Class Model to show belief conceptualisation 225
6.4.2. Step 2 – Specify Agent Goals ... 225

6.4.2.1. Update Agent Class Model to show agent-goals ... 226
6.4.2.2. Develop Agent Goal Diagram (Optional).. 227

6.4.3. Step 3 – Specify Events... 229
6.4.3.1. Update Agent Class Model to show events .. 230

ix

6.4.4. Step 4 – Develop Agent Behaviour Model... 231
6.4.4.1. Develop Agent Plan Templates .. 233

6.4.4.1.a. Notation of Agent Plan Template .. 238
6.4.4.2. Develop Reflexive Rule Specifications... 240

6.4.4.2.a. Notation of Reflexive Rule Specification... 241
6.4.4.3. Verify Agent Behaviour Model against Ontology Model .. 242
6.4.4.4. Verify Agent Behaviour Model against Agent Class Model...................................... 243

6.5. AGENT INTERACTION DESIGN ACTIVITY..244
6.5.1. Step 1 – Select Interaction Mechanism... 245

6.5.1.1. Overview of interaction mechanisms ... 245
6.5.1.2. Select interaction mechanism... 246

6.5.1.2.a. Comparison between direct interaction mechanism and tuplespace/tuple-centre
indirect interaction mechanism ... 247

6.5.2. Step 2 – Develop Agent Interaction Model .. 250
6.5.2.1. Develop Agent Interaction Model for Direct Interaction Mechanism 250

6.5.2.1.a. Define interaction protocols.. 251
6.5.2.1.b. Notation of Interaction Protocol Diagrams.. 254
6.5.2.1.c. Update Agent Class Model and Role Model ... 256
6.5.2.1.d. Conceptualise interation protocols with ontology (Optional).......................... 257

6.5.2.2. Develop Agent Interaction Model for Tuplespace/Tuple-Centre Interaction
Mechanism ... 262

6.5.2.2.a. Develop Agent-TC Interaction Diagrams ... 263
6.5.2.2.b. Develop Tuple-Centre Behaviour Diagram (Optional).................................... 266
6.5.2.2.c. Update Agent Class Model and Role Model ... 268

6.5.2.3. Verify Agent Interaction Model against Ontology Model and Agent Internal Model
.. 269

6.6. ARCHITECTURE DESIGN ACTIVITY...271
6.6.1. Step 1 – Identify Agent-Environment Interface Requirements.. 273
6.6.2. Step 2 – Select Agent Architecture... 275

6.6.2.1. Select agent architecture .. 275
6.6.2.2. Develop Agent Architecture Diagram.. 277

6.6.3. Step 3 – Specify MAS Infrastructure Facilities.. 278
6.6.4. Step 4 – Instantiate Agent Classes .. 279
6.6.5. Step 5 – Develop MAS Deployment Diagram ... 280

6.7. SUMMARY ...282

CHAPTER 7. EVALUATION AND REFINEMENT OF MOBMAS283

7.1. INTRODUCTION...283

7.2. EXPERT REVIEWS ...283
7.2.1. Expert Review Procedures .. 284
7.2.2. Experts’ Biography ... 285
7.2.3. Refinements of MOBMAS ... 286

7.2.3.1. Refinements of MOBMAS as a result of the first expert review 286
7.2.3.2. Refinements of MOBMAS as a result of the second expert review 287

7.3. APPLICATION OF MOBMAS..290
7.3.1. Application procedures ... 290
7.3.2. Developers’ biography .. 291
7.3.3. Refinements of MOBMAS ... 292

7.3.3.1. Refinements of MOBMAS as a result of Developer 1’s comments............................ 293
7.3.3.2. Refinements of MOBMAS as a result of Developer 2’s comments............................ 296

x

7.4. FEATURE ANALYSIS OF MOBMAS ...301
7.4.1. MOBMAS’ Support for Methodological Requirements .. 302

7.4.1.1. MOBMAS’ support for ontology-based MAS development....................................... 317
7.4.2. Comparison of MOBMAS and Existing AOSE Methodologies.. 319

7.4.2.1. Comparison of support for Features.. 319
7.4.2.2. Comparison of support for Steps.. 325
7.4.2.3. Comparison of support for Modelling Concepts ... 328
7.4.2.4. Ontology-related strengths of MOBMAS... 329

7.5. SUMMARY ..334

CHAPTER 8. CONCLUSIONS...336

8.1. INTRODUCTION...336

8.2. CONTRIBUTIONS OF THE RESEARCH..336

8.3. LIMITATIONS OF THE RESEARCH ..339
8.3.1. Limitations of the survey on practitioners and researchers.. 339
8.3.2. Limitations of the feature analysis on the existing AOSE methodologies 339
8.3.3. Limitations of the comparison between MOBMAS and the existing AOSE methodologies
.. 340

8.4. SUGGESTIONS FOR FUTURE RESEARCH ..340
8.4.1. Extending MOBMAS.. 341
8.4.2. Applying MOBMAS to a variety of applications... 341

8.5. CONCLUDING REMARKS ..342

REFERENCES..343

APPENDIX A. ADVERTISEMENT FOR SURVEY RECRUITMENT374

APPENDIX B. ONLINE SURVEY QUESTIONNAIRE ..375

APPENDIX C. DEMOGRAPHIC AND PROFESSIONAL CHARACTERISTICS OF
SURVEY RESPONDENTS ...388

APPENDIX D. EVALUATION OF EXISTING MAS DEVELOPMENT
METHODOLOGIES ..392

APPENDIX E. MODELLING NOTATION OF MOBMAS410

APPENDIX F. EXPERT REVIEWS OF MOBMAS...415

APPENDIX G. EXTERNAL DEVELOPERS’ EVALUATION OF MOBMAS420

APPENDIX H. APPLICATION OF MOBMAS..447

xi

LIST OF FIGURES

Figure 2.1 – Approaches for ontological mapping (Wache et al. 2001).. 21
Figure 2.2 – Sharing of knowledge between wrapper agents .. 21
Figure 2.3 – Agent-resource communication ... 25
Figure 2.4 – User query formulation using concepts from ontology ... 26
Figure 2.5 – Example fragment of Car Domain Ontology... 27
Figure 2.6 – Example ontological mappings between Car Domain Ontology and Entertainment System

Ontology .. 27
Figure 2.7 – Types of ontology (Guarino 1997)... 28
Figure 2.8 – Example of ontology representation in UML (Cranefield and Purvis 1999).......................... 33
Figure 2.9 – Example of ontology representation in IDEF5 Schematic Language (Knowledge Based

Systems Inc 1994) ... 33
Figure 2.10 – Example of ontology representation in LINGO (Falbo et al. 1998) 34
Figure 3.1 – Overview of MASE (Wood and DeLoach 2000a)... 36
Figure 3.2 – MASE Role Model (Wood and DeLoach 2000a).. 37
Figure 3.3 – MASE Agent Class Diagram (Wood and DeLoach 2000a).. 38
Figure 3.4 – MASE Communication Class Diagram for initiator (left) and responder (right) (Wood and

DeLoach 2000a) .. 38
Figure 3.5 – MASE Deployment Diagram (Wood and DeLoach 2000a).. 39
Figure 3.6 – Overview of extended version of MASE (DiLeo et al. 2002)... 40
Figure 3.7 – MASSIVE Iterative View Engineering process (Lind 2000a) .. 41
Figure 3.8 – MASSIVE Task View (Lind 1999).. 41
Figure 3.9 – GAIA Role Model (Zambonelli et al. 2003).. 45
Figure 3.10 – GAIA Interaction Model (Wooldridge et al. 2000) ... 45
Figure 3.11 – GAIA Agent Model (Wooldridge et al. 2000)... 46
Figure 3.12 – GAIA Acquaintance Model (Wooldridge et al. 2000) .. 47
Figure 3.13 – MESSAGE Organisation Model – Structural Relationships (left) and Acquaintance

Relationships (right) (Eurescom 2001b)... 48
Figure 3.14 – MESSAGE Organisation Model - Agent/Role and Resources Acquaintance Relationships

(Eurescom 2001b) ... 48
Figure 3.15 – MESSAGE Domain Model (Eurescom 2001b)... 48
Figure 3.16 – MESSAGE Interaction Model (Eurescom 2001b) .. 49
Figure 3.17 – BDIM Agent Model (Kinny et al. 1996) ... 51
Figure 3.18 – BDIM Plan Diagram (Kinny et al. 1996)... 52
Figure 3.19 – BDIM Belief Set (Kinny and Georgeff 1996) ... 52
Figure 3.20 – Outputs of each phase and workflow of INGENIAS development process (Pavon et al.

2005) .. 53
Figure 3.21 – INGENIAS Organisation Model (Pavon et al. 2005).. 55
Figure 3.22 – HLIM Use Case Map (Elammari and Lalonde 1999) ... 56
Figure 3.23 – HLIM Internal Agent Model (Elammari and Lalonde 1999).. 56
Figure 3.24 – HLIM Dependency Diagram (left) and Jurisdictional Diagram (Elammari and Lalonde

1999) .. 57
Figure 3.25 – HLIM Conversational Model (Elammari and Lalonde 1999)... 57
Figure 3.27 – MEI agent structure (Kendall et al. 1995) ... 59
Figure 3.28 – MEI sensors and effectors specification (Kendall et al. 1995).. 59
Figure 3.29 – Overview of PROMETHEUS (Padgham and Winikoff 2002a) ... 60
Figure 3.30 – PROMETHEUS Interaction Diagram (left) and Interaction Protocol (right) (Padgham and

Winikoff 2002a) .. 61
Figure 3.31 – PROMETHEUS System Overview Diagram (Padgham and Winikoff 2002a).................... 61
Figure 3.32 – PROMETHEUS Agent Overview Diagram (Padgham and Winikoff 2002a)...................... 62
Figure 3.33 – PROMETHEUS Capability Diagram (Padgham and Winikoff 2002a)................................ 62
Figure 3.34 – Overview of PASSI (Burrafato and Cossentino 2002).. 62
Figure 3.35 – PASSI Agent Identification Diagram (Burrafato and Cossentino 2002) 63
Figure 3.36 – PASSI Domain Ontology Diagram (Burrafato and Cossentino 2002) 64
Figure 3.37 – PASSI Communication Ontology Diagram (Burrafato and Cossentino 2002) 64

xii

Figure 3.38 – PASSI Roles Description Diagram (Burrafato and Cossentino 2002).................................. 64
Figure 3.39 – PASSI MAS Structure Definition Diagram (Burrafato and Cossentino 2002) 65
Figure 3.40 – PASSI Agent Structure Definition Diagram (Burrafato and Cossentino 2002) 65
Figure 3.41 – ADELFE Preliminary Class Diagram (Institut de Recherche en Informatique de Toulouse

n.d.) .. 67
Figure 3.42 – ADELFE Refined Class Diagram (Institut de Recherche en Informatique de Toulouse n.d.)

.. 67
Figure 3.43 – ADELFE Agent Internal Structure (Bernon et al. 2002a)... 68
Figure 3.44 – ADELFE Non-Cooperative Situation (Bernon et al. 2002a)... 68
Figure 3.45 – COMOMAS steps and models (Glaser 1997a).. 68
Figure 3.46 – COMOMAS Expertise Model (Glaser 1997a) .. 69
Figure 3.47 – COMOMAS Agent Model (Glaser 1997a).. 70
Figure 3.48 – MAS-CommonKADS Message Sequence Chart (left) and Event Flow Diagram (right)

(Iglesias et al. 1998) .. 71
Figure 3.49 – MAS-CommonKADS High Level Message Sequence Chart (left) and State Transition

Diagram (right) (Iglesias et al. 1998).. 71
Figure 3.50 – MAS-CommonKADS Domain Knowledge Ontology (Schreiber et al. 1994)..................... 71
Figure 3.51 – MAS-CommonKADS Inferences Diagram (Iglesias et al. 1998)... 72
Figure 3.52 – MAS-CommonKADS Organisation Model (Iglesias et al. 1998) .. 72
Figure 3.53 – CASSIOPEIA Coupling Graph (Collinot and Drogoul 1998) .. 73
Figure 3.54 – TROPOS Strategic Dependency Model in Early Requirement phase (Castro et al. 2002).. 74
Figure 3.55 – TROPOS Strategic Rationale Model in Early Requirement phase (Castro et al. 2001)....... 74
Figure 3.56 – TROPOS Strategic Dependency Model in Late Requirement phase (Castro et al. 2001).... 76
Figure 3.57 – TROPOS Strategic Rationale Model in Late Requirement phase (Castro et al. 2001) 76
Figure 3.58 – TROPOS Agent Class Diagram (Castro et al. 2002)... 77
Figure 3.59 – TROPOS Plan Diagram (Castro et al. 2002) ... 77
Figure 4.1 – Associations between “process”, “activity”, “step” and “technique” (represented in UML) 88
Figure 4.2 – Components of MOBMAS (represented in UML).. 89
Figure 4.3 – Determination of “actual” requirements of MOBMAS... 92
Figure 5.11 – Distribution of four expertise variables ... 122
Figure 5.13 – Examples of ranking order results.. 125
Figure 5.17 – Survey respondents’ suggestions on MAS development SDLC... 130
Figure 5.18 – Survey respondents’ suggestions on the importance of a MAS development methodology to

commit to an agent architecture .. 132
Figure 5.19 – Survey respondents’ suggestions on the approaches to agent identification 133
Figure 5.20 – Evaluation framework .. 135
Figure 6.1 – MOBMAS abstractions and their relationships (represented in UML) 170
Figure 6.2 – MOBMAS development process ... 173
Figure 6.3 – MOBMAS Model Kinds .. 174
Figure 6.4 – MOBMAS development process ... 179
Figure 6.5 – System Task Diagram for Product Search MAS ... 182
Figure 6.6 – Organisation Context Chart for the Conference Program Management MAS 184
Figure 6.7 – Final roles for Product Search MAS.. 187
Figure 6.8 – Role Diagram for Product Search MAS (cf. Figure 6.6)... 190
Figure 6.9 – Role Diagram for Conference Program Management MAS ... 191
Figure 6.10 – MAS Application ontologies and Resource Application ontologies 192
Figure 6.11 – Application ontology as a specialization of Domain ontology and Task ontology,

represented in UML (Guarino 1998) .. 193
Figure 6.12 – Association Class in an ontology ... 199
Figure 6.13 – Notation for ontology mapping.. 199
Figure 6.14 – Car MAS Application Ontology .. 200
Figure 6.15 – Query MAS Application Ontology .. 200
Figure 6.16 – Ontology Manager role .. 200
Figure 6.17 – Ontology servers without Ontology Manager role .. 202
Figure 6.18 – Updated Role Diagram for Product Search MAS.. 202
Figure 6.19 – MOBMAS development process ... 203
Figure 6.20 – Styles of organisational structure ... 205
Figure 6.21 – Notation for authority relationships between roles in Role Diagram.................................. 207
Figure 6.22 – Updated Role Model for Product Search MAS (cf. Figure 6.17).. 208
Figure 6.23 – Updated Role Model for Conference Program Management MAS (cf. Figure 6.8) 208

xiii

Figure 6.24 – Agent Class Diagram.. 212
Figure 6.25 – Agent Relationship Diagram.. 212
Figure 6.26 – Preliminary Agent Class Diagram for Product Search MAS .. 213
Figure 6.27 – Preliminary Agent Relationship Diagram for Product Search MAS 213
Figure 6.28 – Internal resources (a) and external resources (b)... 214
Figure 6.29 – Resource Diagram of Product Search MAS .. 216
Figure 6.30 – Updated Role Diagram for Product Search MAS (cf. Figure 6.17) 217
Figure 6.31 – Updated Agent Relationship Diagram for Product Search MAS.. 218
Figure 6.32 – CarInfo Resource Ontology and its mappings to Car MAS Application Ontology 220
Figure 6.33 – MOBMAS development process ... 221
Figure 6.34 – Agent Belief State... 222
Figure 6.35 – Agent Belief Conceptualisation ... 222
Figure 6.36 – Updated Agent Class Diagram for Product Search MAS (“Searcher” agent class) 225
Figure 6.37 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS..... 227
Figure 6.38 – Agent Goal Diagram of “Searcher” agent class of Product Search MAS 229
Figure 6.39 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS..... 230
Figure 6.40 – Formation of plans by planner (Wooldridge 2002) ... 233
Figure 6.41 – Agent Plan Template and Reflexive Rule Specification (represented in UML)................. 234
Figure 6.42 – Agent Plan Template .. 238
Figure 6.43 – Agent Plan Template for agent-goal “Information is gathered from resources” of

“Searcher” agent class in Product Search MAS... 239
Figure 6.44 – Agent Plan Diagram ... 239
Figure 6.45 – Agent Plan Diagram for agent-goal “Information is gathered from resources” of

“Searcher” agent class in Product Search MAS ... 240
Figure 6.46 – Reactive Rule Specification ... 241
Figure 6.47 – MOBMAS development process ... 244
Figure 6.48 – AUML notation for the dynamics of agents’ role-playing behaviour (Bauer 2001b) 255
Figure 6.49 – AUML notation for concurrent threads of interaction... 255
Figure 6.50 – AUML notation for concurrent threads of processing... 255
Figure 6.51 – Interaction Protocol Diagram for Product Search MAS.. 256
Figure 6.52 – Updated Agent Relationship Diagram for Product Search MAS.. 257
Figure 6.53 – Protocol Ontology .. 260
Figure 6.54 – Ontology-based definition of “Query Protocol” (c.f. Figure 6.46) 261
Figure 6.55 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS..... 262
Figure 6.56 – Agent-TC Interaction Diagram for Conference Program Management MAS.................... 265
Figure 6.57 – Tuple-Centre Behaviour Diagram for Conference Program Management MAS 268
Figure 6.58 – Updated Agent Class Diagram of Conference Program Management MAS...................... 269
Figure 6.59 – MOBMAS development process ... 272
Figure 6.60 – Agent Architecture Diagram for TouringMachines architecture (Ferguson 1992) 277
Figure 6.61 – Agent Architecture Diagram for INTERRAP architecture (Wooldridge 1999) 278
Figure 6.62 – Updated Agent Relationship Diagram of Product Search MAS ... 280
Figure 6.63 – MAS Deployment Diagram for Product Search MAS .. 282
Figure 7.1 – Notation of AND/OR Graphs... 289
Figure 7.2 – TROPOS notation for AND/OR decomposition ... 289
Figure 7.3 – Old (a) and new (b) notation for superior-subordinate relationship between roles in Role

Diagram ... 298
Figure AppendixC.1 – Survey respondents’ field of work .. 388
Figure AppendixC.2 – Survey respondents’ involvement in MAS development projects 389
Figure AppendixC.3 – Size of past MAS projects ... 390
Figure AppendixC.4 – Level of complexity of involved MAS projects.. 390
Figure AppendixC.5 – Application areas of involved MAS projects .. 391
Figure AppendixF.1 – Notation of AND/OR Graphs .. 419
Figure AppendixF.2 – TROPOS notation for AND/OR decomposition ... 419
Figure AppendixH.1 – System Task Diagram by Developer 1.. 449
Figure AppendixH.2 – Ontology Diagram for Movie Ontology by Developer 1 449
Figure AppendixH.3 – Ontology Diagram for File Retrieval Ontology by Developer 1.......................... 450
Figure AppendixH.4 – Role Diagram by Developer 1... 450
Figure AppendixH.5 – Agent Relationship Diagram by Developer 1... 451
Figure AppendixH.6 – Agent Class Diagram by Developer 1 (for Mediator agent class) 451

xiv

Figure AppendixH.7 – Agent Plan Template Diagram by Developer 1 (for History Manager agent class)
.. 451

Figure AppendixH.8 – Interaction Protocol Diagram by Developer 1 .. 452
Figure AppendixH.9 – System Task Diagram 1 by Developer 2 .. 452
Figure AppendixH.10 – System Task Diagram 2 by Developer 2 .. 453
Figure AppendixH.11 – System Task Diagram 3 by Developer 2 .. 453
Figure AppendixH.12 – Ontology Diagram for File Sharing Ontology by Developer 2.......................... 453
Figure AppendixH.13 – Role Diagram by Developer 2... 454
Figure AppendixH.14 – Agent Relationship Diagram by Developer 2... 454
Figure AppendixH.15 – Agent Class Diagram by Developer 2 (for Server agent class).......................... 455
Figure AppendixH.16 – Agent Plan Template by Developer 2 (for Server agent class) 455
Figure AppendixH.17 – Agent Plan Diagram by Developer 2 (for Server agent class) 455
Figure AppendixH.18 – Interaction Protocol Diagram by Developer 2 .. 456

xv

LIST OF TABLES

Table 3.26 – Summary of mappings from Use Case Model and IDEF/CIMOSA Models to MAS design in
MEI (Kendall et al. 1995) ... 58

Table 5.1 – Selection of features from Shehory and Sturm’s framework (2001)...................................... 102
Table 5.2 – Selection of features from O’Malley and DeLoach’s framework (2001) 103
Table 5.3 - Selection of features from Cernuzzi and Rossi’s framework (2002) 103
Table 5.4 - Selection of features from Sabas et al.’s framework (2002) ... 104
Table 5.5 - Selection of features from Wood et al.’s framework (1988)... 105
Table 5.6 - Selection of features from NIMSAD framework (1994)... 106
Table 5.7 - Selection of features from IFIP WG 8.1 frameworks (1983) .. 107
Table 5.8 - Selection of features from the Object Agency’s framework (The Object Agency Inc 1995) 107
Table 5.9 – Identification of steps from the existing AOSE methodologies ... 111
Table 5.10 - Identification of modelling concepts from the existing AOSE methodologies 113
Table 5.12 – Number of respondents in each subject group .. 123
Table 5.14 – “Rating of importance” and “order rank” of features ... 125
Table 5.15 – “Rating of importance” and “order rank” of steps .. 127
Table 5.16 – “Rating of importance” and “order rank” of modelling concepts .. 129
Table 5.21 – Evaluation criteria on features... 136
Table 5.22 – Evaluation criterion on steps ... 138
Table 5.23 – Evaluation criterion on modelling concepts.. 139
Table 5.24 – Evaluation of support for features relating to AOSE process... 143
Table 5.25 – Evaluation of support for features relating to AOSE model definitions 144
Table 5.26 – Evaluation of support for agent properties.. 145
Table 5.27 – Evaluation of support for features relating to the methodology as a whole......................... 146
Table 5.28 – Evaluation of “Usability of techniques”.. 148
Table 5.29a – Evaluation of support for modelling concepts (part a).. 149
Table 5.29b – Evaluation of support for modelling concepts (part b) ... 150
Table 5.30 – Selection of MOBMAS’ “actual” features.. 152
Table 5.31 – Selection of MOBMAS’ “actual” steps... 153
Table 5.32 – Selection of MOBMAS’ “actual” modelling concepts ... 154
Table 5.33 – MOBMAS’ required features and sources of potential techniques and/or model definitions

for supporting these features ... 156
Table 5.34 – MOBMAS’ required steps and sources of potential techniques for supporting these steps 157
Table 5.35 – MOBMAS’ required modelling concepts and sources of potential techniques and/or model

definitions for supporting these concepts ... 158
Table 7.4 – MOBMAS’ support for the required features (cf. Table 5.33)... 304
Table 7.5 – MOBMAS’ support for the required steps (cf. Table 5.34).. 310
Table 7.6 – MOBMAS’ support for the required modelling concepts (cf. Table 5.35) 314
Table 7.7 – Comparison of support for features relating to AOSE process .. 321
Table 7.8 – Comparison of support for features relating to AOSE model definitions 322
Table 7.9 – Comparison of support for agent properties.. 323
Table 7.10 – Comparison of support for features relating to the methodology as a whole....................... 324
Table 7.11 – MOBMAS’ support for steps .. 326
Table 7.12 – Comparison re criterion “Usability of techniques”... 327
Table 7.13 – Comparison of support for modelling concepts .. 328
Table AppendixD.1 – Support for steps of MASE... 393
Table AppendixD.2 – Support for steps of MASSIVE .. 394
Table AppendixD.3 – Support for steps of SODA... 395
Table AppendixD.4 – Support for steps of GAIA.. 396
Table AppendixD.5 – Support for steps of MESSAGE... 397
Table AppendixD.6 – Support for steps of INGENIAS... 398
Table AppendixD.7 – Support for steps of BDIM ... 399
Table AppendixD.8 – Support for steps of HLIM.. 400
Table AppendixD.9 – Support for steps of MEI .. 401
Table AppendixD.10 – Support for steps of PROMETHEUS... 402

xvi

Table AppendixD.11 – Support for steps of PASSI... 403
Table AppendixD.12 – Support for steps of ADELFE .. 404
Table AppendixD.13 – Support for steps of COMOMAS... 405
Table AppendixD.14 – Support for steps of MAS-CommonKADS ... 406
Table AppendixD.15 – Support for steps of CASSIOPEIA .. 408
Table AppendixD.16 – Support for steps of TROPOS .. 409

xvii

LIST OF ABBREVIATIONS

ACL Agent Communication Language

AOSE Agent-Oriented Software Engineering

BDI Belief-Desire-Intention agent architecture

BDIM Methodology for BDI agents

HLIM Methodology with High-Level and Intermediate levels

MAS Multi-Agent System

MEI Methodology for Enterprise Integration

OCL Object Constraint Language

OO Object Oriented

P2P Peer to peer

PC Program Committee

SDLC System Development Lifecycle

UML Unified Modelling Language

UCM Use Case Map

1

CHAPTER 1

INTRODUCTION

“There is still much work to do and a long way to go before agent-oriented

software engineering can evolve into its maturity.”

(Fan 2000, p45)

1.1. INTRODUCTION
This chapter firstly provides some brief background on the Agent paradigm and

Ontology, thereby revealing the motivations for an ontology-based Agent-Oriented

Software Engineering (AOSE) methodology for Multi-Agent Systems (MAS)

development (Section 1.2). Section 1.3 then specifies the objective of this PhD research,

followed by Section 1.4 which highlights the significance of the research. The

research’s design is summarised in Section 1.5, while the dissertation’s outline is

presented in Section 1.6.

1.2. BACKGROUND AND MOTIVATIONS
Agent technology has become one of the most active and promising areas of research

and development activity in computing in recent years (Wooldridge and Ciancarini

2000; Mountzia 1996). Agents are highly autonomous, situated, interactive software

entities that have been hailed as “the next significant breakthrough in software

development” (Sargent 1992, p28), “the new revolution in software” (Guilfoyle and

Warner 1994, p1) and “the backbones for the next generation of mainstream software

systems” (Fan 2000, p45). Originating from artificial intelligence, agent technology has

progressively drawn on a diversity of computing areas, including software engineering,

distributed computing, networking, mobile computing, collaborative computing,

security and robotics (Sundsted 1998; Honavar 1999).

The greatest potential of agent technology is revealed through MASs (Wooldridge

1997; Huhns and Singh 1998; Zambonelli 2000). MASs are computational systems in

2

which two or more agents are interacting or working together to achieve a set of goals

(Lesser 1996). The coordination between agents possessing diverse knowledge and

capabilities would enable the achievement of global goals that cannot be otherwise

achieved by a single agent working in isolation (Huhns and Singh 1998; Nwana and

Wooldridge 1996). The powerfulness of MASs can be particularly realised in the

engineering of open systems, distributed systems, heterogeneous systems, dynamic and

adaptive systems.

It is widely accepted that appropriate AOSE methodologies, guiding developers, are

required for agent technology to become a widespread commercial success (Flores-

Mendez 1999; Jennings and Wooldridge 1995; Sycara 1998b; Zambonelli 2000). While

for small development projects it may be acceptable to apply informal software

engineering principles to the development of MASs, the absence of specialised AOSE

methodologies for MAS construction will generally result in cumbersome, error prone,

and hence expensive, application development (Eurescom 2001b; Lind 2000b). The

disregard for AOSE methodologies is seen as the main reason for the failure of many

past MAS development experiences (Fan 2000). Indeed, a number of methodologies

have been proposed to support the analysis and design of MASs. Nevertheless, an

evaluation of prominent methodologies revealed that most are lacking in one or more of

the following areas of MAS development: agent internal design (i.e. the design of agent

mental constructs such as beliefs, goals, plans and actions), agent interaction design, and

MAS organisation modelling (i.e. the design of acquaintances and authority

relationships amongst agents/agents’ roles). This research also conducted a survey of

AOSE experts and practitioners, and a feature analysis of the existing AOSE

methodologies, which together confirmed that no individual methodology offers support

for developing all of the requirements of an MAS system.

In addition to the absence of a comprehensive methodology which addresses common

concerns for any given system, it was noted that two concerns are largely ignored by all

existing methodologies. These are: extending the functionality and lifetime of a system,

through interoperability with other systems in heterogeneous environments and reuse of

system design as requirements change. These are critical long-term concerns for any

system, which will ultimately affect the take-up of the agent technology by the industry.

In this thesis, a methodology which addresses those two concerns and combines all key

3

concerns of AOSE practitioners is synthesized. The methodology is called:

Methodology for Ontology-Based MASs (MOBMAS). The current research is driven

by both the growing interest in agent technology and MASs, and the increasing

recognition of ontologies in the computing community as a cornerstone towards

interoperability and software reuse (Malucelli and Oliveira 2004; Uschold and

Gruninger 1996; Richards 2000; Shave 1997).

In recent years, ontologies have been employed in many computing areas, including

knowledge engineering, knowledge management, natural language processing,

information retrieval and integration, and database design and integration (Gamper et al.

1999; Guarino 1998; Fensel 2001). In the realm of MAS, ontologies have been

acknowledged for being beneficial to various MAS development activities, particularly

system analysis and agent knowledge modelling (Uschold and Gruninger 1996;

Falasconi et al. 1996; Weiss 1999; Shave 1997). Ontological modelling of agent

knowledge is also regarded as essential to the operation of MAS, particularly to the

communication between system components (e.g. between agents or between agents

and non-agent software components) and the reasoning of agents. Reusability of system

design through ontology has been recognised in single agent knowledge-based systems

(Uschold and Gruninger 1996; Chandrasekaran et al. 1999; Mukherjee et al. 2000;

Falasconi et al. 1996). Notwithstanding the benefits of ontology to MASs, most of the

existing AOSE methodologies do not provide support for ontology-based MAS

development. Specifically, they neither support the use of ontologies in the MAS

development process, nor the inclusion of ontologies in the MAS development model

definitions. Even though a few existing methodologies show some consideration for

ontology, they do not comprehensively investigate the diverse ways in which ontology

can be integrated into the MAS development process and MAS model definitions as

MOBMAS endeavours. As a result, the development processes and products of the

existing AOSE methodologies either do not provide, or provide to a lesser extent, the

various important capabilities that an ontology-based development process and product

can naturally provide, for example, support for interoperability and reusability.

4

1.3. RESEARCH OBJECTIVE
This research was conducted to

“Contribute to the field of AOSE by proposing a comprehensive ontology-based AOSE

methodology for the analysis and design of MASs. This methodology aims to provide

support for ontology-based MAS development and various other AOSE methodological

requirements which are important to an AOSE methodology but which may not be well-

supported by the existing methodologies. The proposed AOSE methodology is named

“MOBMAS”, which stands for “Methodology for Ontology-Based Multi-Agent

Systems”.

A MAS system is ontology-based when its design specification explicitly includes

ontologies, and ontologies are used by agents at run-time to facilitate the operation of

MAS (Yuan 1999; Guarino 1998).

The scope of MOBMAS does not include support for the actual process of developing

ontologies. The methodology assumes that ontologies used by MAS and integrated in

MAS model definitions are developed by a separate ontology engineering effort, which

is conducted by domain experts, ontology engineers or the MAS developer himself.

Numerous methodologies are currently available for this purpose, e.g. IDEF5

(Knowledge Based Systems Inc 1994), METHONTOLOGY (Fernandez et al. 1997) and

Grüninger and Fox’ methodology (1995). MOBMAS focuses instead on:

the use of ontologies in the MAS analysis and design process; and

the inclusion of ontologies in MAS model definitions.

The scope of MOBMAS is also limited to the Analysis and Design phases of the system

development lifecycle (SDLC), which traditionally contains four phases, Requirements

Engineering, Analysis, Design and Implementation (Eliason 1990; Dennis and Wixom

2003). MOBMAS process starts from a set of system functionality (which is identified

by a separate Requirements Engineering effort) and ends with a design of a MAS

system. Even though the Implementation phase is not covered, MOBMAS addresses

various important implementation-related issues such as deployment configuration and

selection of agent architectures.

5

1.4. SIGNIFICANCE OF THE RESEARCH
The research effort of this thesis, embodied in MOBMAS, contributes to state of the art

of AOSE in three essential ways. Firstly, it provides developers with a framework to

handle interoperability issues in a heterogeneous environment at design time. Secondly,

it explicitly integrates the use of ontology for knowledge representation with its actual

design and development, giving developers a solid framework for promoting reuse of

software design. Thirdly, it combines all key concerns of AOSE practitioners into one

methodological framework.

The first two contributions are inter-related. It is by the explicit and extensive support

for ontology-based MAS development that MOBMAS accommodates interoperability

concerns in heterogeneous environments. Systems designed with MOBMAS can be

formed from loosely coupled components connected through ontological mappings.

They are inherently flexible and their actual design and architecture are reusable across

different areas of applications and in different settings. The explicit support of

MOBMAS for ontology-based MAS development is as follows:

In the MAS development process, just as ontology analysis has been employed to

facilitate the process of constructing and validating knowledge-based systems

(Chandrasekaran et al. 1999; Uschold and Gruninger 1996), MOBMAS makes use

of ontology to facilitate the process of constructing and validating its MAS analysis

and design models. Specifically, ontologies are used to help identify and validate

the functional requirements of the target MAS, actions of agent classes and

exchanged messages between agents. MOBMAS also shows how the MAS

development process can, in return, assist in the development of ontologies.

Specifically, the investigation of a system’s functional requirements, agent goals,

plans, reflexive rules, actions and exchanged messages helps to identify and

validate the concepts to be included in ontologies; and

In MAS development model definitions, MOBMAS dedicates one of its “model

kinds”1 for the representation of ontologies, namely “Ontology Model Kind”. This

model kind captures all of the ontologies that are necessary for agents in the target

1 The term “model kind” is used to refer to a specific class of models (Standards Australia 2004). The
models themselves will be built by the developer during the development process.

6

MAS to operate. Agents’ knowledge is then modelled in terms of these ontologies.

The modelling of agent behaviour and agent interactions is also based upon

ontologies: concepts in the ontologies are used to formulate agents’ goals, plans,

reflexive rules, actions and content of communication messages. MOBMAS also

models the conceptualisation of non-agent resources and the mappings between

these conceptualisations and the domain ontologies shared amongst agents.

By using ontology in the MAS development process and including ontology in the MAS

model definitions as described above, MOBMAS is able to enhance its MAS

development process and MAS design product with many important ontology-related

strengths. These strengths include those that have been widely acknowledged in the

ontology literature (e.g. efficient system analysis, structured and reusable agent

knowledge modelling, semantically-consistent agent communication and facilitated

agent reasoning), and those that are newly uncovered by MOBMAS (e.g. support for

verification and validation, maintainability, extendibility and reliability). These

ontology-related strengths are either not provided, or provided to a lesser extent, by the

existing AOSE methodologies due to their lack of support for ontology.

With respect to the second contribution of this thesis, MOBMAS offers support for

many important methodological requirements of AOSE, which are suggested by

practitioners and researchers in the field and the existing MAS development

methodologies (e.g. support for agent internal design steps, agent interaction design

steps, MAS organisation modelling steps, diverse agent-related properties and

modelling concepts). The support provided by MOBMAS was based upon the reuse,

enhancement and unification of the existing AOSE methodologies’ strengths, as well as

the proposal of new techniques and model definitions where the existing support is

weak.

Ultimately, the proposal of a comprehensive, unified, ontology-based AOSE

methodology for the analysis and design of MASs helps to foster the widespread

deployment of agent-based systems by industry, hence contributing to the commercial

success of agent technology.

7

1.4.1. Application Domains of MOBMAS
With its explicit and extensive support for ontology throughout the MAS analysis and

design processes, MOBMAS is particularly suitable to the development of the following

types of agent systems.

Heterogeneous systems: These are systems that contain heterogeneous agents (in

term of their internal knowledge structures) and/or heterogeneous non-agent

resources that are wrapped around by the agents. An example of this type of

application is an information gathering system, where each “Searcher” agent

pertains to a different structure of beliefs; for instance, one “Searcher” agent may

possess beliefs on medicine, while another on travel. An information gathering

system normally encompasses heterogeneous knowledge sources such as relational

databases, search engines and/or web pages, each of which has a different internal

information structure. MOBMAS facilitates the design and run-time operation of

these heterogeneous systems by explicitly conceptualising the knowledge of each

system component (either agents and/or non-agent resources) by ontologies,

thereafter enabling the interoperability of these components via the explicit

specification of ontological mappings.

Systems that involve legacy components: Legacy systems exist quite commonly in

manufacturing and process control applications, where functionally-essential

software components are technologically obsolete, but cannot readily be replaced or

modified due to the costs and/or the time required (Wooldridge and Jennings, 1998).

In an agent system, these legacy components can be used by being wrapped with an

agent layer that enables them to interoperate with other components via a uniform

communication interface (Jennings and Wooldridge, 1995). Accordingly, an agent

system containing legacy systems is basically a heterogeneous MAS formed from

loosely-coupled heterogeneous components. MOBMAS is thus particularly suitable

to its development due to the reasons listed in the previous paragraph.

Open systems: An open MAS is one which allows for dynamic addition and/or

removal of system components at run-time (Sycara 1998b). Common applications

where MASs need to reside in an open environment are information gathering

applications (as “Searcher” agents can be frequently added or removed) and e-

commerce applications, such as those mimicking a market place (as “Seller” and

“Buyer” agents, for instance, can frequently enter or leave the system). MOBMAS

8

facilitates the design and run-time operation of these open systems in various ways.

Firstly, by supporting heterogeneity via ontological mappings, MOBMAS removes

the interoperability concerns that arise when adding new heterogeneous agents into

an existing MAS. The methodology also offers an option to conceptualize the agent

interaction protocols during the design time. This explicit conceptualization of the

interaction protocols will allow any new agents to join the pre-existing conversations

at run-time, and allow the interaction protocols to change over time during run-time.

While being particularly advantageous to the above types of applications, MOBMAS is

also suitable to the development of any typical agent systems. In comparison with the

existing popular AOSE methodologies, MOBMAS is capable of reducing more

development costs for the analysis and design of MASs. This is because:

MOBMAS makes it easy to reuse MAS design components. The core design models

of MOBMAS are composed in terms of ontologies, for example, agent internal

knowledge model, agent behaviour model and agent interaction model. As such, the

developer can adapt the past MAS design models to a new application by simply

changing the ontologies involved. In addition, MOBMAS implements the idea of

using ontologies to decouple the modelling of agent’s domain knowledge from

agent’s behavioural/problem-solving knowledge, thereby supporting the reuse of

these two knowledge components across agents.

MOBMAS provides extensive support for verification and validation during the

MAS development processes, thus increasing the likelihood of a correct system. In

particular, MOBMAS recommends the developer to exploit application ontologies to

verify and validate the completeness and correctness of various core MAS analysis

and design models. Since ontologies are often constructed by a separate

development team (e.g. domain experts or knowledge engineers), they can serve as a

reliable tool for verification and validation.

MOBMAS facilitates the maintenance of a MAS system design. This is because the

specification of the MAS’ application domains, tasks and resources are formally

documented in ontologies, and the core MAS design models such as agent internal

knowledge model, agent behaviour model and agent interaction model are

consistently defined in term of these ontologies.

9

MOBMAS makes it easy to extend an existing MAS design. When the MAS needs

to cover new domains, tasks or resources, the agents can easily extend their

knowledge by adding new ontologies into their knowledge models.

1.5. RESEARCH DESIGN
To achieve the research objective, three core research activities were performed.

1. Research Activity 1 – Identify the methodological requirements of MOBMAS

This activity aimed to identify and validate the methodological requirements of

MOBMAS in terms of the features that MOBMAS should support, steps that

MOBMAS development process should include, and modelling concepts that

MOBMAS model kinds should represent. Note that the desirable steps identified by this

activity are not meant to be the “exact” steps that MOBMAS must specify. MOBMAS

can define its steps differently from these desirable steps. However, the actual steps of

MOBMAS must correspond to, or cover, these desirable steps.

Research Activity 1 was carried out in four research steps.

Step 1 – Identify the “potential” methodological requirements of MOBMAS:

The potential features were identified by investigating a number of evaluation

frameworks for AOSE methodologies and conventional system development

methodologies (including object-oriented (OO) methodologies). The potential steps

and modelling concepts were discovered by examining the existing AOSE

methodologies.

Step 2 – Conduct a survey on practitioners and researchers in the field of AOSE to

validate the identified potential features, steps and modelling concepts.

Step 3 – Perform a detailed feature analysis on the existing AOSE methodologies to

further validate the identified features, steps and modelling concepts, and arrive at

the “actual” methodological requirements for MOBMAS.

Step 4 – Identify “ontology-related steps” from amongst the required AOSE steps of

MOBMAS, so as to enable MOBMAS to offer all of the widely-recognised benefits

of ontology to MAS development and MAS operation as found in the literature

review.

10

2. Research Activity 2 – Develop MOBMAS

This research activity specified the development process, techniques and model kinds

for MOBMAS so as to support the required features, steps and modelling concepts

identified in Research Activity 1. MOBMAS process, techniques and model kinds were

developed by reusing and enhancing the techniques and model definitions offered by

the existing AOSE methodologies where appropriate, and developing new techniques

and model definitions where necessary.

3. Research Activity 3 – Evaluate and refine MOBMAS

MOBMAS was evaluated and progressively refined through three sequential research

steps.

Step 1 – Collect expert reviews on the preliminary version of MOBMAS.

Step 2 – Use the refined methodology on a test application.

Step 3 – Perform a feature analysis on the final version of MOBMAS.

The aim of expert reviews was to gather experts’ evaluation of MOBMAS based on the

experts’ non-empirical investigation of the methodology. The use of MOBMAS on a

test application then gathered external developers’ evaluation of MOBMAS based on

their empirical usage of the methodology. Lastly, the feature analysis was conducted to

verify MOBMAS’ ability to achieve its objective (which is, to provide support for

ontology-based MAS development and the other important AOSE methodological

requirements2; cf. Section 1.3), to compare MOBMAS with the existing AOSE

methodologies, and to clarify MOBMAS’ ontology-related capabilities.

1.6. ORGANISATION OF THE DISSERTATION
This dissertation is presented in eight chapters.

Chapter 1 – “Introduction”: provides an overview of the research’s motivations,

objective, significance and design.

Chapter 2 – “Background of Agents and Ontology”: presents background

information on the two realms underlying the research, Agent Technology and

Ontology. Definitions of concepts “Agent”, “Multi-Agent System” and “Ontology”

2 Through the justification of MOBMAS’ support for its methodological requirements, this research was
able to justify that MOBMAS’ actual steps and modelling concepts in fact correspond to, or cover, the
desirable steps and modelling concepts which were specified as part of the methodological requirements.

11

are provided, together with discussion on the potentials of the agent technology and

MAS, as well as the benefits of ontology to MAS development and MAS operation.

Chapter 3 – “Review of Existing MAS Development Methodologies”: provides

an account of the existing AOSE methodologies for MAS analysis and design, and

discusses their general limitations.

Chapter 4 – “Research Design”: reiterates the research objective (from Section

1.3) and describes the details of the three research activities performed to achieve it.

Chapter 5 – “Methodological Requirements of MOBMAS”: documents the

identification of MOBMAS’ required features, steps and modelling concepts (i.e.

Research Activity 1; cf. Section 1.5). The chapter also presents suggestions on how

and where MOBMAS may obtain techniques and model definitions to support each

of its methodological requirements.

Chapter 6 – “Documentation of MOBMAS”: presents the full documentation of

MOBMAS. The chapter consists of seven sections.

Section 6.1 – “Overview of MOBMAS”: presents an overall description of

MOBMAS conceptual framework, development process and model kinds.

Sections 6.2 to 6.6: each documents each of the five activities of MOBMAS:

“Analysis”, “MAS Organisation Design”, “Agent Internal Design”, “Agent

Interaction Design” and “Architecture Design”.

Section 6.7: presents a summary of the chapter.

Chapter 7 – “Evaluation and Refinement of MOBMAS”: documents the

refinement and evaluation of MOBMAS as a result of the expert reviews on

MOBMAS, the use of MOBMAS on an application, and a feature analysis of

MOBMAS (i.e. Research Activity 3; cf. Section 1.5).

Chapter 8 – “Conclusions”: concludes the dissertation with discussion of the

research’s contributions, limitations and suggestions for future research.

1.7. SUMMARY
This chapter has presented an overview of the research. It highlights the research’s

objective, motivations, significance and design. These issues will be elaborated further

in Chapter 4. In the subsequent chapter, Chapter 2, background information about the

Agent paradigm and Ontology is presented.

12

CHAPTER 2

BACKGROUND OF AGENTS AND
ONTOLOGY

2.1. INTRODUCTION
With the research focus being “ontology-based MASs”, this research spans two major

realms: Agent Technology (particularly MAS) and Ontology. This chapter provides

background information on each realm. Section 2.2 firstly defines “Agent” and “MAS”,

highlights the motivations for agents and MASs, and points out the limitations of the

Agent paradigm. Section 2.3 subsequently defines “Ontology”, discusses the benefits of

ontology to MAS development and MAS operation, and provides an overview of the

ontology’s typology and representation languages.

2.2. AGENT TECHNOLOGY AND MAS

2.2.1. Definition of Agent
Generally defined, a “software agent” is an entity or a piece of software that acts on

behalf of its user to accomplish a task (Mountzia 1996). Nevertheless, the exact nature

of agency has attracted much discussion and controversy (Mountzia 1996; Wooldridge

1999; Eurescom 2001a). A variety of definitions have been proposed, each offering a

varied opinion as to what constitutes an agent (Franklin and Graesser 1996; Wooldridge

and Jennings 1998; Eurescom 2001a). As noted by Wooldridge (1999), a universal

definition of “software agent” may be impossible, since attributes characterizing agency

may vary across domains. Above all, such a prescriptive universal definition is not

really important, because “the notion of an agent is meant to be a tool for analysing

systems, not an absolute characterisation that divides the world into agents and non-

agents” (Russell and Peter 1995, p33).

13

This research adopts the definition proposed by Wooldridge (1999, p29). This definition

has received much recognition from researchers in the field.

“An agent is a computer system that is situated in some environment, and that is

capable of autonomous action in this environment in order to meet its design

objectives.”

The definition emphasizes two major attributes of agency: interaction with the

environment and autonomy. Interaction with the environment refers to the ability to

perceive the environment and act upon it, while autonomy can be understood as the

ability to have complete control over one’s state and behaviour. Being autonomous, an

agent is capable of decoupling the process of receiving a request message from another

agent from the process of executing actions upon receiving the message (Fisher et al.

1997).

The above definition of agent covers a wide spectrum of computational entities, from

Microsoft Tip Wizards, software daemons and simple control systems (such as

thermostats) to very large expert systems (Jennings and Wooldridge 1995; Wooldridge

1999). This research, however, is interested particularly in “intelligent agents”, which

are, as defined by Wooldridge (1999, p32)

“... agents that are capable of flexible autonomous action, where flexibility

means three things:

reactivity: intelligent agents are able to perceive their environment and

respond in a timely fashion to changes that occur in it;

proactiveness: intelligent agents are able to exhibit goal-directed behaviour

by taking the initiative; and

social ability: intelligent agents are capable of interacting with other agents

(and possibly humans).”

Even though intelligent agents may assume other attributes such as mobility,

adaptability and personality, the above attributes sensibly characterise the core notion of

intelligent agency.

14

2.2.2. Definition of MAS
A MAS is a computational system, or a loosely coupled network, in which two or more

agents interact or work together to perform a set of tasks or to satisfy a set of goals

(Lesser 1996). Each agent is considered as a locus of problem-solving activity which

operates asynchronously with respect to other agents (Lesser 1996).

A MAS typically exhibits the following major characteristics (Sycara 1998b).

Each agent has incomplete information or capabilities or resources for achieving the

global goal and thus has a limited viewpoint.

There is no global control over the whole system.

Data is decentralised.

Computation is asynchronous.

2.2.3. Motivations for Agents and MASs
Agents are believed to represent the next advance in software engineering. They offer a

notably more powerful and natural abstraction for modelling and developing systems

than conventional abstractions such as procedural abstraction, abstract data types and

objects (Wooldridge et al. 1999). The concept of agents as autonomous software

components, capable of flexibly interacting with each other to satisfy their objectives, is

very natural to software engineers (Wooldridge and Ciancarini 2000). For example, in

an electronic commerce application, it is natural to model participants in a trade

transaction as agents which buy and sell goods on behalf of human users (Wooldridge

and Ciancarini 2000).

The powerfulness of agents and MASs is particularly realised in the engineering of open

systems (Jennings and Wooldridge 1995; Sycara 1998b; Jennings et al. 1998). These

systems are often dynamic in structure. Their system components are usually not known

in advance, highly heterogeneous and capable of changing over time. Thus, the ability

to engage in flexible and robust interactions among the system components is crucial.

Agents exhibit this ability through negotiation and coordination capabilities. These

capabilities are facilitated by the use of “agent communication languages” (ACL) such

as KQML (UMBC Lab for Advanced Information Technology n.d.a) and FIPA-ACL

(FIPA n.d.a). In addition, the core properties of agents – namely, autonomy,

15

proactiveness and reactivity – allow them to deal with dynamic and unpredictable

environments. Agents can continually monitor their environment, revise their goals and

proactively adopt new goals when opportunities arise (Jennings and Wooldridge 1995;

Omicini 2000).

Another important contribution of agents and MASs is in the engineering of distributed

systems (Jennings and Wooldridge 1995; Jennings et al. 1998; Eurescom 2001a; Zhou et

al. 2000; Huhns and Stephens 1999; Wood and DeLoach 2000a). In such systems, it is

difficult to specify a single locus of control because the systems are built out of

distributed components, each of which possibly attempts to achieve conflicting

individual goals (Wood and DeLoach 2000a; Eurescom 2000a). It is therefore natural to

map the distributed entities onto autonomous problem-solving agents, which negotiate

and coordinate autonomously and flexibly to resolve conflicts and achieve the global

goals (Jennings and Wooldridge 1995; Wooldridge and Ciancarini 2000). In addition,

the proactiveness of agents makes it possible to abstract away from the control issue,

thereby dealing with the decentralisation of control (Omicini 2000). If the system

incorporates distributed resources, agents can be used to “wrap” around these resources

to create “active resources”. Tasks can then be performed directly at the remote resource

sites, hence limiting the need for communication across the network and reducing

network traffic (Horlait 2003; Huhns and Stephens 1999).

In addition, agents offer a natural way to incorporate legacy systems into modern

MASs, hence supporting heterogeneity and interoperability (Jennings and Wooldridge

1995; Jennings et al. 1998; Eurescom 2000a). Legacy systems exist quite commonly in

manufacturing and process control applications. They are functionally essential software

components that are technologically obsolete but cannot readily be replaced or modified

due to cost or time (Wooldridge and Jennings 1998; Jennings and Wooldridge 1995).

The agent paradigm solves this problem by “agentifying” the legacy components,

wrapping these components with an agent layer that enables them to interconnect and

interoperate with other system components via a uniform communication interface

(Jennings and Wooldridge 1995; Jennings et al. 1998; Eurescom 2000a).

Agents also provide the benefits of the conventional OO paradigm, namely modularity,

concurrent execution, reliability and reusability. When a problem is complex or

16

unpredictable, the most effective way to address it is to develop a number of modular

agents, each of which specializes at solving a particular aspect of the problem (Jennings

and Wooldridge 1995; Sycara 1998b). A MAS, however, represents more than a

modular object-based system. As earlier discussed, agents can interact and coordinate in

an autonomous, flexible and context-dependent manner so as to ensure that the tasks are

properly managed (Jennings and Wooldridge 1995; Sycara 1998b). Concurrent

execution is inherently provided by a MAS, since each agent is assumed to have at least

one thread of control (Wooldridge 1999). Reliability is also encouraged, as agents can

cooperate and dynamically take up the responsibilities of other agents that fail (Sycara

1998b). Finally, reusability is supported by reusing the design or coding of a similar

agent in a past MAS development experience (Mountzia 1996).

Nowadays, with the availability of numerous agent architectures, agent-oriented

programming languages and agent/MAS implementation platforms, the adoption of

agent technology in the commercial environment has been greatly facilitated. Regarding

agent architectures, a well-known architectural model is the Belief-Desire-Intention

(BDI) architecture proposed by Rao and Georgeff (1991; 1995). A BDI agent is

composed of three data structures: beliefs (i.e. the agent’s knowledge of the world),

desires (i.e. the agent’s goals, objectives or allocated tasks) and intentions (i.e. the

desires that the agent is committed to achieving at a certain point in time). This agent

architecture has been adopted by many agent implementation platforms such as PRS

(Myers 1997), JACK (Agent Oriented Software 2004) and dMARS (d'Inverno et al

1997), and many agent-oriented methodologies such as PROMETHEUS (Winikoff and

Padgham 2004), Kinny and Georgeff’s methodology (1996) and TROPOS (Castro et al.

2001). Regarding agent-oriented programming languages, various languages have been

developed, including Agents Kernal Language (Franzén et al. 1992), Telescript

(General Magic Inc. 1995), Agent Tcl (Gray, 1995), Obliq (Cardelli 1994) and Java.

Regarding agent implementation platforms, a large number of platforms are currently

available, for example, JACK (Agent Oriented Software 2004), JADE (Telecom Italia

Lab 2004), AgentBuilder (Acronymics Inc. 2004), MADKIT (MADKIT 2002), ZEUS

(British Telecommunications 2002) and Voyager (Glass 1998).

17

2.2.4. Limitations of Agents and MASs
Although the agent paradigm offers many exciting opportunities, it should not be

oversold. For many applications, the added sophistication of agents is not needed

(Wooldridge and Jennings 1998; Eurescom 2001a). For example, a software entity that

engages in a relatively small amount of reasoning and simple communications can

sensibly be modelled as an object rather than an agent.

Classes of problems for which intelligent agents and MASs are appropriate typically

involve 1) distributed control, 2) complex communications, 3) autonomous behaviour,

4) high flexibility and adaptiveness, 5) interoperability, and 6) concurrent achievement

of multiple, possibly conflicting, goals (Eurescom 2001a). A MAS solution may not be

suitable to domains in which global constraints have to be maintained, deadlocks or

livelocks must be avoided, globally optimal decisions have to be made, or the risk is too

high to give agents absolute trust and delegation (Jennings and Wooldridge 1998).

2.3. ONTOLOGY

2.3.1. Definition of Ontology
Ontology is a very old concept that has generally been confined to the philosophical

sphere in the past, since the time of Aristotle (Fensel 2001). However since the 1990s,

ontology has become increasingly attractive to various computing areas such as

knowledge engineering, knowledge management, natural language processing,

information retrieval and integration, cooperative information systems and agent-based

system design (Gamper et al. 1999; Guarino 1998; Fensel 2001).

In the philosophical sense, “ontology” is defined as a systematic account of being or

existence, from the Greek “ontos” (i.e. being) (Khan 2000; Gruber 1993a). It refers to a

study of things that exist and attempts to answer the question of “what is being”

(Chandrasekaran et al. 1999; Guarino and Giaretta 1995).

In the context of computing, ontology is confined to the specification of worldview with

respect to a domain of interest (Yuan 1999). A prominent definition of ontology is given

by Fensel (2001, p11): “An ontology is a formal, explicit specification of a shared

18

conceptualisation”. “Conceptualisation” refers to an abstract model of some

phenomenon in the world. It defines the relevant concepts or entities that exist in the

universe of discourse and the relations that hold among them (Gruber 1993a). For

example, the conceptualisation of a pile of blocks is (Genesereth and Nilsson 1987)
({a,b,c,d,e}, {on, above, clear, table})

where {a,b,c,d,e} is the universe of discourse (consisting of 5 blocks); and

 {on, above, clear, table} is a set of relevant relations among these blocks.

Although not explicitly stated, this definition relies on the intentional notion of

“conceptualisation” rather than extensional notion. The intentional notion means that

the conceptualisation only defines the meta-information for describing the semantics of

concepts and relations. It does not reflect particular states of affair as the extensional

conceptualisation does. For instance, in the above example of block conceptualisation,

the meaning of relation “on” (which specifies whether a block is on top of another

block) should remain the same even if the blocks are arranged differently (i.e. when the

state of affair changes) (Guariano and Giaretta 1995). As a result, it can be said that

ontology only provides the vocabulary with which to represent the body of knowledge.

The knowledge itself does not constitute ontology, but is a collection of factual

situations represented using the vocabulary provided by ontology (van Heijst et al.

1997; Chandrasekaran et al. 1999).

The “shared” characteristic of an ontology implies that ontology should capture

consensual knowledge, i.e. it is not restricted to some individual but accepted by a

group. “Explicit” means that ontology should be explicitly defined. In the context of

MAS, this means that ontologies used by agents need to be explicitly stated and not

remain implicit within the agent codes (O’Brien and Nicol 1998). Finally, “formal”

refers to the fact that an ontology should be machine-readable. Different degrees of

formality are possible. Ontologies like WordNet provide a thesaurus for natural

language terms explained in natural language. On the other end of the spectrum is CYC

which provides formal axioms for knowledge (Fensel 2001).

2.3.2. Motivations for Ontologies in MAS
The literature is currently rich with discussion of ontologies’ importance (Uschold and

Gruninger 1996), such as in the areas of knowledge engineering (Shave 1997),

19

information retrieval (Ding 2001) and database design (Sugumaran and Storey 2001).

This research focuses on the importance of ontologies in the context of MAS. Within

this context, ontologies have been widely recognised for their significant benefits to

interoperability, reusability, MAS development activities and MAS operation

(Falasconi et al. 1996; Malucelli and Oliveira 2004; Yuan 1999; Knoblock 1994). These

benefits are actually inter-related with each other, as will be mentioned throughout the

discussion.

2.3.2.1. Benefits of ontologies to interoperability

Interoperability refers to the ability of heterogeneous components to interact and work

with each other to achieve shared or individual goals (Finkelstein 1998). Interoperability

involves not only communication between the heterogeneous components (c.f. Section

2.3.2.4), but also the ability of these components to use the exchanged information3

(IEEE 1990). In MAS, interoperability issues may arise between heterogeneous agents

or between heterogeneous non-agent resources4 (such as knowledge sources and legacy

application systems). Two prominent interoperability issues are (Wache et al. 2001;

Sheth and Larson 1990; Tout 2001):

Semantic heterogeneity issue: occurring when the knowledge base of each agent, or

the information/application of each resource, uses a different vocabulary to express

the same information (e.g. “Price” versus “Cost”) and/or uses the same vocabulary to

express different information (e.g. concept “Employee” in one agent/resource means

anyone currently on payroll but in another agent/resource means anyone currently

receiving benefits, thus including retirees). Another example of semantic

heterogeneity is the scaling conflict, where the same concept refers to the different

scales or references of measurement (e.g. concept “Price” may be measured in dollar

in one agent/resource but in euro in another); and

Structural heterogeneity issue: occurring when the knowledge base of each agent, or

the information/application of each resource, uses a different conceptual schema to

represent its data. For example, concept “Customer-Name” is represented as an object

in one agent/resource but as an attribute in another.

3 Note that communication only results in the exchange of information between components.
4 From here on, the term “resource” is used to mean non-agent software components that are incorporated
into a MAS to provide agents with information and/or services (e.g. databases, web servers and legacy
processing systems).

20

Both of these heterogeneity issues can be addressed by the use of ontologies (Malucelli

and Oliveira 2004; Tout 2001; Shave 1997). Specifically, when the knowledge bases of

heterogeneous agents and the information/applications of heterogeneous resources are

explicitly conceptualised by ontologies, the structural and semantic interoperability

between these agents and resources can be achieved by mapping between these

ontologies. Such mechanism is known as “ontological mapping”, i.e. specifying the

semantic correspondences between the concepts of one ontology with those of another

(Madhavan 2002). Some example semantic correspondences are “equivalent”,

“subsumes” and “intersects” (Parent and Spaccapietra 1998).

There are two major ways to map between ontologies: either to map the ontologies

against each other (Figure 2.1a), or to map them against a common ontology (Figure

2.1b). The second approach is more efficient than the first because (Wache et al. 2001;

DiLeo et al. 2002; Uschold and Gruninger 1996):

it minimises the number of mappings between the ontologies. If there are n

ontologies, the direct-mapping approach will require (n-1)! pair-wise mappings,

while the use of a common ontology as an inter-lingua will result in only n mapping

linkages5;

it minimises the maintenance required when an agent or resource changes its

conceptualisation. With the direct-mapping approach, all ontological mappings

between the changed ontology and all other ontologies need to be updated, while

with the inter-lingua approach, only the mappings between the changed ontology

and the common ontology need to be updated; and

it facilitates the sharing of knowledge when each heterogeneous resource is wrapped

by a different wrapper agent (Figure 2.2). In this case, the wrapper agents can easily

share and interoperate their resources by, firstly, translating the resources’ outputs

from the resource-ontology’s vocabulary into the common-ontology’s vocabulary,

thereafter communicating the outputs with each other using the common ontology’s

vocabulary.

5 That is, pair-wise mapping linkages between the common ontology and each other ontology.

21

(a) (b)

Figure 2.1 – Approaches for ontological mapping (Wache et al. 2001)

Figure 2.2 – Sharing of knowledge between wrapper agents

It should be noted that, by supporting interoperability between system components,

ontologies are able to promote reusability (c.f. Section 2.3.2.2). In particular, legacy

agents and/or resources can be reused and added to the current MAS without causing

any interoperability problems with the existing agents and resources.

2.3.2.2. Benefits of ontologies to reusability

The capability of ontologies to enhance reuse has earlier been acknowledged and

exploited by the Knowledge Engineering community in the development of knowledge-

based systems (i.e. single-agent systems) (Gruber 1993b). An ontology was employed

to capture domain knowledge of a system, while the system’s problem solving

knowledge, which specifies the domain-independent reasoning steps to solve the

problem, was stored separately in a Problem Solving Method. Consequently, each

knowledge-based system was designed as being composed of two components: a

Problem-Solving Method and an ontology6 (Benjamins 1995; Chandrasekaran et al.

1999; Fensel et al. 1997; Fensel 1997). This modularity in knowledge modelling, which

was made possible by ontologies, enables the reuse of Problem Solving Methods across

6 This ontology contains all the domain knowledge required by the Problem Solving Method.

Wrapper
Agent C

Wrapper
Agent A

resource
ontology

Wrapper Agent B

common ontology resource
ontology

resource
ontology

resource
ontology

resource
ontology

resource
ontology

common ontology

resource
ontology

resource
ontology

resource
ontology

22

different problem domains, and the reuse of domain knowledge across different

problems (Uschold and Gruninger 1996; Mukherjee et al. 2000; Falasconi et al. 1996).

In the context of MAS development, the above ontology-based mechanism of reuse

could still be applied, since each agent in a MAS is basically a knowledge-based

system. As conjectured by this thesis, each agent can be modelled as being composed of

two major knowledge components: the behavioural knowledge component, which

captures the problem solving knowledge of an agent in the form of plans, reflexive rules

and/or actions that guide the agent’s behaviour in achieving its goals, and the (local)

domain knowledge7 component, which contains the ontologies defining the domain-

related knowledge requirements of the agent’s behaviour. Given this approach of agent

knowledge modelling, an agent’s behavioural/problem-solving knowledge can be

reused across agents with similar behaviour/goals in different domains, and its domain-

related knowledge can be reused across agents within the same domain area8.

Another factor that enables ontologies to enhance reusability is its readability. Software

reuse is typically promoted by the readability of software design and/or codes (Richards

2000). Ontologies enhance readability by offering a structured, explicit, human-readable

mechanism for representing knowledge. They help the system developer to easily

comprehend, inspect and reuse this knowledge for future applications.

In addition, when an existing MAS needs to be extended with heterogeneous add-in

agents and/or resources, ontologies makes it easy for the current agents to interoperate

with those newly added components (c.f. Section 2.3.2.1), thereby enabling the reuse of

these components.

2.3.2.3. Benefits of ontologies to MAS development activities

Two major activities of MAS development that can be greatly facilitated by the use of

ontologies are system analysis and agent knowledge modelling.

7 The term “local” is used to refer to the fact that the domain-related knowledge of each individual agent
in a MAS is normally only a portion of the domain knowledge that MAS covers as a whole.
8 In this case, the reused ontology may need to be adapted to fit the knowledge requirements of the
individual behaviour of each agent.

23

System analysis involves the formulation of the problem to be solved (e.g.

elicitation of system goals) and/or the representation of the application’s domain

knowledge (e.g. Car domain, Education domain) (Girardi et al. 2004).

With regard to the problem formulation, the availability of an ontology which

holds explicit, comprehensive knowledge about the target domain will greatly

promote the developer’s understanding of the application, thereby facilitating his

elicitation of the system goals and responsibilities. In fact, a weak ontological

analysis often leads to an incomplete or inaccurate understanding of the

application, thereby leading to an incoherent system (Shave 1997). This

importance of ontologies has been realised and exploited by the Knowledge

Engineering community in the engineering of knowledge-based systems (Shave

1997). The first step in developing an effective knowledge-based system has

been recommended to be an effective ontological analysis (Chandrasekaran et al.

1999). Moreover, when the target application covers multiple domains, the

mappings between domain ontologies will help the developer to grasp the

associations amongst these domains. These associations are particularly

important if the development project involves multiple developers working on

different domains (Uschold and Gruninger 1996).

With regard to the representation of the application’s domain knowledge,

ontologies offer a structured, explicit, human-readable mechanism for

representing domain knowledge. These characteristics promote the readability of

an ontology, hence making it a reuse-enhancing representation mechanism, as

previously mentioned in Section 2.3.2.2.

Given the above benefits of ontologies to system analysis, various methodological

frameworks for developing MASs and knowledge-based systems have exploited

ontologies to facilitate their problem-elicitation process (e.g. “GRAMO” – Girardi

and de Faria 2004) and domain knowledge modelling (e.g. “GRAMO” – Girardi and

de Faria 2004, and “CommonKADS” – Schreiber et al. 1994). In fact, a metamodel

of MAS modelling concepts recently proposed by Beydoun et al. (2005) also

advocates the use of ontologies to model application domain for a given MAS

system.

24

Agent knowledge modelling refers to the specification of local knowledge of each

agent in a MAS, including problem-solving knowledge and local domain-related

knowledge. Just as for application’s domain knowledge, an ontology can be used as

an effective representation mechanism for agents’ local domain-related knowledge

(which is typically a portion of the application’s domain knowledge) (Mukherjee et

al. 2000; Tamma and Bench-Capon 2001). Different (parts of) ontologies can be

assigned to different agents to represent the agents’ different views of the world

(Tamma and Bench-Capon 2001; Falasconi et al. 1996). In addition, as previously

discussed in Section 2.3.2.2, ontologies offer a mechanism for decoupling the

modelling of agent domain-related knowledge from its problem-solving knowledge,

hence promoting the reuse of agent knowledge modules. Various methodologies for

developing single-agent knowledge-based systems have implemented this modelling

mechanism, e.g. KAMET II (Cairo and Alvariz 2004) and CommonKADS

(Schreiber et al. 1994). It should be noted that, since the local domain-related

knowledge of each agent is extracted from the application’s domain knowledge, the

use of ontologies to represent the application’s domain knowledge during system

analysis would facilitate the use of ontologies to represent agents’ local knowledge

during agent knowledge modelling.

2.3.2.4. Benefits of ontologies to MAS operation

Ontologies are beneficial to two major aspects of MAS operation: communication and

agent reasoning.

Communication in a MAS may occur between agents, between agents and non-

agent resources, and between agents and human users.

Regarding inter-agent communication, even though sharing a common ACL will

allow agents to exchange messages (thanks to the common communication

syntax), it does not ensure that the communicating agents will interpret the

exchanged messages in a uniform and consistent manner, i.e. to share the same

understanding of the semantics of the messages (Weiss 1999; Uschold and

Gruninger 1996; Falasconi et al. 1996). Successful agent communication

requires “ontological commitment” of the agents, i.e. an agreement between

agents to share an ontology during communication (Gruber 1993a). This shared

25

ontology provides the agents with a set of common vocabulary for formulating

and interpreting the content of the exchanged messages. For example, if agent A

communicates with agent B using the following message (written in FIPA-ACL),
inform

:sender AgentA

:receiver AgentB

:language KIF

:ontology CarDomainOntology

:content (> (price car X) (price car Y))

then both agents need to commit to the Car Domain Ontology (stated in the field

“:ontology”) where concepts “price” and “car” are defined. This means that the

local knowledge of each agent should contain the common ontology that is used

for communication. This requirement indicates the inter-dependency between

the ontology’s role in agent communication at run-time and the modelling of

agent knowledge at design-time (c.f. Section 2.3.2.3).

Regarding agent-resource communication, non-agent resources are normally

accessed by agents via “wrappers”, i.e. specialised agents that provide interface

to the resources (Jennings and Wooldridge 1995; FIPA 2001a). Client agents can

relay ACL queries and commands to the wrapper agents, which in turn translate

and invoke them onto the underlying resources (Figure 2.3).

Figure 2.3 – Agent-resource communication

Ontologies can be used to conceptualise the resources’ internal data and/or

application, thereby allowing the wrapper agents to determine which vocabulary

they should use to formulate input queries/commands to the resources and

interpret outputs, without having to access the resource’s internal structure

(Gruber 1993a). For example, if the ontology of a Car Supplier database

resource shows that a “Car” entity in the database has attributes “Car-Brand”,

“Price”, “Transmission” and “Power-Steering”, the wrapper agent can use these

ontological concepts to compose queries to the database server, for instance,

ACL messages Client
agent

Wrapper
agent Resource

Native language
queries/commands

26

Select * from CarInfo where Car-Brand = “Toyota”, Price < $50,000,

Transmission = “auto”, Power-Steering = “yes”

Regarding human-agent communication, ontologies can be used to facilitate the

formulation of user queries and the representation of queries’ results. When a

query/command needs to be formulated, the human user can consult the ontology

committed by the agent receiving the query and use the vocabulary defined in

that ontology as query terms (Figure 2.4) (Mahalingam and Huhns 1997; Yuan

1999). A query composed this way will be directly understood by the queried

agent without any need for further query processing. When the results of the

query are found, they can be represented using the same ontology as that

previously used for query formulation. This allows the human user to receive a

single representation scheme of the results, even if the results have been gathered

from heterogeneous resources with different local representation schemes (Yuan

1999).

Figure 2.4 – User query formulation using concepts from ontology

Note: Concepts “Cost”, “Door”, “Make”, “Steering”, “Transmission” and “Warrantee” are

defined in the Car Domain Ontology committed by the Car Seller agent. Concepts “Automatic”

and “Manual” must have been defined as properties or sub-classes of concept “Transmission”.

Agent reasoning at run-time operationalises the problem-solving knowledge of the

agent, and uses the domain-related knowledge held by the agent as inputs

(Benjamins et al. 1996). If the domain-related knowledge has been modelled as an

ontology during agent knowledge modelling at design time, with all relevant domain

concepts and relationships being explicitly defined (c.f. Section 2.3.2.3), the agent

reasoning process can easily utilize this knowledge and make the most out of it.

Followings are a few examples of how ontology-based knowledge can facilitate

agent reasoning:

The taxonomy of concepts in an ontology can help agents to process a user query

by decomposing it into sub-queries. For example, if the user query is “Find the

27

make of all cars”, the taxonomy of concepts in the Car Domain Ontology (Figure

2.5) indicates that the Search agent can solve the query by firstly searching for

the make of all Sport Cars, Family Cars and Four Wheel Drive, thereafter

combining the results. In some cases, the agents can trace up the specialisation

hierarchy to provide more generic or additional outputs to the user query if

necessary (e.g. finding the make of all motor vehicles apart from cars).

Figure 2.5 – Example fragment of Car Domain Ontology

Mappings between ontologies may help agents to make useful inferences. For

example, in Figure 2.6, given the mapping between the concept “Car audio

system” in the Car Domain Ontology and the concept “Car audio” in the

Entertainment System Ontology, the Car Seller agent can recommend the user

consider buying various Car Audio products when a user submits a car purchase

request. Semantic mappings between different ontologies also help agents to

perform translation services (e.g. between Car terminology in French and Car

terminology in English).

Figure 2.6 – Example ontological mappings between Car Domain Ontology and Entertainment System

Ontology

Mappings between ontologies of heterogeneous resources and a common

ontology may help agents to determine the appropriate resources to use without

having to access each resource’s internal data (Knoblock et al. 1994; Singh

2000). For example, suppose a wrapper agent has access to several Car suppliers’

Motor vehicle

Car

Sport car Family car Four wheel drive

Ute Van

Entertainment System
Ontology

Car accessory
Car air conditioning
system
Car audio
system

Car Domain Ontology

equivalent

Car

Sport car
Family car

Four wheel drive

Entertainment System

Audio
system

Video
system

Car audio Home audio

Wheel

28

databases, and the agent is interested in finding out which suppliers offer a car

guarantee upon sale of cars. Instead of examining the internal data of each

database, the agent can find the answer by simply identifying the databases

whose local ontology maintains a semantic mapping with the concept “warranty”

in the common Car Domain Ontology.

Axioms, rules and assertions that specify constraints on concepts and relations

(if any) may help agents to reason. For example, a Car Seller agent should know

that “Door” of a “Family Car” is never less than 3, and “Cost” of a car must never

be lower than “Purchase-Price”.

2.3.3. Typology of Ontology
A common taxonomy for classifying ontology is by their level of generality (Guarino

1997; Falasconi et al 1996; Fensel 2001; van Heijst et al. 1997; Gamper et al. 1999):

Generic ontologies, Domain ontologies, Task ontologies and Application ontologies

(Figure 2.7).

Figure 2.7 – Types of ontology (Guarino 1997)

Generic ontologies define very general concepts about the world such as “Time”,

“Matter”, “Object”, “Event”, “Action”, “Process” and “Component”. These concepts are

independent of domains and tasks and thus can be reused across applications. For

example, CYC (Lenat and Guha 1990) is a generic ontology that provides thousands

of concepts and millions of axioms and rules for formalising commonsense

knowledge for reasoning.

Domain ontologies define concepts that are specific to particular domains. For

example, a Car Domain Ontology defines concepts such as “Make”, “Steering” and

Generic ontology

Domain ontology Task ontology

Application ontology

29

“Transmission”, while a Medicine Domain Ontology specifies concepts such as

“Disease”, “Symptom” and “Medication”. Domain ontologies may be reused across

applications that belong to the same domain. For example, the Unified Medical

Language System ontology offers numerous biomedical and health-related concepts

that can be reused across biomedical systems (Humphreys and Lindberg 1993).

Domain ontologies can be developed by refining Generic ontologies.

Task ontologies define domain-independent concepts that are related to generic

tasks (e.g. negotiation task, diagnosis task) or problem-solving methods (e.g.

propose-and revise method, board-game method). For instance, a Negotiation Task

Ontology may define concepts such as “Offer” and “Utility rating”, while a Propose-

and-Revise Task Ontology may capture concepts such as “Fix”, “Constraints” and

“Input variable” (Gennari et al. 1994; Studer et al. 1996). Task ontologies can be

reused in similar tasks across different applications. Task ontologies can be also

developed by refining Generic ontologies.

Application ontologies: define concepts that are specific to an application. Since

each application is typically characterised by both a particular domain(s) and a

particular task(s), Application ontologies are basically a synthesis of Domain

ontologies and Task ontologies that have been specialised to model the application’s

specific knowledge needs. For example, an Application ontology of a Car Selling

MAS may define concept “Car-price-offer”, which is the specialisation of concept

“Car-price” from a Car Domain Ontology and concept “Offer” from a Negotiation

Task Ontology. Application ontologies normally cannot be reused across

applications, because each different application normally engages in a different

combination of domains and tasks.

2.3.4. Ontology Representation Languages
To date, various textual and graphical modelling languages have been proposed for the

representation of ontologies. Section 2.3.4.1 describes some well-known textual

languages, while Section 2.3.4.2 reports on graphical languages.

30

2.3.4.1. Textual representation languages

Textual languages are those that specify ontologies using linear, logic-based

expressions. Existing textual ontology languages adopt the following major schemes of

knowledge representation.

First-order predicate logic: Symbols of first-order predicate logic allow the

representation of constants (i.e. specific concepts), variables (i.e. unspecified

concepts), predicates and functions (i.e. relations between concepts) and formula

(i.e. meaningful expressions combining concepts) (Lenat and Guha 1990). CycL

(Lenat and Guha 1990) and KIF (Genesereth and Fikes 1992) are two well-known

ontology languages which are based on first-order predicate logic. Below is an

example fragment of ontology specified in CycL.
(genls Dog Mammal)

(#$thereExistAtMost 1 ?TAIL

(#$and

 (#$anatomicalParts Dog ?TAIL)

 (#$isa ?TAIL #$Tail)))

(Dog is a Mammal. Tail is an anatomical Part of a Dog. Each Dog should have

at most one Tail).

Description logic: Knowledge in Description Logic is represented in a hierarchical

structure of concepts (Baader et al. 2003). Concepts can be defined by simply

naming them and specifying where they fit in the hierarchy. The most important

relationships between concepts are subsumption relationship (where one concept is

the generalisation/specialisation of another) and conjunction relationship (where one

concept is the joined specialisation of other concepts). KL-ONE (Brachman and

Schomolze 1985) and CLASSIC (Borgida et al. 1989) are examples of ontology

languages based on description logic. An illustration of KL-ONE ontology fragment

is presented below.
Human Anything

 Student Human

 Researcher Human

 PhD-Student Student

 PhD-Student Researcher

 Male-student = (and Man Student)

31

Frame-based paradigm: A frame is a single place in which properties and axioms

of a class (i.e. an entity) are specified (Bechhofer et al. 2001). Relations between

classes are expressed by stating dependencies or restrictions between classes. Two

examples of frame-based ontology languages are Ontolingua (Gruber 1993b) and

Frame-Logic (Kifer et al. 1995). An illustration of Ontolingua is presented below,

where a class “author” is defined. Relations “author.name” and “author.documents”

are specified as “slots” in the frame “author”. The relation “value-cardinality” is used

to express constraints on the slots.
(define-class AUTHOR (?author)

:def (and (person ?author)

(= (value-cardinality ?author AUTHOR.NAME) 1)

(>= (value-cardinality ?author AUTHOR.DOCUMENTS) 1)))

Web-enabled languages: In the late 1990s, the idea of a Semantic Web where

information on the Web is presented in a machine-readable form (Berners-Lee et al.

2001) has called for the development of ontology languages that are compatible with

current Web standards. Two examples of web ontology languages are XOL (Karp et

al. 1999) and DAML+OIL (Horrocks and van Harmelen 2001). XOL is built upon

frame-based approach and XML syntax, while DAML+OIL unifies description

logic, frame-based language and RDF. The following example of XOL ontology

fragment defines a class “person” with property “last-name” and “age”.
<class>

<name>person</name>

</class>

<slot>

<name>last-name</name>

<domain>person</domain>

<value-type>string</value-type>

</slot>

<slot>

<name>age</name>

<domain>person</domain>

<value-type>integer</value-type>

</slot>

32

2.3.4.2. Graphical representation languages

The use of graphical languages to represent ontology is compelling for many reasons.

They are easier to use during the process of ontology engineering than structured

textual language, because of the intuitiveness of the visual structures of the language

(Knowledge Based Systems Inc 1994)

They can easily be communicated with domain experts and users (Falbo et al. 2002;

Cranefield et al. 2001).

They provide a natural medium for representing relational structures, where

concepts are modelled as nodes and relations between concepts as arcs (Kankaanpää

1999).

Some graphical languages for representing ontology are UML (Cranefield and Purvis

1999; Cranefield et al. 2001; Bergenti and Poggi 2001; Bergenti and Poggi 2002),

IDEF5 Schematic Language (Knowledge Based Systems Inc 1994) and LINGO (Falbo

et al. 1998; Falbo et al. 2002).

UML: UML is a modelling language for OO analysis and design. However, it has

been applied to the representation of ontologies. With UML, each ontology is

modelled as a class diagram, where classes represent entities and relationships

symbolize relations between entities (Figure 2.8). A class is characterised by its

name and attributes, and each attribute is defined by its name and type.

Operations/methods are not necessary for classes because ontologies only capture

the conceptual structure of the entities (Bergenti and Poggi 2002). Relationships

between entities can be generalisation, aggregation or association. The semantics

and notation of each type of relationship are the same as in OO modelling. The ends

of the association relationships may be labelled with “role names” of the relating

classes. Associations that embrace attributes will be modelled by an “association

class”. Object Constraint Language (OCL) can be used to represent constraints on

classes, attributes and relationships. These constraints are specified as notes in the

UML class diagram.

33

Figure 2.8 – Example of ontology representation in UML (Cranefield and Purvis 1999)

IDEF5 Schematic Language: IDEF5 is a tool for creating and editing ontologies. It

offers two languages for representing ontology: IDEF5 Schematic Language which

provides graphical notation and IDEF5 Elaboration Language which provides first-

order logic formalism.

IDEF5 Schematic Language models ontological concepts as kinds (which is

equivalent to classes in UML) and relationships between concepts as relations or

transitions. Relations have the same semantics as in UML, while transitions refer to

a special kind of relationship where the concept at one end of the relationship may

be transformed into the concept at the other end. The process involved in each

transition may be captured as a “process” entity attached to the transition (e.g.

process “Dry” in Figure 2.9). Axioms and rules constraining the concepts, relations,

transitions and processes can be recorded using IDEF5 Elaboration Language.

Figure 2.9 – Example of ontology representation in IDEF5 Schematic Language (Knowledge Based

Systems Inc 1994)

on on

Subtype-of

Liquid

Wet
Paint

Subtype-of

Solid

Dry
Paint

Dry

Car

34

LINGO: The modelling primitives of LINGO are concepts and relations. Potential

types of relations are generalisation, composition and association (with the same

semantics as UML relationships). Axioms and rules about concepts and relations

can be specified using first-order logic assertions accompanying the diagram.

Figure 2.10 – Example of ontology representation in LINGO (Falbo et al. 1998)

2.4. SUMMARY
This chapter has defined the terms “Agent”, “Multi Agent System” and “Ontology”. It

also discussed the potentials of Agent Technology and MAS, and the benefits of

ontology to MAS development and MAS operation.

In the next chapter, Chapter 3, a review of the existing AOSE methodologies for MAS

development is documented. That chapter includes the identification of the limitations

of these methodologies with regard to their support for MAS analysis and design, and

their support for ontology-based MAS development. Limitations on the latter directly

cause these methodologies to not being able to fully realise the benefits of ontology to

MAS development and MAS operation which are listed in this chapter (Section 2.3.2.2).

Activity

Construction
Activity

Management
Activity

Quality
Assurance
Activity

Artifact input
composition

generalisation

35

CHAPTER 3

REVIEW OF EXISTING MAS
DEVELOPMENT METHODOLOGIES

3.1. INTRODUCTION
This chapter reviews the AOSE methodologies that have been proposed in the literature

for the analysis and design of MAS. It firstly describes each methodology in Section

3.2, thereafter identifying the general limitations of these methodologies in Section 3.3.

The limitations include those relating to the generic MAS analysis and design activities

(Section 3.3.1), and those relating particularly to the support for ontology-based MAS

development (Section 3.3.2). A more detailed evaluation of these AOSE methodologies

would be documented in Chapter 5.

From here on, the phrase “MAS development methodology” is used interchangeably

with the phrase “AOSE methodology” to mean an AOSE methodology that covers the

analysis and design activities of MAS development.

3.2. DESCRIPTION OF EXISTING MAS

DEVELOPMENT METHODOLOGIES
Even though research in AOSE is still less developed than other conventional software

engineering paradigms such as OO paradigm, work has increased in this area in recent

years. A number of AOSE methodologies have been proposed to assist in the analysis

and design of MASs. These methodologies vary significantly in their scope, approach,

process steps, modelling concepts and modelling notation.

In total, sixteen AOSE methodologies are reviewed in this chapter. These

methodologies were identified from an extensive search of the literature and selected for

investigation based on the following criteria.

36

The chosen methodology has been applied or tested on case studies or industrial

projects.

The chosen methodology has been referenced by other researchers in the field.

The chosen methodology satisfies the definition of a “software engineering

methodology”. As defined by Henderson-Sellers et al. (1998), a software

engineering methodology is one that provides the following key elements:

- a software engineering process to conduct the development;

- techniques to assist the process; and

- definition of work products.

Only AOSE methodological frameworks that provide all three elements were

selected for study in the thesis.

In the following sections, a brief description of each selected methodology is presented.

3.2.1. MASE
MASE, “MultiAgent System Engineering” (Wood 2000; Wood and DeLoach 2000a;

Wood and DeLoach 2000b; DeLoach 2005), takes an initial system specification and

produces a set of formal design documents for a MAS. It is based upon the preceding

research work in AOSE (such as Kendall and Zhao 1998 and Kinny et al. 1996) and

conventional OO modelling techniques (such as OMT and UML). An overview of

MASE is provided in Figure 3.1.

Figure 3.1 – Overview of MASE (Wood and DeLoach 2000a)

37

The development process of MASE consists of Analysis and Design phases. The

Analysis Phase involves three steps.

1. “Capturing goals” step firstly identifies goals of the target system and organises

them into a Goal Hierarchy Diagram.

2. “Applying use cases” step produces Use Cases from the system requirements and

elaborates them into Sequence Diagrams.

3. “Refining roles” step identifies roles from system goals and actors, thereby

developing a Role Model. This model shows all the roles in the system, their

corresponding goals and the communication paths between roles (Figure 3.2). The

developer may further elaborate the Role Model by defining tasks to be performed

by each role and communications between tasks. A Concurrent Task Diagram,

which is basically a state transition diagram, can be developed to provide a detailed

definition of each task.

Figure 3.2 – MASE Role Model (Wood and DeLoach 2000a)

The Design Phase of MASE transforms the preceding Analysis models into constructs

necessary for the actual implementation of the MAS system. The phase consists of four

steps.

1. “Creating agent classes” step identifies agent classes for the target system by

applying one-to-one mappings between roles and agents. Multiple roles, however,

can be combined into a single agent class if the size and frequency of inter-role

communications are high. An Agent Class Diagram is produced to show the

identified agent classes, their corresponding roles and conversation paths between

agent classes (Figure 3.3).

38

2. “Constructing conversations” step defines coordination protocols between agents.

Each conversation is described by two Communication Class Diagrams, each

specifying the state transitions of each agent participant during the conversation

(Figure 3.4).

3. “Assembling agent classes” step identifies and constructs the internal components of

each agent class. The developer can either reuse a pre-defined agent architecture and

internal components, or retrieve pre-defined components and assemble them into a

user-defined architecture, or define both internal components and agent architecture

from scratch.

4. “System design” step instantiates agent classes with actual agent instances and

allocates these instances to nodes. A Deployment Diagram is developed to show the

number, types, locations and communication paths between agent instances (Figure

3.5).

Figure 3.3 – MASE Agent Class Diagram (Wood and DeLoach 2000a)

Figure 3.4 – MASE Communication Class Diagram for initiator (left) and responder (right) (Wood and

DeLoach 2000a)

cancel()
^dataReply(data) dataRequest

(units, target)

[timeout(t)]]^cancel()

dataReply(data)

sorry^dataRequest(units, target)

^dataRequest(units, target)

wait store
addData(data)

validation
valid = validate(units, target)

^dataRequest(units, target)

store
data = getData(units, target)

wait

[NOT valid]
^sorry() cancel()

cancel()

39

Figure 3.5 – MASE Deployment Diagram (Wood and DeLoach 2000a)

In a recent publication (DiLeo et al. 2002), MASE has been expanded to provide

support for ontology-based MAS development. Ontology is introduced as a mechanism

to model the application domain. An additional step – “Building ontology” – has

accordingly been added to the Analysis phase (Figure 3.6). This step constructs the

domain ontology by identifying the scope of the ontology, collecting data about the

domain, forming the initial ontology, and finally refining, validating and maturing the

ontology into a complete version. Once the domain ontology is constructed, parameters

passed between agents during the execution of tasks or during conversations are

specified in accordance with the ontology. Specifically, the data type of each exchanged

parameter is defined using the concepts defined in the ontology.

Step “Assembling agent classes” of MASE has also been extended to support the

specification of ontology for individual agents. This specification is needed if the agent

requires a knowledge model that is different from the other agents and/or from the

overall domain ontology. The developer should determine the mappings between these

individual agents’ ontologies in order to interoperate between the heterogeneous agents.

40

Figure 3.6 – Overview of extended version of MASE (DiLeo et al. 2002)

3.2.2. MASSIVE
MASSIVE (Lind 1999; Lind 2000a) follows an “iterative view engineering process” for

MAS development, which is a product-centred development process that combines

Round-trip engineering and Iterative Enhancement (Figure 3.7). In the first cycle of the

development process, the developer firstly produces a preliminary version of the

development product (1), which is composed of seven different “views” of the system.

These views are then implemented (2) and refined if errors occur during implementation

(3). The initial implementation is then tested and/or enhanced (4), which may result in

enhancements to the views (5). If enhancements cannot be integrated into the views

(e.g. because they are incompatible with some basic requirements of the views), the

implementation must be changed (6). After this step, the next cycle is executed until the

entire system is fully implemented.

41

Figure 3.7 – MASSIVE Iterative View Engineering process (Lind 2000a)

Each of the seven views of MASSIVE describes a particular aspect of the target system

which is conceptually linked to other views. These views are briefly discussed below.

Task View specifies the tasks to be fulfilled by the target system. It is developed

through iterative functional decomposition of the problem domain (Figure 3.8). Leaf

nodes of the task hierarchy represent atomic activities which are to be used for roles

identification.

Figure 3.8 – MASSIVE Task View (Lind 1999)

Environment View models MAS’s environment from both the perspective of the

developer and the perspective of the system. Regarding the developer’s perspective,

the environment should be characterised in term of its organisational context (i.e.

accessible or inaccessible, deterministic or non-deterministic, episodic or non-

episodic, static or dynamic) and runtime context (e.g. programming model,

programming language and communication mode). Regarding the system’s

Manage
Customers

Manage
Stock

Manage
Address

Take
Order

Order
Supply

Change
Address

Delete
Customer

42

perspective, the developer should determine the input/output mechanism used by the

agents to interact with the environment (e.g. sensor/effector).

Role View identifies roles for the target system and assigns roles to agents. To

identify roles, leaf-node tasks in Task View are clustered in such a way as to

maximize intra-cluster coherence while satisfying the physical resource constraints

of the operational environment of the target system. MASSIVE does not provide any

guidelines on how to assign roles to agents.

Interaction View characterises the general nature of agent interactions in the target

application, thereafter using this characterisation to choose an appropriate

interaction scheme for the system (e.g. information exchange scheme, market-based

scheme or blackboard interaction scheme). The developer should also identify any

interaction protocols that are necessary for the system (e.g. Contract Net or

Simulated Trading).

Society View characterises the society of agents in MAS according to various

dimensions, including type (i.e. open or closed), structure (i.e. flat or hierarchical),

consistency (i.e. homogeneous or heterogeneous) and temporal context (i.e. static or

dynamic). MASSIVE offers guidelines on how to design the social structure for the

agent society given the characterisation.

Architectural View specifies the system architecture and agent architecture. The

modelling of system architecture should include the modelling of system entities

(e.g. conventional objects besides agents), agent management tasks/facilities,

database design and external components/devices. Regarding agent architecture, the

developer is recommended to identify specific architectural requirements and select

from the existing architectures before trying to develop a new one from scratch.

System View deals with design issues that affect the MAS system as a whole (e.g.

user interface design, exception handling and performance engineering).

43

3.2.3. SODA
SODA, “Societies in Open and Distributed Agent spaces” (Omicini 2000), proposes a

number of abstractions and techniques for the modelling of agent societies and

environments. It does not aim to provide support for agent internal design, but rather

focuses on inter-agent design. SODA’s development process is structured into Analysis

and Design phases.

The Analysis Phase is concerned with constructing three models.

Role Model identifies and defines all roles in the target system. SODA derives roles

from system tasks. Each task can either be assigned to a single role or a group of

coordinating roles. In the latter case, the task is named a “social task” and each role

in the group is called a “social” role. Each role and each role-group is defined in

terms of their individual and/or social tasks, permissions to resources (which are

identified in Resource Model) and interaction protocols and rules (which are defined

in Interaction Model).

Resource Model defines all abstract resources provided by the environment to the

target MAS. Each resource is described in terms of its services, access modes (i.e.

the different ways in which the services can be exploited by agents) and permissions

granted to roles and role-groups.

Interaction Model defines interaction protocols for roles and for resources, as well

as interaction rules for role-groups. An interaction protocol specifies the information

required/provided by a role to accomplish its tasks, or by a resource to invoke its

services. An interaction rule for a role-group governs the interactions among social

roles and resources so as to make the group accomplish its social task.

The Design Phase of SODA is concerned with transforming the preceding Analysis

models into design abstractions that can be mapped one-to-one onto the actual

components of the implemented MAS system. These design abstractions are captured in

three related models.

Agent Model defines agent classes in the system. Each agent class is composed of a

set of roles (both individual and social) and accordingly characterised by its

44

individual/social tasks, permissions to resources and interaction protocols associated

with its roles. Agent classes can be further described by cardinality, location and

source (i.e. from inside or outside the system).

Society Model describes agent societies in a MAS. Each society is formed by agents

whose roles belong to a role-group. The developer must choose the most suitable

“coordination model” for the target system, for example, one that provides

abstractions expressive enough to model the society’s interaction rules such as those

surveyed in Papadopoulos and Arbab (1998). Interaction rules can be derived from

the Interaction Model and embodied as coordination rules in the selected

coordination model.

Environment Model identifies “infrastructure classes” of the MAS environment by

mapping from resources in the Resource Model. Each infrastructure class is given a

location, owner and cardinality. A topological model of the MAS environment can

be developed based on the developer’s choice, such as the TuCSoN model

(Cremonini et al. 1999).

3.2.4. GAIA
This widely referenced methodology aims to guide the developer from a statement of

requirements to a design that is sufficiently detailed that it can be implemented directly

(Wooldridge et al. 1999; Wooldridge et al. 2000). GAIA has been recently extended to

include new organisational abstractions that enable it to support the development of

“open” MASs (Zambonelli et al. 2003).

The Analysis Phase of GAIA firstly investigates the potential existence of multiple

sub-organisations within the target system. If multiple sub-organisations co-exist, they

are analysed and designed as autonomous interacting MASs.

The Environment Model is then constructed to describe the MAS environment in terms

of abstract computational resources (e.g. variables or tuples that the agents can

read/access). Each resource is characterised by the types of actions that agents can

perform on it.

45

A preliminary definition of roles is subsequently produced in the Preliminary Role

Model. Roles may be identified from the system’s real-world organisation (e.g. real-

world offices or departments) or from the “basic skills” that are required by the

organisation to achieve its goals. GAIA models each role in terms of responsibilities and

permissions to resources (Figure 3.9). Responsibilities represent the role’s functionality

and are classified into two types: “safety” or “liveness”. Safety responsibilities are

typically predicates, specifying the acceptable state of affairs that should be maintained

across all states of execution. Liveness responsibilities, on the other hand, specify the

state of affairs that an agent must bring about (i.e. “something will be done”). Each

liveness responsibility is defined as a set of activities and interaction protocols.
Role Schema: CUSTOMERHANDLER
Description:

Receives quote request from the customer and oversees process to ensure appropriate quote is returned.
Protocols and Activities:

AwaitCall, ProduceQuote, InformCustomer
Permissions:

reads supplied customerDetails // customer contact information
 supplied customerRequirements // what customer wants
 quote

Responsibilities
Liveness:
 CUSTOMERHANDLER = (AwaitCall.GenerateQuote)
 GENERATEQUOTE = (ProduceQuote.InformCustomer)
Safety:

true

Figure 3.9 – GAIA Role Model (Zambonelli et al. 2003)

A Preliminary Interaction Model is also developed. In GAIA, a protocol is viewed as an

institutionalised pattern of interaction. Each protocol definition only describes the

interaction’s purpose, initiator roles, responder roles, inputs, outputs and processing

(Figure 3.10). It is abstracted away from any particular sequence of messages.
ReturnCosting

NetworkDeveloper
CustomerHandler,

QuoteManager

generate cost solution

Figure 3.10 – GAIA Interaction Model (Wooldridge et al. 2000)
(Protocol ReturnCosting is initiated by role NetworkDeveloper and involves

roles CustomerHandler and QuoteManager. The protocol takes as input

customerRequirements and produces quote.)

The last step of the Analysis phase defines the organisational rules for the target

system. “Liveness” organisational rules specify how the dynamics of the MAS

organisation should evolve over time, while “safety” organisational rules define time-

independent global invariants of the organisation.

customerRequirements

quote

46

The Design Phase of GAIA transforms the above Analysis models into sufficiently

low-level abstractions, so that traditional design techniques (such as OO techniques)

may be applied. The phase starts with the selection of an organisational structure for

the target system. The developer should choose a structure that provides the most

appropriate topology and authority relationship. Once the organisational structure is

defined, the Preliminary Role and Interaction Models can be refined and elaborated into

Complete Role and Interaction Models.

Other design models to be developed are Agent Model, Service Model and

Acquaintance Model.

Agent Model identifies agents from roles by applying a one-to-one mapping between

roles and agent classes. A simple hierarchy (or hierarchies) can be used to model the

agent class structure, where root nodes correspond to roles and other nodes

correspond to agent classes. The Agent Model also shows the instantiation of each

agent class (Figure 3.11).

Figure 3.11 – GAIA Agent Model (Wooldridge et al. 2000)

Service Model identifies services offered by each agent and properties of these

services (i.e. inputs, outputs, pre-conditions and post-conditions). Services can be

derived from roles’ responsibilities, particularly liveliness responsibilities), and

interaction protocols.

Acquaintance Model specifies communication links between agent classes (Figure

3.12). The goal is not to specify what messages are sent and when, but to identify

any potential communication bottlenecks between agents and to evaluate if the

system is internally loosely coupled.

47

Figure 3.12 – GAIA Acquaintance Model (Wooldridge et al. 2000)

3.2.5. MESSAGE
MESSAGE (Eurescom 2001b) adopts the Rational Unified Process lifecycle and

extends UML to support the modelling of concepts such as “organisation”, “role”,

“goal” and “task”. MESSAGE development process covers the Analysis and Design

phases.

The Analysis Phase is concerned with constructing five models.

Organisation Model describes the structural and acquaintance relationships between

the target system and its environments (Figure 3.13), and the acquaintance

relationships between agents/roles and resources making the system (Figure 3.14).

Goal/Task Model specifies the decomposition structure of goals of the target system.

A Workflow diagram may be developed for each goal to specify what tasks are

needed to achieve the goal and which roles are responsible for which tasks.

Agent/Role Model describes the individual agents/roles in terms of their goals,

resources and tasks.

Domain Model shows domain-specific entities and relations that are relevant to the

target application (Figure 3.15). This model is basically equivalent to a domain

ontology.

Interaction Model specifies, for each interaction between agents/roles, the initiator,

collaborators, motivation and information supplied/achieved by each participant

(Figure 3.16).

These five Analysis models are developed in a step-wise refinement manner, with the

subsequent refinement cycles elaborating and expanding the models developed in the

previous cycle. MESSAGE proposes three major approaches for this refinement,

namely organisation-centred, agent-centred and goal/task refinement approaches.

48

Figure 3.13 – MESSAGE Organisation Model – Structural Relationships (left) and Acquaintance

Relationships (right) (Eurescom 2001b)

Figure 3.14 – MESSAGE Organisation Model - Agent/Role and Resources Acquaintance Relationships

(Eurescom 2001b)

Figure 3.15 – MESSAGE Domain Model (Eurescom 2001b)

49

Figure 3.16 – MESSAGE Interaction Model (Eurescom 2001b)

The Design Phase of MESSAGE transforms the above Analysis models into

computational entities that can be implemented on an agent platform. The phase is

structured into High-Level Design and Low-Level Design.

During High-Level Design, the roles identified in the Analysis phase are assigned to

agents. If agents have been identified during Analysis, they should be re-examined to

check if they are indeed appropriate to be implemented as agents (some agents during

Analysis may be implemented as simple classes or resources). Interactions identified in

the Analysis phase should also be elaborated with interaction protocols and UML state-

charts.

For Low-Level Design, MESSAGE proposes two approaches for mapping high-level

design concepts to specific computational elements: Organisation Driven approach and

Agent-Platform Driven approach. The former uses the Organisation Model to derive the

MAS architecture, agent architecture, agent knowledge and resources. The latter is more

platform-oriented and considers that each agent can be implemented as a simple class. A

detailed description of each approach is provided in Eurescom (2001b).

3.2.6. Methodology for BDI Agents (BDIM)
As mentioned in Section 2.2.3, BDI is a prominent architectural model for agents. Each

BDI agent is composed of beliefs (i.e. the agent’s knowledge of the world), desires (i.e.

the agent’s motivations such as goals, objectives or allocated tasks) and intentions (i.e.

the desires that the agent is committed to achieving at a certain point in time) (Rao and

50

Georgeff 1995). The BDIM methodology (Kinny and Georgeff 1996; Kinny et al. 1996)

is specifically targeted at MASs that are based upon the BDI paradigm.

In BDIM, models are classified into two levels of abstraction: external and internal.

External models describe the target MAS from the system-level point of view, while

Internal models define each agent class in terms of its internal components.

Accordingly, the development process of BDIM is organised into two groups of steps:

those for developing External models and those for developing Internal models.

For the External models, a four-step process is proposed.

1. Identify major roles in the system and produce a draft Agent Model. This model

captures the inheritance and aggregation relationships among abstract and concrete

agent classes, as well as the instantiation of each concrete agent class (Figure 3.17).

During this step, agent classes are expected to be quite abstract, not assuming any

particular granularity of agency.

2. Identify responsibilities and associated services of each role. Each agent class

should be accordingly decomposed to the service level.

3. Specify, for each service, interactions that may occur between roles/agents, thereby

producing an Interaction Model. The model should describe the responsibilities and

services of each agent class, the associated interactions and the control relationships

between agent classes. BDIM however does not impose any modelling notation for

its Interaction Model.

4. Refine the Agent Model to introduce any new abstract and/or concrete agent classes

if necessary (for example, agent classes that offer some common services may be

modelled as specialisations of an abstract agent class).

51

Figure 3.17 – BDIM Agent Model (Kinny et al. 1996)

The construction of Internal models for each agent class begins from the third step of

the above process and involves two steps of its own.

1. Identify goals of each agent class and analyse the means for achieving these goals.

This step generates a Goal Model and Plan Model for each agent class. Agent’s

goals can be derived from the services identified in step 2 of the External models’

development process. The Goal Model consists of a Goal Set and one or more Goal

States. Each goal is specified by goal formula signatures, e.g. achieve(!), verify(?)

and test($). The Plan Model contains a Plan Set, which consists of a set of Plan

Diagrams (Figure 3.18).

2. Model the agent’s beliefs by analysing the contexts in which goals are achieved and

the conditions that control the execution of plans’ actions (including input and

output data requirements). Agent’s beliefs are captured in the Belief Model, which

contains one Belief Set and one or more Belief States. The Belief Set (Figure 3.19)

conceptualises the potential beliefs of the agent, while Belief States are particular

instances of the Belief Set.

52

Figure 3.18 – BDIM Plan Diagram (Kinny et al. 1996)

Figure 3.19 – BDIM Belief Set (Kinny and Georgeff 1996)

Plan Name

Plan Graph

activation event [activation condition] / activation action

Plan Graph

activity formula

event / action event [condition]

event [condition] / action

[condition] / action

any [abort condition] / abort action

fail / fail action

pass / pass action

53

3.2.7. INGENIAS
INGENIAS (Pavon and Gomez-Sanz 2003; Pavon et al. 2005) is built upon

MESSAGE/UML. It reconstructs and extends MESSAGE to include a new model

(Environment Model), provide support for the BDI agent architecture and provide tools

for documenting the system and for automatic code generation.

The development process of INGENIAS adopts the Unified Software Development

Process lifecycle. It contains around seventy steps that are distributed among the

lifecycle phases and workflows. Figure 3.20 summarizes the outputs to be obtained in

each phase and workflow of the INGENIAS development lifecycle.

PHASES
Inception Elaboration Construction

Analysis o Generate use cases and identify
actions of these use cases with
interaction models.
o Sketch a system architecture with an
organization model.
o Generate enviroment models to
represent results from requirement
gathering stage

o Refined use cases
o Agent models that detail elements of the
system architecture.
o Workflows and tasks in organization
models
o Models of tasks and goals to highlight
control constraints (main goals, goal
decomposition)
o Refinements of environment model to
include new environment elements

o Refinements on
existing models to cover
use cases

W
O

R
K

FL
O

W
S

Design o Generate prototypes perhaps with
rapid application development tool such
as ZEUS o Agent Tool.

o Refinements in workflows
o Interaction models that show how tasks
are executed.
o Models of tasks and goals that reflect
dependencies and needs identified in
workflows and how system goals are
achieved
o Agent models to show required mental
state patterns

o Generate new models

o Social relationships
that perfect organization
behaviour.

Figure 3.20 – Outputs of each phase and workflow of INGENIAS development process (Pavon et al.

2005)

The Analysis and Design workflows of INGENIAS aim to incrementally construct five

work products: Agent, Interaction, Goals/Tasks, Organisation and Environment Models.

During the Analysis Workflow, the information to be included in each model is

described below.

Agent Model defines the prospective agents in terms of their roles, goals, tasks and

requirements (e.g. intelligence or learnability).

54

Interaction Model captures significant interaction paths within the system and the

information to be passed between interacting parties.

Goal/Task Model shows the initial goals of the target system, tasks for achieving

these goals, decomposition of goals and tasks, success/failure conditions of goals

and pre-/post-conditions of tasks.

Organisation Model shows the structure of the target MAS organisation via system

components such as groups, agents, roles, resources and applications (Figure 3.21).

Tasks described in Goal/Task Model should also be included in the Organisation

Model to show their executors (i.e. agents or roles), their inter-connections (i.e.

workflows) and their required resources. Social dependencies among agents, roles

and/or groups should also be defined (e.g. subordination or client-server

dependencies).

Environment Model specifies resources and applications that exist in the

environment, and the perception mechanisms used by agents to perceive the outputs

of these applications. Example perception mechanisms are sampling and

notification.

The Design Workflow of INGENIAS refines and extends each of the above five

models. The Agent Model is updated to include the detailed definition of each agent’s

mental states (i.e. beliefs, goals and plans), mental state manager and processor. The

Interaction Model is elaborated to specify the exchanged elements (e.g. tuples, messages

or remote procedure calls) and the order of their execution (e.g. iteration, concurrency

and branching). The Goal/Task Model, Organisation Model and Environment Model are

also incrementally refined from Analysis to Design.

INGENIAS also includes an Implementation workflow to generate code modules for

the design specifications. The workflow involves incrementally generating prototypes

for the specifications using the INGENIAS Development Kit and reusing templates and

algorithms provided by the INGENIAS Development Kit.

55

Figure 3.21 – INGENIAS Organisation Model (Pavon et al. 2005)

3.2.8. Methodology with High-Level and Intermediate

Levels (HLIM)
HLIM (Elammari and Lalonde 1999) starts from a high-level view of the system and

drills down to intermediate, implementable definitions of system design. Its

development process is structured into two phases: Discovery and Definition.

In the Discovery Phase, a High-level Model is developed to capture the overall

structure and behaviour of the system. The model is composed of a set of Use Case

Maps (UCMs), each of which shows “paths” that trace a scenario from a start point to

an end point, connecting the responsibilities of participating agents (Figure 3.22). The

concept of “role” is used in UCMs to represent organisational places where agents may

dynamically enter. Initial agents can be identified by examining the nouns of the

application description. These nouns should be essential, autonomous and active in

nature.

56

Figure 3.22 – HLIM Use Case Map (Elammari and Lalonde 1999)

The Definition Phase of HLIM then uses the High-level Model to produce four

Intermediate Models.

Internal Agent Model defines each agent in terms of goals, beliefs, tasks and plans

(Figure 3.23). Agent’s goals can be derived from the path segments traversing the

agent in respective UCMs. Agent’s beliefs correspond to the path’s pre-conditions

and post-conditions, while agent’s tasks are derived from responsibilities along the

path. A plan is represented by a combination of a particular goal, corresponding task

and beliefs.

Figure 3.23 – HLIM Internal Agent Model (Elammari and Lalonde 1999)

Agent Relationship Model captures inter-agent relationships, which can be derived

from path segments connecting two agents in UCMs. The model is composed of a

Dependency Diagram and a Jurisdictional Diagram. The former captures goal

57

dependencies, task dependencies, resource dependencies and negotiation

dependencies among agents, while the latter depicts the organisational structure of

agents in terms of their authority status (Figure 3.24).

Figure 3.24 – HLIM Dependency Diagram (left) and Jurisdictional Diagram (Elammari and Lalonde

1999)

Conversational Model uses tabular schemata to specify, for each agent, the

messages it communicates with other agents (Figure 3.25). The model can be

derived from Internal Agent Model and Agent Relationship Model.

Figure 3.25 – HLIM Conversational Model (Elammari and Lalonde 1999)

Contract Model specifies the contracts between different agents regarding the

services they provide to each other. Each contract is defined in terms of the

authorizations and obligations of the participating agents, and is represented using a

textual schema.

3.2.9. Methodology for Enterprise Integration (MEI)
MEI (Kendall et al. 1995) is targeted at enterprise integration applications. It is based

upon the IDEF approach in workflow modelling, CIMOSA framework in enterprise

modelling and use-case approach in OO software engineering. MEI develops MAS by

mapping various elements of the Use Case Model, IDEF/CIMOSA Functional Model

and IDEF Information Model onto the design of agents, agent internal components and

agent interactions.

58

In the development process of MEI, the developer is required to firstly describe the

target application in terms of use cases and IDEF/CIMOSA models. The subsequent

MAS development activities are not structured in any specific temporal order. MEI

simply offers a set of mappings that can be applied on use cases and IDEF/CIMOSA

models in order to derive the MAS system design. The mappings are summarized in

Table 3.26.

Table 3.26 – Summary of mappings from Use Case Model and IDEF/CIMOSA Models to MAS design in
MEI (Kendall et al. 1995)

IDEF/CIMOSA Models Use case MAS
Resource or mechanism Active, proactive actor Agent
Enterprise function with control
output

Use case and use case extension Agent’s Goal and Plan

Functional input into enterprise
function

- Input from actors
- Input from domain objects via

control objects
- Domain object input

- Beliefs
- Input from coexisting objects

via sensor/agents

Functional output from
enterprise function

Control object output targeted for
actors or domain objects

Output to coexisting objects
via effector /agents

Control input to enterprise
function

Input from actors or entity
objects. It determines which use
case extension, if any, is followed

- Input from coexisting objects
via sensor/agents

- Can be represented as plan’s
invocation condition

Control output from enterprise
function

Control object output targeted for
actors or domain objects

- Goal/ subgoal
- Can be transmitted to

coexisting objects via
effector/agents

- More than one resource per
function

- Information exchange
between resources

- More than one actor per use case
- Use case event trace
- Use case abstraction and

specialisation (inheritance)

- Agent collaboration
- Coordination protocol

Information model Domain objects Beliefs and coexisting objects

As can be noted from the above table, MEI adopts a BDI-like model of agency. Each

agent is composed of goals, plans, beliefs and intentions, and is connected to sensor and

effector objects (Figure 3.27). The sensor watches the external environment while the

effector brings about the changes desired by the agent. A passive object is used to hold

the agent’s beliefs.

59

Figure 3.27 – MEI agent structure (Kendall et al. 1995)

For each agent, its goals and plans can be depicted as a tree structure, where goals are

root nodes and plans are leaves. Each plan can be further defined by a state diagram.

Coordination protocols can also be described using state diagrams. The specification of

sensors and effectors for each agent is modelled using IDEF-like notation (Figure 3.28).

Figure 3.28 – MEI sensors and effectors specification (Kendall et al. 1995)

3.2.10. PROMETHEUS
PROMETHEUS (Padgham and Winikoff 2002a; Padgham and Winikoff 2002b;

Winikoff and Padgham 2004) is well suited to the development of BDI-based MASs.

The development process of PROMETHEUS is structured into three phases: System

Specification, Architectural Design and Detailed Design (Figure 3.29).

60

Figure 3.29 – Overview of PROMETHEUS (Padgham and Winikoff 2002a)

The System Specification Phase focuses on identifying the basic functionality, external

interfaces and use case scenarios of the target MAS.

Functionality describes what the system should do in a broad sense and is specified

informally using textual Functionality Descriptors.

External interfaces refer to incoming raw data from the environment and outgoing

effects on the environment (i.e. percepts and actions respectively).

Use case scenarios provide a holistic view of MAS functionality. Each activity in

use cases should be annotated with the name of the associated functionality, thereby

allowing the developer to perform consistency checking with the Functionality

Descriptors.

The Architectural Design Phase uses outputs of the System Specification phase to

identify agents, events, interactions among agents and shared data objects.

Agent identification is carried out by assigning functionality to agents, in such a way

as to promote strong intra-agent coherence and weak inter-agent coupling. High-

level information about each agent (e.g. agent type, cardinality, incorporated

functionality and communicating partners) should be captured in a textual Agent

Descriptor.

Events to be dealt with by each agent are identified from two sources: percepts from

the environment and incoming messages from other agents.

Interactions between agents are modelled using Interaction Diagrams and

Interaction Protocols (Figure 3.30). Interaction Protocols are similar to Interaction

Diagrams, except that they capture all potential interactions and elaborate the

interactions in more detail.

61

Data objects shared among agents need to be identified if they exist. A System

Overview Diagram can be produced to tie together the identified agents, events and

shared data objects (Figure 3.31).

Figure 3.30 – PROMETHEUS Interaction Diagram (left) and Interaction Protocol (right) (Padgham and

Winikoff 2002a)

Figure 3.31 – PROMETHEUS System Overview Diagram (Padgham and Winikoff 2002a)

The Detailed Design Phase of PROMETHEUS is concerned with agent internal design,

namely the design of agent capabilities, plans, events and data. Capabilities can be

thought of as “modules” of functionalities handled by an agent. They may be derived

from the functionalities identified in the System Specification phase. An Agent

Overview Diagram can be produced to describe the top-level capabilities of an agent

(Figure 3.32), while a Capability Diagram models each capability in terms of plans,

events and data (Figure 3.33). Each plan can be described by a textual Plan Descriptor,

which specifies the triggering event, plan steps and output events and messages of the

plan. Each event is described by a textual Event Descriptor which documents the

purpose of the event and any data carried by the event. Finally, a textual Data

Descriptor is used to specify the fields and methods of any classes employed for data

storage within the system.

62

Figure 3.32 – PROMETHEUS Agent Overview Diagram (Padgham and Winikoff 2002a)

Figure 3.33 – PROMETHEUS Capability Diagram (Padgham and Winikoff 2002a)

3.2.11. PASSI
PASSI, “a Process for Agent Societies Specification and Implementation” (Burrafato

and Cossentino 2002; Cossentino and Potts 2002; Cossentino 2002), offers a step-by-

step requirement-to-code process for MAS development. It consists of twelve steps,

grouped according to their outputs (Figure 3.34).

Figure 3.34 – Overview of PASSI (Burrafato and Cossentino 2002)

The first four steps produce a System Requirement Model. This model provides an

anthropomorphic representation of the system requirements in terms of functionality

and agency. It is constructed by:

Courier

delivery
request

National mail Seamail

Airmail

get courier

Confirm
courier

book

Arrange
courier

book sent

get courier

best
courier

book
shuttle

air pickup

63

developing a hierarchical series of use case diagrams to describe the system

functionality in the “Domain description” step;

packaging these use cases into agent in the “Agent identification” step (Figure 3.35);

exploring the roles of each agent by examining role-specific agent interaction

scenarios in the “Role identification” step; and

specifying tasks for each agent in the “Task specification” step. This step simply

summarizes what an agent is capable of doing and ignores information about roles

that the agent plays while carrying out the tasks.

Figure 3.35 – PASSI Agent Identification Diagram (Burrafato and Cossentino 2002)

The subsequent three steps develop an Agent Society Model to specify the interactions

and dependencies among agents.

“Ontology description” step employs class diagrams and Object Constraint

Language (OCL) to specify concepts and entities that define the domain’s

knowledge (i.e. domain ontologies; Figure 3.36). It also determines which domain

ontology governs each agent interaction protocol (Figure 3.37).

“Role description” step describes the roles played by each agent, tasks performed by

each role, changes between roles, and interactions and dependencies among roles

(Figure 3.38).

“Protocol description” step defines each agent interaction protocol. PASSI

recommends standard FIPA protocols.

64

Figure 3.36 – PASSI Domain Ontology Diagram (Burrafato and Cossentino 2002)

Figure 3.37 – PASSI Communication Ontology Diagram (Burrafato and Cossentino 2002)

Figure 3.38 – PASSI Roles Description Diagram (Burrafato and Cossentino 2002)

The next two steps of PASSI produce an Agent Implementation Model. The model

defines the target MAS in terms of architecture and behaviour.

“Agent structure definition” step specifies the overall architecture of the system and

the internal structure of each agent. The former shows the agents making up the

system and their tasks (Figure 3.39), while the latter reveals the attributes and

65

methods of each agent, as well as the attributes and methods of each agent’s task

(Figure 3.40).

“Agent behaviour definition” step specifies the flow of events between and within

the agents as method invocations and message exchanges.

Figure 3.39 – PASSI MAS Structure Definition Diagram (Burrafato and Cossentino 2002)

Figure 3.40 – PASSI Agent Structure Definition Diagram (Burrafato and Cossentino 2002)

The Code Model is subsequently constructed to specify the target MAS at the code

level. It is developed by reusing the predefined patterns of agents and tasks (i.e. “Code

reuse” step), and by generating the source code for the target system (i.e. “Code

completion” step).

Lastly, the Deployment Model is built through step “Deployment configuration”. It

specifies the allocation of agents to processing units and any constraints on the

migration and mobility of agents.

3.2.12. ADELFE
ADELFE (Bernon et al 2002a; Bernon et al 2002b; Institut de Recherche en

Informatique de Toulouse n.d.) is a methodology dedicated to adaptive MASs, which

are MASs that can adapt themselves to unpredictable, evolutionary and open

66

environments. At the core of ADELFE is the AMAS theory, which postulates that the

global behaviour of a MAS emerges from the collective behaviour of the different

agents composing it. Agents designed by ADELFE are equipped with an ability to deal

with cooperation failures known as “non cooperative situations”.

The development process of ADELFE covers four phases. The Requirement Phase is

concerned with:

defining the target system through a set of keywords;

clarifying the functionality of the system via use cases; and

describing the system’s environment in terms of actors (i.e. active and passive

entities that interact with the system), system context (i.e. description of data flows

between these active/passive entities and the system) and environment

characteristics (i.e. whether the environment is dynamic, accessible, non-

deterministic, and/or continuous).

Output of these steps is stored in Keyword Set Document, Requirement Set Document

and Environment Definition Document respectively.

The Analysis Phase then identifies agents and applying the AMAS theory to the target

application. It consists of five major steps.

1. “Domain analysis and architecture study” step analyses use cases in order to

develop a Preliminary Class Diagram that shows entities composing the system

(Figure 3.41).

2. “Adequacy of AMAS theory” step helps the developer to decide if the AMAS theory

is indeed appropriate to the target system, since this kind of modelling is useless to

certain applications.

3. “Agent identification” step determines which system entities are suitable to be

implemented as agents, thereby producing a Refined Class Diagram (Figure 3.42).

The consideration should take into account the entities’ characteristics such as

autonomy, proactiveness and negotiation capabilities.

4. “Adequacy of the AMAS Theory at the local level” step identifies which agents need

to be adaptive. It then applies the AMAS theory to each of them by decomposing the

agent into a system of sub-agents that interact flexibly with each other to provide the

adaptive behaviour for the composing agent.

67

5. “Study of interactions” step develops a set of sequence diagrams and activity

diagrams to describe the interactions among entities within the system.

Outputs of the above Analysis steps are stored in a Software Architecture Document.

Figure 3.41 – ADELFE Preliminary Class Diagram (Institut de Recherche en Informatique de Toulouse

n.d.)

Figure 3.42 – ADELFE Refined Class Diagram (Institut de Recherche en Informatique de Toulouse n.d.)

The Design Phase of ADELFE deals with the detailed design of system architecture,

agent internal structure and non-cooperative situations. Overall architecture of the

system is modelled in terms of packages, classes (of agents and objects) and

relationships between them. The architecture of each agent is designed as a composition

of “representations” (i.e. the agent’s beliefs about the environment and itself),

“aptitudes” (i.e. the agent’s capabilities on its knowledge), “skills” (i.e. capabilities that

the agent brings to its collective), “interaction language” (i.e. protocols used by the

agent) and “non-cooperative situations” (i.e. rules for dealing with unusual cooperative

situations that the agent may face with) (Figure 3.43). ADEFLE describes each non-

cooperative situation in terms of its name, conditions for its detection, the state in which

the agent is when detecting the situation, and actions that the agent may perform to

remove the situation (Figure 3.44). All outputs of the Detailed Design phase are stored

in a Detailed Design Document.

The Implementation phase of ADELFE reuses activities from the conventional

Rational Unified Process lifecycle.

68

Figure 3.43 – ADELFE Agent Internal Structure (Bernon et al. 2002a)

Figure 3.44 – ADELFE Non-Cooperative Situation (Bernon et al. 2002a)

3.2.13. COMOMAS
COMOMAS (Glaser 1996; Glaser 1997a; Glaser 1997b) is built upon CommonKADS –

a methodology for developing knowledge-based systems (Schreiber et al. 1994).

CommonKADS proposes a set of seven models for specifying various types of

knowledge required by a knowledge-based system: Organisation, Task, Expertise,

Decomposition Expertise, Design, Communication and Agent Models. COMOMAS

adapts CommonKADS to the development of MAS by including MAS-specific

knowledge structures, taking into account the reactive, cognitive, cooperative and social

competencies of autonomous agents.

The development process of COMOMAS consists of five steps (Figure 3.45).

Figure 3.45 – COMOMAS steps and models (Glaser 1997a)

69

“Functional analysis” step identifies the tasks that need to be solved by the target

MAS. A task hierarchy, along with each task’s details (i.e. input, output and control

flow between tasks) is specified to form the Task Model.

“Requirement analysis” step identifies non-functional design requirements of the

system (e.g. efficiency and robustness), rankings of the requirements and

interdependencies between the requirements. This information is captured in the

Design Model.

“Competence analysis” step identifies different types of knowledge that are required

for agents to achieve the specified tasks. They include “task knowledge” (i.e.

knowledge of previously accomplished tasks), “problem-solving knowledge” (e.g.

strategies and methods for achieving particular tasks) and “reactive knowledge” (i.e.

reactive responses to stimuli). Competence analysis produces the Expertise Model,

which can be formalized using Conceptual Modelling Language (Figure 3.46).

Figure 3.46 – COMOMAS Expertise Model (Glaser 1997a)

“Cooperative analysis” step defines cooperation protocols, cooperation methods

(e.g. data sharing or message passing), conflict situations and negotiation strategies

for agents to resolve these conflicts. The results are captured in the Cooperation

Model.

“Social analysis” step identifies social competencies required by agents to act more

smoothly during cooperation. In particular, it identifies agents’ roles, agents’

commitments to goals, and dependencies between agents in terms of goals and data.

The results are stored in System Model.

Knowledge structures derived from the above five conceptual models are then used to

compose each agent via an Agent Model (Figure 3.47). The developer can identify

70

agents by clustering the identified competencies while ensuring that the specified non-

functional design requirements are satisfied.

Figure 3.47 – COMOMAS Agent Model (Glaser 1997a)

3.2.14. MAS-CommonKADS
Like COMOMAS, MAS-CommonKADS (Iglesias et al. 1996; Iglesias et al. 1998) is

also based on CommonKADS (Schreiber et al. 1994). However, the methodology also

takes advantage of various OO techniques such as use case analysis and CRC cards.

The development process of MAS-CommonKADS covers the conceptualisation phase

through to a detailed MAS design that can be directly implemented. The

Conceptualisation Phase obtains a preliminary description of the problem domain via

use cases and Message Sequence Charts.

The Analysis Phase then investigates the system requirements via five CommonKADS-

based models. These models are developed in a cyclic risk-driven manner.

Agent Model identifies agents from the analysis of use cases, problem statements,

CRC cards and heuristics. Textual schemas can be used to describe each agent in

terms of name, type, role, position, services, goals, skills, reasoning capabilities and

permissions.

Task Model specifies all the tasks that need to be fulfilled by the target system. It

consists of a task hierarchy and a textual description of each task (e.g. name, inputs,

outputs, task structure, frequency of application and required capabilities of

performers).

Coordination Model describes the dynamic relationships between agents. It is

constructed via two activities: 1) defining the possible communication channels

between agents by examining prototypical scenarios, and 2) analysing each inter-

71

agent conversation to determine its complexity and coordination protocols. Various

OO diagrams can be used to represent this model, including Message Sequence

Charts and Event Flow Diagrams for modelling communications between agents

(Figure 3.48), High Level Message Sequence Charts for modelling coordination

protocols, and State Transition Diagrams for modelling the processing of

interactions (Figure 3.49).

Figure 3.48 – MAS-CommonKADS Message Sequence Chart (left) and Event Flow Diagram (right)

(Iglesias et al. 1998)

Figure 3.49 – MAS-CommonKADS High Level Message Sequence Chart (left) and State Transition

Diagram (right) (Iglesias et al. 1998)

Expertise Model defines the knowledge required by each agent to achieve its goals.

This knowledge includes domain knowledge (i.e. domain ontology), inference

knowledge (i.e. inferences to be made on domain knowledge), task knowledge (i.e.

order or structure of inferences to achieve a task) and problem-solving knowledge

(i.e. methods for carrying out each inference). These types of knowledge are

captured respectively in Domain Knowledge Ontology (Figure 3.50), Inferences

Diagrams (Figure 3.51), Task Knowledge Specification and Problem Solving

Method Template.

output

inputs

formula

parameter

calculation parameter constraint formula

Figure 3.50 – MAS-CommonKADS Domain Knowledge Ontology (Schreiber et al. 1994)

72

Figure 3.51 – MAS-CommonKADS Inferences Diagram (Iglesias et al. 1998)

Organisation Model extends CommonKADS’ Organisation Model to show

static/structural relationships between agents (Figure 3.52).

Figure 3.52 – MAS-CommonKADS Organisation Model (Iglesias et al. 1998)

The Design Phase of MAS-CommonKADS consists of three major activities.

 Agent Design determines the most suitable architecture for each agent. It

subsequently maps the agent’s logical modules onto the selected architecture.

Agent Network Design defines the infrastructure of the target MAS, including

network facilities (e.g. yellow-pages service), knowledge facilities (e.g. ontology

servers) and coordination facilities (e.g. protocol servers).

Platform Design selects the most suitable software and hardware for MAS

implementation.

All design specifications are captured in a Design Model.

3.2.15. CASSIOPEIA
CASSIOPEIA (Collinot et al. 1996; Collinot and Drogoul 1998) aims to support the

development of collective problem-solving MASs, where agents work together to fulfil

a specific collective task. The methodology proceeds from the collective task to the

design of MAS along three steps.

1. “Definition of Domain-Dependent Roles” step identifies all the roles that are

required to achieve the collective task, by grouping together the elementary

behaviour needed to fulfil the task. Agents are subsequently defined as sets of roles.

73

Each agent may assign a particular role to act as its "active" role at a given time

while other roles are “idle”. For example, in the application of soccer playing robots,

every “Player” agent can take on four roles "Shooter", "Placer", "Blocker" and

"Defender", however only one of these roles can be active at a given time.

2. “Definition of Relational Roles” step specifies the organisational structure of MAS

via relational roles. If an agent is dependent on another agent (due to dependencies

between their domain-dependent roles), the former agent will play the relational role

of an “influencing agent”, while the latter plays the relational role of an “influenced

agent”. A Coupling Graph can be developed to reveal the dependencies among

agents and their domain-dependent roles (Figure 3.53). This step also defines

“influence signs” between agents (i.e. interaction messages) and “relational

behaviour” performed by each agent to handle these influence signs.

Blocker d5
d5

d2

d4 d4

d2

d2

d4 d4
Defender

Placer
d3

Shooter

Placer

Shooter

Agent A Agent B

Defenderd3

d1

conditioning

coordination

simultaneous facilitation

sequential facilitation

d1: Defending depends on the other robots’ defense strategy
d2: Shooting can help oneself or another agent to shoot
d3: Shooting depends on the position of oneself or opponent
d4: Defending may allow to catch the ball of the opponent
d5: Blocking can help oneself or another agent to shoot the ball

Blocker

Figure 3.53 – CASSIOPEIA Coupling Graph (Collinot and Drogoul 1998)

3. “Definition of Organisation Roles” step addresses the dynamics of MAS

organisation by assigning the organisational roles of “group initiator” and “group

participant” to different agents. This step also specifies the “organisational

behaviour” of each agent when playing its organisational role (i.e. group formation

behaviour, commitment behaviour and group dissolution behaviour). The “influence

signs” generated by this behaviour should also be defined (e.g. commitment signs

and dissolution signs).

74

3.2.16. TROPOS
TROPOS (Castro et al. 2001; Castro et al. 2002; Bresciani et al. 2004) is based upon the

i* organisational modelling framework proposed by Yu (1995). It employs the concepts

of “actor”, “goal” and “dependency” to represent system requirements, MAS

architecture and MAS detailed design. The development process of TROPOS is

structured into four phases.

The Early Requirements Phase investigates the intentions of system stakeholders

via two models. Strategic Dependency Model shows the relevant stakeholders,

represented as actors, and their inter-dependencies, including goal/soft-goal

dependencies, task dependencies and resource dependencies (Figure 3.54). Strategic

Rationale Model then elaborates how the stakeholders’ dependencies can be fulfilled

through means-end analysis (Figure 3.55).

Figure 3.54 – TROPOS Strategic Dependency Model in Early Requirement phase (Castro et al. 2002)

Figure 3.55 – TROPOS Strategic Rationale Model in Early Requirement phase (Castro et al. 2001)

75

The Late Requirements Phase identifies functional and non-functional

requirements of the target system by extending the Strategic Dependency Model and

Strategic Rationale Model. Firstly, the target MAS is introduced as a new actor in

the Strategic Dependency Model which contributes to the fulfilment of the

stakeholders’ goals (Figure 3.56). Means-end analysis is then performed on this

system actor to produce a new Strategic Rationale Model (Figure 3.57). If necessary,

the system actor can be decomposed into several sub-actors, resulting in a refined

Strategic Dependency Model and Strategic Rationale Model.

The Architectural Design Phase selects a suitable organisational structure for the

target MAS by evaluating the quality attributes of the candidate organisational

structures against the system’s soft-goals. TROPOS offers a catalogue of

organisational styles that can be selected and reused. The selected organisational

pattern may result in changes in the Strategic Dependency Model and Strategic

Rationale Model, with actors/sub-actors being added, removed or changed. The final

set of system actors/sub-actors serves as candidates for agents.

The Detailed Design Phase deals with agent interactions and agent internal design.

Agent interactions are modelled using UML sequence diagrams and/or collaboration

diagrams. Agent internal structure is defined in accordance with the BDI model.

Specifically, “plans” are used as a mechanism for agents to achieve goals, perform

tasks or respond to an event. Agent’s beliefs are made up of resource entities owned

by the agent. A Class Diagram and Plan Diagrams are developed for each agent to

describe its internal structure and plans (Figure 3.58 and Figure 3.59 respectively).

76

Figure 3.56 – TROPOS Strategic Dependency Model in Late Requirement phase (Castro et al. 2001)

Figure 3.57 – TROPOS Strategic Rationale Model in Late Requirement phase (Castro et al. 2001)

77

Figure 3.58 – TROPOS Agent Class Diagram (Castro et al. 2002)

Figure 3.59 – TROPOS Plan Diagram (Castro et al. 2002)

3.3. GENERAL LIMITATIONS OF EXISTING

MAS DEVELOPMENT

METHODOLOGIES
Section 3.2 has described each of the sixteen AOSE methodologies for MAS

development which were selected from the literature. Each methodology makes a

valuable contribution to the area of AOSE, by offering a different set of steps,

techniques and model definitions for the analysis and design of MAS. However, as will

be revealed in this section, each existing AOSE methodology discloses a number of

general limitations. Section 3.3.1 identifies the limitations relating to the general

78

analysis and design activities of MAS, while Section 3.3.2 exclusively discusses the

limitations regarding the support for ontology-based MAS development. The latter

directly causes the existing AOSE methodologies to not being able to fully realise the

benefits of ontologies to interoperability, reusability, MAS development activities and

MAS operation (cf. Section 2.3.2), as would be shown in Section 3.3.2. A more detailed

evaluation of the existing AOSE methodologies was conducted at a later stage by the

research and is presented in Chapter 5.

3.3.1. Limitations Regarding MAS Analysis and Design
MASE is weak in agent internal design. Although it provides guidelines on how an

agent may be assembled9, it does not address how the internal components used to

assemble agents can be identified (if reused) or developed (if defined from scratch),

such as goal, belief, plan or reflexive rule components. The methodology is also weak in

MAS organisation design, since it does not investigate the authority relationships

amongst agents or roles in the system.

MASSIVE improves on MASE by paying extensive attention to the design of MAS

overall architecture and organisation. Nevertheless, it is very weak in agent internal

design. Apart from the Role View which specifies roles played by each agent and the

Architectural View which selects agent architecture, MASSIVE does not offer any

steps, techniques and model definitions for the specification of agent’s mental

constructs such as beliefs, goals, capabilities, plans, reflexive rules and/or actions. In

addition, MASSIVE does not provide any modelling notation for the representation of

its model kinds except for Task View. The methodology merely presents guidelines on

what to be modelled and not how these can be represented.

Like MASSIVE, SODA lacks support for the internal design of agents. It only

addresses the specification of agents’ high-level behaviour such as roles and tasks. The

specification of agent internal architecture and mental constructs such as beliefs, goals

9 That is, by either reusing a pre-defined agent architecture and internal components, or retrieving pre-
defined internal components and assemble them into a user-defined architecture, or developing both
internal components and agent architecture from scratch.

79

and plans is not covered. In addition, SODA does not present any notation for

representing its model kinds.

Similar to MASSIVE and SODA, GAIA lacks support for agent internal design. Its

Agent Model only specifies roles for each agent, without defining agent internal

architecture and mental constructs (e.g. agent’s beliefs, goals, plans and actions).

GAIA’s support for agent interaction design is also limited. The Acquaintance Model

simply identifies the communication pathways between agents and the Interaction

Model merely shows the “institutionalised patterns” of interactions. No detailed design

of agent communication is given (e.g. the potential sequences in which messages are

exchanged or the contents of exchanged messages).

MESSAGE is weak in the usability of its process steps, particularly in the Design phase

where many steps are not supported by comprehensive techniques. For example, the

identification of agents (from roles) is to be based merely on the developer’s intuition

and experience. The need for elaborating interaction protocols is mentioned, but no

techniques are provided for the specification of message sequences and contents.

INGENIAS is also weak in usability due to the complexity of its model definitions and

development process. The Organisation Model, for example, endeavours to capture a

large number of concepts within its content, including “agent”, “group”, “workflow”,

“task”, “role”, “goal”, “application” and “resource”. Using an unfamiliar notation, the

clarity and ease of understanding of the developed model is degraded even further. The

development process of INGENIAS is not easy to follow, since the transition between

the construction of different models within each workflow is not clear.

BDIM is weak in its support for agent interaction modelling. The methodology does not

provide any techniques for the specification of interaction protocols. It also does not

offer any modelling notation for the representation of agent interactions. The modelling

of MAS organisation in terms of roles’/agents’ acquaintances and authority

relationships is also overlooked.

HLIM is weak in terms of its modelling capability. The modelling notation used by

HLIM for many of its model kinds is found to be inefficient. For example, the use of

80

simple textual tables in Internal Agent Model and conversation to specify agent beliefs

and interaction protocols is not adequately powerful. These tables cannot express

information such as relationships between beliefs or alternative, concurrent or

conditional exchanges of messages.

MEI focuses merely on the discovery of agents and agent internal design, without

paying attention to the modelling of MAS organisation. The modelling capability of

MEI is also weak, since no explicit, formal modelling notation is recommended for the

representation of its model kinds (except for agent plans and coordination protocols

which are suggested to be represented by state diagrams).

PROMETHEUS is limited in its support for agent internal design. It exclusively targets

plan-based, BDI-like agents via the specification of plans, without addressing the

internal design for other styles of agents such as purely reflexive agents or hybrid

agents. The methodology is also weak in MAS organisation design, since it does not

investigate the authority relationships amongst agents or roles in the system.

PASSI is weak in its support for agent internal behavioural design. The methodology

suggests defining agent behaviour via event flows and method invocations, which is

more suited to object behaviour than agent behaviour. Planning agents, for example,

require the specification of plans, while reflexive agents require the modelling of

reactive policies (Wooldridge and Jennings 1994; Vidal et al. 2001).

ADELFE offers exclusive support to the development of adaptive MASs. While this is

a strength, it is also a weakness because if a MAS does not need to be adaptive,

ADELFE may be inappropriate or inapplicable. For example, the internal model of an

agent as designed by ADELFE10 is not applicable to all types of agents, such as purely

reflexive agents11 or purely planning agents12. The methodology is also weak in agent

interaction design, since even though it mentions this activity, there are no techniques to

support the specification of interaction protocols.

10 ADELFE models each agent as being made up of “representations”, “aptitudes”, “skills”, “interaction
languages” and “non-cooperative situations”.
11 Purely reactive agents do not need “representations” and “aptitudes”.
12 ADELFE agents do not have “plans” in their internal structure.

81

COMOMAS is weak in its support for agent interaction design. Although a

Cooperation Model is developed, no detailed techniques are provided on how message

contents are specified.

MAS-CommonKADS fails to offer adequate support for the development of Agent

Model. It is unclear how the developer can determine various properties for each agent

as required by the Agent Model, such as role, position, offered services, goals, skills,

general capabilities norms, preferences and permissions. If these properties are to be

derived from other model kinds of MAS-CommonKADS, the interconnections between

the model kinds are not highlighted by the methodology.

CASSIOPEIA does not provide any support for agent internal design. The

methodology also does not specify any explicit, formal set of model kinds, except for

the Coupling Graph which captures agents’ roles and agents’ dependencies.

Finally, TROPOS lacks structured and detailed techniques for its Detailed Design

phase. In particular, it is unclear how agent interaction protocols can be derived and

how agent plans can be constructed.

3.3.2. Limitations Regarding Support for Ontology-

Based MAS Development
As discussed in Section 2.3.2, ontologies are widely acknowledged in the literature for

their significant benefits to:

interoperability;

reusability;

MAS development activities, namely system analysis and agent knowledge

modelling; and

MAS operation, specifically communication and agent reasoning.

Nevertheless, a majority of the existing AOSE methodologies do not recognise and

implement these ontology’s benefits, including MASSIVE, SODA, GAIA, BDIM,

INGENIAS, HLIM, MEI, PROMETHEUS, ADELFE, COMOMAS, CASSIOPEIA and

82

TROPOS. These methodologies neither mention the use of ontologies in their MAS

development process, nor integrate ontologies into their MAS model definitions. Of the

16 investigated AOSE methodologies, only four were found to show some

consideration for ontologies: MAS-CommonKADS, MESSAGE, MASE and PASSI.

In MAS-CommonKADS, ontologies are used to represent the knowledge of the

application’s domain and the agents’ local domain-related knowledge. Accordingly,

MAS-CommonKADS illustrates the use of ontologies for knowledge representation in

system analysis and agent knowledge modelling respectively (c.f. Section 2.3.2.3).

However, MAS-CommonKADS does not recognise the essential role of ontologies in

agent communication. In particular, it overlooks the importance of ontology-sharing by

communicating agents, and the need for the exchanged messages to be formulated in

term of shared ontological concepts (c.f. Section 2.3.2.4). It is also unclear whether, and

how, MAS-CommonKADS can enable agent reasoning at run-time to utilize agents’

ontology-based knowledge, since no reference to ontologies is made during the

specification of agents’ problem-solving knowledge (which operationalises the agent

reasoning at run-time; c.f. Section 2.3.2.4). Moreover, MAS-CommonKADS

completely overlooks the capability of ontologies to support interoperability. The

methodology does not consider the possibility of agents possessing heterogeneous

ontologies, or of MAS incorporating heterogeneous non-agent resources, and how the

heterogeneity issues between these components can be solved (c.f. Section 2.3.2.1). As

a result, MAS-CommonKADS’ support for reusability is also limited, since the

methodology cannot show how legacy (heterogeneous) system components can be

reused (c.f. Section 2.3.2.2).

Similar to MAS-CommonKADS, MESSAGE uses ontologies as the representation

mechanism for modelling application’s domain knowledge and agents’ local domain-

related knowledge. Thus, it exercises the use of ontologies to support system analysis

and agent knowledge modelling (c.f. Section 2.3.2.3). However, unlike MAS-

CommonKADS, MESSAGE makes it possible for agent reasoning to utilize ontology-

based knowledge at run-time. The specification of agents’ behavioural knowledge at

design time in MESSAGE refers to the domain-related knowledge of agents (which is

modelled in ontologies) as providing the context for, and the input information to, the

agents’ behavioural knowledge (c.f. Section 2.3.2.4). Nevertheless, MESSAGE does not

83

recognise the importance of ontologies in agent communication. It neglects the

requirement of ontology-sharing between the communicating components, and the need

for formulating exchanged messages using the shared ontological concepts (c.f. Section

2.3.2.4). MESSAGE also does not exploit ontologies to support interoperability. The

potential existence of heterogeneous MAS components and how these components can

be interoperated are not discussed (c.f. Section 2.3.2.1). As a result, MESSAGE cannot

illustrate the role of ontologies in promoting the reuse of legacy (heterogeneous) system

components (c.f. Section 2.3.2.2).

The extended version of MASE (DiLeo et al. 2002) exploits ontologies to facilitate

system analysis and agent knowledge modelling, by using ontologies as the

representation mechanism for application’s domain knowledge and agents’ local

domain-related knowledge (c.f. Section 2.3.2.3). MASE outperforms MESSAGE and

MAS-CommonKADS in that it recognises the essential role of ontologies in agent

communication. In particular, it requires the developer to formulate the exchanged

messages in term of the concepts obtained from an ontology shared between the

communicating agents, through the “datatyping” of the exchanged parameters with

these concepts. MASE also exploits ontologies to support interoperability. It considers

the case of agents committing to heterogeneous ontologies (e.g. when the agents wrap

around heterogeneous information sources) and highlights the need for ontological

mappings between these local ontologies (c.f. Section 2.3.2.1). MASE’ support for

reusability is thus enhanced, since it allows the legacy (heterogeneous) system

components to be reused (c.f. Section 2.3.2.2). However, the benefits of ontologies to

agent reasoning cannot be realised in MASE, since MASE does not address how

agents’ behavioural knowledge (such as agents’ plans and actions) relates to agents’

ontology-based knowledge. Without an explicit indication of this relationship, MASE

cannot illustrate whether, and how, the agent reasoning process can utilize the ontology-

based domain knowledge (c.f. Section 2.3.2.4).

In PASSI, ontologies are used in system analysis and agent knowledge modelling to

represent the application’s domain knowledge and agents’ local domain-related

knowledge (c.f. Section 2.3.2.3). The importance of ontologies to agent communication

is also acknowledged by PASSI. The developer is required to identify, for each agent

conversation, the ontology that needs to be shared by the communicating agents, and to

84

define the exchanged messages in term of the shared ontological concepts (c.f. Section

2.3.2.4). However, PASSI fails to provide clear support for the use of ontology-based

knowledge by agent reasoning at run-time, since no reference to ontologies is made

during the specification of agents’ problem-solving knowledge (c.f. Section 2.3.2.4).

PASSI also does not exploit ontologies to support interoperability, as it overlooks the

existence of heterogeneous system components in a MAS and the need for ontological

mappings between them (c.f. Section 2.3.2.1). As a result, PASSI’s support for

reusability is limited, because it cannot show how (heterogeneous) legacy components

can be reused (c.f. Section 2.3.2.2).

In summary, even though the above four AOSE methodologies exercise the use of

ontologies in their MAS development process and product, they do not comprehensively

acknowledge and implement all of the diverse roles of ontologies in MASs, namely

those identified in Section 2.3.2. More specifically, although all four methodologies

exploit ontologies to facilitate their system analysis and agent knowledge modelling

activities, none of them – by itself – can illustrate the use of ontologies to support

interoperability, reusability, agent communication and agent reasoning altogether. This

limitation prompts for the development of a methodology which acknowledges all of the

significant benefits of ontologies to MAS, and which integrates the use of ontology into

every applicable AOSE step and model definition to realise these benefits.

3.4. SUMMARY
This chapter has provided a review of the sixteen existing AOSE methodologies for

MAS analysis and design. It describes each methodology and highlights the general

limitations of each method. These limitations include those relating to the general

analysis and design activities of MAS, and those relating particularly to the support for

ontology-based MAS development. The next chapter, Chapter 4, puts forward the

objective of this PhD research in response to the limitations of the existing AOSE

methodologies.

85

CHAPTER 4

RESEARCH DESIGN

4.1. INTRODUCTION
This chapter provides a detailed description of the design of this research. It firstly

specifies the research’s objective in Section 4.2, thereafter presenting an outline of the

research activities in Section 4.3. Sections 4.4, 4.5 and 4.6 then describe each research

activity in terms of its aims, associated steps and research methods.

4.2. RESEARCH OBJECTIVE
As seen in Chapter 3, a number of methodologies have been published for the analysis

and design of MAS. Each methodology offers a valuable contribution to the field of

AOSE via its unique development process, techniques and model definitions.

Nevertheless, from a preliminary evaluation as shown in Section 3.3, each methodology

exposes a number of general limitations. One particular limitation is the weak support

for ontology-based MAS development. Despite of the important benefits that ontology

can offer to interoperability, reusability, MAS development activities and MAS

operation (cf. Section 2.3.2), most methodologies neither mention the use of ontologies

in their MAS development process, nor integrate ontologies in their MAS model

definitions. Although four methodologies show some consideration for ontology, they

do not investigate all of the diverse potential uses of ontology and implement them (cf.

Section 3.3.2). In addition, each methodology was also found to provide limited support

for at least one of the following areas of MAS development: agent internal design, agent

interaction design and MAS organisation design (cf. Section 3.3.1).

Acknowledging the above limitations of the existing AOSE methodologies, this

research sets its objective as follows.

86

“Contribute to the field of AOSE by proposing a comprehensive ontology-based AOSE

methodology for the analysis and design of MASs. This methodology aims to provide

support for ontology-based MAS development and various other AOSE methodological

requirements which are important to an AOSE methodology but which may not be well-

supported by the existing methodologies. The proposed AOSE methodology is named

“MOBMAS”, which stands for “Methodology for Ontology-Based Multi-Agent

Systems”.

MOBMAS does not aim to support the process of ontology engineering itself. This

process is assumed to be a separate analysis effort conducted by domain experts,

ontology engineers or the MAS developer himself. Ontologies can be developed using

specialised ontology-engineering methodologies such as IDEF5 (Knowledge Based

Systems Inc 1994), Grüninger and Fox (1995) and METHONTOLOGY (Fernandez et

al. 1997). MOBMAS focuses instead on:

the use of ontologies in the MAS analysis and design process; and

the inclusion of ontologies in MAS model definitions.

The MAS resulted from using MOBMAS are called ontology-based MASs, since their

design specification explicitly includes ontologies, and ontologies can be used by agents

at run-time to facilitate the operation of MAS (Yuan 1999; Guarino 1998).

The scope of MOBMAS is limited to the Analysis and Design phases of the system

development lifecycle (SDLC), which traditionally contains four phases, Requirements

Engineering, Analysis, Design and Implementation (Eliason 1990; Dennis and Wixom

2003). MOBMAS process starts from a set of system functionality requirements (which

is identified by a separate Requirements Engineering effort not included as part of

MOBMAS) and ends with a design of a MAS system. Even though the Implementation

phase is not covered, MOBMAS addresses various important implementation-related

issues such as deployment configuration and selection of agent architecture.

It should be noted that, acknowledging the strengths of the existing AOSE

methodologies, this research did not develop an AOSE methodology totally from

87

scratch, but reused and enhanced the work of the existing methods where appropriate13.

Nevertheless, the research did not aim to simply merge existing AOSE methodologies

per-se into one comprehensive methodology. Rather, it arrived at a comprehensive

AOSE methodology by:

making a pioneering effort in identifying the methodological requirements of a

“standard” AOSE development methodology, by consulting the existing MAS

methodologies as well as the opinions of practitioners and researchers in the field;

and

developing a comprehensive AOSE methodology that supports the identified

requirements, by combining the strengths of the existing methods, as well as

proposing new techniques and model definitions where the existing support is weak.

4.3. RESEARCH ACTIVITIES
The work of this research can be classified as design science – one of the two core

paradigms that characterise much of the research in the Information Systems discipline:

“behavioural science” and “design science” (Hevner et al. 2004; March and Smith

1995). The behavioural science research paradigm seeks to develop and verify theories

that explain or predict human/organizational behaviour surrounding the development

and use of information systems. Meanwhile, the design science paradigm – where this

research fits – seeks to create innovative artifacts through which the development and

use of information can be effectively and efficiently accomplished. In general, the

artifacts to be produced by a design science research can be of four types: methods (i.e.

sets of steps, guidelines or algorithms), models (i.e. abstractions and representations),

constructs (vocabularies and symbols) and implementation (i.e. prototype systems)

(March and Smith 1995; Hevner et al. 2004). This PhD research aims to create two of

these artifacts: method and models. The method to be developed is the MOBMAS

methodology, while the generated models are the set of models accompanying the

MOBMAS methodology (i.e. those produced by MOBMAS steps).

As identified by March and Smith (1995), a typical design science research should

comprise of two basic processes: build and evaluate. Build refers to the construction of

13 That is, where the existing techniques and/or model definitions are evaluated to be good, with respect to
a particular methodological requirement.

88

the artifacts – in this case, the MOBMAS methodology and models. The evaluation

process refers to the use of appropriate evaluation methods to assess the artifacts’

performance. In compliance with this principle, this PhD research has been designed to

include activities that fulfil these two required processes. Specifically, it consists of

three research activities: the first two activities carry out the build process, while the

third activity executes the evaluation process.

1. Research Activity 1 – Identify the methodological requirements of MOBMAS

As defined by Henderson-Sellers et al. (1998), a software engineering methodology is

one that provides the following elements:

a software engineering process to conduct the system development;

techniques to assist the process; and

definition of work products.

The “process” element itself should contain activities and steps14 (Henderson-Sellers et

al. 1998; Firesmith and Henderson-Sellers 2002). “Activities” are large-scale

descriptions of what needs to be done, such as “requirements engineering” activity,

“design” activity, “implementation” activity and “testing” activity. If the process is a

waterfall process, these activities might be referred to as “phases”. “Steps”, on the other

hand, are smaller-scale “jobs to be done” associated with each activity in the process.

Steps are then linked with techniques, which provide the way to carry out the steps, i.e.

the “how” (Figure 4.1).

Figure 4.1 – Associations between “process”, “activity”, “step” and “technique” (represented in UML)

14 Henderson-Sellers et al. (1998) and Firesmith and Henderson-Sellers (2002) use the term “task” instead
of “step”. However, since the term “task” will be used frequently in Chapter 6 – “Documentation of
MOBMAS” to refer to software functionality, the term “step” is used as a substitute.

1..n 1..n

Software engineering process

Activity

Step Technique

1..n

1..n
uses

89

Regarding the definition of work products, since MOBMAS covers Analysis and

Design activities, its work products should consist of models of MAS analysis and

design.

As a result, the required methodological elements of MOBMAS are (Figure 4.2):

a software engineering process that contain activities and associated steps to conduct

the system development;

techniques to assist the process steps; and

definition of model kinds. Note that the term “model kind” is used rather than

“models” because the methodology only provides a definition of the specific classes

of models (Standards Australia 2004). The models themselves refer to actual

deliverables produced by the developer during the development process.

Figure 4.2 – Components of MOBMAS (represented in UML)

In order to define the above elements for MOBMAS, it is necessary to determine the

features, steps and modelling concepts that are desirable to be supported by

MOBMAS process, techniques and model kinds. These desirable features, steps and

modelling concepts are referred to as “methodological requirements” of MOBMAS.

Research Activity 1 was concerned with identifying these methodological requirements.

It should be noted that, the steps that are specified as MOBMAS’ methodological

requirements are not meant to be the “exact” steps that MOBMAS must provide.

MOBMAS can define its steps differently from these desirable steps. However, the

actual MOBMAS’ steps are required to correspond to, or cover, the desirable steps.

In Research Activity 1, apart from identifying the required features, steps and modelling

concepts for MOBMAS, it was also necessary to identify the desirable “ontology-

related steps” from amongst these required steps, so as to allow MOBMAS to support

ontology-based MAS development. These ontology-related steps should enable

MOBMAS

Process Techniques Model kinds
specification

90

MOBMAS to offer all of the widely-recognised benefits of ontology to MAS

development and MAS operation as listed in Section 2.3.2.

2. Research Activity 2 – Develop MOBMAS

This research activity defined the development process, techniques and model kinds

for MOBMAS so as to support the desirable features, steps and modelling concepts that

were identified by Research Activity 1. MOBMAS process, techniques and model kinds

were developed by reusing and enhancing the techniques and model definitions offered

by the existing AOSE methodologies where appropriate, and developing new techniques

and model definitions for MOBMAS where necessary.

3. Research Activity 3 – Evaluate and refine MOBMAS

MOBMAS was evaluated and progressively refined by collecting expert reviews,

having external developers use the methodology on a test application, and performing a

feature analysis on the methodology. The expert reviews gathered professional

evaluation of MOBMAS based on the experts’ non-empirical investigation of the

methodology. The use of MOBMAS on a test application then sought external

developers’ evaluation of MOBMAS based on their empirical usage of the

methodology. Lastly, the feature analysis was conducted to verify MOBMAS’ ability to

achieve its objective (which is, to provide support for ontology-based MAS

development and the other important AOSE methodological requirements that were

identified in Research Activity 115; cf. Section 4.2), to compare MOBMAS with the

existing AOSE methodologies, and to clarify MOBMAS’ ontology-related capabilities.

15 Through the justification of MOBMAS’ support for its methodological requirements, this research was
able to justify that MOBMAS’ actual steps and modelling concepts in fact correspond to, or cover, the
desirable steps and modelling concepts which were specified as part of the methodological requirements.

91

4.4. RESEARCH ACTIVITY 1 – IDENTIFY

METHODOLOGICAL REQUIREMENTS

OF MOBMAS
This section and the subsequent two sections (Sections 4.5 and 4.6) elaborate on the

design of each research activity listed in Section 4.3. Research Activity 1 – “Identify the

methodological requirements of MOBMAS” – is described in this section.

Research Activity 1 was conducted in four steps.

4.4.1. Step 1 – Identify “Potential” Requirements of

MOBMAS
The objective of this step was to determine a list of features, steps and modelling

concepts that were potentially desirable to the system development process, techniques

and model kinds of MOBMAS. These features, steps and modelling concepts were

subsequently validated into “actual” requirements of MOBMAS during Steps 2 and 3 of

Research Activity 1 (cf. Sections 4.4.2 and 4.4.3).

In order to identify the potentially desirable features for MOBMAS, this research

investigated a number of existing evaluation frameworks for assessing:

AOSE methodologies; and

conventional system development methodologies, including OO methodologies.

The evaluation frameworks for AOSE methodologies contain evaluation criteria that

relate to important agent-oriented and MAS-specific features, while the evaluation

frameworks for conventional methodologies help to reveal important generic system

engineering features, which may have been overlooked by AOSE evaluation

frameworks.

The potentially desirable steps and modelling concepts of MOBMAS were identified

by investigating the existing AOSE methodologies (which are described in Chapter 3).

92

Each existing methodology offers a different set of steps for the MAS development

process and a different set of model kinds for a variety of AOSE modelling concepts.

4.4.2. Step 2 – Conduct a Survey on Practitioners and

Researchers in the Field of AOSE
The survey was performed to achieve the following two objectives.

To validate the identified potential requirements of MOBMAS: The survey

asked the respondents to rate each feature, step and modelling concept identified in

Step 1 in terms of how important the feature, step or concept is to a “standard”

AOSE methodology (on a scale of “Very high”, “High”, “Medium”, “Low” and

“Very low”). The survey respondents were also asked to rank order these features,

steps and modelling concepts in a decreasing order of importance. The “rating of

importance” and “order rank”16 of each feature, step or concept would later be

combined with the outputs of Step 3 in order to determine the “actual” requirements

for MOBMAS (Figure 4.3).

Figure 4.3 – Determination of “actual” requirements of MOBMAS

To obtain professional recommendations on various issues that are useful to the

development of MOBMAS: A segment of the survey collected professional

suggestions on various issues that pertain to the construction of a “standard” AOSE

methodology, such as suggestions on the desirable MAS development lifecycle,

16 Note that both “rating of importance” and “order rank” were collected for the potential requirements
because if only one of these statistics was collected, it would not reflect a comprehensive indication of the
requirements’ importance. For example, a set of steps may be given the same “rating of importance” but
distinct order ranks (i.e. they are not truly equally important); or, a top-ranked step may have an overall
“Low” rating of importance.

Potential requirements of MOBMAS
(identified in Step 1)

“Rating of importance” and “Order
rank” of each potential requirement

(obtained in Step 2)

Number of existing AOSE methodologies
that support each potential requirement

(obtained in Step 3)

Actual requirements of MOBMAS
(identified in Step 3)

93

desirable agent identification approach and desirable level of commitment to an

agent architecture by an AOSE methodology.

4.4.3. Step 3 – Perform a Feature Analysis on Existing

AOSE Methodologies
This step was performed after the completion of the survey in order to achieve the

following two objectives.

To further validate the identified potential requirements of MOBMAS and

determine the “actual” requirements of MOBMAS: The feature analysis

investigated all sixteen existing AOSE methodologies (described in Chapter 3) to

determine how many methodologies offer support for each feature, step and

modelling concept identified in Step 1. This finding was then combined with the

“ratings of importance” and “order ranks” obtained from the survey in Step 2 in

order to determine the “actual” requirements of MOBMAS (Figure 4.3).

Specifically, a potential requirement was qualified to be an actual requirement if:

- it was supported by a majority of the existing AOSE methodologies (i.e. 9 or

more out of 16); OR

- it was given a High to Very High “rating of importance” in the survey; OR

- it was given a Medium “rating of importance” in the survey AND its “order

rank” is not the least important with respect to other requirements within the

same category.

All other potential requirements were excluded from list of actual requirements of

MOBMAS.

It should be noted that, all the steps that were specified as MOBMAS’ “actual”

requirements were not meant to be the “exact” steps that MOBMAS must provide.

MOBMAS can define its steps differently from these desirable steps. However, the

actual MOBMAS’ steps were required to correspond to, or cover, the desirable

steps.

94

To identify and evaluate the techniques and model definitions provided by each

existing AOSE methodology: This identification and evaluation helped the

research to:

- identify a pool of existing techniques and model definitions that may be reused

or enhanced by MOBMAS to support its required features, steps and modelling

concepts; and

- identify which features, steps and modelling concepts of MOBMAS need to be

supported by new techniques and model definitions (i.e. those that are currently

not efficiently supported by the existing AOSE methodologies, either in terms of

the small number of supporting methodologies, or the insufficiency of the

available techniques and model definitions).

This information was used as inputs to the development of MOBMAS in Research

Activity 2.

4.4.4. Step 4 – Identify Ontology-Related Steps From

Amongst the Required MOBMAS’ Steps
After the methodological requirements of MOBMAS were determined in Step 3, Step 4

was performed to identify which of the required steps should be “ontology-related” (i.e.

which steps should use ontologies in their techniques and/or integrate ontologies into

their model definitions), so as to enable MOBMAS to realise all of the widely-

acknowledged benefits of ontologies to MASs, namely those previously identified in

Section 2.3.2:

support for interoperability;

enhancement of reusability;

support for MAS development activities, namely system analysis and agent

knowledge modelling; and

support for MAS operation, specifically communication and agent reasoning.

Each of these benefits was investigated to identify the desirable ontology-related steps.

In particular, if a benefit was found to be realised through the use of ontology in an

AOSE step(s), this step(s) was flagged as a desirable ontology-related step. By doing so,

this research was able to ensure that MOBMAS, with its support for these ontology-

related steps, can realise all of the diverse benefits of ontology to MASs.

95

4.5. RESEARCH ACTIVITY 2 – DEVELOP

MOBMAS
Given the methodological requirements of MOBMAS as identified by Research

Activity 1 (cf. Section 4.4), Research Activity 2 was carried out to develop the

MOBMAS methodology. This activity constructed MOBMAS by defining the system

development process, techniques and model kinds to support the required features,

steps and modelling concepts Note that MOBMAS’ actual steps and modelling concepts

were not required to be identical to those identified by Research Activity 1. However,

the former was required to correspond to, or cover, the latter.

The process, techniques and model kinds of MOBMAS were developed by:

reusing and enhancing the existing techniques and model definitions offered by the

available AOSE methodologies where appropriate; and

developing new techniques and model definitions where necessary.

MOBMAS considered reusing an existing technique or model definition if that

technique or model definition was given a positive or high assessment17 by the feature

analysis in Step 3 of Research Activity 1 regarding its support for a particular

requirement.

MOBMAS enhanced the existing work by refining, adapting, elaborating, extending

and/or integrating various existing techniques and modelling notation to improve their

usability and applicability. With regard to integration, the integration of techniques or

model definitions may result in:

- a synthesised, internally consistent technique or model kind; or

- a set of separate techniques or model kinds, each of which best suits a different

situation. In this case, MOBMAS provides guidelines on how to select the most

appropriate technique or model kind to use in a particular situation.

17 The type of assessment depends on whether the corresponding evaluation criterion is a yes/no question
or a high/medium/low rating question.

96

Again, findings of the feature analysis in Step 3 of Research Activity 1 served as a

useful input. Evaluation of the existing techniques and model definitions helped to

identify those that could be enhanced. Another valuable resource was the outputs of the

survey in Step 2 of Research Activity 1. Recommendations given by survey respondents

on the various issues relating to AOSE methodology construction helped to provide

ideas for enhancement.

The need for new techniques and model definitions for MOBMAS arose when there

was a lack of existing techniques or model definitions for supporting a particular

requirement, and/or when the existing techniques or model definitions were low in

usability. New techniques and model definitions were developed for MOBMAS by

consulting the work in the respective literature (e.g. literature on ontology, agent

planning and agent coordination mechanisms). In addition, outputs of the survey in Step

2 of Research Activity 1 were also used. Ideas were obtained from the open-ended

recommendations given by survey respondents on issues relating to AOSE methodology

construction. The feature analysis in Step 3 of Research Activity 1 also helped to

identify those features, steps and modelling concepts that needed to be better supported

by new techniques and model definitions.

During Research Activity 2, particular attention was given to the “ontology-related

steps” identified in Step 4 of Research Activity 1 (cf. Section 4.4.4). These steps

required the use of ontologies in their techniques and/or the inclusion of ontologies in

their model definitions. In addition, since the existing AOSE methodologies either do

not provide support for ontology-based MAS development, or are insufficient in their

support, MOBMAS needed to make a lot of enhancement to the existing techniques and

model definitions, as well as develop many new techniques and model definitions, in

order to support the ontology-related steps.

97

4.6. RESEARCH ACTIVITY 3 – EVALUATE

AND REFINE MOBMAS
After MOBMAS was constructed by Research Activity 2 (cf. Section 4.5), it was

evaluated and refined progressively by Research Activity 3 in three sequential steps.

4.6.1. Step 1 – Obtain Expert Reviews
A non-empirical review of MOBMAS was collected from two experts in the field of

AOSE and ontology. The objective of the expert reviews was to:

obtain experts’ opinions on the strengths and areas for improvement of MOBMAS;

and

obtain experts’ suggestions on how to improve these areas.

The two expert reviews were obtained in an independent and sequential manner. The

review from the first expert was used to refine MOBMAS before the second expert was

asked to review the refined version. All refinements made to MOBMAS as a result of

each expert review were discussed with the relevant expert to ensure that he/she was

satisfied with the changes made.

4.6.2. Step 2 – Use MOBMAS on a Test Application
After being non-empirically reviewed and refined, MOBMAS underwent empirical

evaluation and refinement by being used on a specific application by two external

developers. These developers were requested to provide, based on their usage of

MOBMAS:

opinions on the strengths and areas for improvement of MOBMAS;

suggestions on how to improve these areas;

rating of the “ease of understanding” and “ease of following” of each step of the

MOBMAS development process (on a High-Medium-Low scale); and

rating of the “ease of understanding” of each model kind of MOBMAS (on a High-

Medium-Low scale).

98

The two developers applied and evaluated MOBMAS in an independent and sequential

manner. The evaluation from the first developer was used to refine MOBMAS before

the second developer was asked to apply and evaluate the refined version. All

refinements made to MOBMAS as a result of each usage were discussed with the

relevant developer in order to ensure that he was satisfied. In addition, the refinements

made given the second developer’s feedback were also discussed with the first

developer in order to ensure that no conflicts of opinions occurred.

Apart from the evaluation of MOBMAS, the developers were also asked to produce a

set of analysis and design models to demonstrate their use of MOBMAS on the test

application.

4.6.3. Step 3 – Perform a Feature Analysis on

MOBMAS
The feature analysis was performed on the final version of MOBMAS to:

verify whether MOBMAS, as the final product, is able to achieve its objective,

which is, to provide support for ontology-based MAS development and various

other important AOSE methodological requirements which were identified in

Research Activity 1 (cf. Section 4.2). It should be noted that, through the

justification of MOBMAS’ support for its methodological requirements, this

research was able to justify that MOBMAS’ actual steps and modelling concepts in

fact correspond to, or cover, the desirable steps and modelling concepts which were

specified as part of the methodological requirements;

document the origin of MOBMAS techniques and model definitions (i.e. which

techniques and model definitions have been reused and enhanced from the existing

AOSE methodologies, and which have been newly developed); and

compare MOBMAS with the existing AOSE methodologies in terms of various

specific evaluation criteria. The comparison also highlighted the strengths of

MOBMAS that resulted from its comprehensive support for ontology-based MAS

development, and which are not provided (or provided to a lesser extent) by the

existing methodologies due to their lack or low level of support for ontology.

99

4.7. SUMMARY
This chapter has stipulated the objective of this research and described the design of the

three research activities that were performed to achieve this objective, namely:

Research Activity 1: Identify the methodological requirements of MOBMAS – a

“Methodology for Ontology-Based Multi-Agent Systems”;

Research Activity 2: Develop MOBMAS; and

Research Activity 3: Evaluate and refine MOBMAS.

In Chapters 5, 6 and 7, the performance and outcome of each activity are sequentially

documented.

100

CHAPTER 5

METHODOLOGICAL REQUIREMENTS
OF MOBMAS

5.1. INTRODUCTION
This chapter reports on the execution and outcome of the first research activity of the

research’s plan presented in Chapter 4 – “Identify the methodological requirements of

MOBMAS” (cf. Section 4.3). The phrase “methodological requirements” refers to the

features, steps and modelling concepts that are desirable to be supported by

MOBMAS process, techniques and model kinds. Their identification was conducted

systematically through four research steps (cf. Section 4.4):

Step 1 – Identify the “potential” requirements of MOBMAS:

This step aimed to determine a list of features, steps and modelling concepts that

were potentially desirable to the system development process, techniques and model

kinds of MOBMAS;

Step 2 – Conduct a survey on practitioners and researchers in the field of AOSE:

This step worked towards validating the potential requirements of MOBMAS, by

gathering professional opinions on these requirements’ rating and order ranking of

importance. Step 2 also obtained professional recommendations on various issues

that were useful to the development of MOBMAS;

Step 3 – Perform a feature analysis on the existing AOSE methodologies:

This step aimed to further validate the potential requirements of MOBMAS, by

analysing the existing AOSE methodologies. This analysis was combined with the

professional opinions obtained from Step 2 to determine the “actual” methodological

requirements for MOBMAS. Step 3 also identified and evaluated the techniques and

model definitions provided by each existing AOSE methodology for supporting each

methodological requirement; and

101

Step 4 – Identify ontology-related steps from amongst the required MOBMAS’ steps:

This step aimed to identify which of the required steps of MOBMAS should be

related to ontology, so as to enable MOBMAS to offer all of the widely-recognised

benefits of ontology to MAS development and MAS operation. These benefits have

been listed in Section 2.3.2, and include those relating to the analysis of application

domain, agent knowledge modelling, reusability, communication between MAS

components, interoperability between heterogeneous components, and agent

reasoning.

The execution and outcome of each research step are documented in Sections 5.2, 5.3,

5.4 and 5.5 respectively.

5.2. IDENTIFICATION OF POTENTIAL

REQUIREMENTS OF MOBMAS
Step 1 of Research Activity 1 was concerned with identifying the features, steps and

modelling concepts that were potentially desirable to MOBMAS process, techniques

and model kinds.

5.2.1. Identification of Potential Features
Features potentially important to MOBMAS were identified by investigating the

existing evaluation frameworks, namely:

those for evaluating AOSE methodologies; and

those for evaluating conventional system development methodologies, including OO

methodologies.

The former contain evaluation criteria that relate to important agent-oriented and MAS-

specific features, while the latter helped to identify important generic system

engineering features which may have been overlooked by AOSE evaluation

frameworks.

102

5.2.1.1. Evaluation frameworks for AOSE methodologies

A search of the literature revealed a limited number of evaluation frameworks for

AOSE methodologies. This research investigated all of the identified frameworks.

Shehory and Sturm’s Framework (2001): Shehory and Sturm’s evaluation criteria

assess both generic software engineering features and specific agent-oriented

features of an AOSE methodology. However, this research discarded a number of

features that relate to system implementation issues because these are outside the

scope of MOBMAS (cf. Section 4.2). Some other features were found desirable to

MOBMAS, but they were not specified in the list of MOBMAS’ potential features

because they can be indirectly supported via other features or modelling concepts.

For example, feature “Modelling of communication richness” evaluated by Shehory

and Sturm (Table 5.1) is equivalent to the modelling of Agent Interaction concepts

such as “Agent acquaintance”, “Interaction protocol” and “Content of exchanged

messages”. Since these concepts would later be included in the “potential modelling

concepts” of MOBMAS (cf. Section 5.2.3), this feature was not restated in this

section to avoid redundancy in MOBMAS requirements.

Table 5.1 displays the selection of evaluation features from Shehory and Sturm’s

framework and the reasons for discarding the others.

Table 5.1 – Selection of features from Shehory and Sturm’s framework (2001)
Evaluation Criteria Selected for the identification of potential features for MOBMAS?

Preciseness of models
Accessibility of models

Expressiveness of models
Support for modularity

Complexity Management

Support for executability
Outside the scope of research

Support for refinability
Support for analysability

Support for openness
Modelling of autonomy

Modelling of complexity Assessed via criteria “Expressiveness of models”, “Support for modularity” and
“Complexity management” of this framework

Modelling of adaptability

Modelling of distribution
Assessed via the modelling of “Agent instance deployment” concept (cf. Section 5.2.3.4)

Modelling of communication
richness Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

103

O’Malley and DeLoach’s Framework (2001): This framework evaluates both the

technical features and management features of an AOSE methodology. Since the

management issues are outside the scope of this research, criteria relating to them

were excluded from the investigation (Table 5.2).

Table 5.2 – Selection of features from O’Malley and DeLoach’s framework (2001)
Evaluation Criteria Selected for the identification of potential features for

MOBMAS?
Cost of acquiring the methodology

Outside the scope of research

Cost of acquiring support tools
Outside the scope of research

Effects on organisational business
practices Outside the scope of research

Compliance with standards
Outside the scope of research

Traceability of changes

Legacy system integration
Not applicable to all applications

Availability of reusable components

Support for distribution Assessed via the modelling of “Agent instance deployment” concept (cf. Section
5.2.3.4)

Support for dynamic system
structure

Support for interaction
Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

Support for scalability
Support for agility and robustness

Cernuzzi and Rossi’s Framework (2002): Cernuzzi and Rossi proposed a step-by-

step process for evaluating MAS development methodologies, supplemented by a

set of evaluation criteria. All of these criteria were studied to identify the potential

features for MOBMAS (Table 5.3).

Table 5.3 - Selection of features from Cernuzzi and Rossi’s framework (2002)
Evaluation Criteria Selected for the identification of potential features for

MOBMAS?
Modelling of autonomy
Modelling of reactivity

Modelling of proactiveness
Modelling of mental constructs

(beliefs, goals) Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

Modelling of agent interaction
attributes Assessed via the modelling of “Agent Interaction” concepts and “Overall

System Design” concepts (cf. Sections 5.2.3.3 and 5.2.3.4)
Support for modularity
Support for abstraction

Modelling of system view
Communication support

Sabas et al.’s Framework (2002): Sabas et al. presented a framework called

MUCCMAS for the comparative analysis of AOSE methodologies. MUCCMAS

104

offers a set of well-organised multi-dimensional evaluation criteria, many of which

were selected for investigation (Table 5.4). The discarded criteria were those that

focus on implementation-related issues (thus are outside the scope of MOBMAS), or

those that do not relate to specific AOSE features, but merely aim to compare the

different methodologies in terms of their applicability (e.g. target application,

programming paradigm and agent types).

Table 5.4 - Selection of features from Sabas et al.’s framework (2002)
Evaluation Criteria Selected for the identification of potential features for

MOBMAS?
Specification of process phases
Specification of development models
Specification of development approach
Degree of user implication

Outside the scope of research
Support for models reuse
Availability of software support

Outside the scope of research
Support for system division
Support for formalism
Support for derivation
Models quality

Too generic, unclear what “quality” embraces
Supported agent nature

Does not infer any feature but merely aims to compare methodologies in terms of their
applicability

Supported agent type
Does not infer any feature but merely aims to compare methodologies in terms of their

applicability
Support for various agent attributes
Modelling of organisation image

Assessed via the modelling of “Role” concept and “Organisational structure” concept
(cf. Sections 5.2.3.1 and 5.2.3.4)

Modelling of environment nature
Assessed via the modelling of “Environment resource/facility” concept (cf.

Section 5.2.3.4)
Supported types of communication

Does not infer any feature but merely aims to compare methodologies in terms of their
applicability

Supported communication mode
Does not infer any feature but merely aims to compare methodologies in terms of

their applicability
Supported communication language

Does not infer any feature but merely aims to compare methodologies in terms of
their applicability

Supported processing mode
Outside the scope of research

Supported human-machine interface
type Outside the scope of research
Supported programming paradigm

Outside the scope of research
Environment of development

Outside the scope of research
Supported application type

Does not infer any feature but merely compares methodologies their applicability

105

5.2.1.2. Evaluation frameworks for conventional development

methodologies

Considering the large number of evaluation frameworks for conventional system

development methodologies, including OO methodologies, this research limited itself to

only a number of well-known frameworks, namely Wood et al.’s framework (1988),

NIMSAD (Jayaratna 1994), IFIP WG 8.1 (Olle et al. 1983) and The Object Agency’s

framework (The Object Agency Inc 1995).

Wood et al.’s Framework (1988): This framework offers a large number of

evaluation criteria, many of which are too application-specific or too technical (e.g.

“Can stimulus/response relationships be represented in a time-dependent manner?”

or “Does the methodology provide a representation that clearly draws a boundary

around the system and separates it from its environment”). The relatively general

criteria selected for investigation by this research are listed in Table 5.518.

Table 5.5 - Selection of features from Wood et al.’s framework (1988)
Selected evaluation criteria for the identification of potential features for

MOBMAS
Support for reuse
Completeness of representations
Consistency of representations
Complexity of representations
Ambiguity of representations
Abstraction of representations
Support for exception handling
Support for robustness

NIMSAD (Jayaratna 1994): NIMSAD evaluates an Information Systems

development methodology by determining whether, and how, the methodology

supports different components of a proposed “standard” development framework.

Three components of this “standard” framework are “methodology context”,

“methodology user” and “problem-solving process”. Only evaluation questions

pertaining to the “problem-solving process” component are relevant to this research,

since they evaluate a methodology’s development process and techniques, not the

implementation context of the methodology. Among “problem-solving process”

18 This figure, and figures 5.6, 5.7 and 5.8, do not document all of the evaluation criteria/questions
provided by the corresponding frameworks because the number of criteria/questions provided by each
framework is very large. In addition, the major reasons for discarding the unselected criteria have already
been stated in the text and therefore are not repeated in the figures.

106

evaluation questions, many were discarded because they do not relate to any specific

system engineering features, but instead assist in the in-depth understanding of a

particular methodology, such as “What level of expressions does the methodology

advocate” or “What criteria does the methodology offer for defining the problems”.

Table 5.6 presents the criteria that were ultimately selected.

Table 5.6 - Selection of features from NIMSAD framework (1994)
Selected evaluation criteria for the identification of potential features for

MOBMAS
What modelling notions and techniques does the methodology offer for expressing situation
characteristics?
Does the expression provide sufficient information to help gain a feel for the situation of
concern?
What context information is captured or expressed?
What steps or techniques does the methodology offer in the formulation of solutions?

IFIP WG 8.1 (Olle et al. 1983): The IFIP Working Groups presented eight feature

analysis studies of Information Systems development methodologies. Two of these

frameworks were disregarded because they did not propose any specific desirable

software engineering features, but merely aimed to compare the different

methodologies in terms of their scope and applicability, namely Olive’s study19

(1983) and Falkenberg et al.’s study20 (1983). Nissen’s study (1983) was also

discarded because it focuses on the implementation aspect of a methodology21,

which is not in this research’s scope of interest. Of the remaining five frameworks,

many criteria/questions were disregarded because they either pertain to

implementation aspects (e.g. “Training” and “Methodology transferability” criteria

in Bodart et al.’s study, 1983) or they are too application-specific (e.g. “What types

of decisions – identification, functional, technico-economic, organisational,

management – are considered in the methodology” in Bodart et al.’s study, 1983; or

“Whether the design of databases in the methodology is data-oriented or processing-

oriented” in Iivari and Kerola’s study, 1983). Table 5.7 presents the selected

evaluation criteria/questions from each investigated feature analysis study.

19 Olive’s study (1983) compares methodologies according to their supported abstraction levels (namely,
external, conceptual, logical, architectural and physical levels) and the target types of information systems
(e.g. database system or decision support information system).
20 Falkenberg et al.’s study (1983) compares methodologies with respect to their coverage of the
development lifecycle and the level of support for each lifecycle phase.
21 Nissen’s study (1983) evaluates a methodology in terms of how well the documentation produced by
the methodology can be used to support different groups of interested people (e.g. designers, managers,
computer-operator personnel and end-user).

107

Table 5.7 - Selection of features from IFIP WG 8.1 frameworks (1983)
Framework Selected evaluation criteria for the identification of potential features

for MOBMAS
Brandt’s study (1983) Development process (i.e. the phases or development steps proposed in the methodology)

Model (including concepts, degree of formalism and abstraction)
Representation means (i.e. graphical elements, use of formal languages, forms etc)
Iteration and Tests (involving iterative routines and procedures for validation and
verification)

Wasserman et al.’s study
(1983)

Coverage of SDLC (i.e. What phases of the software development process are covered by the
methodology)
Support for top-down and bottom-up development
Usability of the methodology (Is the methodology easy to use?)
Support for validation and verification (what is the explicit means by which the completed
system is validated against the original requirements; for each work product, what is the
method used to assure the quality of the product).
Support for problem analysis and understanding (i.e. problem-solving steps, problem-solving
and modelling techniques)
Support for communication among interested parties (i.e. modelling notation and concepts
supported by the methodology’s models)

Iivari & Kerola’s study
(1983)

Which are the main components of the conceptual structure
Does the conceptual structure allow/support descriptions at different levels of abstraction,
different levels of detail?
Does the conceptual structure cover the interaction between the data system and its user?
Are descriptions made using the specified languages unambiguous?
Are descriptions made using the specified languages understandable?

Kung’s study (1983) Understandability of the conceptual model (i.e. readability, unambiguity, clarity and
intuitivity)
Expressiveness of the conceptual model (i.e. whether the modelling concepts and constructs
are powerful enough to express everything that is needed to be specified, and have good
resolution of detail)
Consistency of the conceptual model

Bodart et al.’s study (1983) Concepts (whether the concepts allow a complete modelling of all the organisation’s aspects)
Life cycle steps (including the set of models and formalisms involved)
Step content

The Object Agency’s Framework (The Object Agency Inc 1995): This framework

offers a well-organised set of evaluation questions, assessing an OO methodology in

terms of diverse system engineering features. Evaluation criteria relating to OO

concepts modelling were disregarded because they are not relevant to agent-oriented

development. Several evaluation criteria on method marketability and pragmatics

were also not considered because they focus on implementation aspects, thus lying

outside the scope of the research. Most of the selected evaluation criteria pertain to

modelling notation and system development process (Table 5.8).

Table 5.8 - Selection of features from the Object Agency’s framework (The Object Agency Inc 1995)
Category of
evaluation criteria

Selected evaluation criteria for the identification of potential features
for MOBMAS

Notation What are the components of the method’s notation?
What static concepts is the notation capable of expressing?
What dynamic concepts is the notation capable of expressing?
Are explicit rules presented for defining the notation symbols?
Does there exist explicit logic for transforming models into other models, or partially creating
a model from information present in another?
Does the notation provide a partitioning mechanism?

108

Category of
evaluation criteria

Selected evaluation criteria for the identification of potential features
for MOBMAS

Process What are the process steps for the development process within the methodology?
What deliverables are generated from the development process?
What aspects of the lifecycle are covered by the approach?
Are the process steps well-defined?
Are there heuristics available for the process steps?
Does the process provide for verification?
What development lifecycle best describes the methodology?

Pragmatics What scope of effort is the method suited for?
Is the method targeted at a specific type of software domain?

Support for Software
Engineering

Reusability

5.2.1.3. Potential features of MOBMAS

Many evaluation criteria selected from the existing evaluation frameworks actually

relate to the same or overlapping methodological features. Thus, the features extracted

from these frameworks needed to be combined and synthesized into a coherent list. This

list was then organised into four categories, each of which is described below.

One particular feature, namely “Support for ontology-based MAS development” (cf.

Section 5.2.1.3.d), had not been considered in any existing evaluation frameworks.

However it was included in the list of MOBMAS’ potential features because this

research is particularly interested in ontology-based MAS development.

5.2.1.3.a. Potential features for MOBMAS development process

This category contains six features that are potentially important to MOBMAS

development process.

1. “Specification of a system development lifecycle”: such as waterfall or iterative.

2. “Support for verification and validation”: such as rules for verifying and validating

the correctness of the developed models.

3. “Specification of steps for the development process”.

4. “Specification of model kinds and/or notational components22 to be generated from

each process step”.

5. “Specification of techniques and heuristics for performing each process step and for

producing each model kind”.

22 Models are differentiated from notational components in that models are conceptual constructs that
underlie the graphical or textual depictions, which are notational components (e.g. diagrams, tabular
schemas).

109

6. “Support for refinability”: that is, whether the methodology provides a clear path for

refining the models through gradual stages to reach an implementation or at least for

clearly connecting the implementation level to the design specifications.

5.2.1.3.b. Potential features for MOBMAS model definitions

The following eight features are potentially important to MOBMAS model kinds and

notational components.

1. “High degree of completeness/expressiveness”: that is, the model kinds are capable

of representing the system from different perspectives, capturing all necessary

aspects such as static and dynamic aspects, system-level and agent-level aspects.

2. “High degree of formalisation/preciseness”: that is, the syntax and semantics of the

model kinds and notational components are clearly defined.

3. “Provision of guidelines/logics for model derivation”: for transforming one model

kind into other model kinds, or partially creating a model kind from information

present in another model kind.

4. “Guarantee of consistency”: between the levels of abstractions within each model

kind and between different model kinds.

5. “Support for modularity”: that is, the model kinds are able to promote modularity in

the design and representation of agents and the system.

6. “Manageable number of concepts in each model kind and each notational

component”.

7. “Model kinds expressed at various levels of abstraction and detail”.

8. “Support for reuse”.

5.2.1.3.c Potential agent properties to be captured/represented in

MOBMAS model kinds

This category contains eight agent properties that are potentially important to be

represented by MOBMAS model kinds.

1. “Autonomy”: the ability to act without direct intervention of humans or others, and

to control one’s own state and behaviour.

2. “Adaptability”: the ability to learn and improve with experience.

3. “Cooperative behaviour”: the ability to work together with other agents to achieve a

common goal.

4. “Inferential capability”: the ability to reason and act on abstract task specifications.

110

5. “Knowledge-level communication ability”: the ability to communicate with other

agents with language more resembling human-like speech acts than typical symbol-

level program-to-program protocols.

6. “Personality”: the ability to manifest attributes of a “believable” human character.

7. “Reactivity”: the ability to selectively sense and act in a timely manner.

8. “Deliberative behaviour”: the ability to decide in a deliberation, i.e. proactiveness.

5.2.1.3.d. Potential features for MOBMAS as a whole

This category presents six high-level, supplementary features that are potentially

important to MOBMAS as a whole.

1. “Support for open systems”: which are systems that allow for dynamic

addition/removal of agents.

2. “Support for dynamic systems”: which are systems that allow for dynamic changes

in agent behaviour and system structure.

3. “Support for agility and robustness”: that is, the methodology captures normal

processing and exception processing, provides techniques to analyse system

performance for all configurations, and/or provides techniques to detect and recover

from failures.

4. “Support for heterogeneous systems”: that is, the methodology supports the

use/incorporation of (heterogeneous) non-agent software components in the system.

5. “Support for mobile agents”: for example, the methodology models which, when

and how agents should be mobile.

6. “Support for ontology-based MAS development”: that is, support for the use and

inclusion of ontologies in MAS development process and MAS model definitions.

5.2.2. Identification of Potential Steps
Steps that are potentially desirable to MOBMAS development process were identified

by investigating the existing AOSE methodologies, namely the sixteen methodologies

documented in Chapter 3. Each methodology offers a different collection of steps for

the MAS development process. Only Analysis and Design steps were investigated by

the research. Implementation-related steps such as “Develop prototypes” of ADELFE or

“Reuse code” of PASSI were not considered because they are outside the scope of

MOBMAS (cf. Section 4.2). Steps that are too specific to a particular methodology were

111

also discarded, such as “Verify adequacy of AMAS theory” of ADELFE23 or “Develop

IDEF/CIMOSA models for the target system” of MEI24.

After retrieving steps from the existing AOSE methodologies, these steps were

synthesized and combined into a coherent superset. The synthesis process paid careful

attention to the possibility of different methodologies using different terminology to

refer to the same step. Table 5.9 presents the synthesized steps and their origins.

Table 5.9 – Identification of steps from the existing AOSE methodologies

Steps

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

EU
S

PA
SS

I

A
D

E
L

FE

C
A

SS
IO

PE
IA

C
O

M
O

M
A

S

M
A

S-
C

O
M

M
O

N
K

A
D

S

T
R

O
PO

S

1. Identify system
functionality
2. Specify use case
scenarios
3. Identify roles
4. Identify agent classes
5. Model domain
conceptualisation
6. Specify acquaintances
between agent classes
7. Define interaction
protocols
8. Define content of
exchanged messages
9. Specify agent
communication language
10.Specify agent
architecture
11.Define agent
informational constructs (i.e.
beliefs)

12.Define agent behaviour al
constructs (e.g. goals, plans,
actions, services)

13.Specify system
architecture
14.Specify organisational
structure/inter-agent
authority relationships
15.Model MAS environment
16.Specify agent-
environment interaction
mechanism

17.Specify agent inheritance
and aggregation
18.Instantiate agent classes
19.Specify agent instances
deployment

23 This step is only applicable to ADELFE, which employs the theory of “AMAS” for the development of
adaptive MAS systems (cf. section 4.2.12)
24 This step is only applicable to enterprise integration applications (cf. section 4.2.9).

112

MOBMAS’ potential steps were organised into four categories.

5.2.2.1. Potential Problem Domain Analysis steps

This category contains five steps that are potentially important to the understanding of

the target application.

1. “Identify system functionality”

2. “Specify use case scenarios”

3. “Identify roles “

4. “Identify agent classes”

5. “Model domain conceptualisation”

5.2.2.2. Potential Agent Interaction Design steps

This category contains four steps that are potentially important to the design of agent

interactions.

1. “Specify acquaintances between agent classes”

2. “Define interaction protocols”

3. “Define content of exchanged messages”

4. “Specify agent communication language”

5.2.2.3. Potential Agent Internal Design steps

This category presents three steps that are potentially important to the internal design of

agents.

1. “Specify agent architecture”

2. “Define agent informational constructs” (i.e. beliefs)

3. “Define agent behavioural constructs” (e.g. goals, plans, actions, services)

5.2.2.4. Potential Overall System Design steps

The seven steps presented in this category are potentially important to the design of

MAS overall structure and deployment.

1. “Specify system architecture” (i.e. overview of all system components and their

connections)

2. “Specify organisational structure/inter-agent authority relationships”

3. “Model MAS environment” (e.g. resources, facilities)

113

4. “Specify agent-environment interaction mechanism” (e.g. sensors and effectors)

5. “Specify agent inheritance and aggregation”

6. “Instantiate agent classes”

7. “Specify agent instances deployment”

5.2.3. Identification of Potential Modelling Concepts
As for the potential steps, potentially desirable modelling concepts of MOBMAS were

also identified from the existing AOSE methodologies, namely those documented in

Chapter 3. Each methodology offers a set of model kinds and/or notational components

(i.e. diagrams and textual schemas) that capture different AOSE modelling concepts.

The concepts retrieved from the existing methodologies were then synthesized and

combined into a coherent superset. This synthesis paid careful attention to the

possibility of different methodologies using different terminology to refer to the same

concept. Table 5.10 presents the identified modelling concepts and their origin.

Table 5.10 - Identification of modelling concepts from the existing AOSE methodologies

Concepts

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
ES

SA
G

E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
EI

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
A

SS
IO

PE
IA

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

T
R

O
PO

S

System functionality
Use case scenario
Role
Domain conceptualisation
Agent-role assignment
Agent’s goal/task
Agent’s belief/knowledge
Agent’s plan/reasoning rule/problem
solving method
Agent’s capability/service
Agent’s percept/ event
Agent architecture
Agent acquaintance
Interaction protocol
Content of exchanged messages
System architecture
Organisational structure/inter-agent
authority relationships
Environment resources, facilities
Agent aggregation relationship
Agent inheritance relationship
Agent instantiation
Agent instances deployment

114

MOBMAS’ potential modelling concepts were organised into four categories.

5.2.3.1. Potential Problem Domain concepts

This category contains four modelling concepts that are potentially important to the

description of the target problem domain.

1. “System functionality”

2. “Use case scenario”

3. “Role”

4. “Domain conceptualisation”

5.2.3.2. Potential Agent concepts

The seven concepts contained in this category are potentially important to the modelling

of agents.

1. “Agent-role assignment”

2. “Agent goal/task”

3. “Agent belief/knowledge”

4. “Agent plan/reasoning rule/problem solving method”

5. “Agent capability/service”

6. “Agent percept/event” (i.e. event that triggers the agent’s actions)

7. “Agent architecture”

5.2.3.3. Potential Agent Interaction concepts

Three concepts in this category are potentially important to the modelling of agent

interactions.

1. “Agent acquaintance” (i.e. interaction pathways between agents)

2. “Interaction protocol”

3. “Content of exchanged messages”

5.2.3.4. Potential Overall System Design concepts

This category presents seven concepts that are potentially important to the modelling of

MAS overall structure and deployment design.

1. “System architecture”

2. “Organisational structure/inter-agent authority relationships”

115

3. “Environment resource/facility”

4. “Agent aggregation relationship”

5. “Agent inheritance relationship”

6. “Agent instantiation”

7. “Agent instance deployment”

5.3. SURVEY
After the potential methodological requirements of MOBMAS were identified by Step 1

of Research Activity 1 as reported in Section 5.2, Step 2 – “Conduct a survey on

practitioners and researchers in the field of AOSE” was conducted to help validate

these potential requirements. The survey also obtained professional recommendations

on various issues that were useful to the development of MOBMAS (cf. Section 4.4.2).

This section documents the procedure, questionnaire, testing process and results of this

survey.

5.3.1. Survey Procedure
The survey consisted of a questionnaire, which was posted online due to the dispersed

location of prospective respondents, the ease of disseminating the survey and the cost-

effectiveness of survey execution. The questionnaire was also completed online so that

automatic checking of the survey’s responses could be performed (e.g. checking

whether the compulsory questions were all answered and whether the responses were

valid and consistent). Online completion also allowed the responses to be automatically

recorded into an electronic database.

The survey website was hosted on a web server at the School of Information Systems,

Technology and Management at The University of New South Wales. The survey

questionnaire was designed using IBM Lotus Domino Developer software, while the

survey results were stored in an IBM Lotus Notes database. To prevent public access,

the site was password-protected.

The target population consisted of system analysts, system designers/developers, project

managers and researchers/academia whose area of interest and practice is AOSE (in

116

general) and MAS development (in particular). This population was accessed via

UMBC AgentNews newsletter (UMBC Lab for Advanced Information Technology

n.d.b) and UMBC Agents-Digest mailing list (UMBC Lab for Advanced Information

Technology n.d.c). These two media are the prominent and prestigious information

resources and “meeting points” of the agent community.

The survey period was 1.5 months. During this period, advertisements were sent twice

to UMBC AgentNews newsletter and UMBC Agents-Digest mailing list, with a 3-week

interval between the first and second advertisements. The re-posting of advertisements

helped to reach the prospective respondents who might have overlooked the first call for

participation.

Information conveyed in the advertisements included (Appendix A):

the research objective;

activities involved in the survey, including the estimated time to complete the

survey questionnaire;

required expertise from the respondents (i.e. knowledge and/or experience in

AOSE);

benefits to the respondents, such as feedback of the survey’s findings if desired;

the facts that participation was completely voluntary and the respondents could

remain anonymous if desired; and

password to access the online survey questionnaire.

The respondents were not obliged to complete the survey questionnaire in one go. They

could pause the survey at any point after saving their work. In such cases, they were

given an ID Number which allowed them to return to their partially completed

questionnaire as many times as needed until the survey was finished.

Near the end of the survey period, a reminder was sent to UMBC AgentNews newsletter

and UMBC Agents-Digest mailing list to remind the respondents who had partially

completed the survey questionnaire to finish it.

117

5.3.2. Survey Questionnaire
The questionnaire consists of five parts (Appendix B), taking approximately 30-40

minutes to complete.

Part 1 collected demographic and professional background of the respondents. Specific

information gathered was:

name, organisation and email address of each respondent (optional but required if

the respondent wished to receive feedback on the survey’s findings);

field of work (e.g. system analyst, system developer/developer, project manager,

programmer or researcher);

level of theoretical knowledge and industrial experience with MAS in general and

with MAS development in particular; and

characteristics of MAS development projects in which the respondent had been

involved (e.g. level of complexity, number of agents, application area and name of

the adopted methodology, if any).

Part 2 gathered the respondents’ opinions on a list of features with regard to how

important these features are to a “standard” AOSE methodology. This list of features

was obtained from Section 5.2 and contained (cf. Section 5.2.1):

1. features that are potentially desirable to an AOSE process;

2. features that are potentially desirable to AOSE model definitions;

3. agent properties that are potentially desirable to be captured/represented by AOSE

model kinds; and

4. features that are potentially desirable to a MAS development methodology as a

whole.

The respondents were requested to rate the importance of each feature on a scale of

“Very high”, “High”, “Medium”, “Low” and “Very low”. They were also asked to

order rank the features within each category in a decreasing order of importance, from

rank “1” (the most important) to rank n (the least important) where n was the total

number of features in the category. Some features might be ranked equally if they could

not be differentiated.

118

The respondents were invited to provide suggestions on any features that they believed

should be supported by an AOSE methodology but were not listed in this part of the

survey.

Part 3 gathered the respondents’ opinions on a list of steps with respect to how

important these steps are to a “standard” AOSE process. These steps were obtained

from Section 5.2 and categorized into (cf. Section 5.2.2):

1. Problem Domain Analysis steps;

2. Agent Interaction Design steps;

3. Agent Internal Design steps; and

4. Overall System Design steps.

Again, the respondents were asked to rate the importance of the specified steps on a

scale of “Very high”, “High”, “Medium”, “Low” and “Very low”, and to order rank the

steps in each category from “most important” (i.e. rank “1”) to “least important” (i.e.

rank n). Steps could be ranked equally if they could not be differentiated. The

respondents were also invited to suggest any steps that they believed should be provided

by a “standard” MAS development process but were not included in the survey.

Part 4 sought the respondents’ opinions on a list of modelling concepts with respect to

how important they are to be captured/represented by the model kinds of a “standard”

AOSE methodology. This list of concepts was obtained from Section 5.2 and

categorised into (cf. Section 5.2.3):

1. Problem Domain concepts;

2. Agent concepts;

3. Agent Interaction concepts; and

4. Overall System Design concepts.

As in the preceding two survey parts, the respondents were requested to rate the

importance of each concept on a scale of “Very high”, “High”, “Medium”, “Low” and

“Very low”, and to order rank the concepts in each category from “the most important”

to “the least important”. Some concepts might be ranked equally if they could not be

differentiated. Suggestions were also collected on any modelling concepts that are

important to the “standard” AOSE model kinds but were not included in the survey.

119

Part 5 of the survey obtained the respondents’ recommendations on various issues that

were relevant to the construction of a MAS development methodology, namely:

the type of software development lifecycle that best suits an AOSE process;

the importance of committing to a specific agent architecture (e.g. BDI) by an

AOSE methodology; and

the desirable approach for MAS development (e.g. role-oriented or non-role-

oriented).

Each question in this section was accompanied by a request for the respondents’

rationale for their answer.

5.3.3. Survey Testing
The survey was pilot-tested by three academic staffs, whose area of research is agent

technology. The aim of this pilot-test was to evaluate and refine the content, layout and

usability of the online survey questionnaire.

In the preliminary version, the survey questionnaire only requested the respondents to

“rate the importance” of the specified features, steps and modelling concepts (i.e.

without “order ranking”). However, the pilot-testers strongly recommended including

“order ranking” as part of the survey requirements. Reason for their recommendation

was because the listed features, steps and modelling concepts may all be given equal

importance ratings, thus concealing their differentiation in terms of prioritization. The

explicit ranking order of features, steps and concepts would allow the survey to

accurately capture the respondents’ prioritization of the features, steps and concepts.

With regard to the questionnaire’s layout and usability, a number of suggestions for

improvement were made, namely:

allowing for the respondents to move back and forth between the different parts of

the survey questionnaire;

providing detailed explanation on some certain features, steps and modelling

concepts in the form of popup windows;

indicating the number of questionnaire parts yet to be completed;

120

highlighting keywords in the instructions and questions to improve ease of

understanding;

checking the respondents’ completion of the compulsory fields before allowing

them to move to the subsequent questionnaire part; and

checking and fixing potential errors in the respondents’ “order ranking” of features,

steps and modelling concepts. Two types of ranking errors that needed to be

prevented are:

- “Internal coherence” error: which occurs when multiple features are order-

ranked equally but the next lower-ranked features do not have their ranks shifted

accordingly. For example, if features A, B and C are order-ranked equally at rank

“1”, the next less important feature D should be ordered at rank “4”; and

- “External consistency” error: which occurs when the “order ranks” of features

are inconsistent with their “ratings of importance”, or vice versa. For example, if

feature A is given a “Very high” importance rating and feature B a “Medium”

rating, the order rank of feature A should be correspondingly more important

than the order rank of feature B.

The detection of these errors was recommended to be performed when the

respondents attempt to move from one part of the survey to the next, or when they

save the (partially) completed survey. An “internal coherence” error should be

automatically fixed by the online survey software. That is, the software should

automatically adjust the order rankings in a way to preserve the intended ranking

order but eliminate the incoherence problem. On the other hand, if an “external

consistency” error is detected, the respondents should be warned of the error (by

means of alert messages) and requested to fix the problem themselves.

All of the suggested improvements were implemented into the final version of the

survey software.

5.3.4. Statistical Analysis and Results
In total, 41 respondents completed the survey. After processing and collation into a

single data set, the survey data was input into a SPSS statistical package for analysis.

Each of the following sections presents the statistical analysis of each part of the survey

(cf. Section 5.3.2).

121

5.3.4.1. Part 1 – Demographic and professional characteristics

of respondents

Information collected from this part of the survey produced eleven variables which

pertain to the respondents’ demographic and professional characteristics.

1. “Field of work”

2. “Involvement in MAS development projects” (Yes or No)

3. “Size of past MAS projects”

4. “Level of complexity of past MAS projects”

5. “Application areas of past MAS projects”

6. “Adoption of AOSE methodologies in past MAS projects”

7. “Involvement in Ontology-Based MAS development projects” (Yes or No)

8. “Theoretical knowledge of MAS” (e.g. knowledge about MAS characteristics)

9. “Theoretical knowledge of MAS development” (i.e. knowledge about MAS analysis

and design)

10. “Industrial experience with MAS” (e.g. past use of MAS)

11. “Industrial experience with MAS development” (i.e. experience with MAS analysis

and design)

Descriptive statistics of the first seven variables are presented in Appendix C. This

section focuses on the last four variables, which jointly reflect the respondents’

expertise on MAS in general and MAS development in particular. These four variables,

referred to as “expertise variables”, were given particular attention because they

allowed the research to investigate the impact of respondents’ expertise on the “rating of

importance” and “order ranking” of features, steps and modelling concepts in Parts 2, 3

and 4 of the survey.

Response scores given to each expertise variable were obtained via a 7-point Likert

scale, ranging from “1” (i.e. “Low”) to “7” (i.e. “Extensive”). The distribution of the

four variables showed that medians of both “Theoretical knowledge of MAS” and

“Theoretical knowledge of MAS development” were “5”, while the medians of both

“Industrial experience with MAS” and “Industrial experience with MAS development”

were “3” (Figure 5.11).

122

7.06.05.04.03.02.01.0

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

Median = 5
Q1 = 4
Q3 = 6

6.05.04.03.02.01.0

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

Median = 5
Q1 = 3
Q3 = 5.5

Theoretical knowledge of MAS Theoretical knowledge of MAS development

7.06.05.04.03.02.01.0

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

Median = 3
Q1 = 2
Q3 = 5

7.06.05.04.03.02.01.0

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

Median = 3
Q1 = 2
Q3 = 5

 Industrial experience with MAS Industrial experience with MAS development

Figure 5.11 – Distribution of four expertise variables

Wilcoxin Signed-Ranked Tests25 between pairs of these four variables further revealed

that, at a significance level of 5%:

there is no significant difference between

“Theoretical knowledge of MAS” and “Theoretical knowledge of MAS

development” (p = 0.15); and

“Industrial experience with MAS” and “Industrial experience with MAS

development” (p = 0.311); but

there is a significant difference between

“Theoretical knowledge of MAS” and “Industrial experience with MAS” (p =

0.002); and

“Theoretical knowledge of MAS development” and “Industrial experience with

MAS development” (p = 0.001).

25 Wilcoxin Signed-Ranked Test was chosen because it is a well-known test for two-related-sample
comparisons concerning continuous ordinal data (Leach 1979). The samples in this case were related
because the response scores given to the different expertise variables were collected from the same set of
respondents. The Wilcoxin Signed-Ranked Test assumed that each respondent’s data was independent
from the data of other respondents, which was reliably true for the survey data.

123

These findings were not surprising, considering the fact that a large proportion of the

respondents worked in the field of research/academia (cf. Appendix C). They were thus

expected to be more familiar with theoretical aspects than practical aspects of MAS and

MAS development.

To analyse the impact of respondents’ expertise on “rating of importance” and “order

ranking” of features, steps and modelling concepts during Parts 2, 3 and 4 of the survey,

the respondents were classified into two subject-groups, “High Expertise” and “Low

Expertise”, with respect to each expertise variable (Table 5.12). A respondent was

viewed as having “Low Expertise” if his response score was less than 4 and “High

Expertise” if it was in the range 4-7.

Table 5.12 – Number of respondents in each subject group
Expertise Variable Number of respondents

“Low Expertise”
response score <= 4

“High Expertise”
response score > 4

“Theoretical knowledge of MAS” 18 23
“Theoretical knowledge of MAS development” 20 21
“Industrial experience of MAS” 13 28
“Industrial experience of MAS development” 13 28

5.3.4.2. Part 2 – Rating and order ranking of Features

Part 2 of the survey requested the respondents to rate the importance of each specified

feature on a scale of “Very High”, “High”, “Medium”, “Low” and “Very Low”. The

respondents were also asked to order rank the features in each category26 in a

decreasing order of importance, from rank “1” (the most important) to rank n (the least

important) where n was the total number of features in the category. Equal ranks were

allowed for features that could not be differentiated.

“Ratings of importance” and “order ranks” of all features are shown in Table 5.14. With

regard to “rating of importance”, each feature’s rating was calculated as the median of

the rating scores given by the 41 respondents. The range of rating scores is also

presented in Table 5.14.

With regard to the “order ranking” of features in each category, the research firstly

calculated the mean rank of each feature (which is the mean value of the ranking scores

26 The features were organised into four categories (cf. Section 5.2.2).

124

given to the feature by the 41 respondents). The mean rank value was then used to sort

the features in each category in a decreasing order of importance. The smaller the mean

rank, the more important a feature is in relation with others in the category.

In order to determine if the order ranks of the different features in a particular category

are indeed reliably different from each other, two tests were performed.

A Friedman Test was firstly carried out between the multiple groups of responses,

each of which contains the ranking scores given to each feature in the category by

the 41 respondents27. The test helped to detect whether there is an overall

significant difference between all the features in the category regarding their

ranking scores.

If the Friedman Test produced a significant result at a significant level of 5%, a

pair-wise Sign Tests28 was performed to compare between each pair of features.

The aim was to identify which features were ranked reliably higher than which

other features at a significance level of 5%.

After applying these two tests, the ranking order of the features was refined. While the

preliminary ordering (using mean ranks) was preserved, features that were not ranked

significantly different from each other were grouped inside a dashed-line box, as

presented in Table 5.14. The arrow points from the most important feature to the least

important.

Figure 5.13 illustrates how the ranking order results in Table 5.14 can be interpreted. In

Figure 5.13a, feature A is ranked significantly more important than features B, C and D,

which are equivalently ranked among themselves. Figure 5.13b means that feature A is

ranked as the most important and D as the least important. Features B and C are ranked

27 Friedman Test was chosen because it is well-known test for multiple-related-sample comparison (Leach
1979). The samples in this case were related because each sample contains ranking scores that were
obtained from the same group of respondents.
28 Sign Test was chosen because it is equivalent to the Friedman Test when only two samples are
involved (Leach 1979). The procedure for pair-wise comparison was borrowed from Leach (1979): a Sign
Test was first carried out between the feature with the smallest mean rank and the feature with the largest
mean rank. If a significant difference was detected, the feature with the smallest mean rank would be
compared with the feature with the second largest mean rank, and so on until a non-significant result was
obtained. Next, the feature with the second smallest mean rank was compared with the feature with the
largest mean rank, followed by the feature with the second largest mean rank, and so on until a non-
significant result was obtained.

125

significantly less important than A but more important than D. B and C are equivalently

ranked. Figure 5.13c presents a more complicated ranking order. Feature A is ranked

significantly more important than D, with B and C being ranked somewhere in between.

However, features B and C are not reliably ranked differently from either A or D.

 (a) (b) (c)

Figure 5.13 – Examples of ranking order results

Table 5.14 – “Rating of importance” and “order rank” of features

Features desirable to an AOSE process
Median

Rating of
Importance*

Range of
Rating of

Importance*

Mean Rank

1. Specification of model kinds and/or
notational components

2. Specification of steps for the development
process

3. Specification of techniques and heuristics
for performing each process step and
producing each model kind

4. Support for verification and validation
5. Support for refinability
6. Specification of a system development

lifecycle

VH

VH

VH

VH
VH
VH

[M; VH]

[M; VH]

[L; VH]

[L; VH]
[VL; VH]
[VL; VH]

3.34

3.46

3.78

3.95
4.26
4.43

Features desirable to AOSE model
definitions

Median
Rating of

Importance

Range of
Rating of

Importance

Mean Rank

1. Guarantee of consistency
2. Model kinds expressed at various level of

abstraction and detail
3. Support for reuse
4. High degree of

completeness/expressiveness
5. Manageable number of concepts in each

model kind and each notational component
6. Support for modularity
7. High degree of formalisation/preciseness
8. Provision of guidelines/logics for model

derivation

VH
VH

VH
VH

VH

VH
VH

VH

[L; VH]
[M; VH]

[L; VH]
[M; VH]

[VL; VH]

[L; VH]
[VL; VH]

[VL; VH]

3.52
3.78

3.80
3.81

4.06

4.23
4.41

4.49

C

A

B

Most important

Least important
D

C

A

B

D

C

A

B

D

126

Agent properties desirable to be
captured/represented in AOSE model kinds

Median
Rating of

Importance

Range of
Rating of

Importance

Mean Rank

1. Autonomy
2. Cooperative behaviour
3. Deliberative behaviour
4. Knowledge-level communication ability
5. Inferential capability
6. Reactivity
7. Adaptability
8. Personality

VH
VH
VH
VH
VH
VH
VH
M

[M; VH]
[M; VH]
[L; VH]
[L; VH]

[VL; VH]
[M; VH]
[L; VH]

[VL; VH]

2.54
3.46
3.92
4.14
4.34
4.75
5.48
7.98

Features desirable to a MAS development
methodology as a whole

Median
Rating of

Importance

Range of
Rating of

Importance

Mean Rank

1. Support for dynamic systems
2. Support for open systems
3. Support for ontology-based MAS

development
4. Support for heterogeneous systems
5. Support for agility and robustness
6. Support for mobile agents

VH
VH
VH

H
M
M

[VL; VH]
[L; VH]
[M; VH]

[VL; VH]
[VL; VH]
[VL; VH]

3.34
3.78
3.87

4.95
6.26
6.71

* VH: Very High H: High M: Medium L: Low VL: Very Low

The research also investigated the impact of expertise on the respondents’ “rating of

importance” and “order ranking” of the features. As described in Section 5.3.4.1,

respondents were classified into two subject-groups, “High Expertise” and “Low

Expertise”, with respect to each expertise variable (“Theoretical knowledge of MAS”,

“Theoretical knowledge of MAS development”, “Industrial experience with MAS” and

“Industrial experience with MAS development”). Mann-Whitney Tests were performed

to compare between the two subject-groups in each expertise variable with regard to the

“rating of importance” and “order ranking” of each feature.

Followings are features that were found affected by the respondents’ expertise in their

rating and/or order ranking (significance level = 5%).

“Specification of a system development lifecycle”: This feature was given a higher

“rating of importance” and a more important “order rank” by the respondents who

had “Low Expertise” in “Theoretical knowledge of MAS” compared to those who

had “High Expertise” (one-tailed p = 0.02 for rating and p = 0.018 for order

ranking).

“Support for reuse”: This feature was order ranked as more important by

respondents with “High Expertise” in “Industrial experience with MAS” compared

to those with “Low Expertise” (one-tailed p = 0.052).

127

“Knowledge-level communication ability”: This feature was order ranked as more

important by respondents with “High Expertise” in “Industrial experience with

MAS” and in “Industrial experience with MAS development” compared to those with

“Low Expertise” in these two variables (one-tailed p = 0.028 and 0.006

respectively).

“Support for ontology-based MAS development”: This feature was order ranked

as more important by respondents with “High Expertise” in “Industrial experience

with MAS” compared to those with “Low Expertise” (one-tailed p = 0.014).

The respondents were also invited to provide suggestions on any other features that they

believed should be supported by a “standard” MAS development methodology.

However, no suggestions were made.

5.3.4.3. Part 3 – Rating and order ranking of Steps

Statistical analysis performed on the “ratings of importance” and “order rankings” of

steps is the same as the analysis of features (cf. Section 5.3.4.2). The results are

displayed in Table 5.15.

Table 5.15 – “Rating of importance” and “order rank” of steps

Problem Domain Analysis steps

Median
Rating of

Importance
*

Range of Rating of
Importance* Mean Rank

1. Identify system functionality
2. Identify agent classes
3. Model domain conceptualisation
4. Identify roles
5. Specify use case scenarios

VH
VH
VH
H
M

[L; VH]
 [M; VH]
[L; VH]
[M; VH]
[VL; H]

2.05
3.49
3.61
3.68
3.72

Agent Interaction Design steps
Median

Rating of
Importance

Range of Rating of
Importance Mean Rank

1. Define interaction protocols
2. Specify acquaintances between agent

classes
3. Define content of exchanged

messages
4. Specify agent communication

language

VH
VH

VH

M

[M; VH]
[L; VH]

[L; VH]

[VL; VH]

1.02
1.54

2.51

3.75

128

Agent Internal Design steps
Median

Rating of
Importance

Range of Rating of
Importance Mean Rank

1. Define agent informational constructs
2. Define agent behavioural constructs
3. Specify agent architecture

VH
VH
VH

[M; VH]
[M; VH]
[L; VH]

1.78
2.10
2.34

Overall System Design steps
Median

Rating of
Importance

Range of Rating of
Importance Mean Rank

1. Specify system architecture
2. Specify organisational structure/inter-

agent authority relationships
3. Model MAS environment
4. Specify agent-environment interaction

mechanism
5. Instantiate agent classes
6. Specify agent instances deployment
7. Specify agent inheritance and

aggregation

VH
VH

VH
H

H
H
M

[M; VH]
[L; VH]

[M; VH]
[L; VH]

[VL; VH]
[VL; VH]
[VL; VH]

1.90
2.05

2.90
3.90

4.23
4.89
5.95

* VH: Very High H: High M: Medium L: Low VL: Very Low

Respondents’ expertise was found to affect the “rating of importance” and “order rank”

of two steps.

“Define content of exchanged messages”: This step was order ranked as more

important by respondents with “High Expertise” in “Theoretical knowledge of MAS”

compared to those with “Low Expertise” (one-tailed p = 0.04).

“Specify agent inheritance and aggregation”: This step was given a higher “rating

of importance” by respondents with “Low Expertise” in “Industrial experience with

MAS development” compared to those with “High Expertise” (one-tailed p = 0.028).

Although the respondents were invited to provide suggestions on any other steps that

are desirable to a “standard” MAS development process, no suggestions were made.

5.3.4.4. Part 4 – Rating and order ranking of Modelling

Concepts

The “rating of importance” and “order rank” of concepts were determined using the

same statistical methods as those performed on features (cf. Section 5.3.4.2). The results

are displayed in Table 5.16.

129

Table 5.16 – “Rating of importance” and “order rank” of modelling concepts

Problem Domain concepts
Median

Rating of
Importance*

Range of
Rating of

Importance*
Mean Rank

1. System functionality
2. Role
3. Domain conceptualisation
4. Use case scenario

VH
VH
H
M

[L; VH]
[M; VH]
[L; VH]
 [VL; H]

1.82
2.56
2.80
3.73

Agent concepts
Median

Rating of
Importance

Range of
Rating of

Importance
Mean Rank

1. Agent belief/knowledge
2. Agent goal/task
3. Agent-role assignment
4. Agent action/service
5. Agent plan/reasoning rule/problem

solving method
6. Agent architecture
7. Agent percept/event

VH
VH
VH
VH
VH

H
M

[M; VH]
[L; VH]
[M; VH]
[VL; VH]
[L; VH]

[L; VH]
[L; VH]

3.51
3.63
3.90
4.05
4.48

6.05
6.52

Agent Interaction concepts
Median

Rating of
Importance

Range of
Rating of

Importance
Mean Rank

1. Interaction protocol
2. Content of exchanged messages
3. Agent acquaintance

VH
VH
VH

[M; VH]
[VL; VH]
[M; VH]

1.73
2.22
2.49

Overall System Design concepts
Median

Rating of
Importance

Range of
Rating of

Importance
Mean Rank

1. System architecture
2. Organisational structure/inter-agent

authority relationships
3. Environment resource/facility
4. Agent instance deployment
5. Agent instantiation
6. Agent aggregation relationship
7. Agent inheritance relationship

VH
VH

VH
H
H
M
M

[M; VH]
[M; VH]

[VL; VH]
 [VL; VH]
[VL; VH]
[VL; VH]
[VL; VH]

1.75
1.90

2.90
4.87
5.01
6.49
6.85

* VH: Very High H: High M: Medium L: Low VL: Very Low

The respondents were invited to provide suggestions on any other modelling concepts

that may be important to model definitions of a “standard” MAS development

methodology. However, no suggestions were made.

130

5.3.4.5. Part 5 – Recommendations on AOSE methodological

issues

Part 5 of the survey obtained the respondents’ suggestions and comments on various

issues that pertained to the construction of a MAS development methodology. The

collected recommendations are presented and discussed below.

Issue 1: MAS development SDLC

When asked the open-ended question “If an AOSE methodology must incorporate a

SDLC, which SDLC do you think it should be?”, a majority of the respondents

suggested a SDLC model that is iterative and incremental (Figure 5.17). A few other

SDLC models were identified from the open-ended answers of the respondents. Four

respondents suggested more than one SDLC model.

0
5

10
15

20
25

30

Ite
ra

tiv
e,

in
cr

em
en

ta
l

Sp
ira

l

Ev
ol

ut
io

na
ry

pr
ot

ot
yp

in
g

Ex
tre

m
e

pr
og

ra
m

m
in

g

R
U

P

En
tir

el
y

ne
w

SD
LC

N
o

su
gg

es
tio

ns

Figure 5.17 – Survey respondents’ suggestions on MAS development SDLC

The reasons cited for the suitability of the “Iterative and incremental SDLC” to the

development of MAS were synthesized as follows.

Iteration is crucial to the development of non-trivial systems. Such systems cannot

be built at one shot, but part by part, step by step, and functionality by functionality.

Iterative and incremental cycle is the best way to prevent risks and facilitate

maintenance.

“Iteration” allows refinements to be made in an organised, predictable way.

“Increments” allow for short delivery cycles and enhance project visibility.

New agents may appear while others are made obsolete as the system continuously

evolves. System functionality also needs to be refined or enhanced.

131

MASs are generally more evolvable and dynamic than most other system models. It

is therefore not desirable (or feasible) to define up-front everything the system is

meant to do.

The reasons collected for the other SDLC models were as follows.

Spiral:

- Artificial intelligence is an empirical domain of science, and spiral SDLC is well

suited to hypothesis verification.

- MAS will typically be used for multiple generations of a product. This is

essentially the learning model that is fostered by the spiral development model.

Evolutionary prototyping:

- Agent technology allows dynamic/evolving systems and naturally these systems

should be developed similarly.

- MAS development should deploy the power of distributed development and

gradual system expansion instead of centralised heavyweight design effort.

- MAS development should be open-ended with scope for dealing with

unanticipated goals and discoveries.

Extreme programming:

- The development of agent systems requires iterative, frequent tests.

Rational Unified Process:

- The Rational Unified Process (i.e. iteration with shifting emphasis) is fairly

generic and realistic.

- It is well supported, well documented and well known.

Issue 2: Commitment to agent architecture

When asked “Please indicate the importance of an AOSE methodology to commit to a

particular agent architecture (e.g. BDI architecture)”, a large proportion of the

respondents (17 out of 41) rated the importance as “Medium” (Figure 5.18).

132

Figure 5.18 – Survey respondents’ suggestions on the importance of a MAS development methodology to

commit to an agent architecture

Qualitative analysis of the respondents’ comments on this question revealed various

reasons for, and against, the need to commit to an agent architecture by a MAS

development methodology. The respondents’ comments also included various

suggestions on the matter.

“For”:

- It is not the goal of a MAS development methodology to be universal.

- It is necessary for a MAS development methodology to aim for a particular

implementation platform (or at least “style”) to provide useful guidelines in

relation to implementation.

- Many different architectures/implementation models are called “agent”. Thus a

clear commitment to a (set of) agent architectural model is needed.

“Against”:

- Any kind of agent development toolkit and architecture should be appropriate to

be used for implementing the produced design models.

- The selection of target agent architecture should be a strategic decision made

outside the development cycle of any specific MAS development project.

- MASs should be able to integrate and coordinate agents of many kinds.

- Any extension of functionality of an evolving MAS could involve a new agent

architecture.

- Flexibility is a very important factor of a system development methodology.

Diverse architectural models would make a methodology rich.

133

“Suggestion”:

- Analysis and architectural design of MAS should be architecture independent.

However the detailed, internal design of each agent should use modular agent-

oriented components/features that are specific to a particular agent architecture.

- A MAS development methodology can be “componentised”. That is, the choice

of agent architecture only affects parts of the methodology. Changing from one

architecture style/model to another would only require adapting a part of the

methodology.

- A MAS development methodology may provide ready-made architectural styles

that can be reused by its users.

Issue 3: Approach for agent identification

The survey presented two major approaches for MAS development:

Role-oriented approach: where “role” is employed as a major modelling concept

and is used, for example, for the identification of agents; and

Non-role-oriented approach: where “role” is not used anywhere in the MAS

development process. Agents, for example, can be identified from other constructs

such as use case scenarios, task specifications and workflow models.

Most respondents selected the first approach as the desirable method for MAS

development (30 out of 41; Figure 5.19).

Figure 5.19 – Survey respondents’ suggestions on the approaches to agent identification

The provided reasons for the role-oriented approach are listed below.

Role provides an easy, natural way to map system aspects such as tasks,

responsibilities and organisational positions onto agents.

Agents are autonomous entities. Modelling agents as players/implementers of roles

promote this autonomy.

Using roles allows for modularity and extendibility in agent design.

134

Role provides flexibility in design, since each agent may take on multiple roles,

move from one role to another, or take on new roles.

Respondents who advocated the non-role-oriented approach presented the following

reasons for their response.

Other conventional constructs such as use case scenarios are more familiar to most

developers. They thus help OO developers to adapt and familiarize to agent-oriented

development.

Agent-oriented development share many similarities with the conventional

development paradigms such as OO. It should thus make use of (or be built upon)

the conventional analysis and design constructs such as use case scenarios and

workflow models.

5.4. FEATURE ANALYSIS OF EXISTING MAS

DEVELOPMENT METHODOLOGIES
Following the survey on practitioners and researchers (Section 5.3), Step 3 of Research

Activity 1 – “Perform a feature analysis on the existing AOSE methodologies” – was

performed. Its aim was to further validate the potential methodological requirements of

MOBMAS, and to identify and evaluate the techniques and model definitions provided

by the existing AOSE methodologies for supporting these requirements (cf. Section

4.4.3).

This section firstly presents the evaluation framework of the feature analysis (Section

5.4.1) and the feature analysis’ findings (Section 5.4.2). Based on these findings, the

research then determined the “actual” methodological requirements of MOBMAS

(Section 5.4.3) and identified a pool of techniques and model definitions that may be

reused or enhanced by MOBMAS, as well as the methodological requirements that

need to be supported by new techniques and/or model definitions (Section 5.4.4).

135

5.4.1. Evaluation Framework
A feature analysis requires an “evaluation framework” which defines a set of evaluation

criteria to serve as yardsticks for assessing a methodology from different aspects (Siau

and Rossi 1998). This research’s evaluation framework was built directly upon the list

of potential requirements of MOBMAS (i.e. the list of features, steps and modelling

concepts identified in Section 5.2). Each criterion assesses whether an existing AOSE

methodology provides support for a particular feature, step or modelling concept, and/or

how the support is provided (i.e. the techniques and model definitions used by the

existing methodology to support the feature, step or modelling concept).

Apart from these criteria, a small number of other criteria were included into the

evaluation framework to assess the ease of understanding and usability of the

development process, techniques and model definitions of the existing AOSE

methodologies. One new criterion was also defined to explore the approach towards

MAS development of the existing AOSE methodologies (namely, role-oriented approach

or non-role-oriented approach). The final structure of the evaluation framework is

shown in Figure 5.20.

Figure 5.20 – Evaluation framework

Evaluation criteria on features (Table 5.21): include 36 criteria that evaluate the

support of an AOSE methodology for:

features relating to AOSE process;

features relating to AOSE model definitions;

agent properties; and

features relating to the methodology as a whole.

These features and agent properties are obtained from Section 5.2.1.

Evaluation criterion on steps (Table 5.22): includes one criterion that examines

whether an AOSE methodology provides support for:

particular Problem Domain Analysis steps;

Evaluation framework

Evaluation criteria on
features

Evaluation criterion on
steps

Evaluation criterion on
modelling concepts

136

particular Agent Interaction Design steps;

particular Agent Internal Design steps; and

particular Overall System Design steps.

These steps are obtained from Section 5.2.2.

Evaluation criterion on modelling concepts (Table 5.23): includes one criterion

that determines whether an AOSE methodology provides support for:

particular Problem Domain concepts;

particular Agent concepts;

particular Agent Interaction concepts; and

particular Overall System Design concepts.

These modelling concepts are obtained from Section 5.2.3.

Each criterion is accompanied by an evaluation question, as presented in column

“Evaluation Questions” of Tables 5.24, 5.25 and 5.26. Criteria marked with asterisk (*)

are those that do not correspond directly to any potential requirements of MOBMAS,

but were included to assess the usability of the methodology or to investigate the

methodology’s approaches towards MAS development as mentioned previously.

Even though developed particularly for this research, the above evaluation framework is

applicable to the evaluation of any AOSE methodology. It has been published in Tran et

al. (2003) and applied to the comparative analysis of various AOSE methodologies

(Tran et al. 2004; Tran and Low 2005).

Table 5.21 – Evaluation criteria on features
Evaluation Criteria Evaluation Questions
Evaluation criteria on features relating to AOSE process
1. Specification of a system

development lifecycle
What development lifecycle best describes the methodology (e.g.
waterfall or iterative)?

2. Support for verification
and validation

Does the development process of the methodology contain rules to
allow for the verification and validation of the correctness of the
developed models?

3. Specification of steps for
the development process

Does the development process of the methodology define specific
steps for MAS development?

4. Specification of model
kinds and/or notational
components

What model kinds (and/or notational components) are generated from
each step?

5. Definition of inputs and
outputs for steps*

Are inputs and outputs to each process step defined?

6. Specification of techniques
and heuristics

a. What are the techniques used to perform each process step?
b. What are the techniques used to produce each model kind or

notational component (i.e. modelling techniques)?

137

7. Ease of understanding of
techniques*

Are the techniques easy to understand?

8. Usability of techniques* Are the techniques easy to follow
9. Provision of examples for

techniques*
Are examples of the techniques provided?

10.Ease of understanding of
the development process*

Do the steps result in a development process that is easy to
understand?

11.Usability of the
development process*

Do the steps result in a development process that is easy to follow?

12.Support for refinability Do the process steps provide a clear path for refining models through
gradual stages to reach an implementation, or at least for clearly
connecting the implementation level to the design specification?

13.Approach for MAS
development*

Does the methodology employ the abstraction of “role” in MAS
analysis and design?

Evaluation criteria on feature relating to AOSE model definitions
1. Completeness/

expressiveness
Are the model kinds of the methodology capable of representing the
system from different perspectives, capturing all necessary aspects
such as static and dynamic aspects, system-level and agent-level
aspects?

2. Formalisation/preciseness a. Are syntax and semantics of the model kinds and notational
components clearly defined?

b. Are examples of the model kinds and notational components
presented?

3. Provision of
guidelines/logics for model
derivation

Do explicit process and guidelines exist for transforming model kinds
into other model kinds or for partially creating a model kind from
information present in another model kind?

4. Guarantee of consistency a. Are there rules and guidelines to ensure consistency between the
levels of abstractions within each model kind (i.e. internal
consistency), and between different model kinds?

b. Are model kinds represented in a manner that allows for
consistency checking between them?

5. Support for modularity Do the methodology and its model kinds promote modularity in the
design of agents and the system?

6. Management of complexity Are there a manageable number of concepts expressed in each model
kind/notational component?

7. Levels of abstraction Does the methodology allow for producing models at various levels
of detail and/or abstraction?

8. Support for reuse Does the methodology provide, or make it possible to use, a library
of reusable models?

9. Ease of understanding of
model definitions*

Are the model kinds and notational components clear and easy to
understand?

Evaluation criteria on agent properties
1. Autonomy Can the model kinds support and represent the autonomous feature of

agents (i.e. the ability to act without direct intervention of humans or
others, and to control their own states and behaviour)?

2. Adaptability Can the model kinds support and represent the adaptability feature of
agents (i.e. the ability to learn and improve with experience)?

3. Cooperative behaviour Can the model kinds support and represent the cooperative behaviour
of agents (i.e. the ability to work together with other agents to
achieve a common goal)?

4. Inferential capability Can the model kinds support and represent the inferential capability
feature of agents (i.e. the ability to reason and act on abstract task
specifications)?

5. Knowledge-level
communication ability

Can the model kinds support and represent a “knowledge-level”
communication ability (i.e. the ability to communicate with other
agents with language resembling human-like speech acts)?

6. Personality Can the model kinds support and represent the personality of agents
(i.e. the ability to manifest attributes of a “believable” human
character)?

138

7. Reactivity Can the model kinds support and represent the reactivity of agents?
(i.e. the ability to selectively sense and act in a timely manner)

8. Deliberative behaviour Can the model kinds support and represent the deliberative behaviour
of agents (i.e. the ability to decide in a deliberation, or
proactiveness)?

Evaluation criteria on features relating to methodology as a whole
1. Support for open systems Does the methodology provide support for open systems (open

systems are those that allow for dynamic addition/removal of
agents)?

2. Support for dynamic
systems

Does the methodology provide support for dynamic structure (i.e. the
methodology allows for dynamic reconfiguration of the system, e.g.
change of roles of agents or change or organisational structure of
MAS)?

3. Support for agility and
robustness

Does the methodology provide support for agility and robustness
(e.g. the methodology captures normal processing and exception
processing, provides techniques to analyse system performance for
all configurations, or provides techniques to detect and recover from
failures)?

4. Support for heterogeneous
systems

Does the methodology provide support for the use/incorporation of
(heterogeneous) non-agent software components in the system?

5. Support for mobile agents Does the methodology provide support for the use/integration of
mobile agents in a MAS (e.g. the methodology models
which/when/how agent should be mobile)?

6. Support for ontology-based
MAS development

Does the methodology provide support for the use and specification
of ontology in a MAS (i.e. Ontology-Based MAS)?

Table 5.22 – Evaluation criterion on steps
Evaluation Criterion Evaluation Question
Support for steps Which of the following steps are supported by the development

process of the methodology?

Problem Domain Analysis steps
1. Identify system functionality
2. Specify use case scenarios
3. Identify roles
4. Identify agent classes
5. Model domain conceptualisation

Agent Interaction Design steps
1. Specify acquaintances between agent classes
2. Define interaction protocols
3. Define content of exchanged messages
4. Specify agent communication language

Agent Internal Design steps
1. Specify agent architecture
2. Define agent informational constructs (i.e. beliefs)
3. Define agent behavioural constructs (e.g. goals, plans, actions,

services)

Overall System Design steps
1. Specify system architecture (i.e. overview of all system

components and their connections)
2. Specify organisational structure/inter-agent authority relationships
3. Model MAS environment (e.g. resources, facilities)
4. Specify agent-environment interaction mechanism
5. Specify agent inheritance and aggregation
6. Instantiate agent classes
7. Specify agent instances deployment

139

Table 5.23 – Evaluation criterion on modelling concepts
Evaluation Criterion Evaluation Question
Support for modelling
concepts

Which of the following concepts are captured/represented by the
model kinds of the methodology?

Problem Domain concepts
1. System functionality
2. Use case scenario
3. Role
4. Domain conceptualisation

Agent concepts
1. Agent-role assignment
2. Agent goal/task
3. Agent belief/knowledge
4. Agent plan/reasoning rule/problem solving method
5. Agent capability/service
6. Agent percept/event
7. Agent architecture

Agent Interaction concepts
1. Agent acquaintance
2. Interaction protocol
3. Content of exchanged messages

Overall System Design concepts
1. System architecture
2. Organisational structure/inter-agent authority relationships
3. Environment resource/facility
4. Agent aggregation relationship
5. Agent inheritance relationship
6. Agent instantiation
7. Agent instance deployment

5.4.2. Feature Analysis of Existing MAS Development

Methodologies
In this section, the sixteen AOSE methodologies described in Chapter 3 are evaluated

using the evaluation framework presented in Section 5.4.1. The analysis of ten of these

methodologies has been published in Tran et al. (2004) and Tran and Low (2005),

namely MASE, GAIA, MESSAGE, INGENIAS, BDIM, PROMETHEUS, PASSI,

ADELFE, MAS-CommonKADS and TROPOS.

5.4.2.1. Evaluation of support for Features

Evaluation of support for features relating to AOSE process

Of the fourteen evaluation criteria in this category (cf. Table 5.21), the following six

criteria are discussed in Section 5.4.2.2 alongside criterion “Support for steps”,

because these criteria needed to use the list of steps in Table 5.22 as yardsticks:

140

“Specification of model kinds and/or notational components”, “Definition of inputs

and outputs for steps”, “Specification of techniques and heuristics”, “Ease of

understanding of techniques”, “Usability of techniques” and “Provision of examples

for techniques”. Evaluation of the remaining eight criteria is presented in Table 5.24.

Most of the evaluation results are self-explanatory, except for the following three

criteria whose assessment is further clarified below.

“Usability of the development process”: This research rated a methodology as

“Medium” or “Low” if the methodology disregards many steps in the

construction of MAS29 and/or fails to provide sufficient techniques to guide the

performance of its steps and/or the construction of its model kinds.

“Approach for MAS development”: This research classified an AOSE

methodology as Non-Role-Oriented (“NRO”) if the methodology does not

involve the use of abstraction “role” anywhere in its MAS development process.

A Role-Oriented methodology (“RO”), on the other hand, employs “role” as a

major modelling concept.

Evaluation of support for features relating to AOSE model definitions

Nine evaluation criteria were used to conduct this evaluation (cf. Table 5.21). Again,

the evaluation results are self-explanatory (Table 5.25). It should be noted that:

regarding criterion “Completeness/expressiveness”, a methodology was rated

“High” if it offers a comprehensive set of model kinds and notational

components to represent the target system from both static and dynamic aspects,

and to capture a large variety of concepts30;

regarding criterion “Support for modularity”, a methodology was evaluated

“Yes” if it models agents as an encapsulation of either roles, goals,

tasks/responsibilities, knowledge modules and/or capabilities; and

regarding criterion “Support for reuse”, a methodology was rated “Yes” if it

explicitly provides a library of reusable modelling components (such as role

patterns, protocol templates, knowledge modules and/or behavioural patterns), or

at least discusses the possibility of reusing certain modelling components. A

29 That is, the steps listed in Table 5.22.
30 That is, the concepts listed in Table 5.23.

141

methodology was rated “Possibly” if it does not explicitly address the issue of

reuse, nevertheless allows the developer to reuse modelling components.

Evaluation of support for agent properties

Nine agent properties were investigated in total (cf. Table 5.21). The assessment of

methodological support for these properties is presented in Table 5.26. Some notable

findings are presented below.

All sixteen methodologies were found to support “autonomy” via the modelling

of agents as entities with purpose (represented as roles, goals, tasks and/or

capabilities) and/or entities with internal control (represented as knowledge,

plans, inference rules and/or problem solving methods).

Two methodologies were found to touch on the issue of agent adaptability:

MESSAGE recommends selecting a cognitive agent architecture if the agent

needs to learn, and INGENIAS mentions the need to specify “learning” as a

characteristic of an agent if applicable. It should be noted that while ADELFE

supports adaptability at the system level, it does not address the issue of

adaptability at the agent level.

A majority of the existing methodologies (11 out of 16) were found to support

“inferential capability” via the specification of agent beliefs/knowledge, plans,

aptitudes, methods, agent control process and/or agent behavioural

knowledge/expertise.

A majority of the methodologies (11 out of 16) support “reactivity” through the

explicit modelling of “events” that incur during agent interactions and/or agent

internal processing. These methodologies also explicitly model reactive

behaviour for agents. Five other methodologies were found to “possibly” support

reactivity because, even though they do not explicitly discuss the modelling of

events and agent reactive behaviour, these elements may have been embedded in

the specification of agent interaction protocols, agent dependencies and agent

responsibilities/plans/competence.

Most of the methodologies (15) were found supportive of “deliberative

behaviour” via the modelling of agents as entities with purposes (represented as

agent goals, tasks and/or capabilities). Eleven methodologies also specify how

agents fulfil these purposes, either via agent plans (BDIM, HLIM, MEI,

142

TROPOS and PROMETHEUS), methods/capabilities (PASSI and ADELFE),

control procedures/rules (INGENIAS) or knowledge/expertise (COMOMAS,

MAS-CommonKADS and MESSAGE).

Evaluation of support for features relating to the methodology as a whole

There are six high-level, supplementary features that pertain to the MAS

development methodology as a whole (cf. Table 5.21). Evaluation of these features’

support is presented in Table 5.27. Notable findings are discussed below.

“Open systems” were supported by only three methodologies, SODA, GAIA and

ADELFE, via the modelling of resources and services offered by MAS

environment (SODA and GAIA), specification of organisational rules to govern

agent interactions and behaviour (SODA and GAIA) and modelling of potential

“non-cooperative situations” between agents (ADELFE). MASSIVE “possibly”

supports open systems since it mentions the characterisation of openness of the

target agent society.

“Dynamic systems” were supported by only four methodologies: MASSIVE,

HLIM and PASSI model the dynamic assignment of roles to agents;

CASSIOPEIA defines the behaviour of agents in dynamically forming, joining

and dissolving agent groups. MASE “possibly” support dynamic systems

because it acknowledges that agents can change roles dynamically, although it

does not deal with this issue in any detail.

“Agility and robustness” were supported by only five methodologies. ADELFE

and MASSIVE identify potential failure situations of the system and specify the

mechanisms to deal with them. PROMETHEUS, MASE and MAS-

CommonKADS identify exceptional situations in interaction protocols and use

cases; however they do not specify any exception handling mechanisms.

“Support for heterogeneous systems” was provided by five methodologies. Four

of them (INGENIAS, PROMETHEUS, GAIA and MASSIVE) mention the

existence of non-agent objects and application systems in MAS, but do not

discuss how the heterogeneous components of MAS can be supported. MASE

does not consider non-agent system components, but addresses the

interoperability between heterogeneous agents.

143

“Mobile agents” is only supported by PASSI which models agent movement in

its Deployment Configuration Diagram.

“Support for ontology-based MAS development” was provided by only four

methodologies (MASE, MESSAGE, PASSI and MAS-CommonKADS).

Detailed discussion of their ontology support has been presented in Section

3.3.2.

Table 5.24 – Evaluation of support for features relating to AOSE process

A
pp

ro
ac

h
fo

r
M

A
S

de
v.

RO

RO

RO

RO

RO

RO

RO

RO

N
RO

 N
RO

 R
O

N
RO

N
RO

 N
RO

 R
O

 N
RO

Su
pp

or
t f

or

re
fin

ab
ili

ty

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

U
sa

bi
lit

y
of

th

e
de

v.

pr
oc

es
s

H
ig

h

M
ed

iu
m

Lo
w

M
ed

iu
m

M
ed

iu
m

H
ig

h

Lo
w

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

E
as

e
of

un

de
rs

ta
nd

in
g

of

th
e

de
v.

 P
ro

ce
ss

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

Sp
ec

ifi
ca

tio
n

of

st
ep

s f
or

 th
e

de
v.

pr

oc
es

s

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Su
pp

or
t f

or
 v

er
ifi

ca
tio

n
&

 v
al

id
at

io
n

Y
es

Y
es

N
o

N
o

M
en

tio
ne

d
as

 fu
tu

re

en
ha

nc
em

en
t

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

N
o

M
en

tio
ne

d
bu

t n
o

cl
ea

r
gu

id
el

in
es

N
o

Y
es

Sp
ec

ifi
ca

tio
n

of
 a

 sy
st

em

de
ve

lo
pm

en
t

(d
ev

.)
lif

ec
yc

le

Ite
ra

tiv
e

ac
ro

ss
 a

ll
ph

as
es

Ite
ra

tiv
e

V
ie

w

En
gi

ne
er

in
g

pr
oc

es
s

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

w
ith

in

ea
ch

ph

as
e

bu
t

se
qu

en
tia

l
be

tw
ee

n
ph

as
es

R
at

io
na

l U
ni

fie
d

Pr
oc

es
s

U
ni

fie
d

so
ftw

ar
e

de
ve

lo
pm

en
t p

ro
ce

ss

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

w
ith

in
 a

nd
 a

cr
os

s
th

e
ph

as
es

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

ac
ro

ss
 a

ll
ph

as
es

Ite
ra

tiv
e

ac
ro

ss
 a

nd
 w

ith
in

al

l
ph

as
es

(e

xc
ep

t
fo

r
co

di
ng

 a
nd

 d
ep

lo
ym

en
t)

R
at

io
na

l U
ni

fie
d

Pr
oc

es
s

N
ot

 sp
ec

ifi
ed

C
yc

lic
 ri

sk
-d

riv
en

 p
ro

ce
ss

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

an
d

in
cr

em
en

ta
l

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

144

Table 5.25 – Evaluation of support for features relating to AOSE model definitions
E

as
e

of

un
de

rs
ta

nd
in

g
of

m

od
el

 d
ef

in
iti

on
s

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

Su
pp

or
t f

or

re
us

e

Y
es

Y
es

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Le
ve

ls
 o

f
ab

st
ra

ct
io

n

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

M
an

ag
em

en
t o

f
co

m
pl

ex
ity

Y
es

Y
es

Y
es

Y
es

Y
es N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Su
pp

or
t f

or

m
od

ul
ar

ity

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

G
ua

ra
nt

ee
 o

f
co

ns
is

te
nc

y

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.
 Y

es

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.

 Y
es

b.

 Y
es

a.
 Y

es

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.
 N

o
b.

 Y
es

a.
 N

o
b.

 N
A

a.

 Y
es

b.

 Y
es

Pr
ov

is
io

n
of

 g
ui

de
lin

es
/

lo
gi

cs
 fo

r
m

od
el

de

ri
va

tio
n

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o N
A

Y
es

Fo
rm

al
iz

at
io

n/

pr
ec

ise
ne

ss

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 M

ed
iu

m

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 L

ow

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 M

ed
iu

m

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

C
om

pl
et

en
es

s/

ex
pr

es
si

ve
ne

ss

H
ig

h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
ig

h

M
ed

iu
m

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

145

Table 5.26 – Evaluation of support for agent properties
D

el
ib

er
at

iv
e

be
ha

vi
ou

r

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es N
o

Y
es

R
ea

ct
iv

ity

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Y
es

Y
es

Y
es

Po
ss

ib
ly

Y
es

Y
es

Y
es

Y
es

Y
es

Po
ss

ib
ly

Y
es

Pe
rs

on
al

ity

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

K
no

w
le

dg
e-

le
ve

l
co

m
m

un
ic

at
io

n
ab

ili
ty

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

N
o

Y
es

N
o

Y
es

In
fe

re
nt

ia
l

ca
pa

bi
lit

y

Po
ss

ib
ly

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

C
oo

pe
ra

tiv
e

be
ha

vi
ou

r

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es Y
es

Y
es

A
da

pt
ab

ili
ty

N
o

Y
es

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

A
ut

on
om

y

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

146

Table 5.27 – Evaluation of support for features relating to the methodology as a whole

Su
pp

or
t f

or
 o

nt
ol

og
y-

ba
se

d
M

A
S

de
ve

lo
pm

en
t

Y
es N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

Y
es N
o

N
o

Y
es N
o

N
o

Su
pp

or
t f

or
 m

ob
ile

ag

en
ts

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

Su
pp

or
t f

or

he
te

ro
ge

ne
ou

s
sy

st
em

s

Y
es

Y
es N
o

Y
es N
o

Y
es N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

N
o

Su
pp

or
t f

or
 a

gi
lit

y
&

ro

bu
st

ne
ss

Y
es

Y
es N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es N
o

Y
es N
o

Y
es

N
o

N
o

Su
pp

or
t f

or
 d

yn
am

ic

sy
st

em
s

Po
ss

ib
ly

Y
es

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

N
o

N
o

N
o

Y
es

N
o

Su
pp

or
t f

or
 o

pe
n

sy
st

em
s

N
o

Po
ss

ib
ly

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

147

5.4.2.2. Evaluation of support for Steps

In this section, the sixteen methodologies are evaluated according to criterion “Support

for steps” (cf. Table 5.22), together with six other criteria that pertain to the AOSE

process and had not been discussed in section 5.4.2.1, namely:

“Specification of model kinds and/or notational components”;

“Definition of inputs and outputs of steps”;

“Specification of techniques and heuristics”;

“Ease of understanding of techniques”;

“Usability of techniques”; and

“Provision of examples for techniques”.

All of these criteria used the list of steps in Table 5.22 as yardsticks. Evaluation findings

of each methodology are presented in Appendix D. Table 5.28 provides a bird-eye view

of the methodologies’ support for steps by showing only the assessment of criterion

“Usability of techniques”. Usability was evaluated as either high (“H”), medium (“M”)

or Low (“L”).

148

Table 5.28 – Evaluation of “Usability of techniques”

1. Identify system
 functionality

2. Specify use case scenarios

3. Identify roles

4. Identify agent classes

5. M
odel dom

ain conceptualisation

6. Specify acquaintances betw
een agent classes

7. D
efine interaction protocols

8. D
efine content of exchanged m

essages

9. Specify agent com
m

unication language

10. Specify agent architecture

11. D
efine agent inform

ational constructs

12. D
efine agent behavioural constructs

13. Specify system
 architecture

14. Specify organisational structure/inter-agent authority
relationships

15. M
odel M

A
S environm

ent

16. Specify agent-environm
ent interaction m

echanism

17. Specify agent inheritance &
 aggregation

18. Instantiate agent classes

19. Specify agent instances deploym
ent

MASE H H H H H H H H M M H H

MASSIVE H H L L H H M H H M

SODA L M M H M

GAIA M H H M H H H M H H

MESSAGE H M M M M H L M H H H H L L

INGENIAS H H M H H H M H H H H H

BDIM L H L L H M H M

HLIM H H M M M H M H L H

MEI H H H H H M H

PROME-
THEUS H H H H H L H H H H M H L

PASSI H H H M M H H H H M H H L

ADELFE H H H M M M M H H M H H L M

COMOMAS M M L M L

MAS-
COMMONA

KDS
H H M M H H H L M L M L M M L

CASSIO-
PEIA H M M H L M

TROPOS H H M H M M H H

149

5.4.2.3. Evaluation of support for Modelling Concepts

In this section, the sixteen AOSE methodologies are evaluated according to criterion

“Support for modelling concepts” (cf. Table 5.23). This criterion used the list of

modelling concepts in Table 5.23 as yardsticks. Evaluation results are presented in

Tables 8.29a and b. If a methodology was found to support a particular modelling

concept, the name of the model kind or notational component capturing the concept is

displayed. If a concept appears in many different model kinds or notational components

of the methodology, only the model kind/notational component that represents the

concept as the principal modelling element is shown.

Table 5.29a – Evaluation of support for modelling concepts (part a)

T
R

O
PO

S

A
ct

or
 d

ia
gr

am
, R

at
io

na
le

di

ag
ra

m

A
ct

or
 d

ia
gr

am

A
ge

nt
 c

la
ss

 d
ia

gr
am

Pl
an

 d
ia

gr
am

B
D

I a
rc

hi
te

ct
ur

e

Se
qu

en
ce

 d
ia

gr
am

/C

ol
la

bo
ra

tio
n

di
ag

ra
m

Se
qu

en
ce

 d
ia

gr
am

Se
qu

en
ce

 d
ia

gr
am

/C

ol
la

bo
ra

tio
n

di
ag

ra
m

N
on

-f
un

ct
io

na
l

re
qu

ire
m

en
ts

 fr
am

ew
or

k

C
A

SS
IO

-P
E

IA

C
ou

pl
in

g
gr

ap
h

C
ou

pl
in

g
gr

ap
h

C
ou

pl
in

g
gr

ap
h

M
A

S-
C

om
m

on
K

A
D

S

Ta
sk

 m
od

el

U
se

 c
as

es

Ex
pe

rti
se

 m
od

el

A
ge

nt
 m

od
el

A
ge

nt
 m

od
el

Ex
pe

rti
se

 m
od

el

Ex
pe

rti
se

 m
od

el

A
ge

nt
 m

od
el

,
O

rg
an

is
at

io
n

m
od

el

St
at

e
tra

ns
iti

on
 d

ia
gr

am

of
 C

oo
rd

in
at

io
n

m
od

el

D
es

ig
n

m
od

el

C
oo

rd
in

at
io

n
m

od
el

C
oo

rd
in

at
io

n
m

od
el

C
oo

rd
in

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

,
D

es
ig

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

C
O

M
O

-
M

A
S

Ta
sk

 m
od

el

A
ge

nt
 m

od
el

Ex

pe
rti

se

m
od

el
, A

ge
nt

m

od
el

C
oo

pe
ra

tiv
e

m
od

el

Sy
st

em
 m

od
el

A
D

E
L

FE

U
se

 c
as

e
m

od
el

U
se

 c
as

e
m

od
el

D
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

D
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

D
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

D
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

So
ftw

ar
e

ar
ch

ite
ct

ur
e

do
cu

m
en

t

In
te

ra
ct

io
n

la
ng

ua
ge

do

cu
m

en
t

In
te

ra
ct

io
n

la
ng

ua
ge

do

cu
m

en
t

D
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

En
vi

ro
nm

en
t

de
fin

iti
on

 d
oc

um
en

t
D

et
ai

le
d

ar
ch

ite
ct

ur
e

do
cu

m
en

t

1.
 S

ys
te

m
 fu

nc
tio

na
lit

y

2.
 U

se
 c

as
e

sc
en

ar
io

3.
 R

ol
e

4.
 D

om
ai

n
co

nc
ep

tu
al

is
at

io
n

5.
 A

ge
nt

-ro
le

 a
ss

ig
nm

en
t

6.
 A

ge
nt

 g
oa

l/t
as

k

7.
 A

ge
nt

 b
el

ie
f/k

no
w

le
dg

e

8.
 A

ge
nt

 p
la

n/
re

as
on

in
g

ru
le

/p
ro

bl
em

 so
lv

in
g

m
et

ho
d

9.
 A

ge
nt

 c
ap

ab
ili

ty
/s

er
vi

ce

10
. A

ge
nt

 p
er

ce
pt

/e
ve

nt

11
. A

ge
nt

 a
rc

hi
te

ct
ur

e

12
. A

ge
nt

 a
cq

ua
in

ta
nc

e

13
. I

nt
er

ac
tio

n
pr

ot
oc

ol

14
. C

on
te

nt
 o

f e
xc

ha
ng

ed
 m

es
sa

ge
s

15
. S

ys
te

m
 a

rc
hi

te
ct

ur
e

16
.

O
rg

an
is

at
io

na
l

st
ru

ct
ur

e/
in

te
r-

ag
en

t a
ut

ho
rit

y
re

la
tio

ns
hi

ps

17
. E

nv
iro

nm
en

t r
es

ou
rc

e/
fa

ci
lit

y

18
. A

ge
nt

 a
gg

re
ga

tio
n

re
la

tio
ns

hi
p

19
. A

ge
nt

 in
he

rit
an

ce
 re

la
tio

ns
hi

p

20
. A

ge
nt

 in
st

an
tia

tio
n

21
. A

ge
nt

 in
st

an
ce

 d
ep

lo
ym

en
t

150

Table 5.29b – Evaluation of support for modelling concepts (part b)

PA
SS

I

Sy
st

em
 re

qu
ire

m
en

t
m

od
el

Sy

st
em

 re
qu

ire
m

en
t

m
od

el

Sy
st

em
 re

qu
ire

m
en

t
m

od
el

, A
ge

nt
 so

ci
et

y
m

od
el

A
ge

nt
 so

ci
et

y
m

od
el

A
ge

nt
 so

ci
et

y
m

od
el

Sy
st

em
 re

qu
ire

m
en

t
m

od
el

A

ge
nt

im
pl

em
en

ta
tio

n
m

od
el

A

ge
nt

im
pl

em
en

ta
tio

n
m

od
el

A
ge

nt
 so

ci
et

y
m

od
el

A
ge

nt
im

pl
em

en
ta

tio
n

m
od

el

Sy
st

em
 re

qu
ire

m
en

t
m

od
el

A
ge

nt
 so

ci
et

y
m

od
el

A
ge

nt
im

pl
em

en
ta

tio
n

m
od

el

A
ge

nt
im

pl
em

en
ta

tio
n

m
od

el

D
ep

lo
ym

en
t m

od
el

PR
O

M
E

T
H

E
U

S
Fu

nc
tio

na
lit

y
de

sc
rip

to
r

U
se

 c
as

e
de

sc
ri p

to
r

A
ge

nt
 c

la
ss

de

sc
ri p

to
r

D
at

a
de

sc
rip

to
r

Pl
an

de

sc
rip

to
r

C
ap

ab
ili

ty

di
ag

ra
m

Pe

rc
ep

t
de

sc
ri p

to
r

A
ge

nt
ov

er
vi

ew

di
a g

ra
m

In

te
ra

ct
io

n
di

ag
ra

m

In
te

ra
ct

io
n

pr
ot

oc
ol

In

te
ra

ct
io

n
di

ag
ra

m
 &

pr

ot
oc

ol

Sy
st

em

ov
er

vi
ew

di

a g
ra

m

Sy
st

em
 o

ve
rv

ie
w

di

ag
ra

m

A
ge

nt
 c

la
ss

de

sc
rip

to
r

M
E

I

ID
EF

/C
IM

O
SA

Fu

nc
tio

n
M

od
el

U
se

 c
as

e
m

od
el

G
oa

l-P
la

n
di

ag
ra

m

Pl
an

 st
at

e
di

ag
ra

m

C
oo

rd
in

at
io

n
pr

ot
oc

ol
 sc

rip
t

H
LI

M

H
ig

h
le

ve
l

m
od

el

H
ig

h
le

ve
l

m
od

el

H
ig

h
le

ve
l

m
od

el

In
te

rn
al

 a
ge

nt

m
od

el

In
te

rn
al

 a
ge

nt

m
od

el

In
te

rn
al

 a
ge

nt

m
od

el

C
on

tra
ct

m

od
el

C
on

ve
rs

at
io

n
m

od
el

C

on
ve

rs
at

io
n

m
od

el

C
on

ve
rs

at
io

n
m

od
el

A
ge

nt
re

la
tio

ns
hi

p
m

od
el

B
D

IM

G
oa

l m
od

el

B
el

ie
f

m
od

el

Pl
an

 m
od

el

In
te

ra
ct

io
n

m
od

el

In
te

ra
ct

io
n

m
od

el

A
ge

nt
m

od
el

A
ge

nt
m

od
el

A
ge

nt
m

od
el

IN
G

E
N

IA
S

G
oa

l &
 T

as
k

m
od

el

U
se

 c
as

e
di

ag
ra

m

A
ge

nt
 m

od
el

, O
rg

an
is

at
io

n
m

od
el

, I
nt

er
ac

tio
n

m
od

el

A
ge

nt
 m

od
el

A
ge

nt
 m

od
el

C
an

 b
e

re
co

rd
ed

 in
 m

en
ta

l
st

at
es

, b
ut

 n
ot

 m
en

tio
ne

d
in

 m
et

ho
do

lo
gy

A
ge

nt
 m

od
el

In
te

ra
ct

io
n

m
od

el

In
te

ra
ct

io
n

m
od

el

In
te

ra
ct

io
n

m
od

el

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

En
vi

ro
nm

en
t m

od
el

M
E

SS

A
G

E

G
oa

l/T
as

k
m

od
el

A
ge

nt
/R

ol
e

m
od

el

D
om

ai
n

vi
ew

A
ge

nt
/R

ol
e

vi
ew

O
rg

an
is

at
io

n
m

od
el

In

te
ra

ct
io

n
m

od
el

In
te

ra
ct

io
n

m
od

el

Sy
st

em

ar
ch

ite
ct

ur
e

di
ag

ra
m

O
rg

an
is

at
io

n
m

od
el

O
rg

an
is

at
io

n
m

od
el

G
A

IA

R
ol

e
m

od
el

R
ol

e
m

od
el

A
ge

nt
 m

od
el

Se
rv

ic
e

m
od

el

A
cq

ua
in

ta
nc

e
m

od
el

In

te
ra

ct
io

n
m

od
el

O
rg

an
is

at
io

na
l

st
ru

ct
ur

e
m

od
el

En
vi

ro
nm

en
ta

l
m

od
el

A
ge

nt
 m

od
el

A
ge

nt
 m

od
el

SO
D

A

R
ol

e
m

od
el

R
ol

e
m

od
el

A
ge

nt
m

od
el

In
te

ra
ct

io
n

m
od

el

In
te

ra
ct

io
n

m
od

el

R
es

ou
rc

e
m

od
el

A
ge

nt
m

od
el

A

ge
nt

m
od

el

M
A

SS
IV

E

Ta
sk

 v
ie

w

R
ol

e
vi

ew

R
ol

e
vi

ew

En
vi

ro
nm

en
t

vi
ew

A
rc

hi
te

ct
ur

al

vi
ew

In
te

ra
ct

io
n

vi
ew

In

te
ra

ct
io

n
vi

ew

A
rc

hi
te

ct
ur

al

vi
ew

So
ci

et
y

vi
ew

M
A

SE

Ex
te

nd
ed

 ro
le

di

ag
ra

m

U
se

 c
as

e
di

ag
ra

m

R
ol

e
di

ag
ra

m

O
nt

ol
og

y

A
ge

nt
 c

la
ss

di

ag
ra

m

Ta
sk

 st
at

e
di

ag
ra

m

A
ge

nt
 c

la
ss

ar

ch
ite

ct
ur

e
di

ag
ra

m

A
ge

nt
 c

la
ss

di

ag
ra

m

C
om

m
un

ic
at

io
n

cl
as

s d
ia

gr
am

C
om

m
un

ic
at

io
n

cl
as

s d
ia

gr
am

D
ep

lo
ym

en
t

di
ag

ra
m

D

ep
lo

ym
en

t
di

a g
ra

m

1.
 S

ys
te

m
 f

un
ct

io
na

lit
y

2.
 U

se
 c

as
e

sc
en

ar
io

3.
 R

ol
e

4.
 D

om
ai

n
co

nc
ep

tu
al

is
at

io
n

5.
 A

ge
nt

-ro
le

 a
ss

ig
nm

en
t

6.
 A

ge
nt

 g
oa

l/t
as

k

7.
 A

ge
nt

 b
el

ie
f/k

no
w

le
dg

e

8.
 A

ge
nt

 p
la

n/
re

as
on

in
g

ru
le

/p
ro

bl
em

 so
lv

in
g

m
et

ho
d

9.
 A

ge
nt

 c
ap

ab
ili

ty
/s

er
vi

ce

10
. A

ge
nt

 p
er

ce
pt

/e
ve

nt

11
. A

ge
nt

 a
rc

hi
te

ct
ur

e

12
. A

ge
nt

 a
cq

ua
in

ta
nc

e

13
. I

nt
er

ac
tio

n
pr

ot
oc

ol

14
. C

on
te

nt
 o

f e
xc

ha
ng

ed

m
es

sa
ge

s

15
. S

ys
te

m
 a

rc
hi

te
ct

ur
e

16
. O

rg
an

is
at

io
na

l
st

ru
ct

ur
e/

in
te

r-
ag

en
t a

ut
ho

rit
y

re
la

tio
ns

hi
ps

17
. E

nv
iro

nm
en

t
re

so
ur

ce
/fa

ci
lit

y

18
. A

ge
nt

 a
gg

re
ga

tio
n

re
la

tio
ns

hi
p

19
. A

ge
nt

 in
he

rit
an

ce

re
la

tio
ns

hi
p

20
. A

ge
nt

 in
st

an
tia

tio
n

21
. A

ge
nt

 in
st

an
ce

 d
ep

lo
ym

en
t

151

5.4.3. Actual Requirements of MOBMAS
In this section, the feature analysis findings were combined with the results of the

survey in Section 5.3 to determine the “actual” requirements of MOBMAS (cf. Figure

4.3). Specifically, a potential requirement was determined to be an actual requirement of

MOBMAS if:

it was supported by a majority of the existing AOSE methodologies (i.e. 9 or more

out of 16): A methodology is considered supportive of a feature, step or modelling

concept if it was evaluated “Yes” or “High” for the respective evaluation criterion

(depending on whether the criterion is a yes/no question or a high/medium/low

rating question); OR

it was given a High to Very High “rating of importance” in the survey; OR

it was given a Medium “rating of importance” in the survey AND its “order rank” is

not the least important with respect to other requirements within the same category.

All potential requirements that did not match these criteria were excluded from the list

of actual requirements of MOBMAS.

Tables 5.33, 5.34 and 5.35 below extend Tables 5.14, 5.15 and 5.16 in Section 5.3 to

show the “Number of existing methodologies that support [each] feature/step/modelling

concept” and the selection of MOBMAS actual requirements from the list of potential

requirements. Actual requirements are displayed in normal font while discarded

potential requirements are displayed in italic.

152

Table 5.30 – Selection of MOBMAS’ “actual” features

Features desirable to MOBMAS
development process

Median
Rating of

Importance

Mean
Rank

Number of existing
methodologies that
support the feature

(out of 16)

1. Specification of model kinds and/or
notational components

2. Specification of steps for the development
process

3. Specification of techniques and heuristics for
performing each process step and producing
each model kind

4. Support for verification and validation
5. Support for refinability
6. Specification of a system development

lifecycle

Very high

Very high
Very high

Very high
Very high
Very high

3.34

3.46
3.78

3.95
4.26
4.43

16

16
16

7
15
11

Features desirable to MOBMAS model
definitions

Median
Rating of

Importance

Mean
Rank

Number of existing
methodologies that
support the feature

(out of 16)

1. Guarantee of consistency
2. Model kinds expressed at various level of

abstraction and detail
3. Support for reuse
4. High degree of completeness/expressiveness
5. Manageable number of concepts in each

model kind and each notational component
6. Support for modularity
7. High degree of formalisation/preciseness
8. Provision of guidelines/logics for model

derivation

Very high
Very high

Very high
Very high
Very high

Very high
Very high
Very high

3.52
3.78

3.80
3.81
4.06

4.23
4.41
4.49

9
12

6
9
15

16
13
14

Agent properties desirable to be
captured/represented by MOBMAS model
kinds

Median
Rating of

Importance

Mean
Rank

Number of existing
methodologies that
support the feature

(out of 16)

1. Autonomy
2. Cooperative behaviour
3. Deliberative behaviour
4. Knowledge-level communication ability
5. Inferential capability
6. Reactivity
7. Adaptability
8. Personality

Very high
Very high
Very high
Very high
Very high
Very high
Very high
Medium

2.54
3.46
3.92
4.14
4.34
4.75
5.48
7.98

16
16
15
10
11
10
2
0

Features desirable to MOBMAS as a whole

Median
Rating of

Importance

Mean
Rank

Number of existing
methodologies that
support the feature

(out of 16)

1. Support for dynamic systems
2. Support for open systems
3. Support for ontology-based MAS

development
4. Support for heterogeneous systems
5. Support for agility and robustness
6. Support for mobile agents

Very high
Very high
Very high

High
Medium
Medium

3.34
3.78
3.87

4.95
6.26
6.71

5
3
4

5
6
1

153

Table 5.31 – Selection of MOBMAS’ “actual” steps

Problem Domain Analysis steps
Median

Rating of
Importance

Mean
Rank

Number of existing
methodologies that

support the step (out
of 16)

1. Identify system functionality
2. Identify agent classes
3. Model domain conceptualisation
4. Identify roles
5. Specify use case scenarios

Very high
Very high
Very high

High
Medium

2.05
3.49
3.61
3.68
3.72

15
16
4

10
7

Agent Interaction Design steps
Median

Rating of
Importance

Mean
Rank

Number of existing
methodologies that

support the step (out
of 16)

1. Define interaction protocols
2. Specify acquaintances between agent classes
3. Define content of exchanged messages
4. Specify agent communication language

Very high
Very high
Very high
Medium

1.02
1.54
2.51
3.75

15
16
10
3

Agent Internal Design steps
Median

Rating of
Importance

Mean
Rank

Number of existing
methodologies that

support the step (out
of 16)

1. Define agent informational constructs
2. Define agent behavioural constructs
3. Specify agent architecture

Very high
Very high
Very high

1.78
2.10
2.34

12
6

11

Overall System Design steps
Median

Rating of
Importance

Mean
Rank

Number of existing
methodologies that

support the step (out
of 16)

1. Specify system architecture
2. Specify organisational structure/inter-agent

authority relationships
3. Model MAS environment
4. Specify agent-environment interaction

mechanism
5. Instantiate agent classes
6. Specify agent instances deployment
7. Specify agent inheritance and aggregation

Very high
Very high

Very high
High

High
High

Medium

1.90
2.05

2.90
3.90

4.23
4.89
5.95

8
8

9
6

7
3
4

154

Table 5.32 – Selection of MOBMAS’ “actual” modelling concepts

Problem Domain concepts
Median

Rating of
Importance

Mean
Rank

Number of
existing

methodologies that
support the

concept (out of 16)

1. System functionality
2. Role
3. Domain conceptualisation
4. Use case scenario

Very high
Very high

High
Very high

1.82
2.56
2.80
3.73

14
9
4
7

Agent concepts
Median

Rating of
Importance

Mean
Rank

Number of
existing

methodologies that
support the

concept (out of 16)

1. Agent belief/knowledge
2. Agent goal/task
3. Agent-role assignment
4. Agent plan/reasoning rule/problem

solving method
5. Agent architecture
6. Agent capability/service
7. Agent percept/event

Very high
Very high
Very high
Very high

High

Medium
Medium

3.51
3.63
3.90
4.05
4.48

6.05
6.52

8
10
9
9
8

6
3

Agent Interaction concepts
Median

Rating of
Importance

Mean
Rank

Number of
existing

methodologies that
support the

concept (out of 16)

1. Interaction protocol
2. Content of exchanged messages
3. Agent acquaintance

Very high
Very high
Very high

1.73
2.22
2.49

14
10
14

Overall System Design concepts
Median

Rating of
Importance

Mean
Rank

Number of
existing

methodologies that
support the

concept (out of 16)

1. System architecture
2. Organisational structure/inter-agent

authority relationships
3. Environment resource/facility
4. Agent instance deployment
5. Agent instantiation
6. Agent aggregation relationship
7. Agent inheritance relationship

Very high
Very high

Very high
High
High

Medium
Medium

1.75
1.90

2.90
4.87
5.01
6.49
6.85

7
7

7
3
6
4
2

155

5.4.4. Potential Sources of Techniques and Model

Definitions for Supporting MOBMAS’ Actual

Requirements
The feature analysis enabled the research to identify and evaluate the techniques and

model definitions provided by the existing methodologies to support each particular

feature, step or modelling concept. This identification and evaluation helped the

research to:

Identify a pool of existing techniques and model definitions that may be reused or

enhanced by MOBMAS: In Tables 5.33, 5.34 and 5.35, the potential AOSE

methodologies from which MOBMAS may acquire techniques and/or model

definitions are presented.

- The listed methodologies for features (Table 5.33) are those that were evaluated

“Yes” or “High” for the corresponding evaluation criterion.

- The listed methodologies for steps (Table 5.34) are those that received a “High”

rating for criterion “Usability of techniques”.

- The listed methodologies for modelling concepts (Table 5.35) are those that

provide at least one model kind or notational component to capture the concept.

It should be noted that if a methodology listed for a step or modelling concept was

rated “No”, “Medium” or “Low” in any of the following criteria, the techniques or

model definitions selected from that methodology would likely need to be enhanced:

- “Ease of understanding of the development process”;

- “Usability of the development process”;

- “Ease of understanding of techniques”;

- “Provision of examples for techniques”; and

- “Ease of understanding of model definitions”.

Identify MOBMAS requirements that need to be supported by new techniques and/or

model definitions. These are the features, steps and modelling concepts that are

currently given limited support by the existing methodologies. In Tables 5.33, 5.34

156

and 5.35, these requirements are indicated by the phrase “New support required”.

Justification for the need for new support is presented in the parentheses.

Apart from the existing AOSE methodologies, MOBMAS also defined its techniques

and model kinds by consulting the professional recommendations given by survey

respondents in Section 5.3.4.5. In Tables 8.15, 8.16 and 8.17, the requirements marked

with (S) are those that can be supported by examining these recommendations.

Table 5.33 – MOBMAS’ required features and sources of potential techniques and/or model definitions
for supporting these features

Required features of MOBMAS
development process

Potential sources of techniques and model definitions

1. Specification of a system
development lifecycle (S)

MASE, MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,

TROPOS
2. Support for verification and

validation
MASE, MASSIVE, INGENIAS, PROMETHEUS, PASSI,

ADELFE, TROPOS
3. Specification of steps for the

development process See Table 5.34

4. Specification of model kinds
and/or notational components See Table 5.35

5. Specification of techniques and
heuristics for performing each
process step and producing each
model kind

See Table 5.34

6. Support for refinability All methodologies except for SODA

Required features of MOBMAS
model definitions

Potential sources of techniques and model definitions

1. High degree of
completeness/expressiveness

MASE, INGENIAS, HLIM, PROMETHEUS, PASSI,
ADELFE, COMOMAS, MAS-CommonKADS, TROPOS

2. High degree of
formalisation/preciseness

All methodologies except SODA, MEI and
MAS-CommonKADS

3. Provision of guidelines/logics for
model derivation

All methodologies except CASSIOPEIA and
MAS-CommonKADS

4. Guarantee of consistency MASE, SODA, GAIA, INGENIAS, HLIM, PROMETHEUS,
PASSI, ADELFE, TROPOS

5. Support for modularity All methodologies

6. Manageable number of concepts
in each model kind and each
notational component

All methodologies except SODA and INGENIAS

7. Model kinds expressed at
various level of abstraction and
detail

All methodologies except SODA, PASSI, CASSIOPEIA and
COMOMAS

8. Support for reuse MASE, MASSIVE, GAIA, BDIM, PASSI, MAS-
CommonKADS

157

Agent properties required to be
captured/represented by
MOBMAS model kinds

Potential sources of techniques and model definitions

1. Autonomy All methodologies

2. Adaptability MASSIVE, INGENIAS

3. Cooperative behaviour All methodologies

4. Inferential capability MESSAGE, INGENIAS, BDIM, HLIM, MEI, PROMETHEUS,
PASSI, ADELFE, COMOMAS, MAS-CommonKADS, TROPOS

5. Knowledge-level
communication ability

MASE, MESSAGE, INGENIAS, BDLIM, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,

TROPOS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of

exchanged messages)
6. Reactivity PROMETHEUS , MASE, MESSAGE, INGENIAS, BDIM,

HLIM, PASSI, ADELFE, TROPOS, COMOMAS, MAS-
CommonKADS

7. Deliberative behaviour All methodologies except CASSIOPEIA

Required features of MOBMAS
as a whole Potential sources of techniques and model definitions

1. Support for open systems SODA, GAIA, ADELFE
2. Support for dynamic systems MASSIVE, HLIM, PASSI, CASSIOPEIA
3. Support for heterogeneous

systems
INGENIAS, PROMETHEUS, GAIA and MASSIVE

+ New support required (existing methodologies do not
conceptualise the content/knowledge of non-agent software

components, thus failing to explicitly support the interoperability
between agents and these components, or between these

components themselves)
4. Support for ontology-based

MAS development
MASE, MESSAGE, PASSI, MAS-CommonKADS

+ New support required (cf. Section 3.3.2)

Table 5.34 – MOBMAS’ required steps and sources of potential techniques for supporting these steps
Problem Domain Analysis steps Potential sources of techniques for performing steps
1. Identify system functionality All methodologies except SODA, GAIA, BDIM, COMOMAS

2. Identify roles MASE, MASSIVE, GAIA, PASSI

3. Identify agent classes (S) MASE, GAIA, INGENIAS, BDIM, MEI, PROMETHEUS,
ADELFE, TROPOS

4. Model domain
conceptualisation

MASE, PASSI, MESSAGE, MAS-CommonKADS
+ New support required (existing methodologies lack detailed

discussion of this step)
Agent Interaction Design steps Potential sources of techniques for performing steps
1. Specify acquaintances

between agent classes
MASE, INGENIAS, MEI, PROMETHEUS, PASSI,

CASIOPEIA, MAS-CommonKADS

2. Define interaction protocols All methodologies except BDIM, ADELFE, CASSIOPEIA,
COMOMAS

3. Define content of exchanged
messages

MASE, PASSI, MAS-CommonKADS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of

exchanged messages)

158

Table 5.35 – MOBMAS’ required modelling concepts and sources of potential techniques and/or model
definitions for supporting these concepts

Problem Domain concepts Potential sources of modelling techniques and model
definitions

1. System functionality All methodologies except BDIM and CASSIOPEIA

2. Role PASSI, MASE, SODA, GAIA, MESSAGE, INGENIAS, HLIM

3. Domain conceptualisation PASSI, MESSAGE, MAS-CommonKADS

Agent concepts Potential sources of modelling techniques and model
definitions

1. Agent-role assignment MASE, MASSIVE, GAIA, MESSAGE, INGENIAS, PASSI,
CASSIOPEIA, MAS-CommonKADS

2. Agent goal/task INGENIAS, BDIM, HLIM, MEI, PROMETHEUS, PASSI,
ADELFE, COMOMAS, MAS-CommonKADS, TROPOS

3. Agent belief/knowledge

BDIM, HLIM, PROMETHEUS, PASSI, ADELFE, COMOMAS,
MAS-CommonKADS

+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of agent

beliefs)
4. Agent plan/reasoning

rule/problem solving method
MASE, INGENIAS, BDIM, HLIM, MEI, PROMETHEUS,

PASSI, MAS-CommonKADS, TROPOS

5. Agent architecture MASE, MASSIVE, PROMETHEUS, PASSI, ADELFE, MAS-
CommonKADS

Agent
Internal Design steps Potential sources of techniques for performing steps

1. Specify agent architecture MASSIVE, MESSAGE, PROMETHEUS, PASSI, ADELFE

2. Define agent informational
constructs

MESSAGE, INGENIAS, BDIM, HLIM, PROMETHEUS,
ADELFE

+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of agent

beliefs)
3. Define agent behavioural

constructs PROMETHEUS, BDIM

Overall System Design steps Potential sources of techniques for performing steps
1. Specify system architecture

(i.e. overview of all system
components & their
connections)

MESSAGE, INGENIAS, PROMETHEUS, PASSI, ADELFE,
MAS-CommonKADS

2. Specify organisational
structure/inter-agent
authority relationships

MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM, TROPOS

3. Model MAS environment MASSIVE, INGENIAS, ADELFE, TROPOS

4. Specify agent-environment
interaction mechanism INGENIAS, MEI, PROMETHEUS

5. Instantiate agent classes MASE, GAIA, BDIM
6. Specify agent instances

deployment MASE

159

Agent Interaction concepts Potential sources of modelling techniques and model
definitions

1. Agent acquaintance All methodologies except MEI and COMOMAS
2. Interaction protocol All methodologies except CASSIOPEIA and BDIM

3. Content of exchanged
messages

MASE, MESSAGE, INGENIAS, BDIM, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,

TROPOS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of

exchanged messages)
Overall System Design
concepts

Potential sources of modelling techniques and model
definitions

1. System architecture MASSIVE, INGENIAS, PROMETHEUS, PASSI, ADELFE,
MAS-CommonKADS

2. Organisational
structure/inter-agent
authority relationships

MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM,
COMOMAS, TROPOS

3. Environment
resource/facility GAIA, MESSAGE, INGENIAS, PROMETHEUS

4. Agent instantiation MASE, GAIA, BDIM, PROMETHEUS, MAS-CommonKADS
5. Agent instance deployment MASE, PASSI

5.5. IDENTIFICATION OF ONTOLOGY-

RELATED STEPS
Step 3 of Research Activity 1 has determined the “actual” methodological requirements

for MOBMAS (Section 5.4; Tables 5.33, 5.34 and 5.35). In this section, the execution

and outputs of Step 4 – “Identify ontology-related steps from amongst the required

MOBMAS’ steps [Table 5.34]” – are documented. These ontology-related steps had to

be identified in such a way as to allow MOBMAS to realise all of the widely-

acknowledged benefits of ontologies to MASs, which are previously identified in

Section 2.3.2. Consequently, each benefit of ontologies needed to be investigated

closely.

Ontology’s benefits to interoperability (c.f. Section 2.3.2.1)

Heterogeneous system components can be interoperated through the mappings of the

ontologies conceptualising their respective knowledge/application. With respect to

agents, the local knowledge of each agent should first be explicitly conceptualised

by ontologies. Likewise, with respect to non-agent resources, ontologies should first

be used to explicitly conceptualise the information/application of each resource. The

semantic mappings between agents’ and/or resources’ local ontologies should then

160

be defined to allow for interoperability between them. These requirements can be

implemented by the following AOSE steps.

“Model domain conceptualisation”: This step should define all the ontological

mappings between the application’s domain ontologies (where necessary). The

domain ontologies may be mapped against each other, or against a common

ontology (c.f. Section 2.3.2.1). Normally, when there are more than two

ontologies to be mapped amongst themselves, the second approach should be

favoured over the first, given the reasons listed in Section 2.3.2.1. The common

ontology to be used in the second approach may be one of the existing

application domain ontologies itself, or built from scratch as an inter-lingua of

the existing ontologies.

“Define agent informational constructs”: This step should conceptualise each

agent’s local domain-related knowledge with ontologies. These local ontologies

may be extracted from, or built upon, the application domain ontologies

developed by step “Model domain conceptualisation”. It should be noted that in

this step, the developer normally does not need to define the semantic mappings

between the agents’ local ontologies. This is because these mappings (if

necessary) should have been represented as either the relationships between

concepts within a particular application domain ontology31, or as mappings

between different application domain ontologies32.

 “Model MAS environment”: This step should include the specification of the

ontologies that conceptualise each resource’s information/application. The

semantic mappings between these resources’ local ontologies should be defined.

If each heterogeneous resource is wrapped by a different agent, each resource’s

local ontology would need to be mapped against the corresponding wrapper

agent’s local ontology. The different wrapper agents can then communicate with

each other as would be described later in this section. If otherwise the

31 This case applies if the local ontology of each agent comes from a different portion of the same
application domain ontology.
32 This case applies if the agents’ local ontologies have been derived from distinct, but mapped,
application domain ontologies.

161

heterogeneous resources are wrapped by the same agent, it is most efficient for

each resource’s ontology to be mapped against the agent’s local ontology, which

acts as the common inter-lingua.

Ontology’s benefits to reusability

As discussed in Section 2.3.2.2, ontologies promote reusability because:

they offer high readability. This capability of ontologies can be exploited by

steps “Model domain conceptualisation” and “Define agent informational

constructs”. By using ontology to model application domains and agents’ local

domain-related knowledge, these steps can improve the readability and

comprehensibility of the resulting domain model and agent domain knowledge

model;

ontologies facilitate the interoperability between heterogeneous agents and

resources. This benefit has been discussed earlier in Section 5.5; and

ontologies make it easy to decouple the modelling of agents’ behavioural

knowledge from the domain-related knowledge, hence promoting the reuse of

these two knowledge modules. This mechanism of reuse can be implemented by

steps “Define agent informational constructs” and “Define agent behavioural

constructs”. The former can focus on defining the ontologies which

conceptualise the domain-related knowledge of each agent, while the latter can

focus on specifying the plans, reflexive rules and/or actions that guide the

agent’s behaviour. The latter should make reference to the ontology-based

domain-related knowledge whenever necessary, e.g. to set the context for the

agent behaviour or to serve as knowledge inputs.

Ontology’s benefits to MAS development activities (c.f. Section 2.3.2.3)

With respect to system analysis, the elicitation of problem/system goals can be

facilitated and validated by the ontological analysis effort of knowledge

engineers or domain experts. Ontology can also be used as an effective

representation mechanism for modelling application domains.

162

To realise these benefits, the following AOSE steps should integrate the use of

ontologies into their techniques and/or generated products.

“Identify system functionality”: The identified system functionality identified

should be verified/validated against the domain ontologies developed by

knowledge engineers.

“Model domain conceptualisation”: This step should employ ontology as the

representation mechanism for modelling the target application domains.

With respect to agent knowledge modelling, ontologies provide an effective

representation mechanism for modelling agents’ local domain-related

knowledge. As such, the AOSE step “Define agent informational constructs”

should conceptualise the local domain-related beliefs of each agent through

ontologies. The agents’ local ontologies can be extracted from, or built upon, the

application domain ontologies developed by step “Model domain

conceptualisation”.

Ontology’s benefits to MAS operation (c.f. Section 2.3.2.4)

With respect to communication, by sharing an ontology and explicitly defining

the semantics of the exchanged messages in accordance with this shared

ontology, the interacting components in a MAS can communicate in a

semantically consistent manner. This role of ontologies in communication can be

implemented in step “Define content of exchanged messages”. This step should

require the developer to formulate the exchanged messages in terms of the

concepts defined in an ontology shared between the communicating agents.

Being “shared” means that the ontology needs to be included in the local

knowledge of both communicating agents. If the communicating agents do not

yet share a common ontology, such an ontology should be built and added to

each agent’ local knowledge. It should contain concepts that serve as the inter-

lingua between the agents’ local (heterogeneous) ontological concepts. This

ontology may be derived from the application domain ontologies, since the

agents’ local ontologies are themselves extracted from there initially.

163

With respect to agent reasoning, in order for agent reasoning at run-time to

utilize ontology-based knowledge (as exemplified in Section 2.3.2.4), the agents’

behavioural knowledge should be specified in such a way as to make reference

to the domain-related knowledge modelled in ontologies whenever necessary.

Accordingly, step “Define agent behavioural constructs” should use ontological

concepts whenever appropriate to formulate agents’ plans, reflexive rules and

actions. For example, concepts in an agent’s local ontology may be used to

define the context of the agent’s plans, or to specify the knowledge requirements

of the agent’s actions.

In summary, amongst the AOSE steps that are required to be supported by MOBMAS

(cf. Table 5.34), the following steps should be ontology-related:

1. “Identify system functionality”;

2. “Model domain conceptualisation”;

3. “Define content of exchanged messages”;

4. “Define agent information constructs”

5. “Define agent behavioural constructs”; and

6. “Model MAS environment”

5.6. SUMMARY
This chapter has reported on the performance and outcome of the four research steps of

Research Activity 1 – “Identify the methodological requirements of MOBMAS”. The

aggregate outputs of this research activity are:

a list of MOBMAS’ methodological requirements, i.e. the features, steps and

modelling concepts that are desirable to be supported by MOBMAS process,

techniques and model definitions;

recommendations of practitioners and researchers on the various issues that were

useful to the development of MOBMAS;

identification of a pool of techniques and model definitions that can be reused or

enhanced by MOBMAS to support its methodological requirements, and

identification of the methodological requirements that need to be supported by new

techniques and/or model definitions; and

a list of desirable ontology-related steps that MOBMAS should support.

164

All of these outputs were used as inputs into Research Activity 2 – “Develop

MOBMAS” (cf. Section 4.3). Section 4.5 has explained how MOBMAS was developed

using these inputs. In the next chapter, Chapter 6, the full MOBMAS methodology is

documented. It should be noted that, the MOBMAS methodology presented in Chapter

6 is in its final version, after various evaluation and refinements have been made by

Research Activity 3 – “Evaluate and Refine MOBMAS”. These evaluation and

refinements are reported in Chapter 7.

165

CHAPTER 6

DOCUMENTATION OF MOBMAS

This chapter presents the full documentation of MOBMAS. It is organised into seven

sections.

Section 6.1 presents an overview of MOBMAS, particularly MOBMAS’ conceptual

framework, development process and model kinds. This section also describes the

application problems that were used to illustrate MOBMAS throughout its

documentation.

Sections 6.2 to 6.6 describe the five core activities in the development process of

MOBMAS, namely “Analysis”, “MAS Organisation Design”, “Agent Internal

Design”, “Agent Interaction Design” and “Architecture Design”. Each section

specifies each activity’s associated steps, techniques and model kinds.

Section 6.7 presents a summary of the chapter.

The MOBMAS methodology documented in this chapter has undergone various

evaluation and refinements that were made by Research Activity 3 – “Evaluate and

Refine MOBMAS” (cf. Section 4.3). These evaluation and refinements are recorded in

Chapter 7.

6.1. OVERVIEW OF MOBMAS
MOBMAS stands for “Methodology for Ontology-Based Multi-Agent Systems”. As

stipulated in the research’s objective (cf. Section 4.2), MOBMAS aims to provide

comprehensive support for ontology-based MAS development and various other

important AOSE methodological requirements which are documented in Chapter 5 (cf.

Section 5.4.3).

Conforming to the definition of a software engineering methodology (Henderson-

Sellers et al. 1998), MOBMAS is composed of (cf. Figure 4.2):

a software engineering process that contains activities and associated steps to

conduct the system development;

166

techniques to assist the process steps; and

definition of model kinds33.

An overview of MOBMAS process and model kinds is presented in Sections 6.1.2 and

6.1.3 respectively. MOBMAS techniques are presented later in the documentation of the

methodology from Sections 6.2 to 6.6. But firstly, the conceptual framework of

MOBMAS is documented in Section 6.1.1. This conceptual framework defines the

essential abstractions that underlie MOBMAS development process and model kinds.

Section 6.1.4 finally describes the application problems that were used to illustrate

MOBMAS throughout Sections 6.2 to 6.6.

6.1.1. MOBMAS Conceptual Framework
MOBMAS borrows many abstractions from TAO (“Taming Agents and Objects”) – a

meta-model that extends UML to accommodate the development of large-scale MASs

(Silva and Lucena 2004; Silva et al. 2003). TAO offers a variety of OO and agent-

oriented abstractions, but MOBMAS chose to reuse and refine only those agent-oriented

abstractions that are directly relevant to its process and model kinds. MOBMAS also

introduces some other abstractions that are not included in TAO.

The definitions of MOBMAS’ essential abstractions are presented below. TAO-based

abstractions are marked with TAO reference.

1. Agent class (Silva et al. 2003): a template descriptor for a set of agents with similar

characterisation. Each agent class is associated with a set of roles, agent goals,

events, application ontologies, plan templates, reflexive rules and interaction

pathways with other agent classes (referred to as “inter-agent acquaintances”). The

term “agent” is used to refer to an instance of an agent class.

2. Organisation (Silva et al. 2003): A group of agents which play roles. A MAS is

therefore viewed as an organisation. In MOBMAS, the organisational structure of

MAS is modelled via roles, interaction pathways between roles (referred to as “inter-

33 The term “model kind” is used to refer to the definition of a specific class of models (Standards
Australia 2004). It is different from “model” in that models are actual deliverables produced by the
developer for each model kind during the development process.

167

role acquaintances”) and authority relationships amongst roles (e.g. peer-to-peer or

superior-subordinate relationship). The organisational structure between agent

classes at design time or between agents at run-time can be derived from this role-

based organisational structure, given the role(s) that each agent class or agent plays.

3. Resource: a non-agent software system that provides application-specific

information and/or services to agents in MAS, e.g. an information source or a legacy

system.

4. Environment (Silva et al. 2003): the habitat of agents. From the perspective of a

particular agent, its environment contains other agents in the system, resources and

infrastructure facilities (which provide system-specific services such as naming

service, agent directory service or message transport service).

5. Role (Silva et al. 2003): a definition of a position in the MAS organisation (Ferber

and Gutknecht 1998; Demazeau and Costa 1996). In MOBMAS, each role is

characterised by Role-Tasks, which are duties that the role is responsible for

fulfilling. The role(s) played by each agent class defines the agent class’ expected

behaviour (because the agent class needs to behave in such a way as to fulfil its

assigned role’s role-tasks) and the agent class’ position in the MAS organisation

(because the position of an agent class is derived from the corresponding role’s

position in the inter-role organisational structure). At run-time, an agent may

dynamically activate, suspend or switch amongst its assigned roles, thereby

exhibiting dynamic behaviour and occupying dynamic positions in the MAS

organisation.

6. Agent-goal (Silva et al. 2003): a state of the world that an agent class would like to

achieve or satisfy. Agent goals signify the purpose of existence of an agent class. In

MOBMAS, agent-goals are derived directly from role-tasks. An agent-goal may be

decomposed into sub-agent-goals via AND- or OR-decomposition. AND-

decomposition indicates that an agent-goal is achieved when all of the states

specified in all of its sub-agent-goals are achieved, while OR-decomposition applies

when an agent-goal can be achieved when any of the states specified in its sub-

agent-goals is achieved.

168

7. Event (Silva et al. 2003): a significant occurrence in the environment to which an

agent may react. This reaction may be the activation34 of an agent-goal or a change

in the agent’s course of actions to satisfy an active agent-goal.

8. Agent plan template: a specification of various pieces of information that are useful

to the formulation of plans to accomplish a particular agent-goal. Each agent plan

template specifies, for each agent-goal, a set of sub-agent-goals and/or actions that

may be executed by an agent to achieve the agent-goal, and events that may affect

the agent’s course of actions in achieving the agent-goal35. At run-time, built-in

planners36 of the agent architecture or implementation platform will formulate the

specific plans for the agent to achieve the agent-goal, by selecting the appropriate

sub-agent-goals and actions to execute from the agent plan template, taking into

account the current state of the environment and the events that happen during the

planning process.

9. Reflexive rule: a (sequence of) “if-then” rule that couples a stimulus37 and/or a state

of the environment with actions to be executed by an agent to satisfy a particular

agent-goal. Each reflexive rule may specify a whole complete course of actions to

achieve an agent-goal, or specify a partial course of actions that contributes towards

the achievement of the agent-goal.

10. Action (Silva et al. 2003): an atomic unit of work that an agent performs.

11. Belief state: knowledge that an agent holds about a particular state of the world

(Shoham 1993). Specifically, it captures run-time facts about the state of entities that

exist in the agent’s application (i.e. domains and tasks) and the environment (i.e.

resources and other agents).

34 An agent-goal is activated when the agent starts carrying out some processing to achieve/satisfy the
agent-goal. Accordingly, an active agent-goal is one that is being actively pursued or satisfied.
35 These are the major elements of an agent plan template. Other minor elements to be specified include:
identity of the event that activates the target agent-goal (if any), conflict resolution strategy (if required)
and the commitment strategy adopted by the agent during the planning process.
36 “Planner” refers to a module/layer/subsystem in the agent architecture or implementation platform that
can reason to generate plans on the fly for the agent.
37 A stimulus may be an event or an internal processing trigger generated within the agent.

169

12. Belief conceptualisation: knowledge that an agent holds about the conceptualisation

of the world, particularly the conceptualisation of the entities referred to in Belief

State.

13. Application ontology: a conceptualisation of an application. A detailed definition of

“application ontology” has been provided in Section 2.3.3. In MOBMAS, two sub-

types of application ontology are defined.

MAS application ontology: a conceptualisation of the application provided by

the target MAS. In particular, it defines the concepts and relations that the agents

need to know, and share, about the MAS application domains and tasks.

Resource application ontology: a conceptualisation of the application provided

by a resource of the MAS system. In particular:

- if the resource is a processing application system (e.g. a legacy system), the

corresponding Resource Application Ontology defines the concepts and

relations that conceptualise the application domains and tasks/services of the

resource; and

- if the resource is an information source (e.g. a database), the corresponding

Resource Application Ontology defines the concepts and relations that

conceptualise the information stored inside the resource. It may be derived

from the information source’s conceptual schema (Hwang 1999; Guarino

1997).

In MOBMAS, the specification of an agent’s Belief Conceptualisation essentially

comes down to the determination of which (part of38) MAS Application Ontologies

and/or Resource Application Ontologies the agent should commit.

14. System-task: anything that the target system should or will do. System-tasks

represent the required functionality of the MAS system. A particular system-task

may be decomposed into sub-system-tasks via AND- or OR-decomposition. AND-

decomposition indicates that the accomplishment of a system-task requires the

execution of all of its sub-system-tasks, while OR-decomposition applies when the

system-task can be accomplished by executing any of its sub-system-tasks.

38 In many cases, the agent only needs to commit to a fragment of a particular MAS application ontology
or Resource application ontology to do its work.

170

The relationships between MOBMAS abstractions are shown in Figure 6.1.

Figure 6.1 – MOBMAS abstractions and their relationships (represented in UML)

6.1.2. MOBMAS Development Process
The development process of MOBMAS consists of five activities, each of which

focuses on a significant area of MAS development: analysis, agent internal design,

agent interaction design, MAS organisation modelling and architecture specification.

Each activity is composed of a number of steps.

1. Analysis Activity: This activity is concerned with developing a conception for the

future MAS, namely a first-cut identification of the roles that compose the MAS

organisation. The activity also involves capturing “MAS application ontologies” that

conceptualise the application of the target MAS.

contains

*1

1..*

1

1

11..*

1 1..* 1..*

accomplishes

inhabits

inhabits

uses

handles

handles

holds

plays

activates

is derived
from

satisfies

reacts

holds

is derived from
System-task

Role Role-task performs

Agent class

Belief conceptualisation Agent-goal

Sub-agent-goalAction

Event

Reflexive rule

Belief state

conceptualises

Application ontology

MAS
application ontology

Resource
application ontology

Sub-agent-task

Agent plan
template

fulfils

fulfils

ResourceEnvironment
Organisation

1..*

1..*

1

1..*

*

*

1 *

1

1..*

*

*

1..*

1..*

1*
*

1..*

1

**

*

*
*

1

*

*

*

*

1

1..*

1..*

1..* *

conceptualises

1

1..*

171

2. MAS Organisation Design Activity: This activity specifies the organisational

structure for the target MAS and defines a set of agent classes that compose the

system. If the MAS is a heterogeneous system that incorporates non-agent resources,

these resources need to be identified. These resources’ applications also need to also

be conceptualised (i.e. “Resource application ontologies”).

3. Agent Internal Design: This activity deals with the specification of each agent

class’ belief conceptualisation, agent-goals, events, agent plan templates and

reflexive rules.

4. Agent Interaction Design: This activity designs the interactions between agent

classes by, firstly, selecting a suitable interaction mechanism for the target MAS

(e.g. direct interaction via ACL messages or indirect interaction via

tuplespace/tuple-centre), thereafter defining the patterns of data exchanges amongst

agent classes depending on the chosen interaction mechanism.

5. Architecture Design Activity: This activity deals with various architecture-related

issues, namely the identification of agent-environment interface requirements, the

selection of agent architecture, the identification of required infrastructure facilities,

the instantiation of agent classes and the deployment configuration of agents.

Figure 6.1 lists the specific steps in each of the five activities of MOBMAS. It should

be noted that MOBMAS’ steps cover the desirable AOSE steps that are previously listed

in Table 5.34, even though the former are named differently from the latter39, and some

MOBMAS’ steps are defined as a combination or decomposition of the desirable AOSE

steps40 so as to form a coherent methodology. The correspondence between MOBMAS’

steps and the desirable AOSE steps would be confirmed in the feature analysis of

MOBMAS in Chapter 7 (particularly Table 7.5).

39 For example, MOBMAS’ step “Develop System Task Model” is equivalent to the desirable AOSE step
“Identify system functionality” in Table 5.34.
40 For example, MOBMAS’ step “Develop Agent Interaction Model” encapsulates three desirable AOSE
steps in Table 5.34: “Specify acquaintances between agent classes”, “Define interaction protocols” and
“Define content of exchanged messages”. Meanwhile, the desirable AOSE step “Define agent
behavioural constructs” in Table 5.34 is decomposed into three MOBMAS’ steps: “Specify agent goals”,
“Specify events” and “Develop Agent Behaviour Model”.

172

Each MOBMAS’ step is associated with a model kind as each step allows the

developer to produce or update models of a particular kind. The solid arrows indicate

the flow of steps within and across activities, while the dotted arrows indicate the

potential iterative cycles of steps. Step iteration is particularly necessary if the

information collected in one step results in the refinement/extension of models

previously produced by another step. Note that the arrows only serve as

recommendations. In practice, the developer should be able to trace backward to any

preceding step to refine or extend the corresponding model (e.g. when new requirements

arise). Thus, the development process of MOBMAS is highly iterative and

incremental, either within or across all activities.

173

Figure 6.2 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational context

(optional)
[Organisational Context Model

Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief conceptualisation

[Agent Class Model Kind]

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour Model
[Agent Behaviour Model Kind]

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure facilities

[Architecture Model Kind]

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

174

6.1.3. MOBMAS Model Kinds
MOBMAS defines nine model kinds for capturing the outputs of its process steps

(Figure 6.3). During the development time, the developer is required to produce one

model for each model kind. Every model kind is represented by one or more notational

components, which are either graphical diagrams or textual schemas. Some model kinds

and notational components are optional, since the steps generating them are optional (cf.

Figure 6.2). Figure 6.3 shows the dependency and cross-check relationships between the

model kinds.

Figure 6.3 – MOBMAS Model Kinds

1. System Task Model Kind: This model kind captures the specification of system

tasks, their hierarchical decomposition and conflicts (if any). This model kind is

depicted by a System Task Diagram.

2. Organisational Context Model Kind (optional): This model kind captures the pre-

existing structure of the organisation which MAS supports, automates or monitors.

System Task
Model Kind

Organisational Context
Model Kind
(optional)

Role
Model Kind

Ontology
Model Kind

Agent Class
Model Kind

Resource
Model Kind
(optional)

Agent Behavior
Model Kind

Agent Interaction
Model Kind

Architecture
Model Kind

Derives
Cross-check

175

This structure is defined via organisational units and relationships between units

(namely, acquaintance41 relationships and membership relationships). The notational

component of this model kind is an Organisational Context Chart.

3. Role Model Kind: This model kind defines each role in the MAS organisation (i.e.

role name and role-tasks), acquaintances between roles and authority relationships

that govern inter-role acquaintances (e.g. peer-to-peer relationship or superior-

subordinate relationship). Role Model Kind is depicted by a Role Diagram.

4. Ontology Model Kind: This model kind captures the specification of all MAS

application ontologies and Resource application ontologies needed for the target

system. MOBMAS does not impose a specific modelling language for this model

kind. However, for illustrative purpose, MOBMAS uses UML class diagrams to

depict ontologies. These UML class diagrams are referred to as Ontology Diagrams.

5. Agent Class Model Kind: This model kind captures the definitions of agent classes

composing the target MAS. It is depicted by two notational components.

Agent Class Diagram: which shows the specification of each agent class,

namely the agent class’ name, instantiation cardinality, roles, belief

conceptualisation, agent-goals and events. A MAS typically requires multiple

Agent Class Diagrams, one for each agent class.

Agent Relationship Diagram: which shows all agent classes in the target MAS

and the acquaintances between them. Various descriptive information about each

inter-agent acquaintance is also shown (e.g. interaction protocol and application

ontology that govern the interactions between the acquainted agent classes). If

the target MAS incorporates resources, the relationships between “wrapper”

agent classes and their wrapped resources are also displayed.

6. Resource Model Kind (optional): This model kind captures the specification of

resources in the MAS, including the resources’ name, type and corresponding

Resource application ontology. The model kind also specifies the identity of agent

41 Acquaintance refers to interaction pathway.

176

classes that wrap around the resources. The notational component of this model kind

is a Resource Diagram.

7. Agent Behaviour Model Kind: This model kind specifies the behaviour of each

agent class. It is represented by the following notational components.

Agent Goal Diagram (optional): displays, for a particular agent class, the

decomposition structure of its agent-goals and/or the conflicts amongst these

agent-goals. This diagram is only necessary if the agent class is found to pursue

multiple agent-goals, and these agent-goals are involved in decomposition

relationships or are in conflict with each other.

Agent Plan Template: documents various pieces of information that are needed

to formulate plans for agents at run-time, including the identity of the agent-goal

that the plan aims to fulfil, the potential sub-agent-goals and/or actions that may

be executed to satisfy the agent-goal, events that activate the agent-goal or affect

the agent’s course of actions to satisfy the agent-goal, conflict resolution

strategies (if required) and commitment strategy adopted by the planning

process. If there exists a tentative course of sub-agent-goals/actions for achieving

the agent-goal, this sequence can be depicted in an Agent Plan Diagram.

Reflexive Rule Specification: documents a particular reflexive rule of an agent

class. It specifies the agent-goal that the reflexive rule aims to satisfy, a sequence

of actions to (partially) fulfil the agent-goal, and the events, internal processing

triggers and/or conditions that initiate an action or make an action applicable.

8. Agent Interaction Model Kind: This model kind defines the patterns of

interactions amongst agent classes depending on the adopted interaction mechanism.

If the mechanism is direct interaction via ACL messages, the model kind captures

the definitions of interaction protocols between agent classes. These definitions are

depicted by Interaction Protocol Diagrams. If otherwise the adopted interaction

mechanism is indirect interaction via tuplespace/tuple-centres42, the Agent

Interaction Model Kind specifies the interaction patterns between agent classes and

42 MOBMAS identifies other types of indirect mechanisms, namely stigmergy and spatially founded
mechanisms. However, since these mechanisms are very limited in their applicability, MOBMAS focuses
on the indirect mechanism based on tuplespace/tuple-centre (cf. Section 6.5.1).

177

the tuplespace/tuple-centre. Agent-TC43 Interaction Diagrams are used as the

notational component for the Agent Interaction Model Kind in this case. Moreover,

if the tuple-centre is used instead of tuplespace, the model kind also captures the

definition of the tuple-centre’s behaviour via Tuple-Centre Behaviour Diagram.

9. Architecture Model Kind: This model kind captures various architecture-related

specifications. It is represented by four notational components.

Agent-Environment Interface Requirements Specification: documents any

special requirements of the agents’ sensor, effector and communication modules,

so as to support the agents’ perception, effects and communication needs at run-

time.

Agent Architecture Diagram: provides a schematic view of the architecture

adopted by the agent classes in the target MAS. If different agent classes require

different architectures, one Agent Architecture Diagram is required for each

architecture.

Infrastructure Facilities Specification: documents the specifications of core

infrastructure facilities that are necessary to support the target MAS’ operation

(e.g. naming service, message transport service or agent directory service).

MAS Deployment Diagram: shows the deployment configuration of the target

MAS, including the allocation of agents to nodes and the connections between

nodes.

The notation of each notational component of the nine model kinds is presented in

Appendix E.

6.1.4. Illustrative Applications
Throughout the documentation of MOBMAS in Sections 6.2 to 6.6, two applications

were used for illustration purposes:

Product Search application; and

Conference Program Management application.

43 TC stands for “tuple-centre”.

178

The Product Search application was used as the primary illustrative example, while the

Conference Program Management application was used only when the former is not

suitable for the demonstration of a particular MOBMAS step, technique or notational

component. The following sections briefly describe each illustrative application.

6.1.4.1. Product search application

This application investigates the use of MAS in searching for product information – a

major activity in e-business. The objective of the system is to assist users in searching

and retrieving information on products from heterogeneous resources, including

information sources provided by the potential suppliers (such as suppliers’ databases

and web servers) and various online search engines. The target domain is limited to Car

Products for illustration purposes.

The user interacts with the system by submitting his search query. Upon receiving a

query, the system extracts keywords from it, searching through the resources to gather

information for the query, and displaying the final answer to the user.

The system also accepts and processes feedback from the user, which may help

improving its future performance.

6.1.4.2. Conference program management application

This application has been used in various past research work in AOSE as case study

(Ciancarini et al. 1998; Zambonelli et al. 2001a; Zambonelli et al. 2003; Ciancarini et al.

1999). Setting up a conference program is a multi-phase process, including submission,

reviewing and final publication phases. For illustrative purposes, this research focuses

on the review phase only. In this phase, the “program committee chair” has to work

with “committee members” to distribute the submitted papers among the members. The

members are assumed to have the authority to choose for themselves the papers they

want to review. The chair does not impose the papers on them. Having collecting the

papers, each committee member is in charge of finding an external referee for each

paper and contacting these reviewers to send them papers. Eventually, the reviews come

back to the respective committee members who determine the acceptance or rejection of

the papers. The authors are then notified of these decisions by the committee chair.

179

6.2. ANALYSIS ACTIVITY
The Analysis activity of MOBMAS takes as inputs a set of system-tasks and develops a

conception for the future MAS, namely a first-cut identification of the roles that

compose the future MAS system. The activity consists of 5 steps, as shown on Figure

6.4 (which is a copy of Figure 6.2 but with the Analysis activity highlighted).

Figure 6.4 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational

context (optional)
[Organisational Context

Model Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief

conceptualisation

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour

Model

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure

facilities

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

180

6.2.1. Step 1 – Develop System Task Model
The term “system-task” is used to mean anything that the target system should or will

do. It represents the required functionality of the system. For example, system-tasks of

the illustrative Product Search application (cf. Section 6.1.4.1) are “Satisfy user query”

and “Process user feedback” (Figure 6.5).

The identification of system-tasks is not part of MOBMAS. It is presumed to be

conducted by a separate Requirements Engineering effort. Hence, MOBMAS refers the

developer to the vast amount of existing work on Requirements Engineering for more

techniques on system-tasks elicitation, e.g. Kotonya and Sommerville (1998), Macaulay

(1996), Haumer et al. (1998), Duursma (1993), Dardenne et al (1993), Yourdon (1989),

DeMarco (1978), Potts (1999) and Wiegers 2003. The development process of

MOBMAS starts from the identified set of system-tasks to produce a System Task

Model Kind. This model kind aims to capture the following information.

Identity of system-tasks.

Conflicts amongst system-tasks (if any): Conflicts exist when different system-tasks

cannot be accomplished together without being compromised (Dardenne et al.

1993). In the illustrative Product Search application, no conflicting system-tasks are

found. However in many other applications such as MASs for library service

management, system-tasks such as “Maintain long borrowing period” and “Maintain

regular availability” are in conflict with each other (Dardenne et al. 1993).

Functional decomposition of system-tasks (if required): A particular system-task

may be decomposed into smaller-scale, constituent system-tasks which are referred

to as “sub-system-tasks”. Each decomposition may either be:

- AND-decomposition: that is, when the accomplishment of a system-task

requires the execution of all of its sub-system-tasks. For example, system-task

“Find answer to user query” can be AND-decomposed into sub-system-tasks

“Extract keywords from user query” and “Gather information from resources” (Figure

6.5); or

- OR-decomposition: that is, when the accomplishment of a system-task involves

the execution of any of its sub-system-tasks. For example, system-task “Identify

appropriate resources” can be OR-decomposed into sub-system-tasks “Identify

appropriate databases” and “Identify appropriate web-servers” (Figure 6.5).

181

For each decomposition, MOBMAS recommends the developer to specify whether

the decomposition is full or partial.

- Full decomposition applies when the accomplishment of a system-task is totally

equivalent to the execution of its sub-system-tasks (either all or any of the sub-

system-tasks, depending on whether the decomposition is an AND or OR

decomposition). For example, system-task “Satisfy user query” is fully

decomposed into sub-system-tasks “Accept user query”, “Find answer to user

query” and “Display result for query” (Figure 6.5) because the successful execution

of these three sub-system-tasks automatically results in the accomplishment of

the system-task “Satisfy user query”.

- Partial decomposition applies when the accomplishment of a system-task is not

totally equivalent to the execution of its sub-system-tasks. In other words, there

are certain actions that need to be performed by the system-task but which are

not accounted for by its sub-system-tasks. For example, system-task “Process

user feedback” is partially decomposed into sub-system-tasks “Receive user

feedback” and “Display acknowledge” (Figure 6.5) because, apart from receiving

feedback and displaying acknowledgement, system-task “Process user feedback”

also needs to compute feedback rating and refine search algorithms to improve

the system’s future performance.

The identification of full versus partial decomposition will assist the developer in

identifying roles and roles’ tasks later on.

After system-tasks are identified and a (preliminary) System Task Model is constructed,

the developer is strongly recommended to validate the model against the Ontology

Model, whose development is discussed in Step 4 of the Analysis activity (c.f. Section

6.2.4). The MAS Application ontologies specified in the Ontology Model may help to

reveal new system-tasks that have not yet been uncovered, thus assisting in the

refinement of the System Task Model. More discussion on this validation is presented

in Section 6.2.4.1.c.

182

6.2.1.1. Notation of System Task Diagram

System Task Model Kind of MOBMAS is depicted by one or more System Task

Diagrams. The notation for the System Task Diagram is as follows.

A System-Task Diagram for the illustrative Product Search MAS is presented in Figure

6.5. It should be noted that the functional decomposition of system-tasks does not

always have a simple tree structure as in Figure 6.5. Two or more system-tasks may

share the same sub-system-task(s).

Figure 6.5 – System Task Diagram for Product Search MAS

6.2.2. Step 2 – Analyse Organisational Context

(Optional)
Even though the analysis of system-tasks generally provide adequate inputs to the

identification of roles later on, an investigation of the existing structure of the MAS’

organisational context (i.e. the structure of the organisation which MAS supports,

automates or monitors) can further assist in the process of role identification. This is so

P

System-task

AND Decomposition OR Decomposition

System-task conflict

AND Decomposition OR Decomposition
T

P

P

Identify appropriate
databases

Extract keywords
from user query

Gather information
from resources

Identify appropriate
web servers

Display
acknowledgement

Satisfy user query Process user feedback

Accept user query Find answer to user
query

Display result
for query

T

P

Receive user
feedback

Identify appropriate
resources

Retrieve information
from resources

P

183

because the organisational structure of MAS may be directly derived from the existing

structure of the MAS’ organisational context (e.g. consider enterprise information

systems and workflow management systems) (Zambonelli et al. 2003).

MOBMAS suggests investigating the structure of the MAS’ organisational context if

this structure satisfies all of the following conditions.

It is known and clearly defined.

It is well-established, not likely to change, and has proven or been accepted to be an

effective way to function. Accordingly, it is desirable for the future MAS to mimic

this existing structure.

For example, consider the illustrative Conference Program Management application (cf.

Section 6.1.4.2). The existing organisational structure of the human conference

committee is composed of a “Program Committee (PC) Chair”, several “PC Members” and

many “Reviewers” (Ciancarini et al. 1998; Zambonelli et al. 2001a; Zambonelli et al.

2003; Ciancarini et al. 1999). Assuming that this structure has always been adopted by

the human conference organisers, and that the organisers do not wish to change the way

their conferences are managed, the developer should investigate this structure for the

development of a software Conference Program Management MAS.

6.2.2.1. Develop Organisational Context Model Kind

The existing structure of the organisational context is captured in an Organisational

Context Model Kind, which contains one notational component, Organisational

Context Chart. Since this MOBMAS step is only recommended to applications where

the structure of the organisational context is known, clear and well-established, it is

generally a straightforward task to develop this model kind. The developer needs to

specify:

the organisational units: i.e. the positions or individuals or departments that exist in

the organisational context; and

the relationships between these units, namely “acquaintance” relationships (where

one organisational unit interacts with another) and “membership” relationships

(where one organisational unit is part of another).

184

The developer may identify these elements from various sources, including the business

organisational chart, business process documentation, interviews, questionnaires,

investigation of employee manuals, orientation pamphlets, memos and annual company

reports (Awad 1985).

MOBMAS borrows UML notation for the Organisational Context Chart.

An Organisational Context Chart for the illustrative Conference Program Management

MAS is presented in Figure 6.6.

Figure 6.6 – Organisation Context Chart for the Conference Program Management MAS

6.2.3. Step 3 – Develop Role Model
The notion of “role” in agent-oriented development is analogous to the notion of “role”

in a play or members in a typical company (Wood 2000; Kendall 1999). It refers to the

position of an entity in an organisation and defines what the entity is expected to do in

the organisation (Ferber and Gutknecht 1998; Demazeau and Costa 1996). In

MOBMAS, roles serve as the building blocks for defining agent classes. Each agent

class is associated with one or more roles, which establish the agent class’ expected

behaviour and position in the MAS organisational structure.

MOBMAS specifies all roles in the Role Model Kind, which consists of one notational

component, Role Diagram. Sections 6.2.3.1 and 6.2.3.2 discuss the identification of

Organisational unit Acquaintance relationship

Membership relationship

1..n

1..n

Conference program
management organisation

Program Committee Reviewer

PC Chair PC Member

1..n 1

1

1..n

185

roles and role-tasks respectively, while Section 6.2.3.3 presents the notation for Role

Diagram.

6.2.3.1. Identify roles

MOBMAS identifies roles from system-tasks and, if Step 2 – “Analyse Organisational

Context” has been carried out, from the existing structure of the MAS’ organisational

context. Section 6.2.3.1.a presents techniques for identifying roles from system-tasks,

while Section 6.2.3.1.b recommends how roles can be identified with the analysis of

MAS’s organisational context.

6.2.3.1.a. Identify roles from system tasks

Generally, each system-task specified in the System Task Model should be assigned to

one role. However, each role can be delegated multiple system-tasks for the sake of

efficiency.

The grouping of multiple system-tasks into one role should be guided by the principle

of strong internal coherence and loose coupling in term of functionality. Each role

should represent a functionally coherent cluster of system-tasks that is sufficiently

different from other clusters (Lind 1999; Padgham and Winikoff 2002). This principle

helps to promote modularity in system design.

Some other heuristics that may indicate the need to delegate multiple system-tasks into

one role are:

when the system-tasks are likely to interact significantly with each other (e.g. for

inputs/outputs exchanges). Grouping these system-tasks into one role will help to

reduce the amount of interactions amongst roles and ultimately amongst agents; or

when the system-tasks require the same data (e.g. input information, domain

knowledge). Assigning these system-tasks to one role means that only this one role

needs to acquire, or be equipped with, the required data; or

when the system-tasks need to access to the same resource (e.g. information sources

or legacy systems). Delegating these system-tasks to one role means that only this

one role needs to implement an interface with the resource.

186

On the other hand, some system-tasks may not be appropriate to be grouped into one

single role, particularly when:

the system-tasks are executed at different locations at the same point in time. For

example, system-task “Accept user query” and “Retrieve information from resources” are

executed at the user’s site and the remote resources’ site respectively, thus they

should not be performed by the same role; or

the system-tasks need to satisfy certain security and privacy requirements. For

example, data associated with one system-task should not be available to another.

In the case when a system-task has been fully decomposed into sub-system-tasks (cf.

Section 6.2.1), it does not need to be assigned to any role, because it is presumed to be

accomplished via the execution of the sub-system-tasks. Accordingly, only the sub-

system-tasks need to be assigned to roles. However if a system-task has been partially

decomposed into sub-system-tasks, it must be assigned to a particular role because its

accomplishment is not equivalent to the accomplishment of the sub-system-tasks.

In some cases, a single system-task needs to be assigned to multiple roles. This occurs

when the system-task requires the collective effort of different roles. This type of task is

referred to as a “joint task” (or “social task” in Omicini 2000 and Ciancarini et al.

2000). For example, in the illustrative Conference Program Management application,

one system-task is to “Distribute papers among members” in such a way that each paper is

allocated to a required number of PC members, and each member is assigned a required

number of papers. This system-task should be modelled as a joint task because it is the

shared responsibility of both “PC Chair” and “PC Member” roles (cf. Section 6.1.4.2;

Figure 6.9).

Nevertheless, just because a system-task requires inputs from multiple roles does not

mean that it should be modelled as a joint task. Such a system-task can be assigned to

one single role, which acts as the primary accountable and controlling party for the task

execution. This role will then interact with other roles when necessary for input/output

information. For example, system-task “Find answer to user query” can be assigned to

one role “Searcher”, which interacts with “InfoSource Wrapper” role for information to

fulfil the system-task.

187

Therefore, as a generic guideline, MOBMAS suggests classifying a system-task as a

joint task (thus assigning it to multiple roles) only if the control of the system-task

needs to be equally spread among the participating roles, or equivalently, if all the

participating roles are equally accountable for the accomplishment of the system-task,

such as in the case of system-task “Distribute papers among members” (note that for this

system-task, “PC Members” are given the authority to choose for themselves the papers

they want to review. “PC Chair” does not impose the papers on them44).

Figure 6.7 shows the identification of roles for the illustrative Product Search MAS.

Figure 6.7 – Final roles for Product Search MAS

6.2.3.1.b. Identify roles from the structure of MAS’ organisational

context (optional)

If Step 2 – “Analyse Organisational Context” has been performed, the investigation of

the existing structure of MAS’ organisational context can greatly assist in the process of

role identification. Specifically, some preliminary roles can be identified from the

44 Even though this assumption does not always hold in real-life conferences, it is made in this thesis for
the purpose of illustration (cf. Section 6.1.3.2).

Assigned to “User Interface” role

Assigned to “Searcher” role

Assigned to “InfoSource Wrapper” role

Assigned to “Feedback Processor” role

Not assigned to any role

P

P

Identify appropriate
databases

Extract keywords
from user query

Gather information
from resources

Identify appropriate
web servers

Display
acknowledgement

Satisfy user query Process user feedback

Accept user query Find answer to
user query

Display result
for query

T

P

Receive user
feedback

Identify appropriate
resources

Retrieve information
from resources

P

188

organisational context’s structure, thereafter being verified with the analysis of the

system-tasks as discussed in Section 6.2.3.1.a.

In general, each organisational unit in the MAS’ organisational context can be mapped

onto one role, since the functionality of each organisational unit is often internally

coherent and loosely coupled from the other units (Wooldridge et al. 2000). In cases

when the MAS’ organisational context exhibits a hierarchical structure (i.e. when there

are “membership” relations among the units), the developer can either:

map each leaf-node organisational unit to a role; or

map the whole upper-level unit to a role.

The former is recommended if the leaf-node organisational units are loosely coupled in

term of functionality, while the latter is appropriate if the leaf-node units are strongly

coupled. For example, units “PC Chair”, “PC Member” and “Reviewer” in Figure 6.6 can

each be mapped to a different role since their functionality is loosely coupled from each

other.

It should be noted that the direct mapping between existing organisational units and the

software roles does not necessarily result in an efficient MAS design. This is so

because, firstly, the reasons that may have driven the existing organisation to adopt a

particular structure may not necessarily apply to the MAS organisation, and secondly,

the mere presence of MAS may introduce changes to the existing organisation

(Zambonelli et al. 2003). The developer therefore should always analyse the system-

tasks to validate the set of identified roles (cf. Section 6.2.3.1.a). The existing structure

of the MAS’ organisational context should only serve as an additional resource for the

identification of software roles.

6.2.3.2. Specify role-tasks

“Role-tasks” are tasks that a particular role is responsible for fulfilling. In MOBMAS,

role-tasks can be directly mapped from the system-tasks that the developer delegates to

roles during the process of role identification (cf. Section 6.2.3.1.a). This mapping is

generally one-to-one. For example, role-tasks of “User Interface” role are “Accept user

189

query”, “Display result for query”, “Receive user feedback” and “Display acknowledgement”

(cf. Figure 6.7).

Given the close inter-connection between roles, role-tasks and system-tasks, the

development of Role Model and System Task Model should be performed in a highly

iterative and spiral manner. In practice, the modelling of a particular role may discover

some role-tasks that have not been identified in the System Task Model, leading to the

revision of the System Task Model.

6.2.3.3. Notation of Role Diagram

The Role Model Kind of MOBMAS is depicted by a Role Diagram, which shows the

specification of each role, acquaintances between roles and authority relationships that

govern inter-role acquaintances.

The specification of each role involves the specification of role name and role-tasks,

both of which have been defined during the process of role identification (cf. Section

6.2.3.1.a).

Acquaintances between roles represent inter-role interaction pathways. Preliminary role

acquaintances can be identified from:

the relationships between system-tasks that the roles are responsible for: If two

roles are responsible for a system-task and a sub-system-task respectively, or if the

two roles are responsible for sibling system-tasks45, they are likely to interact with

each other; or

the acquaintance relationships between the existing organisational units of the

MAS’ organisational context, if Step 2 – “Analyse Organisational Context” has been

performed: If two roles are responsible for two acquainted organisational units, they

are likely to interact with each other.

The specification of roles and inter-role acquaintances will be validated/refined in later

steps of MOBMAS development process. The specification of authority relationships

between roles is discussed in the “MAS Organisation Design” activity (Section 6.3).

45 That is, sub-system-tasks that share the same parent.

190

MOBMAS notation for the Role Diagram is as follows.

Each role is depicted as a rectangle, which contains two compartments.

- The top compartment, marked with keyword role, specifies the role name.

- The bottom compartment, marked with keyword role-tasks, lists the role-tasks.

Each inter-role acquaintance is depicted as an undirected line between roles.

For roles that share a common joint task (cf. Section 6.2.3.1.a), the task should be

labelled with an adornment (J) to distinguish itself from other role-tasks. This

highlight will help the developer to identify the existence of joint tasks in the target

MAS during the subsequent steps of MOBMAS.

Notation for inter-role authority relationships is presented in the “MAS Organisation

Design” activity.

Figure 6.8 shows the Role Diagram for the illustrative Product Search MAS, while

Figure 6.9 illustrates a Role Diagram for the Conference Program Management MAS.

Figure 6.8 – Role Diagram for Product Search MAS (cf. Figure 6.7)

role
Searcher

role-tasks
Find answer to user query

Extract keywords from user query
Gather information from resources

Identify appropriate resources
Identify appropriate databases

Identify appropriate web servers

role
InfoSource Wrapper

role-tasks
Retrieve information from resources

role
Feedback Manager

role-tasks
Process user feedback

role
User Interface

role-tasks
Accept user query

Display result for query
Receive user feedback

Display acknowledgement

191

Figure 6.9 – Role Diagram for Conference Program Management MAS

6.2.4. Step 4 – Develop Ontology Model
MOBMAS captures all ontologies required by the target MAS in an Ontology Model

Kind. This model kind is subject to ongoing refinement and verification throughout the

development process of MOBMAS.

Previously in Section 2.3.3, a taxonomy of ontology has been presented. This taxonomy

defines four types of ontology based on their level of generality: Top-level ontologies,

Domain ontologies, Task ontologies and Application ontologies. The former three types

are generic across applications since they are independent of the tasks at hand46 and/or

the domains at hand47. Meanwhile, Application ontologies are specific to a particular

application because concepts in these ontologies are related to both domains and tasks at

hand (Guarino 1998; van Heijst et al. 1997; Gennari et al. 1994).

In the context of software system development, only Application ontologies need to be

defined and used. This is so because a software system only needs to concern with those

concepts that are specific to the application at hand (Guarino 1998).

46 Domain ontologies such as Medicine Domain Ontology, Car Domain Ontology and Automobile
Domain Ontology are independent of the tasks at hand.
47 Task ontologies such as Negotiation Task Ontology, Diagnosis Task Ontology, “Ranking by Weight”
Task Ontology and Propose-and-Revise Task Ontology are independent of the domains at hand.

role
Program Committee Chair

role-tasks
Accept papers from authors

Set number of required reviews
Distribute papers among members (J)

Notify authors of paper
acceptance/rejection

role
Program Committee Member

role-tasks
Distribute papers among members (J)

Send paper to reviewer
Determine paper acceptance/rejection

role
Reviewer
role-tasks

Accept paper
Return review

192

In the development of MAS in particular, MOBMAS recommends classifying

Application ontologies into two categories: MAS Application ontologies and Resource

Application ontologies.

MAS Application ontologies: conceptualise the application provided by the target

MAS. In particular, they define all the concepts and relations that the agents need to

know and share about the MAS application (e.g. about the target domains and tasks).

By committing to and sharing these MAS Application ontologies, agents in the

system are equipped with the (same) conceptual knowledge of their application,

thereby being able to operate and communicate with each other.

Resource Application ontologies: conceptualise the application provided by a

resource in the MAS system. In particular:

- if the resource is a processing application system (e.g. a legacy system), the

corresponding Resource Application ontology captures all the concepts and

relations that conceptualise the domains and tasks/services of the resource; and

- if the resource is an information source (e.g. a database), the corresponding

Resource Application Ontology captures all the concepts and relations that

conceptualise the information stored inside the resource. It may be derived from

the information source’s conceptual schema (Hwang 1999; Guarino 1997).

Resource Application ontologies are only necessary for heterogeneous MASs that

contain non-agent software resources apart from agents. In these systems, only agents

that directly interface with the resources will need to hold knowledge of the Resource

Application ontologies, since only these agents are required to know about the

conceptualisation of the resources’ applications.

Figure 6.10 shows the difference between MAS Application ontologies and Resource

Application ontologies in their scope of usage.

Figure 6.10 – MAS Application ontologies and Resource Application ontologies

MAS
Application
Ontologies

Resource
Application
Ontology

Resource
Application
Ontology

193

The development of MAS Application ontologies is discussed in Section 6.2.4.1, while

Resource Application ontologies are examined during the “MAS Organisation Design”

activity (Section 6.3).

6.2.4.1. Develop MAS Application Ontologies

MAS Application ontologies can be built by selecting concepts from either or both of

the relevant Domain ontologies and Task ontologies, thereafter specialising these

concepts to suit the MAS application (van Heijst et al. 1997) (Figure 6.11). As

recommended by Guarino (1998), a concept in the MAS Application ontology can be a

specialisation (or an instantiation) of a concept in a relevant Domain ontology and/or a

concept in a Task ontology. For example, the MAS Application ontology of a Car E-

business MAS may define concept “Car-price-offer”, which is the specialisation of

concept “Price” from a Car Domain Ontology and concept “Offer” from a Negotiation

Task Ontology.

Figure 6.11 – Application ontology as a specialization of Domain ontology and Task ontology,

represented in UML (Guarino 1998)

MOBMAS does not provide support for the process of ontology development. It

assumes that all required MAS Application ontologies for the target system are

developed by a separate ontology engineering effort, conducted by domain experts,

ontology engineers or the MAS developer himself. MOBMAS however provides

techniques for the identification of relevant input Domain ontologies and Task

ontologies for the construction of MAS Application ontologies.

6.2.4.1.a. Identify input Domain ontologies and Task ontologies for the

construction of MAS Application ontologies

MAS Application Ontologies should obtain and/or specialise concepts from those

Domain ontologies that conceptualise the target domains of the MAS. For example, in

the illustrative Product Search MAS, since the system deals with search queries on cars,

its MAS Application ontology should specialise concepts defined in a Car Domain

Domain ontology Task ontology

Application ontology

194

Ontology, such as “Make”, “Model”, “Steering” and “Cost”. These car-related concepts

allow the agents to “understand” and process user queries, as well as communicate the

car-related information with each other. Similarly, for the Conference Program

Management MAS (Figure 6.9), the developer should reuse and/or specialise the

concepts from a Conference Domain Ontology, such as “Paper”, “Paper author” and

“Reviewer”.

In order to identify the target domains of MAS, the developer can investigate the System

Task Model and Role Model. The identified system-tasks and role-tasks provide an

overview of the MAS’ purpose, scope and behaviour, thereby revealing whether the

MAS is related to any specific domains. For example, role-tasks “Accept user query”,

“Extract keywords from user query” and “Display result for query” indicate the need to know

about the Information Retrieval domain, which involves concepts such as “User Query”,

“Keyword” and “Hit”.

MAS Application Ontologies may also need to reuse and/or specialise concepts from

Task ontologies. This need arises when the knowledge required to fulfil MAS’ tasks do

not match the domain knowledge provided by Domain ontologies (Gennari et al. 1994).

This mismatch may be a semantic gap (i.e. when the knowledge needed for the tasks is

missing from the Domain ontology), or a syntactic mismatch (i.e. when the knowledge

required for the tasks can be satisfied by the domain knowledge, but the domain

knowledge needs to be rearranged or at least renamed) (Gennari et al. 1994). If the

mismatch is syntactic, the MAS Application ontology can be derived solely from the

Domain ontologies. However if the mismatch is semantic, the developer should build

the MAS Application ontology by augmenting the Domain ontologies with those

concepts obtained from Task ontologies.

For example, consider a Car E-business MAS which involves a “car price negotiation”

task. Apart from the need to know about the price of cars (which is a domain-specific

concept), the task also needs to deal with negotiation-specific concepts such as offer of

car price, utility rating of offer and price settlement. Thus, the system should specialise

concepts “Offer” and “Settlement” of the Negotiation Task Ontology into “Car-price-offer”

and “Car-price-settlement” for the MAS Application ontology. These specialised

195

concepts represent the roles that the domain-specific concept “Car-price” plays in the

negotiation task (Guarino 1996).

Note that all concepts defined in the MAS Application ontologies are no longer solely

domain-specific or task-specific. They are essentially application-specific, that is,

related to both domains and tasks at hand.

The developer should investigate the Role Model, particularly role-tasks, to identify the

need for concepts from Task ontologies. As stated earlier, only role-tasks that require

knowledge semantically mismatched from domain knowledge will need to be

investigated. For example, in the illustrative Product Search MAS, role-task “Find

answer to user query” may employ a “ranking by weight” problem-solving method to

rank the results found for user query. Thus, it may require task-specific concepts such as

“Hypothesis”, “Weight” and “Rank”. The developer should therefore consult the Ranking

–by-Weight Task Ontology to obtain and specialise these concepts. On the other hand,

role-tasks “Accept user query” and “Extract keywords from user query” deal directly with

the domain concepts “User query” and “Keywords”, thus do not require concepts from

any Task ontology.

Note that the knowledge requirements of MAS’ tasks may not be apparent until the

“Agent Internal Design” activity (Section 6.4), thus indicating the need for iterative

refinement of MAS Application ontologies.

Generally, the developer should consult the existing, reusable Domain ontologies and

Task ontologies when building MAS Application ontologies for the target system.

However, if no reusable ontologies can be found for the target domains and/or tasks, the

developer can either:

develop the Domain ontologies and Task ontologies from scratch, thereupon

building the MAS Application ontologies by specialising these ontologies; or

directly develop the MAS Application ontologies from scratch, without consulting

any Domain ontologies or Task ontologies.

196

The former approach is time-consuming but facilitates the use of MAS Application

ontologies by future applications, while the latter approach is time saving, but not

capable of supporting reuse.

The development of MAS Application Ontologies can be supported by numerous

specialised ontology-engineering methodologies and guidelines, e.g. IDEF5

(Knowledge Based Systems Inc 1994), METHONTOLOGY (Fernandez et al. 1997),

Grüninger and Fox (1995), Uschold and King (1995), Noy and McGuinness (2001),

Boicu et al. (1999), Gruber (1993a) and Wache et al. (2001).

6.2.4.1.b. Specify ontological mappings between MAS Application

ontologies

When modelling MAS Application ontologies, the developer should pay particular

attention to the specification of “ontological mappings” between these ontologies where

necessary. As defined in Section 2.3.2.1, an ontological mapping is a semantic

correspondence between two concepts of two different ontologies (Madhavan 2002).

Research in linguistics, logics and psychology has proposed many potential semantic

correspondences between concepts (Winston et al. 1987). Chaffin and Herrmann

(1988), for example, provides a list of 31 possible semantic correspondences. Winston

et al. (1987) presents a taxonomy of semantic correspondences that pertain to part-

whole relationships. Storey (1993) suggested seven major semantic correspondences

between concepts: “inclusion”, “possession”, “attribution”, “attachment”, “synonym”,

“homonym” and “case”. The developer is therefore allowed to adopt whichever

semantic correspondences that suit the mapping of the target MAS Application

ontologies. However, MOBMAS suggests the developer consider the following three

“basic” semantic correspondences, which cover most (if not all) of the possible

semantic associations between concepts (Parent and Spaccapietra 1998):

equivalent: i.e. where two concepts are semantically equivalent. For example,

concept “Car audio system” in the Car MAS Application Ontology is equivalent to

concept “Car audio” in the Entertainment Systems Domain Ontology (Figure 6.14);

subsumes: i.e. where one concept semantically includes another concept (either in

term of whole-part, specialisation or instantiation). For example, concept “Type” in

197

the CarInfo Resource Ontology subsumes concept “Sport car” in the Car MAS

Application Ontology (Figure 6.32); and

intersects: i.e. where one concept overlaps partially in semantics with another

concept. For example, concept “Car air conditioning system” in the Car MAS

Application Ontology intersects with concept “Heater” in the Electronic Product

Domain Ontology (Figure 6.32).

The related MAS Application ontologies can either be mapped against each other, or

against a common ontology (c.f. Section 2.3.2.1). Normally, when there are more than

two ontologies to be mapped amongst themselves, the second approach should be

favoured over the first, given the reasons listed in Section 2.3.2.1. The common

ontology to be used in the second approach may be one of the existing MAS

Application ontologies itself, or built from scratch as an inter-lingua of the existing

MAS Application ontologies.

Generating ontological mappings is a labour-intensive and error prone task. The

developer is referred to other research work for more information on this activity, e.g.

Ehrig and Sure (2004), Kalfoglou and Schorlemmer (2003), Stumme and Maedche

(2001), Calvanese et al. (2001) and Madhavan et al. (2002).

6.2.4.1.c. Validate System Task Model and Role Model against

Ontology Model

As mentioned previously, ontologies used by MAS are constructed by a separate stream

of development effort, conducted by either domain experts, ontology engineers or the

MAS developer himself. This ontology development effort, while modelling the target

system from the ontological point of view, is closely related and supplementary to the

MAS development effort, since both involve a detailed investigation of the target

application’s requirements.

Accordingly, while the System Task Model and Role Model assist in the development

of MAS Application ontologies, the contents of the developed MAS Application

ontologies can be used to verify and validate the completeness of the two MAS analysis

models. In particular, the concepts defined in the MAS Application ontologies may

198

correspond to, or indicate, some system-tasks or roles. For example, if concept

“Keyword” has been defined in the MAS Application ontology of the Product Search

MAS, the developer may uncover system-task “Extract keywords from user query” and add

it to the System Task Model if not already included. Similarly, concept “Review” in the

MAS Application ontology of the Conference Program Management MAS will clearly

indicates a role “Reviewer” for the Role Model. Thus, the examination of ontological

concepts may help to identify new system-tasks or roles and thereby help to refine the

System Task Model and Role Model.

6.2.4.2. Language for Ontology Model Kind

Since there are currently many representation languages for ontologies (cf. Section

2.3.4), MOBMAS does not restrict itself to any particular modelling language.

However, MOBMAS recommends using a graphical language for ontology modelling

to facilitate the communication with users during the analysis and design of MAS (e.g.

UML, IDEF5 Schematic Language and LINGO). Nevertheless, if a graphical language

is not powerful enough in term of power of expression for the ontologies at hand,

textual languages can be used (e.g. CycL, KIF, KL-ONE and DAML+OIL).

For the purpose of illustration, MOBMAS adopts UML and OCL notation for ontology

modelling. With this notation, the Ontology Model Kind of MOBMAS consists of

multiple Ontology Diagrams, each of which represents an ontology as an UML class

diagram. Ontological concepts are represented as UML classes or attributes of classes,

while relations between concepts are represented as relationships between classes

(Cranefield and Purvis 1999; Cranefield et al. 2001). Operations/methods of classes are

not modelled because ontologies only capture the structure of concepts, not their

behaviour (Bergenti and Poggi 2002).

UML allows for the representation of the following types of relationships between

concepts (Object Management Group 2003).

Specialisation: that is, when concept A is a type of concept B. For example, “Sport

car” is a type of “Car” (Figure 6.14).

Aggregation: that is, when concept A is a part of concept B. For example,

“Keyword” is a part of “User query” (Figure 6.15). Composition can be used to

199

model a stronger type of aggregation, when concept A belongs to only one whole

concept B and lives and dies with the whole (e.g. concept “Wheel” and “Car” in

Figure 6.14) (Object Management Group 2003).

Association: that is, when concept A is related to concept B. An association

relationship may be described by a predicate, which is basically an ontological

concept itself (Bergenti and Poggi 2002). For example, “Car” is related to “Car

accessory” via an “accessory” association (Figure 6.14). If an association

relationship embraces attributes, the association can be modelled as an “association

class” (Figure 6.12).

Each relationship between concepts should be annotated with “cardinality indicators”,

which indicate the number of potential instances of each concept that can be involved in

the relationship.

Figure 6.12 – Association Class in an ontology

With regard to the representation of ontological mappings, MOBMAS suggests

extending the “dependency relationship” of UML (Figure 6.13). Each mapping

relationship should be marked with a keyword stating the semantic correspondence, e.g.

equivalent, subsumes or intersects (Parent and Spaccapietra 1998). If the semantic

relationship is bi-directional (e.g. equivalent or synonym), the arrow can be double-

headed.

Figure 6.13 – Notation for ontology mapping

If there are axioms, rules or other assertions that specify constraints on ontological

classes, attributes and relationships, these can be modelled by OCL. OCL constraints

are represented as notes in Ontology Diagrams.

Figures 6.14 and 6.15 illustrate the Car MAS Application Ontology and Query MAS

Application Ontology of the Product Search MAS.

Company

ABN

Employee

EmployeeID

Job

salary

1..n 1

semantic correspondence

200

Figure 6.14 – Car MAS Application Ontology

Figure 6.15 – Query MAS Application Ontology

6.2.5. Step 5 – Identify Ontology-Management Role
As recommended by FIPA (2001b), a MAS may store ontologies at an ontology

server(s), which is exclusively controlled by an “Ontology Manager” agent48. Other

agents in the system which wish to obtain, access or update ontologies have to

communicate with the Ontology Manager (Figure 6.16).

Figure 6.16 – Ontology Manager role

48 The agent is referred to as Ontology Agent in FIPA (2001b).

Ontology Server 1
Agent A

Agent B

Ontology
Manager

Ontology Server 2

1

0..1

User query
QueryID
Time-Received

Keyword
Text

Result list
ResultID
Time-Displayed

Hit

1..*

Car air conditioning
system

Temperature range
Humidity
Leakage
Flow dia.
Rating

1 0..*

accessory
Car accessory

AssID
UnitPrice
Brand
Power supply

Car
ID
Make
Model
Steering
Transmission
Cost
Door
Number-in-stock

Sport car Family car Four wheel drive

Car audio system
Size description
Protection circuitry
Filter setting
Amplifier setting

equivalent

Car audio
Defined in Entertainment
Systems Domain Ontology

-- Door must always be
-- >= 2 and <=5
context Car
inv: self.door >=2 and
self.door <=5

Wheel
Type
Size
Brand

1..4

intersects

Heater
Defined in Electronic
Product Domain Ontology

201

Potential tasks of the “Ontology Manager” agent are:

to perform all necessary reasoning, inferences or ontology-mapping activities to

answer ontology-related queries posed by other agents;

to distribute copies of ontologies to authorised agents;

to control the update of ontologies (e.g. when suggestions of updates are sent by

other agents); and/or

to inform other agents (which are holding copies of ontologies) of changes in the

ontologies.

The use of a specialised “Ontology Manager” agent is useful in that it helps to relieve the

workload from other agents by taking care of all ontology-related reasoning and

mapping activities. It also helps to ensure security by checking whether a particular

agent is authorised to obtain a requested ontology or to update an ontology. Note that

low-level, simple reasoning and/or maintenance activities of ontologies can be provided

by the underlying ontology servers (e.g. Ontolingua Server; Farquhar 1996). What an

Ontology Manager agent offers is a higher-level layer of services that may be performed

on the ontologies (e.g. authorisation or complex ontology-related query processing).

Note that “Ontology Manager” agent is an application-independent component that is

generally provided by the implementation framework (e.g. FIPA-based platforms such

as JACK, JADE, FIPA-OS and ZEUS). The developer therefore does not have to design

one from scratch, but can fine-tune the provided specification of the “Ontology Manager”

agent to suit the application at hand. However, the Role Model of the target MAS needs

to be updated to add an “Ontology Manager” role.

Nevertheless, the developer can let the agents to have direct access to the ontologies,

without using any specialised “Ontology Manager” agent (Cheikes 1995; Figure 6.17).

The advantage of this design is its simplicity. However, its drawbacks are that any agent

can access or change the ontologies (unless the ontologies are set to “read only” mode)

and the agents have to perform all the reasoning and mapping activities on the

ontologies to satisfy their ontology-related queries.

202

Figure 6.17 – Ontology servers without Ontology Manager role

Figure 6.18 presents the updated Role Diagram for the Product Search MAS (cf. Figure

6.8).

Figure 6.18 – Updated Role Diagram for Product Search MAS

Ontology Server as
Common Knowledge Base Ontologies

Agent A

Agent B

role
Searcher

role-tasks
Find answer to user query

Extract keywords from user query
Gather information from resources

Identify appropriate resources
Identify appropriate databases

Identify appropriate web servers

role
InfoSource Wrapper

role-tasks
Retrieve information from

resources

role
Feedback Manager

role-tasks
Process user feedback

role
User Interface

role-tasks
Accept user query

Display result for query
Receive user feedback

Display acknowledgement

role
Ontology Manager

role-tasks
Distribute copies of ontologies to

requesting agents
Inform committing agents of changes

in ontology

203

6.3. MAS ORGANISATION DESIGN ACTIVITY
This activity of MOBMAS is concerned with specifying the organisational structure for

the target MAS and a set of agent classes composing the MAS. If the MAS is a

heterogeneous system that contains non-agent resources, these resources need to be

identified and their applications conceptualised.

Figure 6.19 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational

context (optional)
[Organisational Context

Model Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief

conceptualisation

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour

Model

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure

facilities

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

204

6.3.1. Step 1 – Specify MAS Organisational Structure
In MOBMAS, MAS organisational structure is modelled via roles, acquaintances

between roles and authority relationships that govern these acquaintances (e.g. peer-to-

peer or superior-subordinate relationship). This inter-role organisational structure will

determine the run-time organisational structure between agents, since each agent will

play a particular role(s) in the MAS organisation. It should be noted that, while the

inter-role organisational structure is static and can be defined at design time, the inter-

agent organisational structure may be dynamic, since each agent may change from one

role to another at run-time.

In MOBMAS, a preliminary organisational structure of MAS has been defined via the

identification of roles and acquaintances between roles in the “Analysis” activity (cf.

Section 6.2.3). This current step further investigates and confirms the organisational

structure of MAS, by examining the organisational structure style, specifying the

authority relationships between roles, and if necessary, revising the acquaintances

amongst roles. Even if the developer has performed Step 2 of the “Analysis” activity –

“Analyse Organisational Context” (cf. Section 6.2.2), this step should still be

performed, since the software organisational structure of MAS should not always mimic

the structure of the MAS’ organisational context. The result of this step is an updated

Role Model, which is initially developed in the “Analysis” activity (cf. Section 6.2.3).

6.3.1.1. Determine MAS organisational structure

The organisational structure of MAS can be based upon any of the following four

common, basic organisational styles (Fox 1981; Lind 1999; Shen and Norrie 1999;

Parrott et al. 2003):

Peer-to-peer: In this structure, all roles in MAS work together as peers, with each

role assuming an equal authority status compared to other roles (Figure 6.20a).

Coordination between roles is based upon mutually agreed decisions. The topology

of interactions is a fully connected one, where each role is allowed to interact with

any other roles in the system without having to go through a mediator party.

205

Hierarchical structure: This organisational structure organises roles into a

hierarchy of layers, where roles in the higher layer assume a “superior” status over

those in the lower layer, which assume a “subordinate” status (Figure 6.20b). A

superior role exercises its authority over the subordinate roles by delegating work to

the latter and coordinating the latter’s efforts. A subordinate role is obliged to

perform the delegated tasks and should not reject a request from its superiors (thus,

the autonomy of the subordinate roles is restrained by the superior roles). Interaction

pathways across layers are limited, since roles within each layer are endorsed to only

interact with its immediate superiors or subordinates.

Federation structure: This structure organises roles into peer-to-peer groups,

where roles in each group are mediated by a superior role within the group (Figure

6.20c). Roles within each group can directly interact with each other, but need to

interact with roles in other groups via the superior role.

Hybrid structure: This structure is one that integrates any of the above styles. For

example, some roles may directly coordinate as peers with each other during the

fulfilment of some particular tasks, but need to be controlled by a superior role

during some other tasks (Figure 6.20d).

(a) (b)

(c) (d)

Figure 6.20 – Styles of organisational structure

206

The determination of which organisational style to adopt for the target MAS should take

into account the following factors.

The existing structure of the MAS’ organisational context (if Step 2 of the

“Analysis” activity – “Analyse Organisational Context” – has been performed; cf.

Section 6.2.2): Generally, there is a natural tendency to mimic/reflect the existing

structure of the MAS’ organisation context into the software MAS system. For

example, MASs that support e-business are likely to mimic the organisational

structure of the human commercial transactions. This imitation is not only desirable

due to the sake of conceptual simplicity, but in some cases may also come as a

requirement (Zambonelli et al. 2003). Nevertheless, the developer should determine

whether the existing structure is indeed efficient for the target MAS. For example, a

strictly hierarchical structure found in a human organisation may be better replaced

by a hybrid software organisation, where certain roles are allowed to autonomously

interact as peers with each other to fulfil some tasks. This refined organisational

structure promotes the autonomous capability of software roles/agents.

Modularity: The developer should consider organising roles into layers or groups to

promote modularity for the target system. Generally, this layering or grouping is

applicable if there exist different sets of roles that are concerned with disjoint sets of

responsibilities, interact loosely with each other, and/or require competencies that

are not required by other sets of roles (Zambonelli et al. 2003).

Support for non-functional requirements: If the target MAS has specific non-

functional requirements such as security, scalability or flexibility, the adopted

organisational structure should allow the MAS to meet these requirements. For

example, if some information available to a group of roles should not be available to

another group of roles, the developer should consider organising MAS into layers or

groups. Similarly, if scalability needs to be supported (e.g. when new roles are

added), federation and hierarchical structures may be more efficient than a peer-to-

peer structure, since only the superior role in the respective group or layer needs to

know about the existence of the new roles.

207

The number of roles in the system: If the number of roles is small, the interaction

overheads between roles may be sufficiently low for a peer-to-peer structure to be

efficient. However when the number of roles is large, a hierarchical or federation

structure may be more appropriate, given their ability to limit the interaction

pathways amongst roles.

To date, there have been a number of attempts to catalogue the different organisational

structures for software systems (based on the above four basic styles), e.g. Kolp et al.

(2001), Tahara et al. (1999), Kendall (1999) and Kendall (2000). The developer can

reuse and/or adapt these catalogued structures to the target MAS.

6.3.1.2. Update Role Model

Once the organisational structure of MAS has been determined, the Role Model

previously developed in the “Analysis” activity should be revised to:

include any new roles that have not been identified. For example, a “Mediator”,

“Coordinator” or “Broker” role may be uncovered if a hierarchical or federation

structure is adopted;

show new acquaintances between roles (if any); and

show the authority relationship governing each acquaintance.

- Keyword peer should be used to represent a peer-to-peer relationship where two

roles have equal status (Figure 6.21a).

- Keyword control should be used to represent a superior-subordinate relationship

where one role has authority over another (Figure 6.21b). The keyword should be

adorned with an arrow pointing from the superior role to the subordinate role.

(a) (b)

Figure 6.21 – Notation for authority relationships between roles in Role Diagram

Figures 6.22 and 6.23 show the updated Role Diagrams for the Product Search MAS

and Conference Program Management MAS respectively. The former adopts a

primarily peer-to-peer structure, although it contains a superior-subordinate relationship

between “Searcher” and “InfoSource Wrapper” roles. The Conference Program

Management MAS adopts a hierarchical structure.

peerRole A Role B controlRole A Role B

208

Figure 6.22 – Updated Role Model for Product Search MAS (cf. Figure 6.18)

Figure 6.23 – Updated Role Model for Conference Program Management MAS (cf. Figure 6.9)

peerrole
User Interface

role-tasks
Accept user query

Display result for query
Receive user feedback

Display acknowledgement

peer

control

peer

role
Searcher

role-tasks
Find answer to user query

Extract keywords from user query
Gather information from resources

Identify appropriate resources
Identify appropriate databases

Identify appropriate web servers

role
InfoSource Wrapper

role-tasks
Retrieve information from resources

role
Feedback Manager

role-tasks
Process user feedback

role
Ontology Manager

role-tasks
Distribute copies of ontologies to

requesting agents
Inform committing agents of changes

in ontology
peer

peer

peer

control

peer

control

role
Program Committee Chair

role-tasks
Accept papers from authors

Set number of required reviews
Distribute papers among members (J)

Notify authors of paper
acceptance/rejection

role
Program Committee Member

role-tasks
Distribute papers among members (J)

Send paper to reviewer
Determine paper acceptance/rejection

role
Reviewer
role-tasks

Accept paper
Return review

209

6.3.2. Step 2 – Develop Agent Class Model
The notion of “agent class” is analogous to the notion of “class” in OO modelling

(Wood 2000). Each agent class is a template descriptor of a set of agents with similar

characterisation. MOBMAS captures all agent classes in the Agent Class Model Kind.

Techniques for identifying agent classes are presented in Section 6.3.2.1, while the

notation for the Agent Class Model Kind is documented in Section 6.3.2.2.

6.3.2.1. Identify agent classes

In MOBMAS, agent classes are built upon roles, with each agent class being assigned

one or more roles. At run-time, an agent from an agent class may dynamically change

amongst its assigned roles, thereby exhibiting dynamic behaviour and occupying

dynamic positions in the MAS organisation.

Generally, roles can be associated to agent classes via one-to-one mappings. This one-

to-one correspondence from roles to agent classes can be justified by the modularity or

functional coherence of roles – a characteristic resulted from the way roles are

identified49.

Nevertheless, multiple roles may be assigned to one single agent class for the purpose of

convenience. The decision of whether, and how, to map multiple roles to one agent

class should be driven by the following factors.

Modularity: The grouping of roles must not compromise the modularity of the MAS

design. In other words, each agent class should represent a coherent software entity

that does not have disparate functionality, and the overall functionality of the agent

class should be easy to understand. The following simple heuristic can be applied to

evaluate the functional coherence of an agent class: to find a suitable name for the

agent class that encompasses all of its functionality. A coherent agent class should

be easily described by a single name without any conjunctions. For example,

consider an Online Shop application. An agent class that plays both roles “Client

49 Recall that in Step 3 of the “Analysis” activity – “Develop Role Model” (cf. Section 6.2.3.1.a), roles are
identified from the system-tasks in such a way that promotes strong internal coherence and loose coupling
in term of functionality.

210

welcomer” and “Seller” can still have a simple descriptive name “Sale assistant”

(Padgham and Winikoff, 2002a). Although this heuristic is not always applicable, it

offers a useful and quick way for assessing modularity in MAS design.

Efficiency considerations: Associating multiple roles to one single agent class may

result in various efficiency improvements. For example, having one agent class

playing multiple roles will mean a smaller number of agents in the MAS system than

if each agent class plays a single role. Likewise, if some roles interact intensively

with each other, the assignment of these roles to one single agent class will mean

less interaction between agent classes. Nevertheless, the grouping of roles may also

result in lower system efficiency. For instance, mapping both roles “Searcher” and

“InfoSource Wrapper” in the Product Search MAS to a single agent class, say

“Information Gatherer”, will mean that this “Information Gatherer” agent needs to

sequentially interact with multiple information sources to find answers to a user

query. However, if each role “Searcher” and “InfoSource Wrapper” is assigned to a

separate agent class “Searcher” and “Wrapper” respectively, the “Searcher” agent can

simultaneously dispatches the query to all relevant “Wrapper” agents, which then

simultaneously access the information sources for answers. The response time is

therefore greatly improved.

Other non-functional requirements considerations: The binding of multiple roles to

one agent class should not compromise any fault-tolerant, security or privacy

requirements.

6.3.2.1.a. Characterise agent class’ dynamics

If a particular agent class has been assigned multiple roles, the developer should

characterise its dynamics, that is, whether the agent class is static or dynamic regarding

its role-playing behaviour.

A static agent class is one whose instances are required to play all of the assigned

roles throughout their lifetime50. For example, a “Shop assistant” agent is active in

both of its assigned roles, “Client welcomer” and “Seller”, during its lifetime.

50 MOBMAS’ definition of static versus dynamic property of agent classes is based upon the definition of
“dynamic activation” proposed by Odell et al. (2003b).

211

A dynamic agent class, on the other hand, is one whose instances may change their

active roles from one time to another. This dynamic change occurs when (Odell at

al. 2003b):

- an agent is initially active in one role but becomes also active in some other

roles. For example, in a Human Resource Management MAS, a “Staff” agent

constantly plays the role “Employee”, but may also become active in role

“Manager” as a result of a promotion (thus taking on additional managerial

responsibilities apart from normal employee responsibilities); or

- the agent has been active in one role but becomes inactive in that role. For

instance, the “Staff” agent in the above illustration may become inactive in the

role “Manager” after a demotion, thus retaining only one role “Employee”; or

- the agent switches from one active role to another. For example, a “Soccer

Player” agent often switches between role “Striker” and role “Defender”.

The determination of each agent class’ dynamics in term of its role-playing behaviour

helps to predict the dynamics of the MAS system at run-time, since the roles that each

agent plays at a point in time determine its behaviour, its interactions with other agents

and the overall inter-agent organisational structure.

6.3.2.2. Notation of Agent Class Model Kind

The Agent Class Model Kind of MOBMAS is depicted by two notational components.

Agent Class Diagram captures the specification of each agent class, including the

listing of its roles, belief conceptualisation, goals and events.

Agent Relationship Diagram shows the interaction pathways between agent

classes, interaction pathways between agent classes and their wrapped resources (if

exist), and instantiation cardinality of each agent class.

These two diagrams need to be developed in an ongoing manner throughout the

MOBMAS development process. MOBMAS notation for Agent Class Diagram and

Agent Relationship Diagram are presented in Figures 6.24 and 6.25 respectively.

212

Figure 6.24 – Agent Class Diagram

Figure 6.25 – Agent Relationship Diagram

In the Agent Class Diagram (Figure 6.24), each agent class is depicted as a rectangle

with several compartments.

The top compartment - marked with keyword agent class – specifies the agent class’

name, roles and dynamics characteristic. The dynamics characteristic should be

annotated as (S) for static agent classes, or (D) for dynamic agent classes. Note that

if an agent class is assigned one single role, it is presumed to be static.

The remaining compartments specify the agent class’ belief conceptualisation,

agent-goals and events. These constructs will be defined during the “Agent Internal

Design” activity. At this stage, these compartments can be left empty.

In the Agent Relationship Diagram,

each agent class is depicted as a rectangle marked with keyword agent class. The

agent class’ name and its roles should be restated. For simplicity, this diagram does

not show the dynamics characteristic of each agent class. This information has been

captured in the Agent Class Diagram;

each acquaintance between agent classes is depicted as an undirected line

connecting the agent classes. Inter-agent acquaintances can be derived from the

acquaintances amongst roles in the Role Model; and

descriptive information about each acquaintance between agent classes (e.g.

ontology and interaction protocol governing the acquaintance) is attached to the

agent class (S) or (D)
agent-class-name / role-name1, role-name2, role-name3…

belief conceptualisation

agent-goals

events

Protocol or Agent-TC Interaction Diagram:
Protocol/diagram name
Ontology: Ontology name

agent class
agent-class-namecardinality /

role-name1, role-name2,…

agent class
agent-class- namecardinality /
role-name1, role-name2,…

213

acquaintance as an UML note. This descriptive information will be determined

during the “Agent Interaction Design” activity.

If the target MAS is a heterogeneous system which contains non-agent resources, the

Agent Relationship Diagram should also show these resources and their connections

with the wrapper agent classes. This issue will be discussed in Step 3 of this activity –

“Specify resources” (Section 6.3.3).

Figures 6.26 and 6.27 present the preliminary Agent Class Diagram and Agent

Relationship Diagram for the illustrative Product Search MAS (cf. Figure 6.22). Both

diagrams will be refined in later steps of MOBMAS.

Figure 6.26 – Preliminary Agent Class Diagram for Product Search MAS

Figure 6.27 – Preliminary Agent Relationship Diagram for Product Search MAS

agent class (S)
Wrapper /

InfoSource Wrapper role

agent class (S)
Feedback Manager /

Feedback Manager role

agent class (S)
Searcher /

 Searcher role

agent class (S)
Ontology Manager/

Ontology Manager role

agent class (S)
User Interface /

User Interface role

agent class
Ontology Manager /

Ontology Manager role

agent class
Feedback Manager / Feedback

Manager role

agent class
Searcher /

Searcher role

agent class
Wrapper /

InfoSource Wrapper role

agent class
User Interface /

User Interface role

214

6.3.3. Step 3 – Specify Resources (Optional)
This step is only needed if the target MAS is a heterogeneous system which, apart from

agents, contains non-agent resources that provide information and/or services to the

agents. All of these resources are specified in the Resource Diagram of MOBMAS

Resource Model Kind. Section 6.3.3.1 discusses the identification of resources for the

target MAS, while Section 6.3.3.2 presents notation for the Resource Diagram.

6.3.3.1. Identify resources

A resource is a non-agent software system that provides application-specific51

information and/or services to the agents in MAS. Resources in a MAS may include

(FIPA 2001a; Jennings and Wooldridge 1995):

information sources, e.g. databases or web servers; and

processing application systems, e.g. legacy systems, language translation programs

or web services programs.

Note that the resources do not need to belong internally to the system and owned/used

exclusively by the system (e.g. legacy system) (Figure 6.28a). They may exist externally

and are available to agents in other systems (e.g. web servers) (Figure 6.28b).

(a) (b)

Figure 6.28 – Internal resources (a) and external resources (b)

Resources in a MAS can be identified by investigating the System Task Model or Role

Model. These models specify the functionality of the target application, thereby

revealing the major resources that accompany with, or are required by, the target

51 Resources are to be distinguished from infrastructure facilities which provide system-specific services
such as naming service or message transport service. The specification of infrastructure facilities is
discussed in Step 3 of “Architecture Design” activity – “Specify MAS Infrastructure Facilities” (Section
6.6.3).

System boundary External agents

215

system. For example, the potential resources for the illustrative Product Search MAS are

various external databases, web servers and search engines on cars (cf. Section 6.1.4.1).

However, more resources may be uncovered during the detailed design of agents’

behaviour (i.e. “Agent Internal Design” activity – Section 6.4). Thus, the Resource

Diagram needs to be iteratively revised.

6.3.3.2. Notation of Resource Diagram

A Resource Diagram should display the following notational elements.

Resources: Each resource is depicted as a rectangle with multiple compartments.

- The top compartment, marked with keyword resource, specifies the resource’s

name.

- Each remaining compartment describes the resource from a different dimension.

The keyword in each compartment indicates its respective dimension. Some

potential dimensions are:

Resource type: which defines the category of the resource, e.g. “database”,

“web server” or “processing application system”; and

Resource Application Ontology: which states the name(s) of the Resource

Application ontology(ies) that conceptualises the application provided by the

resource. The construction of these ontologies is discussed in Step 4 of this

phase – “Extend Ontology Model to include Resource Application

ontologies” (cf. Section 6.3.4).

MOBMAS does not impose the above set of dimensions as a fixed template for

resource modelling. These dimensions may vary largely from one type of resource

to another, and/or from one development project to another. Therefore, the

developer is free to adapt the Resource Diagram to fit the project at hand.

Agent classes that wrap around resources (i.e. “wrapper” agent classes): A

resource is typically accessed by agents via a dedicated “wrapper” agent (Jennings

and Wooldridge 1995; FIPA 2001a). In the Resource Diagram, a wrapper agent

class is represented as a rectangle with keyword agent class, followed by its name and

roles.

216

Connections between agent classes and resources: Each resource is linked with

its wrapper agent class via an undirected line marked with keyword wrap.

An example Resource Diagram for the Product Search MAS is presented in Figure 6.29.

Figure 6.29 – Resource Diagram of Product Search MAS

6.3.3.3. Revise Role Model

Since each resource requires an associated wrapper agent class, the developer should

revise the Role Model to check if all necessary wrapper role(s) has been identified. Each

different type of resource may require a different wrapper role if the responsibilities

involved in assessing each resource type are largely different from each other, e.g.

“Database Wrapper” role or “Expert System Wrapper” role.

In addition, if the target MAS is open and frequently adds new resources and agents, the

developer should consider introducing a “Resource Broker” role. Agents playing this role

are responsible for brokering the available resources to interested agents (FIPA 2001a,

O’Brien and Nicol 1998). Any newly added wrapper agents (as a result of the addition

of new resources) can register its services with the “Resource Broker” agent. A client

agent (who may be newly added to the system) can contact the “Resource Broker” to find

out which wrapper agents can satisfy its requests. The client agent can then directly

interact with the identified wrapper agents for services. The “Resource Broker” agent

may also assume the responsibilities of negotiating over the terms and conditions of

resource usage, or authorizing the client agents before giving them details of wrapper

agents (FIPA 2001a). Note that, as with “Ontology Manager” agent, “Resource Broker”

wrap resource
Car Database

resource-type
Database

resource-application-ontology
CarInfo Resource Ontology

agent class
Wrapper /

InfoSource Wrapper Role

The attributes in the compartments can be
extended/changed if necessary

wrap

resource
Car Web Server

resource-type
Web server

resource-application-ontology
CarWebServer Resource Ontology

217

agent is an application-independent component that is generally provided by the

implementation framework (e.g. FIPA-based platforms such as JACK, JADE, FIPA-OS

and ZEUS). The developer therefore does not have to design one from scratch, but can

fine-tune the provided specification of the “Resource Broker” agent to suit the

application at hand. Nevertheless, the Role Model should be extended to include the

new “Resource Broker” role.

Figure 6.30 presents the updated Role Diagram for the Product Search MAS (cf. Figure

6.18).

Figure 6.30 – Updated Role Diagram for Product Search MAS (cf. Figure 6.18)

peerpeer

peerrole
User Interface

role-tasks
Accept user query

Display result for query
Receive user feedback

Display acknowledgement

peer

control

peer

role
Searcher

role-tasks
Find answer to user query

Extract keywords from user query
Gather information from resources

Identify appropriate resources
Identify appropriate databases

Identify appropriate web servers

role
InfoSource Wrapper

role-tasks
Retrieve information from resources

role
Feedback Manager

role-tasks
Process user feedback

role
Ontology Manager

role-tasks
Distribute copies of ontologies to

requesting agents
Inform committing agents of changes

in ontology
peer

peer

peer

role
Resource Broker

role-tasks
Register services of new InfoSource-

Wrapper agents
Process resource-search query

218

6.3.3.4. Update Agent Class Model

Agent Relationship Diagram of MOBMAS’ Agent Class Model Kind should be

extended to show newly identified resources and their connections with wrapper agent

classes.

Each resource is depicted as a rectangle marked with keyword «resource». For

simplicity, the Agent Relationship Diagram only shows the names of the resources

without specifying their internal configuration. This information has been captured

in the Resource Diagram of Resource Model Kind.

The connection between resources and their wrapper agent classes is represented as

an undirected line marked with keyword wrap.

In addition, if the Role Model has been changed, both Agent Class Diagram and Agent

Relationship Diagram need to be updated to show new agent classes and/or new role

assignments to existing agent classes.

Figure 6.31 presents the updated Agent Relationship Diagram for the Product Search

MAS (cf. Figure 6.27).

Figure 6.31 – Updated Agent Relationship Diagram for Product Search MAS

agent class
Ontology Manager /

Ontology Manager role

agent class
Feedback Manager /

Feedback Manager role

agent class
Searcher /

Searcher role

agent class
Wrapper /

InfoSource Wrapper role

agent class
User Interface /

User Interface role

agent class
Resource Broker /

Resource Broker role

wrapwrap

resource
Car Database

resource
Car Web Server

219

6.3.4. Step 4 – Extend Ontology Model to Include

Resource Application Ontologies (Optional)
If the target MAS contains resources, the developer needs to extend the Ontology

Model to include Resource Application ontologies that conceptualise the applications

provided by these resources. As stated in Section 6.2.4:

if the resource is a processing application system (e.g. a legacy system), its

Resource Application ontology should capture all the concepts and relations that

conceptualise the domains and tasks/services provided by the resource; and

if the resource is an information source (e.g. a database), its Resource Application

ontology should capture all the concepts and relations that conceptualise the

information stored in the resource. This Resource Application ontology can be

derived from the conceptual schema of the resource, e.g. database schema.

Generally, each resource in a MAS should be conceptualised by a separate Resource

Application ontology. The development of Resource Application ontologies is not part

of MOBMAS. The developer is referred to other research work on Resource

Application ontology development, e.g. Hwang (1999), Pazzaglia and Embury (1998),

Mars et al. (1994), Decker et al. (1999) and FIPA (2001b).

The following section discusses the issue of ontology mapping between Resource

Application ontologies and MAS Application ontologies.

6.3.4.1. Specify ontological mappings between Resource

Application ontologies And MAS Application ontologies

Ontological mappings between Resource Application ontologies and MAS Application

ontologies are necessary because:

they enable wrapper agents to translate ACL messages (formulated in MAS

Application ontologies’ vocabulary) into resource-level queries (formulated in

Resource Application ontologies’ vocabulary), and from resource-level information

back to ACL messages; and

220

they allow the interoperability between heterogeneous resources. For example,

information retrieved from different resources can be integrated using MAS

Application ontology as an inter-lingua (cf. Section 2.3.2.1).

If each heterogeneous resource is wrapped by a different agent class, each resource’s

ontology would need to be mapped against the corresponding wrapper agent’s ontology.

The different wrappers will then communicate with each other to exchange the

information/services obtained from the resources. If otherwise the heterogeneous

resources are wrapped by the same agent class, it is most efficient for each resource’s

ontology to be mapped against the agent class’s ontology, which acts as the common

inter-lingua.

Figure 6.32 presents an example Resource Application ontology for the Car Database

used by the Product Search MAS, named “CarInfo Resource Ontology” (Figure 6.29).

The figure also shows the ontological mappings between the CarInfo Resource

Ontology and Car MAS Application Ontology (cf. Figure 6.14).

Figure 6.32 – CarInfo Resource Ontology and its mappings to Car MAS Application Ontology

CarInfo
SerialNo

CarBrand

Power-steering

Transmission

Price

DoorNo

Inventory-status
Type

Car
ID

Make

Model

Steering

Transmission

Cost

Door

Number-in-stock

Sport car Family car Four wheel drive

equivalent

intersects

equivalent

equivalent
equivalent

equivalent

subsumes

intersects

equivalent

221

6.4. AGENT INTERNAL DESIGN ACTIVITY
This activity of MOBMAS deals with the internal design of each agent class, namely

the specification of each agent class’ belief conceptualisation, agent goals, events, plan

templates and reflexive rules.

Figure 6.33 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational context

(optional)
[Organisational Context Model

Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief conceptualisation

[Agent Class Model Kind]

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour Model
[Agent Behaviour Model Kind]

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure facilities

[Architecture Model Kind]

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

222

6.4.1. Step 1 – Specify Agent Class’ Belief

Conceptualisation
Agent beliefs refer to the information that an agent holds about the world (Shoham and

Cousins 1994; Rao and Georgeff 1995). Agent beliefs exist at two levels of abstraction:

Belief State and Belief Conceptualisation (Kinny and Georgeff 1996; Agent Oriented

Software 2004).

Belief State: corresponds to an agent’s knowledge about a particular state of the

world (in the past, present or future) (Shoham 1993) (Figure 6.34). It captures the

run-time facts about the state of entities that exist in the agent’s application (i.e.

domains and tasks) and the environment (i.e. resources and other agents).

Belief Conceptualisation: corresponds to the agent’s knowledge about the

conceptualisation of the world, particularly the conceptualisation of the entities

referred to in the Belief State (Figure 6.35).

Figure 6.34 – Agent Belief State

Figure 6.35 – Agent Belief Conceptualisation

At design time, it is only feasible to define the Belief Conceptualisation for each agent

class, or more exactly, the initial start-up Belief Conceptualisation (because agents in

each class may dynamically update their conceptualisation of the world during their

lifetime). Belief States are run-time knowledge and therefore can only be populated

when the agents of each class interact with the environment to obtain factual

information about the world.

Car
ID
Make
Model
Steering
Transmission
Cost
Door

1 0..*
assessory Car assessory

AssID
UnitPrice
Brand
Power supply

:Car
ID = “C1234”
Make = “Honda”
Model = “Civic”
Steering = “Elec. Power”
Transmission = “Manual”
Cost = “$35000”
Door = “4”

1 1

assessory :Car assessory
AssID = “AudioXY”
UnitPrice = “$200”
Brand = “POL-C400.4”
Power supply = “975W”

223

6.4.1.1. Specify belief conceptualisation of agent classes

Since an agent class’ Belief Conceptualisation stores conceptual knowledge of the agent

class’ world, it should be composed of those ontologies which conceptualise the agent

class’ knowledge of its application (i.e. domains and tasks) and/or wrapped resources’

applications52. Even though at run-time, agents also maintain beliefs about other agents

in the environment, the conceptualisation of the “agent” component is normally

imposed by the agent implementation platform and implicitly embedded into the agent

coding. For example, JACK (Agent Oriented Software 2004) conceptualises the “agent”

component in terms of “name”, “capability”, “event” and “database”, while JADE (Fabio

et al. 2004) defines each agent in terms of “name”, “address” and “resolver”. MOBMAS

therefore only investigates the conceptualisation of “application”, namely MAS

application and resources’ applications. As such, the specification of an agent class’

Belief Conceptualisation comes down to the determination of which (part of53) MAS

Application ontologies and/or Resource Application ontologies the agent class

should commit.

6.4.1.1.a. Identify ontology commitments of agent classes

In general, an agent class needs to commit to a particular (part of) ontology if the agent

class’ functionality is related to the domain, task or resource that this (part of) ontology

conceptualises. In MOBMAS, an agent class’ functionality is reflected via its roles and

role-tasks. For example, the “Searcher” agent class in the Product Search MAS plays the

“Searcher” role, thereby being responsible for processing car-search queries (Figure

6.30). Accordingly, the “Searcher” agent class should commit to the Car MAS

Application Ontology and Query MAS Application Ontology in order to know about

car-related concepts (e.g. “Make”, “Model” and “Transmission”; Figure 6.14) and

querying-related concepts (e.g. “Keyword”, “Result list” and “Hit”; Figure 6.15).

52 Only agent classes that directly wrap around the resources need to commit to the corresponding
Resource Application ontologies. Other agent classes in the system which wish to use the resources can
interact with the wrapper agent classes using ACL messages formulated in MAS Application ontologies
(Jennings and Wooldridge 1995; FIPA 2001a).
53 In many cases, the agent class only needs to commit to a fragment of a particular MAS Application
ontology or Resource Application ontology to do its work.

224

In addition, an agent class’ functionality and its required ontologies may also be

identified by investigating:

resources wrapped by the agent class (cf. Agent Relationship Diagram of Agent

Class Model or Resource Diagram of Resource Model Kind); and/or

the acquaintances of the agent class and other agent classes in the system (cf. Agent

Relationship Diagram of Agent Class Model Kind).

For example, the “Wrapper” agent class of the illustrative Product Search MAS needs to

commit to the CarInfo Resource Ontology and CarWebServer Resource Ontology, since

it wraps around the Car Database and Car Web Server resources (Figure 6.29). Besides,

the “Wrapper” agent class also needs to commit to the Car MAS Application Ontology,

because it needs to communicate car-related messages with the “Searcher” agent class

(Figure 6.31).

It should be noted that not all ontological commitments of an agent class are apparent at

this stage. The developer should proceed to the specification of agent classes’ behaviour

(i.e. Step 4 of this activity – “Develop Agent Behaviour Model”; Section 6.4.4) and

agent classes’ interactions (i.e. “Agent Interaction Design” activity; Section 6.5) in

order to get more insight into the knowledge requirements of each agent class.

Consequently, the development of each agent class’ Belief Conceptualisation is an

ongoing process.

At run-time, the initial start-up Belief Conceptualisation specified at design time for

each agent class may be dynamically modified. Agents of each class may extend their

Belief Conceptualisations to include the conceptualisation of new domains, tasks or

resources, and/or update their Belief Conceptualisations with a new conceptualisation of

their existing domains, tasks or resources. The extension of a Belief Conceptualisation

normally involves the addition of new (parts of) MAS Application ontologies or

Resource Application ontologies into the Belief Conceptualisation, while the update of a

Belief Conceptualisation typically requires the modification of the existing MAS

Application ontologies or Resource Application ontologies. When an ontology has been

modified, all other agents in the MAS that commit to the same ontology should be

notified of this modification, so that they can accordingly update their Belief

225

Conceptualisations. The mechanism of how the modification of ontologies can be

propagated across agents at run-time is largely dependent on how ontologies are

managed in the MAS. In particular, if an “Ontology Manager” agent class is used to take

care of the distribution and maintenance of the ontologies (cf. Section 6.2.5), any agent

which wants to modify an ontology can send the modification (or request to modify) to

the “Ontology Manager”. The “Ontology Manager” then multicasts this modification to all

other agents that commit to the modified ontology. Otherwise, if no “Ontology Manager”

exists, agents in the MAS will have to communicate the modifications directly to each

other, probably in a serial manner. It should be noted that when an existing ontology has

been modified, the Belief State of an agent committing to that ontology must also be

modified to adjust the recorded run-time facts to the new conceptual structure. This

modification requires the mapping/revision of knowledge that is not part of MOBMAS.

6.4.1.2. Update Agent Class Model to show belief

conceptualisation

The Agent Class Diagram of the Agent Class Model Kind should be updated to

specify the ontologies that each agent class commits. The developer only needs to show

the names of the ontologies in the belief conceptualisation compartment (Figure 6.36).

Ontologies themselves are modelled in the Ontology Model Kind.

Figure 6.36 shows the updated Agent Class Diagram for the illustrative Product Search

MAS. Only the specification of the “Searcher” agent class is shown.

Figure 6.36 – Updated Agent Class Diagram for Product Search MAS (“Searcher” agent class)

6.4.2. Step 2 – Specify Agent Goals
An agent-goal is a state of the world that an agent class would like to achieve or satisfy

(Silva and Lucena 2004; Wooldridge 1999). It signifies the purpose of existence of an

agent class
Searcher / Searcher role

belief conceptualisation
Car MAS Application Ontology

 Query MAS Application Ontology

agent-goals

events

226

agent class. In MOBMAS, agent-goals are derived directly from role-tasks, since role-

tasks describe what the agent class is responsible for fulfilling when playing its roles.

The state of the world that each role-task seeks to achieve, satisfy or maintain indicates

an agent-goal. For example, role-tasks “Accept user query” and “Display result for query”

of “User Interface” agent class (Figure 6.30) indicate two agent-goals, “Incoming user

query is accepted” and “Available result for query is displayed” respectively. Meanwhile,

two role-tasks “Extract keywords from user query” and “Find answer to user query” of

“Searcher” agent class (Figure 6.30) result in two agent-goals “Keywords are extracted

from user query” and “Answer is found for user query” respectively.

Note that two different agent classes may have an identical agent-goal if they are

mutually in charge of a “joint task”. Recall that a joint task is one that requires the

collective effort of more than one role (cf. Section 6.2.3.1.a). For example, in the

illustrative Conference Program Management application, two roles “PC Chair” and “PC

Member” are mutually in charge of a joint task “Distribute papers among members”

(Figure 6.9). This joint task needs to be mapped to an agent-goal “Papers are distributed

among members” in each of the two agent classes “PC Chair” and “PC Member”. As such,

the two agent classes aim to achieve an identical agent-goal. Since all joint tasks have

been highlighted with the adornment (J) in the Role Diagram of Role Model Kind (cf.

Section 6.2.3.3), it should be easy at this stage to identify the existence of all the joint

tasks in the target system.

6.4.2.1. Update Agent Class Model to show agent-goals

The Agent Class Diagram of the Agent Class Model Kind should be updated to show

the agent-goals of each agent class in the agent-goals compartment. At design time,

agent-goals can be specified in an informal natural language. Since agent-goals

represent states, they should be defined in the form “something is achieved/satisfied”,

not as a phrase starting with an imperative as in system-tasks or role-tasks.

Figure 6.37 shows the updated Agent Class Diagram for the illustrative Product Search

MAS. Only the specification of the “Searcher” agent class is shown (cf. Figure 6.30).

227

Figure 6.37 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS

6.4.2.2. Develop Agent Goal Diagram (Optional)

If a particular agent class is found to pursue multiple agent-goals and these agent-goals

are related, an Agent Goal Diagram can be developed to capture the relationships

among the agent-goals. This diagram is an optional notational component of the Agent

Behaviour Model Kind, which is examined in Step 3 of this activity – “Develop Agent

Behaviour Model” (Section 6.4.4).

The Agent Goal Diagram of each agent class may capture the following types of agent-

goal relationships.

Decomposition relationship: an agent-goal of an agent class may be decomposed

into sub-agent-goals if the role-task from which it is derived has sub-role-tasks. For

example, in Figure 6.38, agent-goal “G1-Answer is found for user query” is

decomposed into sub-agent-goals “G2-Keywords are extracted from user query” and

“G3-Information is gathered from resources”, because agent-goal “G1” is derived from

role-task “Find answer for user query”, which has sub-role-tasks “Extract keywords from

user query” and “Gather information from resources” that indicate sub-agent-goals

“G2” and “G3” respectively (Figure 6.30). The decomposition of an agent-goal can

be an AND-decomposition or an OR-decomposition, depending on the nature of the

decomposition of the role-task from which the agent-goal is derived.

agent class
Searcher/ Searcher role

belief conceptualisation
Car MAS Application Ontology

 Query MAS Application Ontology

agent-goals
G1: Answer is found for user query
 G2: Keywords are extracted from user query
 G3: Information is gathered from resources
 G4: Appropriate resources are found
 G5: Appropriate databases are found
 G6: Appropriate web servers are found

events

228

Goal conflict relationship: agent-goals of a particular agent class may be in conflict

with each other (i.e. intra-agent conflicts54). For example, regarding a MAS for

library management, agent-goals “User’s book extension request is satisfied” and

“Reserved book is recalled” of a “Librarian” agent class is in conflict with each other

when the book requested for extension is also a reserved book.

Conflicts between agent-goals may be resulted from the conflicts between system-

tasks that these agent-goals aim to achieve55. For example, the two conflicting agent-

goals “User’s book extension request is satisfied” and “Reserved book is recalled” of the

library management MAS aim to achieve two conflicting system-tasks “Maintain long

borrowing period” and “Maintain regular availability” (cf. Section 6.2.1). The developer

should trace through the Role Diagram of Role Model Kind and System Task

Diagram of System Task Model Kind to identify any potential conflicts among

agent-goals.

The notation of Agent Goal Diagram is presented below. Many notational elements are

reused from the System Task Diagram (cf. Section 6.2.1.1). Each Agent Goal Diagram

should be labelled with the name of the respective agent class.

Figure 6.38 illustrates the Agent Goal Diagram for the “Searcher” agent class in the

Product Search MAS (cf. Figure 6.37).

54 The issue of inter-agent conflicts (i.e. conflicts between agent-goals of different agent classes) will be
discussed in the “Agent Interaction Design” activity (Section 6.5).
55 Recall that agent-goals are derived from role-tasks, which are in turn mapped from system-tasks (cf.
Section 6.2.3.2).

Agent-goal AND Decomposition OR Decomposition

Agent-goal conflict

229

Figure 6.38 – Agent Goal Diagram of “Searcher” agent class of Product Search MAS

6.4.3. Step 3 – Specify Events
At run-time, even though agent-goals of a particular agent may be activated56

proactively by the agent itself (i.e. the agent takes the initiative to pursue the agent-

goal57), an agent-goal may also be activated by an event coming from the environment.

For example, agent-goal “Answer is found for user query” of a “Searcher” agent is

activated by a communication message sent by an “User Interface” agent. In addition, an

agent’s course of actions to achieve a particular agent-goal may also be affected by

certain changes in the environment, for example, changes that cause an agent-goal to be

“deactivated”58, or that cause the current course of actions to be no longer applicable.

As a result, an agent in a MAS is required to constantly perceive the environment and

respond to relevant events within it (Wooldridge 1999).

An event is defined as a significant occurrence in the environment that an agent may

respond (Winikoff et al. 2001). It may be generated in various ways: by agents via the

execution of their actions, by human users via their inputs into the system, or by

resources via the execution of their services (Silva and Lucena 2004).

56 The term “activate” is used to mean that the agent starts carrying out some processing to satisfy an
agent-goal. Accordingly, an active agent-goal is one that is being actively pursued or satisfied.
57 For example, agent-goals “Keywords are extracted from user query” and “Appropriate resources are identified”
of the “Searcher” agent class are proactive because they can be activated by the “Searcher” agent itself.
58 The term “deactivate” is used to mean that the agent stops its processing to pursue or satisfy an active
agent-goal.

G1
Answer is found for user query

Searcher

G2
Keywords are extracted from user query

G4
Appropriate resources are found

G5
Appropriate databases are found

G3
Information is gathered from resources

G6
Appropriate web servers are found

230

For each agent class, the developer should identify those events that agents of that class

need to respond at run-time. These events can typically be derived from stimuli in the

environment59 which:

activate agent-goals of the agent class: For example, agent-goal “User query is

accepted” of the “User Interface” agent class is activated by the event “Input of user

query”. Meanwhile, agent-goal “Information is retrieved from resource” of the

“Wrapper” agent class is activated by the event “Incoming message from Searcher

agent”; or

affect the agents’ course of actions to fulfil the agent-goals. For example, agent-goal

“Answer is found for user query” of the “Searcher” agent class is cancelled if a cancel

request is received from the human user (i.e. an event “Input of cancel message from

user”).

6.4.3.1. Update Agent Class Model to show events

The Agent Class Diagram of the Agent Class Model Kind should be updated to show

the identified events for each agent class in the events compartment. Figure 6.37 shows

the updated Agent Class Diagram for the illustrative Product Search MAS. Only the

specification of the “Searcher” agent class is shown.

Figure 6.39 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS

59 Only stimuli from the environment are modelled as events because events are meant to reflect agent
reactivity, which in turn is defined as the ability to perceive the environment and respond accordingly
(Wooldridge 1999). Stimuli that occur from within the agent are not classified as events but as internal
processing triggers.

agent class
Searcher / Searcher role

belief conceptualisation
Car MAS Application Ontology

 Query MAS Application Ontology

agent-goals
G1: Answer is found for user query
 G2: Keywords are extracted from user query
 G3: Information is gathered from resources
 G4: Appropriate resources are found
 G5: Appropriate databases are found
 G6: Appropriate web servers are found

events
 E1: input of user query
 E2: input of cancel message from user
 E3: incoming of message from Wrapper agent

231

6.4.4. Step 4 – Develop Agent Behaviour Model
Agent behaviour refers to the way an agent behaves in order to achieve/satisfy its agent-

goals. Two major styles of behaviour have been commonly implemented for agents:

“planning” and “reflexive acting”60 (Wooldridge and Jennings 1994; Chelberg et al.

2001; Stone and Veloso 2000; Vidal et al. 2001). Planning requires an agent to carry out

logical (or at least pseudo-logical) symbolic reasoning to dynamically choose among

potential courses of actions for achieving an agent-goal, taking into account the current

state of the environment, events occurring during the process of agent-goal

achievement, and the failure/success of past actions (Russell and Norvig 2003;

Wooldridge and Jennings 1994). Reflexive acting, on the other hand, frees the agent

from complex symbolic reasoning by allowing it to behave in a hard-wired situation-

action manner, similar to reflexes (Wooldridge 1999; Nareyek 2001). The agent simply

follows pre-defined situation-action rules to determine which actions it should execute

for achieving/satisfying an agent-goal. These rules, referred to as “reflexive rules” in

MOBMAS, can be represented in if-then logic.

Each style of agent behaviour has its strengths and weaknesses (Nareyek 2001;

Chelberg et al. 2001). The strength of planning is that it allows an agent to deal with

unforeseen situations via reasoning. The developer does not have to predict at design

time all the possible situations that the agent may encounter at run-time, or the actions

to be executed in these situations. Nevertheless, the weakness with planning is its lack

of speed. Every time the situation at hand is different from that anticipated (e.g. when an

event occurs), a new plan must be formed, resulting in delays in the fulfilment of the

respective agent-goal. Reflexive acting, on the other hand, allows agents to act fast, as

the actions to be executed are already defined via reflexive rules. Nevertheless, the

problem of reflexive behaviour is that every possible situation at run-time must be

known and considered in advance. If the developer fails to foresee a particular event, the

reflexive rules dealing with that event will not be defined, resulting in the agents not

knowing how to act, or acting in an undesirable manner.

60 Planning and reflexive acting are often referred to as “deliberative” and “reactive” behaviour
respectively in the AOSE literature (e.g. Wooldridge and Jennings 1994; Chelberg et al. 2001; Stone and
Veloso 2000; Vidal et al. 2001). However, MOBMAS avoids using these terms because “deliberative”
may indicate the need for collaboration (which is not unique to planning agents, since reflexive behaviour
may also involve collaboration), and “reactive” may refer to the mode of being triggered (which is not
unique to reflexive behaviour, since planning agents may also be triggered).

232

Thus, for each agent-goal of each agent class, the developer should determine the style

of agent behaviour to be adopted for the agent-goal. Each agent class may adopt

different styles of behaviour for different agent-goals. Considering the strengths and

weaknesses of each behavioural style, MOBMAS recommends the developer to

consider the following characteristics of an agent-goal before making the decision.

Complexity of reasoning required by the agent-goal: If an agent-goal can be

satisfied by executing a simple, straightforward, pre-definable sequence of actions

(i.e. no complex reasoning is required), the agent class can adopt reflexive behaviour

to achieve the agent-goal. Otherwise, if the achievement of the agent-goal requires a

complicated, dynamic set of actions where various alternative courses of actions are

available, and logical reasoning is needed to decide which course of actions to

follow (or which alternative course of actions to switch to when the chosen course of

actions fails or when the situation changes), planning would be necessary.

Real-time requirement of the agent-goal: Since planning agents cannot react well in

real time, planning behaviour may not be appropriate to agent-goals which need to

be achieved in a timely, immediate manner.

Predictability of environment situations: If the developer can foresee each and every

situation that may apply during the agent-goal achievement process, and can pre-

define situation-action rules for the agent class to achieve the agent-goal, reflexive

behaviour is applicable. Otherwise, planning is required to deal with unforeseen

situations via logical reasoning.

In the illustrative Product Search MAS, agent-goal “User query is accepted” of the “User

Interface” agent class can be achieved with reflexive behaviour, because it pertains to a

simple, pre-definable course of actions. This agent-goal also needs to be fulfilled in a

timely manner. On the other hand, agent-goal “Answer is found for user query” of the

“Searcher” agent class calls for planning behaviour, because the developer cannot pre-

define all of the potential courses of actions for achieving the agent-goal. This agent-

goal also does not need to be achieved in an immediate manner, thus allowing for

planning to take place.

It should be noted that an agent-goal may call for both planning and reflexive

behaviour. Planning takes care of high-level, long-term reasoning for the agent-goal,

while reflexive rules handle decisions about minor plan steps (Nareyek 2001).

233

MOBMAS models the behaviour of all agent classes in the Agent Behaviour Model

Kind. This model kind is represented by three notational components:

Agent Goal Diagram: which has been mentioned in Section 6.4.2.2;

Agent Plan Template: which models the planning behaviour of a particular agent

class for a particular agent-goal; and

Reflexive Rule Specification: which models the reflexive behaviour of a particular

agent class for a particular agent-goal.

Section 6.4.4.1 discusses the development of Agent Plan Templates, while Section

6.4.4.2 deals with Reflexive Rule Specifications.

6.4.4.1. Develop Agent Plan Templates

Normally, agent architectures and implementation platforms that support planning

behaviour will offer a “planner” (or a “reasoner” or a “means-end analyser”) which

takes care of the formation of plans at run-time for agents, e.g. STRIPS (Fikes and

Nilsson 1971), IPEM (Ambros-Ingerson and Steel 1988), AUTODRIVE (Wood 1993)

and IRMA (Bratman et al. 1988). MOBMAS therefore does not address the issue of

plan formation during run-time. Rather, it supports planning by specifying the pieces of

information that are used by planners to formulate plans (Figure 6.40). This

information is captured in the Agent Plan Template.

Figure 6.40 – Formation of plans by planner (Wooldridge 2002)

Any agent-goal that requires planning should be associated with an Agent Plan

Template. Each Agent Plan Template should specify the following elements.

Target agent-goal

This is the agent-goal that a plan derived from the Agent Plan Template aims to

achieve. The agent-goal must have been listed in the agent-goals compartment of

the respective agent class in the Agent Class Diagram of Agent Class Model Kind.

Planner

agent-goal events
potential sub-agent-goals

/actions
state of

environment

plan to achieve agent-goal

234

Triggering event (optional)

This is the event that activates the target agent-goal, thereby triggering the planning

process. This event must have been listed in the events compartment of the

respective agent class in the Agent Class Diagram of Agent Class Model Kind. Note

that an agent-goal may be proactively activated by the agent, in which case no

“triggering event” exists.

A set of sub-agent-goals and/or actions

To achieve the target agent-goal, the agent may pursue sub-agent-goals and/or

actions. Accordingly, the Agent Plan Template should specify a set of sub-agent-

goals, or a set of sub-agent-goals and actions, or a set of actions only (Figure 6.41).

Each sub-agent-goal (if exist) should be accompanied by its own Agent Plan

Template.

Figure 6.41 – Agent Plan Template and Reflexive Rule Specification (represented in UML)

The need for sub-agent-goals in an Agent Plan Template can be identified by

investigating the Agent Goal Diagram of the corresponding agent class. This

diagram shows the decomposition structure of the agent-goals (cf. Section 6.4.2.2).

For example, Agent Plan Template for the agent-goal “Information is gathered from

resources” of the “Searcher” agent class (Figure 6.38) should specify a sub-agent-

goal “Appropriate resources are found”. The Agent Plan Template for this sub-agent-

goal should in turn specify two sub-agent-goals “Appropriate databases are found” and

“Appropriate web servers are found”.

It should be noted that, during the process of Agent Plan Template development,

new sub-agent-goals may be discovered which have not been identified in the Agent

Class Diagram of Agent Class Model Kind and Agent Goal Diagram of Agent

fulfil

fulfil

agent-goal

sub-agent-goal Action

Agent Plan
Template

Reflexive rule
specification 11..* 1

1

1..*

* *

235

Behaviour Model Kind. This indicates the need for iterative development of these

three notational components.

An action in an Agent Plan Template is an atomic unit of work that an agent class

can perform, for example, carrying out some calculation or reasoning, changing the

state of an entity in the environment, activating another agent-goal or sending a

message to another agent class (Shoham 1993). MOBMAS defines each action in

terms of:

pre-condition: which specifies a state that must be true before an action can be

executed;

post-condition: which specifies a state resulted from the execution of the action;

and

action name and parameter list.

Note that “pre-condition” and “post-condition” constructs are necessary for the

selection and sequencing of actions by planners at run-time (Russell and Norvig

2003).

If an action of an agent class involves the sending of an ACL message to another

agent class, it is referred to as a “communicative action” in MOBMAS.

Communicative actions are needed if the achievement of the target agent-goal

requires inputs from, and/or provides outputs to, the other agent classes. The

developer can refer to the Agent Relationship Diagram of Agent Class Model Kind

and Role Diagram of Role Model Kind to obtain an overview of the agent

acquaintances and dependencies61. In the case when two or more agent classes aim

to achieve an identical agent-goal (cf. Section 6.4.2), they are likely to engage in

“distributed planning” to achieve the agent-goal in a joint manner. In such case, the

Agent Plan Template of each agent class should contain many communicative

actions to allow for distributed planning62. Note that the specification of

communicative actions may uncover acquaintances that have not been captured in

61 Inter-agent dependencies are reflected via inter-role authority relationships in Role Diagram of Role
Model Kind.
62 Distributed planning is a complicate research issue by itself. MOBMAS refers the developer to other
research work on distributed planning for more techniques, such as desJardins et al. (1999), Conry et al.
(1988) and Durfee (1999).

236

the Agent Relationship Diagram or Role Diagram, thus resulting in a refinement of

these two notational components.

The identification of actions for an agent class can be assisted by the investigation of

those MAS Application ontologies that the agent class commits. These ontologies

may define concepts that correspond directly to actions. For example, MAS

Application ontology committed by a “Soccer player” agent class defines concepts

such as “move”, “kick”, “turn” and “search-ball”, which signify the basic actions of

the agent class.

Events that affect the agent’s course of actions

As mentioned in Section 6.4.3, during the process of agent-goal achievement, certain

events may occur that affect an agent’s course of actions. For example, a cancel

request from a human user will result in the “Searcher” agent class in the Product

Search MAS forfeiting its agent-goal “Answer is found for user query”.

At design time, it is not always feasible to determine the new course of actions for

the agent given the occurrence of these events. This task is delegated to the built-in

planners, which use complicated planning algorithms to determine (on the fly) the

next best alternative course of actions for the agent (Russell and Norvig 2003).

Nevertheless, to facilitate this run-time replanning, MOBMAS recommends the

developer to identify the potential events that may affect the agent’s run-time course

of actions.

All events identified here should be listed in the events compartment of the

corresponding agent class in the Agent Class Diagram of the Agent Class Model

Kind. Likewise, all events listed in the events compartment of the Agent Class

Diagram should be considered in the Agent Plan Template.

Commitment strategy

At run-time, the planning process of agents may be largely affected by the way

agents are committed to achieving the target agent-goal. For example, agents may

persist on pursuing the agent-goal until it is satisfied, or are willing to forfeit the

agent-goal after some time. At design time, MOBMAS recommends the developer

237

to identify the desirable commitment strategy for each agent class with respect to

each agent-goal, so as to facilitate the agent class’ planning process at run-time.

Some example commitment strategies are proposed by Rao and Georgeff (1991).

“blind or fanatical commitment”: the agent will continue pursuing an agent-goal

until it believes the agent-goal has actually been achieved.

“single-minded commitment”: the agent will continue pursuing an agent-goal

until it believes that either the agent-goal has been achieved, or else that it is no

longer possible to achieve the agent-goal.

“open-minded commitment”: the agent will pursue an agent-goal as long as it is

still believed possible.

MOBMAS suggests the developer to consider the following factors when selecting

the commitment strategy for a particular agent-goal.

The importance of the agent-goal: For example, agent-goal “Appropriate resources

are found” in Figure 6.38 needs to be achieved in order for agent-goal “Information

is gathered from resources” to be achieved.

The existence of events that make the achievement of the agent-goal impossible

(e.g. input of user’s cancel request): The existence of these events means that the

adopted commitment strategy should not be blind or fanatical.

Conflict resolution strategy (optional)

If certain agent-goals of an agent class are in conflict with each other (i.e. intra-agent

conflict), the agent’s actions at run-time must be selected in such a way as to

minimise or resolve these conflicts. At design time, MOBMAS recommends the

developer to identify the desirable conflict resolution strategy for the agent class in

order to facilitate the agent class’ planning process at run-time. There exists a vast

amount of work in the area of conflict resolution. Some example strategies for intra-

agent conflict resolution63 are priority conventions (Ioannidis and Sellis 1989),

constraint relaxation (Sathi and Fox 1989), arbitration (Steep et al. 1981) and

evidential reasoning (Carver and Lesser 1995).

63 The issue of inter-agent conflicts (i.e. conflicts between agent-goals of different agent classes) will be
discussed in the “Agent Interaction Design” activity (Section 6.5).

238

6.4.4.1.a. Notation of Agent Plan Template

Any representation languages for classical planners can be adopted for Agent Plan

Template, e.g. STRIPS (Fikes and Nilsson 1971) and ADL (Pednault 1989). However at

design time, it is acceptable to represent Agent Plan Templates in an informal natural

language. MOBMAS suggests the following schema for Agent Plan Template.

Figure 6.42 – Agent Plan Template

The definition of states in Agent Plan Templates (namely the initial states, agent-goals,

sub-agent-goals, pre-conditions and post-conditions of actions) may contain variables.

Datatypes of these variables should be defined. For example, the initial state of Agent

Plan Template for the agent-goal “Information is gathered from resources” is

“keywords: User query.Keyword are known”,

with “keywords” being a variable and “User query.Keyword” being the datatype of this

variable (interpreted as “Keyword” of “User query”). “User query” and “Keyword” are

application-specific concepts that are defined in a MAS Application ontology, namely,

the Query MAS Application Ontology (Figure 6.15). Note that a datatype may be a

“basic” concept that is known to every agent class without being defined in a MAS

Application ontology, e.g. Integer or String datatypes.

Parameters of actions may be constants or variables. Again, datatypes of variable

parameters should be defined. For example, an action in the Agent Plan Template for

the agent-goal “Information is gathered from resources” is

“recordResultFromResource(carID:Car.ID, carModel: Car.Model, carStock:

Car.Number-in-stock)”.

“CarID”, “carModel” and “carStock” are variables while “Car.ID”, “Car.Model” and

“Car.Number-in-stock” are datatypes of these variables respectively. Note that “Car”, “ID”

“Model” and “Number-in-stock” are application-specific concepts defined in the Car MAS

Application Ontology (Figure 6.14).

Initial state: state definition

Target agent-goal: state definition

Commitment strategy: e.g. blind, single-minded or open-minded

List of sub-agent-goals (if any): state definition and name of the Agent Plan Template that achieves the sub-agent-goal

List of actions (if any): action name and parameter list

 Pre-condition: state definition

 Post-condition: state definition

Events: list of events

Conflict resolution strategy (if applicable): strategy name for each agent-goal

239

Figure 6.43 shows the Agent Plan Template for achieving agent-goal “Information is

gathered from resources” of “Searcher” agent class (cf. Figure 6.38).

Figure 6.43 – Agent Plan Template for agent-goal “Information is gathered from resources” of “Searcher”

agent class in Product Search MAS

Even though the selection and sequencing of sub-agent-goals and actions for agents at

run-time is delegated to built-in planners, if there exists a tentative course of sub-agent-

goals/actions for achieving a particular agent-goal, this sequence can be captured in an

Agent Plan Diagram. The notation of Agent Plan Diagram is borrowed from Kinny et

al. (1996). It is an extended UML Statechart diagram where each state represents a sub-

agent-goal or an action (Figure 6.44). Transition from one state to another occurs when

an event happens and/or a condition applies.

Figure 6.44 – Agent Plan Diagram

Initial state: keywords:User query.Keyword are known
Target agent-goal: Information is gathered from resources
Commitment Strategy: single-minded
Sub-agent-goal: “Appropriate resources are found”, cf. sub-plan X
Action 1: sendQueryToWrapper (keywords:User query.Keyword)
 Pre-condition: Sub-agent-goal “Appropriate resources are found” is achieved successfully and

resourceNo: Integer > 0
 Effect: Event 2 incurs
Action 2: recordResultFromResource(carID:Car.ID, carModel: Car.Model, carStock: Car.Number-in-stock)
 Pre-condition: message:Result list is received from Wrapper agents and carResultArray: [Car]* is empty
 Effect: carResultArray: [Car]* is populated
Action 3: cancelSearch()
 Pre-condition: Event 1 incurs
 Effect: agent-goal is forfeited
Event 1: input of user’s cancel request
Event 2: incoming message from Wrapper agents

Plan Name
Plan Graph

activation event [activation condition] / activation

Plan Graph

State
action(s)

event / action event [condition]

event [condition] /

[condition] / action

any [abort condition] / abort action

fail / fail action

pass / pass action

240

Figure 6.45 illustrates the Agent Plan Diagram for the plan that achieves agent-goal

“Information is obtained from resources” (cf. Figure 6.43).

Figure 6.45 – Agent Plan Diagram for agent-goal “Information is gathered from resources” of “Searcher” agent

class in Product Search MAS

6.4.4.2. Develop Reflexive Rule Specifications

Reflexive rules are basically (sequences of) “if-then” rules that couple stimuli and/or

states of the environment with actions to be executed by an agent class. Each reflexive

rule specifies either a complete course of actions to achieve an agent-goal, or a set of

actions that works towards the achievement of the agent-goal. Each agent-goal requires

one or more Reflexive Rule Specifications, each of which documents the following

information.

Target agent-goal

This is the agent-goal that the reflexive rule aims to achieve or satisfy. The goal

must have been listed in the agent goals compartment of the corresponding agent

class in the Agent Class Diagram of Agent Class Model Kind.

[resource no > 0]

input of user’s cancel message OR
timeout > 4min / cancelSearch

Plan for agent-goal “Information is obtained from resources”

keywords: UserQuery.Keyword are known

sub-agent-goal
 “Appropriate resources are found”

[resourceNo = 0]

Action 1
sendQueryToWrapper (keywords)

[timeout > 30sec
and timestried <3]

incoming message from
Wrapper agents

Action 2
recordResultFromResource[for each received

message] [messages recorded
successfully= 0]

success fail

[messages recorded
successfully > 0]

[resourceNo > 0]

241

Course of actions

Actions in a reflexive rule are analogous to actions in an Agent Plan Template (cf.

Section 6.4.4.1). The only difference is that the sequence of actions is known at

design time. The developer is referred to Section 6.4.4.1 for more discussion on

actions.

Events and/or internal processing triggers64

These are the events and/or internal processing triggers that initiate an action in the

reflexive rule. The events must have been listed in the events compartment of the

corresponding agent class in the Agent Class Diagram of the Agent Class Model

Kind.

Guard conditions

These are the states that make certain actions applicable for execution.

6.4.4.2.a. Notation of Reflexive Rule Specification

MOBMAS borrows the notation from UML Activity diagrams for Reflexive Rules

Specification. Each action is depicted as an UML activity, while events, internal

processing triggers and guard conditions are specified alongside the transition flows

between activities just as events65 and guard-conditions in UML Activity diagrams

(Object Management Group 2003). However, each Reflexive Rule Specification should

the Reflexive Rule Specification of “User Interface” agent class to satisfy its agent-goal

“User query is accepted”.

Figure 6.46 – Reactive Rule Specification

64 Internal processing triggers are stimuli generated from within the agent itself.
65 For representation simplicity, internal processing triggers are represented in the same way as events.

Display “Please wait”
message

Input of user query

Forward query to
“Searcher” agent

Agent-goal “User query is accepted”

242

6.4.4.3. Verify Agent Behaviour Model against Ontology Model

Both Agent Plan Templates and Reflexive Rule Specifications of Agent Behaviour

Model Kind contain the definition of states and actions. The states (namely, initial

states of Agent Plan Templates, agent-goals, sub-agent-goals, pre-conditions, post-

conditions and guard conditions of actions) normally refer to the states of

entities/concepts that exist in the agent class’ application and wrapped resources’

applications. Likewise, parameters of actions in an Agent Plan Template or Reflexive

Rule Specification often involve entities/concepts that exist in the agent class’

application and wrapped resources’ applications. Thus, Agent Plan Templates and

Reflexive Rule Specifications can be used to verify the completeness of the content of

MAS Application ontologies and Resource Application ontologies. In the other way

around, MAS Application ontologies and Resource Application ontologies can be used

to verify Agent Plan Templates and Reflexive Rule Specifications.

Specifically, the datatypes of all variables specified in Agent Plan Templates and

Reflexive Rule Specifications (particularly, in the states and actions’ parameters)

should have been defined in a particular MAS Application ontology or Resource

Application ontology, with the exception of basic datatypes such as Integer or String.

Meanwhile, only concepts defined in the MAS Application ontologies and Resource

Application ontologies should be used to define the datatypes of variables in Agent Plan

Templates and Reflexive Rule Specifications.

For example, in the following action of the “Searcher” agent class in the Product Search

MAS:

“recordResultFromResource(carID:Car.ID, carModel: Car.Model,

carStock: Car.Number-in-stock)”,

concepts “Car”, “ID”, “Model” and “Number-in-stock” should have been defined in the Car

MAS Application Ontology (Figure 6.14).

In another example, consider the following action of the “Wrapper” agent class:

“getPrice(carID: CarProduct.SerialNo)

Pre-condition: productPrice: CarProduct.Price = unknown

Post-condition: productPrice: CarProduct.Price = known”.

243

The action aims to retrieve the price of a particular car product from the Car Database

resource of the Product Search MAS (Figure 6.29). Concepts “CarProduct”, “SerialNo”

and “Price” should have been defined in the CarInfo Resource Ontology (Figure 6.15).

The above guidelines imply the need to reciprocally and iteratively develop the Agent

Behaviour Model and Ontology Model. More specifically, the developer should:

use the developed ontologies as inputs to define states and actions’ parameters for

the Agent Plan Templates and Reflexive Rule Specifications; and

examine the states and actions’ parameters of Agent Plan Templates and Reflexive

Rule Specifications to determine if any concepts have not been defined in the

developed ontologies, thereby verifying the content of these ontologies.

6.4.4.4. Verify Agent Behaviour Model against Agent Class

Model

Since an agent needs to know about the entities/concepts that are mentioned in its Agent

Plan Templates and Reflexive Rule Specifications, the conceptualisation of these

entities/concepts should have been defined in its Belief Conceptualisation. Accordingly,

the developer should check each agent class’ Belief Conceptualisation to confirm that it

contains all those ontologies which conceptualise the entities/concepts in the Agent Plan

Templates and Reflexive Rule Specifications (namely those specified in the states and

actions’ parameters).

244

6.5. AGENT INTERACTION DESIGN ACTIVITY
This activity of MOBMAS models the interactions between agent instances by selecting

a suitable interaction mechanism for the target MAS, thereafter specifying the patterns

of data exchanges between agents given the chosen interaction mechanism.

Figure 6.47 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational context

(optional)
[Organisational Context Model

Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief conceptualisation

[Agent Class Model Kind]

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour Model
[Agent Behaviour Model Kind]

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure facilities

[Architecture Model Kind]

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

245

6.5.1. Step 1 – Select Interaction Mechanism

6.5.1.1. Overview of interaction mechanisms

“Interaction” refers to the exchange of data amongst agents, either two-way or multi-

way (Goldin and Keil 2004). This exchange can be conducted using either of the two

interaction mechanisms: direct interaction and indirect interaction (Weyns et al. 2004;

Bandini et al. 2004; Goldin and Keil 2004).

In direct interaction, agents exchange data by sending communication messages

directly to each other. These messages are typically expressed in ACL, such as

KQML or FIPA-ACL. The specification of message contents can be made using

content languages such as KIF, FIPA-SL, LOOM and Prolog. Generally, the

exchanges of ACL messages between agents need to conform to “interaction

protocols”, which are allowed communication patterns between the interacting

agents. They specify the possible sequences of exchanged messages and the

constraints on the content of these messages (Odell et al. 2000b). Some examples of

interaction protocols are FIPA Contract Net, Simulated Trading, Request, Query and

Subscribe Protocols (FIPA 2002).

In indirect interaction, agents exchange data indirectly through some kind of

communication abstraction. A well-known indirect interaction mechanism is

tuplespace interaction, where agents interact by inserting “tuples”66 into, and

removing them from, a shared tuplespace in an associative way. Recently, this

mechanism has progressed into a more advanced form, tuple-centre interaction. A

tuple-centre is no longer a mere communication channel like a tuplespace, but a

programmable reactive interaction medium, which is equipped with computational

capacity to react to events (Omicini and Denti 2001; Ciancarini et al. 1999).

Example middleware systems or models built upon the tuple-centre interaction

mechanism are TuCSoN (Cremonini et al. 1999), LuCe (Denti and Omicini. 2001),

ACLT (Omicini et al. 1995), LIME (Picco et al. 1999), Berlinda (Tolkdorf 1997) and

MARS-X (Cabri et al. 2000). Other indirect interaction mechanisms for agents are

66 Each tuple is an ordered collection of heterogeneous information chunks.

246

stigmergy and spatially founded interaction. The term “stigmergy” is used by

biologists to refer to the coordination of insects through “pheromone” – a chemical

substance deposited into the environment and sensed by the individual insects.

Agents adopt this indirect interaction mechanism by generating and detecting

“artificial pheromone objects” in an artificial dissipation environment (Valckenaers

et al. 2002; Klugl 2001). Spatially founded interaction mechanism, meanwhile, is

related strongly to the spatial structure of the environment. Co-Fields (Mamei and

Zambonelli 2004) is an example interaction model that employs this mechanism. It

aims to support agents’ “motion” coordination by representing the agents’

operational environment into “computational fields”. These fields are a sort of

spatial data structures that can be propagated across the environment by some

network infrastructure. An agent can make its movement decisions by examining the

shape of the computational fields, just as a physical mass moves in accord to the

gravitational field. The movement of this agent may induce changes to the shape of

some specific fields, which in turn affect the movement of other agents.

6.5.1.2. Select interaction mechanism

The developer should decide which interaction mechanism is best suited to the target

MAS. MOBMAS supports this decision by presenting a comparison of the different

mechanisms, thereafter providing recommendations on when to use which mechanism.

The direct interaction mechanism is different from the indirect mechanism in terms of

the following key aspects (Goldin and Keil 2004; Weyns et al. 2004).

Early binding of recipient: The direct interaction mechanism requires an agent to

know its target interaction partner before the interaction can take place. Meanwhile,

the indirect mechanism allows the identity of the target partner to be determined

after the sending of tuples/pheromones/fields.

Name and location coupling: With the direct interaction mechanism, the interacting

agents have to know about each other’s configuration and location before the

interaction can take place, while with the indirect mechanism, the interacting agents

do not have to hold this knowledge.

Time coupling: The direct exchange of messages between agents in the direct

interaction mechanism requires the interacting agents to exist and be available to

247

communicate at the same time. On the other hand, in the indirect mechanism, there

can be a delay between the sending of a tuple/pheromone/field and its observation.

Among the various mechanisms of indirect interaction listed in Section 6.5.1.1,

stigmergy and spatially-founded mechanisms are very limited in their applicability.

Stigmergy coordination is mainly suited to those domains that involve some kind of

attraction to specific locations, or attraction to move in a specific direction (e.g.

synthetic ecosystem, network routing) (Biegel 2002; Bonabeau et al. 1998; Brueckner

2000). Likewise, spatially-founded mechanism should only be considered when space is

an essential factor in agent interactions (e.g. motion coordination). Thus, MOBMAS

focuses only on the tuplespace/tuple-centre indirect interaction mechanism. In the

following section, a comparison between the direct interaction mechanism via ACL and

the indirect mechanism via tuplespace/tuple-centre is presented.

6.5.1.2.a. Comparison between direct interaction mechanism and

tuplespace/tuple-centre indirect interaction mechanism

Most of the existing tuplespace and tuple-centre frameworks are based upon the LINDA

model (Papadopoulos 2001). They therefore use Linda-like communication primitives

such as out, in, rd, inp and rdp to specify communication messages (Omicini and

Zambonelli 1999). These primitives offer a very low level of semantics for the

communication language. Meanwhile, the direct interaction mechanism employs

complicated ACLs that offer a large range of expressive speech-act performatives, e.g.

inform, tell, query-if, ask-if, ask-all, advertise, achieve, refuse and failure (FIPA. n.d.a).

With regard to popularity, the direct interaction mechanism is far more commonly used

by the existing MAS development projects than the tuplespace/tuple-centre mechanism

(Bergenti and Ricci 2002). The main reasons for its popularity are that:

interaction protocols have been widely adopted in the OO paradigm. The developer

can therefore borrow techniques from OO modelling to specify agent interaction

protocols; and

numerous interaction protocol patterns have been catalogued for reuse, e.g. those

developed by FIPA (FIPA 2002).

248

Nevertheless, with its programmable behaviour, the tuple-centre mechanism offers

various advantages over the direct interaction mechanism.

Decoupling of computation and coordination concerns: The behaviour of the tuple-

centre can be programmed in such a way as to embody any rules that govern the

agent coordination67 (referred to as “coordination rules”). Agents can thus be freed

of the load of coordination and focus on their individual computation during the

interaction process (Cremonini et al. 1999; Omicini and Denti 2001; Bergenti and

Ricci 2002; Ciancarini et al. 2000). In particular, the interacting agents can simply

be concerned with providing inputs to, and obtaining outputs from, the interaction

process. The tuple-centre can be programmed to:

- ensure that all the coordination rules governing the interaction process are

satisfied; and

- carry out some (low level) processing to assist in the fulfilment of the target

coordinating task, thereby taking some processing load off the interacting agents.

On the other hand, in the direct interaction mechanism, computation and

coordination concerns are merged into the design of agents (Bergenti and Ricci

2002; Ciancarini et al. 2000). The interacting agents cannot abstract away from the

coordination concerns, but have to embed the coordination rules into their

interaction protocols, which are in turn embedded in their codes (Omicini and Denti

2001). This may be very difficult to implement if the number of interacting agent

classes is large or the coordination rules are complex.

Support for modification: With the tuple-centre interaction mechanism, any changes

to the coordination rules may only lead to changes in the behaviour of the tuple-

centre. The direct interaction mechanism, on the other hand, may require an update

of the design of all interacting agents (Ciancarini et al. 2000; Omicini and Denti

2001).

Security control: In MAS, security-related concerns include authentication (i.e. how

agents are identified) and authorisation (i.e. what are agents allowed to do)

(Cremonini et al. 1999). With the tuple-centre interaction mechanism, authentication

67 “Coordination” refers to the management of interactions (Nwana et al. 1996; Wegner 1996)

249

and authorisation activities can be delegated to the tuple-centre. Meanwhile, with the

direct interaction mechanism, the direct exchange of messages between agents will

mean that the individual agents need to implement their own authentication and

authorisation activities.

Nevertheless, the tuple-centre interaction mechanism exhibits a strong centralised

design due to the tuple-centre’s essential role in the interaction process (Bergenti and

Ricci 2002). This centralisation may seriously compromise the robustness of the system,

e.g. when the tuple-centre experiences downtime. The direct interaction mechanism, in

contrast, spreads the locus of control over the interacting agents, hence avoiding the

robustness problem if a particular agent goes down68.

In summary, considering its popularity and reusability, MOBMAS recommends the

direct interaction mechanism to most MASs. However, in various situations, the

tuplespace or tuple-centre interaction mechanism is perceived more appropriate than the

direct interaction mechanism, namely,

when the MAS environment is open and dynamic: With its support for late binding of

recipient, name decoupling, location decoupling and time decoupling, the

tuplespace/tuple-centre interaction mechanism is able to facilitate flexible and robust

interaction in open and dynamic systems (Zambonelli et al. 2001b; Bergenti and

Ricci 2002). In addition, by embedding the coordination rules into the tuple-centre,

the tuple-centre interaction mechanism can help preventing illegitimate or self-

interested behaviour in newly added agents; or

when many agent classes aim to achieve identical agent-goals (cf. Section 6.4.2):

The tuple-centre interaction mechanism is particularly suited to the interactions

amongst agents of these classes because:

- the joint achievement of the identical agent-goals often requires many

coordination rules to be enforced on the interacting agents. The tuple-centre can

take charge of enforcing these rules; and

68 In this case, other instances of the same agent class may serve as an substitute for the problematic
agent.

250

- the tuple-centre can carry out some processing to assist in the achievement of the

joint agent-goals.

For example, consider the agent-goal “Papers are distributed among members” jointly

achieved by “PC Chair” and “PC Member” agent classes (cf. Figure 6.7). Some example

coordination rules governing the interactions between agents of these classes are:

“Each paper must be distributed to a required number of members”;

“Each member must collect a required number of papers”;

“Each member must not collect the same paper twice”; and

“Members can only start collecting papers after all other members have viewed the Title List

of all papers”69.

All of these coordination rules can be enforced by the tuple-centre, which is

programmed in such a way as to check and control the tuples sent from the “PC Chair”

and “PC Member” agents (cf. Figure 6.57). The tuple-centre can also carry out some

processing to identify which “PC Member” agent has not collected the required number

of papers, thereby posting reminder tuples to these agents. This processing helps to

enforce the rule “Each member must collect a required number of papers”.

6.5.2. Step 2 – Develop Agent Interaction Model
The Agent Interaction Model Kind of MOBMAS captures the patterns of data

exchanges between agent instances when they interact using the chosen interaction

mechanism. Section 6.5.2.1 discusses the specification of Agent Interaction Model Kind

for the direct interaction mechanism, while Section 6.5.3.2 examines the Agent

Interaction Model Kind for the tuplespace/tuple-centre mechanism.

6.5.2.1. Develop Agent Interaction Model for Direct Interaction

Mechanism

With the direct interaction mechanism, the exchanges of ACL messages between agents

need to be governed by interaction protocols, each of which defines an allowed

communication pattern between the interacting agents during a particular conversation

69 This rule is needed to ensure fairness in paper selection by members.

251

(Odell et al. 2000b). Accordingly, the task of developing Agent Interaction Model for

the direct interaction mechanism includes the task of defining interaction protocols for

the agent conversations. Agent Interaction Model Kind of this mechanism is represented

by a set of Interaction Protocol Diagrams, each graphically describing an interaction

protocol for an inter-agent conversation.

6.5.2.1.a. Define interaction protocols

To define interaction protocols for the target MAS, the developer should examine the

Agent Behaviour Model, namely the Agent Plan Templates and Reflexive Rule

Specifications of each agent class in the system.

Each communicative action in the Agent Plan Templates and Reflexive Rule

Specifications indicates a message being sent from one agent to another; and

Any event that is specified in an Agent Plan Template or that triggers a Reflexive

Rule Specification may itself be a message sent from one agent to another.

As recommended by FIPA (2001c), each ACL message should be defined in terms of:

Predecessor: which defines the order by which a message is sent in relation to its

concurrent messages (if ordering is important). For example, “1/inform(…)” denotes

an inform message that has to be sent first, before any other concurrent messages are

sent;

Guard-condition: which defines the condition in which a message is applicable to

be sent, e.g. [CarMake = unknown];

Sequence-expression: which specifies the constraint of message sending. For

example, “n..m” denotes that a message is sent n up to m times, while “broadcast”

denotes a broadcast sending of a message.

Performative: which defines the type of speech-act that the sender wishes to

perform, e.g. query-if, inform, refuse, failure; and

Arguments: which are pieces of information that a message conveys. Each

argument can be a constant or a variable. For variable arguments, their datatypes

must be defined. For example, in the following ACL messages

“query-if (carCost:Car.Cost < custPrice: UserQuery.Price)” and

“inform (carStockNo: Car.Number-in-stock)”,

252

variables “carCost”, “custPrice” and “carStockNo” are of types “Car.Cost”,

“UserQuery.Price” and “Car.Number-in-stock” respectively. Note that concepts “Car”,

“Cost”, “Number-in-stock”, “User query” and “Price” are application-specific concepts

that are defined in the MAS Application ontologies which are shared between the

communicating agents (in this case, Car MAS Application Ontology and Query

MAS Application Ontology).

MOBMAS recommends the developer to reuse and customize the patterns of interaction

protocols provided by the various libraries and catalogues. FIPA (2002), for example,

offers a large range of interaction protocol patterns, supporting both cooperative-style

interaction (e.g. Contract Net, Query, Request and Brokering) and negotiation-style

interaction (e.g. English/Dutch Auction). If necessary, a complex interaction protocol

can be built from a few basic pre-defined protocol definitions.

It should be noted that when developing interaction protocols for agents that aim to

achieve an identical agent-goal (cf. Section 6.4.2), the developer should ensure that all

the coordination rules governing the successful achievement of the agent-goal are

embedded in either the interaction protocols, or in the agent class’ individual

behaviour, which is modelled in the Agent Behaviour Model Kind.

For example, consider the agent-goal “Papers are distributed among members” jointly

achieved by the “PC Chair” and “PC Member” agent classes (cf. Figure 6.7). The rule

“Members can only start collecting papers after all other members have viewed the Title List of

all papers” (cf. Section 6.5.1.2) can be embedded in the definition of the interaction

protocol between the “PC Chair” and “PC Member” agents. Specifically, the protocol can

specify the pattern of exchanged messages in such a way that the “PC Member” agent is

not allowed to send a “Paper-Request” message to a “PC Chair” agent until the “PC

Chair” agent has sent a “Title-List” message to all “PC Member” agents. In other words,

the sending of “Paper-Request” messages is sequenced after the sending of “Title-List”

messages (Figure 6.56).

On the other hand, the rule “Each member must not collect the same paper twice” can be

enforced by defining the behaviour of the “PC Chair” agent. Specifically, a “PC Chair”

agent should not approve the paper request from a “PC Member” agent if that agent has

253

previously requested the same paper. This behaviour can be defined in the “PC Chair”

agent’s Agent Plan Template or Reflexive Rule Specification. As a result, when

defining interaction protocols for agent classes that achieve identical agent-goals, the

developer may have to revise the Agent Behaviour Model.

In addition, the developer should also identify the potential conflicts between the

interacting agent classes and define the interaction protocols in such a way as to deal

with these conflicts (note that the issue of intra-agent conflicts has been discussed in the

“Agent Internal Design” activity; Section 6.4). In the context of MOBMAS, two agent

classes may be in conflict if their agent-goals have been derived from conflicting

system-tasks70. The developer should therefore trace through the Agent Class Model,

Role Model and System Task Model to identify any potential conflicts between agent

classes.

To date, there is a vast amount of research work in the area of conflict resolution. Some

example conflict resolution strategies are negotiation (Sycara 1988), voting (Ephrati and

Rosenschein 1991), priority conventions (Ioannidis and Sellis 1989), assumption

surfacing (Mason and Johnson 1989), constraint relaxation (Sathi and Fox 1989),

arbitration (Steep et al. 1981), evidential reasoning (Carver and Lesser 1995), and

standardization and social rules (Shoham and Tennenholtax 1992).

Moreover, the developer should specify the synchronisation mode engaged by each

agent in each interaction protocol. Two common modes of agent synchronisation are

(Mishra and Xie 2003; Weyns and Holvoet, 2003):

synchronous interaction: i.e. when an agent yields a thread of control after sending a

message (i.e. wait semantics). In other words, the agent will wait for a reply ACL

message from its interaction partner after it sends a message to that agent; or

asynchronous interaction: i.e. when an agent sends messages without yielding any

control. The agent basically continues with its processing right after the sending of

messages.

Generally, asynchronous interaction is the most common mode of synchronisation used

in agent interaction (Odell et al. 2000a).

70 Recall that agent-goals are derived from role-tasks, which are in turn derived from system-tasks (cf.
Section 6.2.3.2).

254

6.5.2.1.b. Notation of Interaction Protocol Diagrams

The Agent Interaction Model Kind for the direct interaction mechanism is represented

by a set of Each Interaction Protocol Diagrams, of the Agent Interaction Model Kind

each graphically describesing an interaction protocol for an inter-agent conversation.

MOBMAS reuses the notation of AUML Sequence Diagram for the Interaction Protocol

Diagram (Odell and Huget 2003; Odell et al. 2000a). Major notational rules of the

AUML Interaction Protocol Diagram are presented below. The developer can refer to

Odell and Huget (2003) and Odell et al. (2000) for a more extensive documentation71.

Each lifeline represents an agent and the role(s) that the agent plays during the

conversation. The rectangle at the top of each lifeline should be specified in the

format

The colon in front of the agent-class-name signifies an instance of the agent class.

Arrows represent the sending of messages between agents. An “asynchronous”

message is drawn as , while a “synchronous” message is shown as . If

there is a delay between the time a message is sent and the time it is received (e.g.

“mobile communication”), the message arrow is drawn as .

If an agent belongs to a class that plays multiple roles (cf. Section 6.3.2.1.a), the

dynamics of the agent’s role-playing behaviour during the conversation should be

modelled.

- If the agent’s role-playing behaviour is static (i.e. if the agent plays some

particular roles statically throughout its lifetime), the rectangular box at the top

of the lifeline should specify all of the agent’s roles (Bauer 2001b) (Figure

6.48a).

- If the agent’s role-playing behaviour is dynamic (i.e. if the agent dynamically

changes its active role(s) from one time to another), the rectangular box should

only specify the name of the active role. If a change of role occurs during the

71 At the time of this research, the notation of AUML Sequence Diagram is in its preliminary version. The
developer should check for updated versions (if exist) at http://www. auml.org.

:agent-class-name /
role-name1, role-name2…

http://www

255

conversation, this change can be represented as a «role change» stereotyped arrow

(Bauer, B. 2001b) (Figure 6.48b).

(a) (b)

Figure 6.48 – AUML notation for the dynamics of agents’ role-playing behaviour (Bauer 2001b)

Concurrent threads of communication are modelled as shown in Figure 6.49. Figure

6.49a indicates that all messages are sent concurrently. Figure 6.49b includes a

decision box to indicate that a decision will be made regarding which messages

(zero or more) will be sent (i.e. inclusive OR). Figure 6.49c describes an exclusive

OR (i.e. exactly one message will be sent).

Figure 6.49 – AUML notation for concurrent threads of interaction

Concurrent threads of processing in the recipient agent are modelled as either a split

of lifeline (Figure 6.50a) or activation bars appearing on top of each other (Figure

6.50b).

Figure 6.50 – AUML notation for concurrent threads of processing

:Agent-1/
role-n, role-m

:Agent-2/
role-x

«role change»

:Agent-1/
role-n

:Agent-2/
role-x

:Agent-1/
role-m

256

Figure 6.51 presents an example Interaction Protocol Diagram for the illustrative

Product Search MAS. The diagram describes a conversation between a “Searcher” agent

and a “Wrapper” agent (cf. Figure 6.33 and Figure 6.41).

Figure 6.51 – Interaction Protocol Diagram for Product Search MAS

6.5.2.1.c. Update Agent Class Model and Role Model

The Agent Relationship Diagram of the Agent Class Model Kind should be updated to

show:

any new acquaintances between agent classes that have not been identified; and

various descriptive information about each acquaintance, namely:

- the identity of the Interaction Protocol Diagrams that govern the conversations

between the acquainted agents; and

- the MAS Application ontology(ies) which governs the semantics of the messages

exchanged during the conversation and which must be shared between the

communicating agents72.

This descriptive information is modelled as UML notes attached to each

acquaintance (cf. Figure 6.22).

Figure 6.52 presents the updated Agent Relationship Diagram for the Product Search

MAS (cf. Figure 6.28).

72 That is, this MAS Application ontology must exist in both agents’ Belief Conceptualisation.

[carMake = known] broadcast
query-ref (all carMake: Car.Make where (carCost:Car.Cost < custPrice: UserQuery.Price))

2/ inform (carStock: Car.number-in-stock)

1/ inform (result)

refuse (reason)

failure (error -message)

:Searcher Agent/
Searcher role

:Wrapper Agent/
InfoSource Wrapper role

broadcast query-if (carCost:Car.Cost) < custPrice: UserQuery.Price)

X

Query Protocol

{0..10secs}

257

Figure 6.52 – Updated Agent Relationship Diagram for Product Search MAS

The Role Diagram of the Role Model Kind should also be checked to ensure that all the

acquaintances between roles have been captured, and all the authority relationships are

still valid. For example, two roles that are initially thought to be in a peer-to-peer

relationship may turn out be in a superior-subordinate relationship after an in-depth

investigation of the agents’ interactions.

6.5.2.1.d. Conceptualise interation protocols with ontology (Optional)

So far, the interaction protocols governing the potential agent conversations in the target

MAS have been identified and defined, particularly by step “6.5.2.1.a. Define

interaction protocols”. Traditionally, these protocols will be directly hard-coded into the

agents at the implementation time, allowing any agents embedding the appropriate

protocols to be able to participate in the respective conversations. Such an

implementation mechanism, however, is only suitable to a closed or semi-open MAS

environment, where the agents taking part in the interactions are known in advance and

can be controlled. In an open environment, on the other hand, this mechanism is not

sufficient. An open system would allow new agents to frequently enter the system and

agent class
Ontology Manager /

Ontology Manager role

agent class
Feedback Manager /

Feedback Manager role

agent class
Searcher /

Searcher role

agent class
Wrapper /

InfoSource Wrapper role

agent class
User Interface /

User Interface role

agent class
Resource Broker /

Resource Broker role

wrapwrap

resource
Car Database

resource
Car Web Server

Protocol: Query
Ontology: Car MAS Application

Ontology; Query MAS
Application Ontology

Protocol: Ontology Query
Ontology: Car MAS

Application Ontology

Protocol: Inform Protocol
Ontology: Car MAS

Application Ontology,
Query MAS Application
Ontology

Protocol: Inform Protocol
Ontology: Car MAS

Application Ontology,
Query MAS Application
Ontology

Protocol: Resource Query
Ontology: Car MAS Application

Ontology

258

join any existing conversations (such as an auction or an open marketplace). If the

interaction protocols are hard-coded into the agents, joining a conversation whose

protocol an agent does not know would mean that the agent has to either use one of the

protocols it already knows, or else go off-line to be re-programmed. Similarly, in a

dynamic environment where the interaction protocols can change over time, the hard-

coding of protocols into agents will imply the need for re-coding of all affected agents

when the protocols change.

Thus, MOBMAS proposes this optional design step, “Conceptualise interaction

protocols with ontology”, to avoid the above issues at run-time. This step is

recommended to be performed if:

the conversations in the future MAS are expected to be open; that is, any agents are

allowed to join thethe pre-existing conversations; and/or

the interactions in the future MAS are expected to be dynamic; that is, the

interaction protocols governing the conversations can change overtime at run-time.

The techniques for this step are based upon Tamma et al.’s approach to ontology-based

agent negotiation (Tamma et al. 2005; Tamma et al. 2002a; Tamma et al. 2002b). This

approach suggests that agents do not have to hold priori knowledge about the interaction

protocols. Instead, when an agent joins a conversation, it will then be provided with the

protocol’s definition, which is expressed in terms of an ontology shared between the

agents participating in the conversation. Accordingly, the only priori knowledge that an

agent needs to hold is this shared ontology. The definition of the protocol itself would

be owned by some agents in-charge (such as auctioneer agents in an auction MAS) and

distributed to the requesting agents at run-time. By committing to Ththe protocol’se

ontology, the requesting agents would be able will provide the basic vocabulary for the

agent to acquireunderstand the acquired and understand the definition of the protocols

at run-time. . If the protocol changes, a new protocol definition could be sent to all

participating agents.

For example, considering the “Query Protocol” governing the conversation between

“Searcher” agents and “Wrapper” agents in the illustrative Product Search MAS (Figure

6.51). The traditional approach would have the protocol’s definition directly hard-coded

into the “Searcher” agents. Meanwhile, the ontology-based approach by Tamma et al.

259

(2005) suggests that only the ontology conceptualising the protocol should be hard-

coded. The protocol’s definition itself, which is built upon the ontology, would be given

to the “Searcher” agents at run-time (for example, by the “Wrapper” agents).

This approach implies the need for the following design tasks:

firstly, to define the ontology that conceptualises the protocols. MOBMAS refers to

this ontology as the “Protocol Ontology”;

secondly, to develop ontology-based definitions of the interaction protocols; that is,

to describe the protocols in terms of the Protocol Ontology.

These design tasks are sub-steps of the step “Conceptualise interaction protocols with

ontology”. The following sections describe these sub-steps.

It should be noted that not all interaction protocols in the MAS need to be

conceptualized. Some conversations may be open and dynamic, but some others are

closed, static and fixed. Protocols of the latter can be directly hard-coded into the agents

without being conceptualised via any ontology.

Define Protocol Ontology

The Protocol Ontology should provide a set of generic concepts and relationships that

can be used as the vocabulary for describing interaction protocols, for example,

concepts “Protocol”, “Participating party”, “Message” and “Rule”. Even though the

different protocols can be largely different in term of their specifications, the vocabulary

underlying these specifications should often be the same. Accordingly, it is desirable to

have only one Protocol Ontology for the whole MAS. In that way, all agents in the

MAS can commit to this single Protocol Ontology and can still obtain definitions of

many different protocols at run-time.

The designer can either define the Protocol Ontology from scratch, or adopt/adapt an

existing ontological work. In either case, the Protocol Ontology should contain all (and

only) the concepts needed to define the relevant interaction protocols. Tamma et al.

(2005; 2002a,b) have made a pioneering effort in developing an ontology for

negotiation protocols. The ontology, called “Negotiation Ontology”, provides the basic

vocabulary for describing any negotiation protocols (as claimed by the authors).

260

The Protocol Ontology can be graphically represented by an Ontology Diagram like

other types of ontologies. The Protocol Ontology Diagram should be added to the

Ontology Model. As a result, the Ontology Model for a particularly MAS can embrace 3

types of ontologies in total: MAS Application ontologies, Resource Application

ontologies and Protocol ontology.

Figure 6.53 presents a simple Protocol Ontology for the illustrative Product Search

MAS. The ontology is based upon Tamma et al.’s (2005) Negotiation Ontology.

Figure 6.53 – Protocol Ontology

Specify ontology-based definitions of interaction protocols

Previously, step “6.5.2.1.a. Define interaction protocols” has produced the definitions

of potential interaction protocols for the target MAS. In this sub-step, these protocol

definitions are re-expressed in terms of the Protocol Ontology, thereby generating

“ontology-based definitions” for the protocols. In order to do this, the designer should

instantiate the concepts of the Protocol Ontology with specific values, so as to describe

a particular protocol. For example, concept “Protocol” in the Protocol Ontology can be

instantiated with “Query Protocol”, and concept “Participating party” with “Requester” and

“Informant”, so as to define a query protocol. The underlying aim is to reproduce the

protocol definition specified by step “6.5.2.1.a. Define interaction protocols” by using

the vocabulary provided by the Protocol Ontology. At the implementation time, these

1..*

0..*

hasmessage

1..*

1..*

1..*

1..*

0..* 2..*
actor Protocol Participating party

Role

Object
RespectiveAppOnt

Message
Predecessor
Guard-condition
Sequence-expression
Performative
Arguments

Rule
RuleSpecification

concerns

sends

0..*

1..*

governs

1..*

0..*

applies

261

ontology-based definitions of protocols would be coded into some selected agents, who

are in charge of distributing the definitions to other agents at run-time, for example,

auctioneer agents in an auction MAS, or the “Wrapper” agents in the illustrative Product

Search MAS.

Figure 6.54 illustrates the ontology-based definition of the “Query Protocol” in the

illuastrative Product Search MAS. This protocol is previously defined in Figure 6.51.

Ontology-based definitions of protocols can be represented as Object Diagrams, which

is built upon Protocol Ontology’s Class Diagram.

Figure 6.54 – Ontology-based definition of “Query Protocol” (c.f. Figure 6.51)

governs

concerns

actor

actor Query Protocol: Protocol

Searcher agent:
Participating Party

Role = “Searcher role”

Wrapper agent:
Participating Party

Role = “InfoSource Wrapper role”

Car: Object
RespectiveAppOnt = “Car MAS

Application Ontology”

UserQuery: Object
RespectiveAppOnt = “Query

MAS Application Ontology”

concerns

Failure: Message
Predecessor = null
Guard-condition = null
Sequence-expression = null
Performative = “failure”
Arguments = “error-

message”

Refuse: Message
Predecessor = null
Guard-condition = null
Sequence-expression =

null
Performative = “refuse”
Arguments = “reason”

Inform: Message
Predecessor = null
Guard-condition = null
Sequence-expression = null
Performative = “inform”
Arguments = “result;

carStock:Car.number-in-
stock”

Posting rule: Rule
RuleSpecification = “Refuse, Failure

& Inform messages can only be
sent after Query-if or Query-ref
messages are sent”

Timeout rule: Rule
RuleSpecification = “If time>10secs after

Query-if or Query-ref messages are sent &
no result or reason is found, Failure
message must be sent”

hasmessage

Query-If: Message
Predecessor = null
Guard-condition = null
Sequence-expression =

“broadcast”
Performative = “query-if”
Arguments =

“carCost: Car.Cost <
custPrice:UserQuery.
Price”

sends sends

Query-Ref: Message
Predecessor = null
Guard-condition =
“carMake=known”
Sequence-expression = null
Performative = “query-ref”
Arguments =

“all carMake:Car.Make
where carCost: Car.Cost
< custPrice: UserQuery.
Price”

applies

applies

262

Update Agent Class Model

Any agent that potentially joins a conversation whose protocol is conceptualised should

hold knowledge of the Protocol Ontology that conceptualises this protocol. This means

that the Protocol Ontology should be part of the Belief Conceptualisation of the agent.

Figure 6.55 shows the updated Agent Class Diagram of “Searcher” agent class, where

the Protocol Ontology (c.f. Figure 6.53) has been added to the Belief Conceptualisation

compartment of the agent class. This will allow “Searcher” agents to acquire and

understand the ontology-based definition of the “Query Protocol” at run-time.

Figure 6.55 – Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS

Introduce new interactions to Agent Interaction Model

Since new agents would need to acquire an appropriate ontology-based protocol

definition from an agent in-charge before joining a conversation, there should be some

initial interactions between the new agents and the agent in-charge so as to allow for

this acquisition. These initial interactions, while simple, should be specified in the

Agent Interaction Model. Naturally, protocols governing these interactions should be

simple and fixed, hence can be directly hard-coded into the agents.

6.5.2.2. Develop Agent Interaction Model for Tuplespace/Tuple-

Centre Interaction Mechanism

In the tuplespace/tuple-centre interaction mechanism, agents interact by inserting,

inspecting and removing tuples from a shared tuplespace or tuple-centre. Accordingly,

agent class
Searcher / Searcher role

belief conceptualisation
Car MAS Application Ontology

 Query MAS Application Ontology
Protocol Ontology

agent-goals
G1: Answer is found for user query
 G2: Keywords are extracted from user query
 G3: Information is gathered from resources
 G4: Appropriate resources are found
 G5: Appropriate databases are found
 G6: Appropriate web servers are found

events
 E1: input of user query
 E2: input of cancel message from user
 E3: incoming of message from Wrapper agent

263

the Agent Interaction Model Kind of this mechanism is represented by a set of Agent-

TC73 Interaction Diagrams, each of which models the interactions between particular

agents and the tuplespace/tuple-centre during a conversation. In addition, for the tuple-

centre interaction mechanism, since the tuple-centre exhibits programmable reactive

behaviour, the Agent Interaction Model Kind should also contain Tuple-Centre

Behaviour Diagrams, which model the behaviour of the tuple-centre. Section 6.5.2.2.a

discusses the development of Agent-TC Interaction Diagrams, while Section 6.5.2.2.b

examines TC Behaviour Diagrams.

6.5.2.2.a. Develop Agent-TC Interaction Diagrams

To identify the potential interactions between the agents in MAS and the share

tuplespace/tuple-centre, the developer should examine the Agent Behaviour Model of

the MAS, namely the Agent Plan Templates and Reflexive Rule Specifications of each

agent class.

Each communicative action in the Agent Plan Templates and Reflexive Rule

Specifications indicates a tuple being sent from an agent to the tuplespace/tuple-

centre.

Any event that is specified in an Agent Plan Template or that triggers a Reflexive

Rule Specification may be resulted from a tuple being sent from an agent to the

tuplespace/tuple-centre.

Each exchanged tuple should be defined in terms of:

a communication primitive; and

definition of the tuple’s content.

Regarding the communication primitives, most of the existing tuplespace/tuple-centre

middleware/models are built upon the LINDA framework (Papadopoulos 2001). As

such, they adopt Linda-like communicative primitives such as out, in, rd, inp and rdp

(Omicini and Zambonelli 1999).

out writes a tuple to the tuplespace/tuple-centre.

73 TC stands for “tuple-centre”.

264

in and rd send a tuple template to the tuplespace/tuple-centre and expect the

tuplespace/tuple-centre to return a tuple that match the template, either deleting it or

not from the tuplespace/tuple-centre, respectively.

inp and rdp work analogously to in and rd, however while the latter wait until a

matching tuple becomes available, inp and rdp fail if no such tuple is found.

Regarding the content of tuples, MOBMAS describes each tuple’s content in terms of:

a descriptive name: e.g. “paperTuple”, “all-paper-title-listTuple”, “req-num-of-

distributionTuple”74 and “req-num-of-paperTuple”75; and

arguments: which represent the pieces of information that the tuple conveys. An

argument can be a constant or a variable. For variable arguments, their datatypes

must be defined. For example, in the following tuples of the illustrative Conference

Program Management MAS,

“req-num-of-distributionTuple(numberDist: Integer)” and

“paperTuple(paperID: Paper.ID, paperTitle: Paper.Title, paperContent:

Paper.Content)”,

“numberDist” is an “Integer” variable, while “paperID”, “paperTitle” and “paperContent”

are variables of datatypes “Paper.ID”, “Paper.Title” and “Paper.Content” respectively76.

“Paper”, “ID”, “Title” and “Content” are application-specific concepts that are defined

in the MAS Application ontology which is shared between the communicating

agents to govern the communication’s semantics. Note that basic datatypes such as

Integer or String are assumed known to every agent in the MAS, without having to

be defined in a MAS Application ontology.

Given the above conventions, an example tuple sent by a “PC Chair” agent in the

Conference Program Management MAS to the shared tuplespace/tuple-centre is

“out(paperTuple(paperID: Paper.ID, paperTitle: Paper.Title,

paperContent: Paper.Content))”,

while a tuple sent by a “PC Member” agent to the tuplespace/tuple-centre is

“inp(paperTuple(paperID: Paper.ID, paperTitle: Paper.Title,

paperContent: Paper.Content)).

74 That is, the required number of members to whom each paper must be distributed.
75 That is, the required number of papers that each member must collect.
76 These datatypes should be interpreted as, “ID” of “Paper”, “Title” of “Paper” and “Content” of “Paper”
respectively.

265

In the tuplespace/tuple-centre interaction mechanism, all interactions are asynchronous,

due to the decoupling in agent identity, location and time during interactions (cf.

Section 6.5.1.2).

Notation of Agent-TC Interaction Diagrams

Each Agent-TC Interaction Diagram graphically specifies an allowed pattern of tuple

exchanges between agents and a shared tuplespace/tuple-centre during a conversation.

MOBMAS reuses the notation of AUML Sequence Diagram for Agent-TC Interaction

Diagram. The only difference is that the exchanged elements are tuples instead of ACL

messages. Figure 6.56 presents an Agent-TC Interaction Diagram for a conversation

between a “PC Chair” agent, a “PC Member” agent and the shared tuplespace/tuple-

centre in the Conference Program Management MAS.

Figure 6.56 – Agent-TC Interaction Diagram for Conference Program Management MAS

inp(paperTuple
(paperID: Paper.ID,
 paperTitle: Paper.Title,
 paperContent: Paper.Content))

rd(all-paper-title-listTuple
([title: Paper.Title]*))

out(paperTuple
(paperID: Paper.ID, paperTitle:
Paper.Title,
paperCont: Paper.Content))

out(all-paper-title-listTuple
([title: Paper.Title]*))

[currectDate = deadline & not reach
numberPaper]

rd(refuseTuple
(reason: String))

out(paper-requestTuple
(title: Paper.Title))

out(req-num-of-distributionTuple
(numberDist: Integer))

rd(reminderTuple
(reminderMessage: String))

:tc1 / tuple-centre :PC Member Agent /
PC Member role

:PC Chair Agent/
PC Chair role

loop(allpapers)

Paper-Distribution

out(req-num-of-paperTuple
(numberPaper: Integer))

out(req-num-of-paperTuple
(numberPaper: Integer))

X

loop(number
Paper)

266

6.5.2.2.b. Develop Tuple-Centre Behaviour Diagram (Optional)

This step is applicable only to the tuple-centre interaction mechanism. A tuple-centre

behaves by reacting to the incoming tuples from agents (Omicini and Zambonelli

1999). Each “reaction” is a set of non-blocking actions which, if successfully executed,

will change the state of the tuple-centre from one state to another. Otherwise the

reaction will yield no transition in the tuple-centre’s state at all (Dente et al. 1998).

MOBMAS recommends the following guidelines for the definition of the tuple-centre’s

reactions.

The reactions should allow the tuple-centre to enforce all the necessary

coordination rules: For example, consider agent-goal “Papers are distributed among

members” jointly achieved by the “PC Chair” and “PC Member” agent classes in the

Conference Program Management MAS (cf. Figure 6.7). One of the coordination

rules governing the achievement of the agent-goal is that “Each PC member must not

collect the same paper twice” (cf. Section 6.5.1.2). The tuple-centre can enforce this

rule by defining a reaction that checks whether a particular “PC Member” agent is

eligible to obtain a particular “Paper” tuple (Figure 6.57).

Similarly, to enforce another coordination rule “Members can only start collecting

papers after all other members have viewed the Title List of all papers” (cf. Section

6.5.1.2), the tuple-centre can make n copies of the “Title List” tuple, where n is the

total number of the “PC Member” agents in the system. Then, the tuple-centre will

not allow any “PC Member” agents to consume a “Paper” tuple until all copies of the

“Title List” tuples have been consumed by all “PC Member” agents (Figure 6.57).

The reactions should allow the tuple-centre to carry out some (low level) processing

to help fulfilling the target coordinating task, thereby taking some processing load

off the interacting agents: For example, to assist in the achievement of the agent-

goal “Papers are distributed among members”, the tuple-centre can try to determine

which “PC Member” agent has not collected the required number of papers on the

due date, thereby posting “Reminder” tuples to these agents.

267

The reactions should help the tuple-centre to deal with “inter-agent conflicts”: The

issue of inter-agent conflicts have been discussed in Section 6.5.2.1.a.

Notation of Tuple-Centre Behaviour Diagram

MOBMAS adopts UML Statechart Diagram for the Tuple-Centre Behaviour Diagram.

Each state of the diagram represents a reaction of the tuple-centre. A state can either

be passive (i.e. idle, denoted as) or active. If active, it should contain one or more

actions to be executed sequentially by the tuple-centre.

Transitions between states occur when an event happens, e.g. when a tuple is sent by

an agent.

At design time, the developer can specify reactions and state transitions using natural

language and descriptive method names. These reactions and transitions can be formally

coded using a “behaviour specification language” at implementation, e.g. ReSpecT

(Denti et al. 1998).

Figure 6.57 presents the Tuple-Centre Behaviour Diagram for the tuple-centre of the

Conference Program Management MAS during a conversation between the “PC Chair”

and “PC Member” agents (cf. Figure 6.56).

268

Figure 6.57 – Tuple-Centre Behaviour Diagram for Conference Program Management MAS

6.5.2.2.c. Update Agent Class Model and Role Model

The Agent Relationship Diagram of the Agent Class Model Kind should be updated to

show:

any new acquaintances between agent classes that have not been identified; and

various descriptive information about each acquaintance, namely:

[true]

[true]

[currentdate > deadline] and
inp(paperTuple

(paper: Paper.ID,
 paper: Paper.Title,
 paper: Paper.Content))

received from PC Member agent

out(paper-requestTuple (title: Paper.Title))
received from PC Member agent
[currentdate < deadline or currentdate > deadline]

rd(reminderTuple
(reminderMessage: String))
received from PC Member agent

[currentdate = deadline]

out(req-num-of-distributionTuple (numberDist: Integer)) and
out(req-num-of-paperTuple (numberPaper: Integer)) and
out(all-paper-title-listTuple ([title: Paper.Title]*)) and
out(paperTuple (paperID: Paper.ID, paperTitle: Paper.Title, paperContent: Paper.Content)) [for all papers]
received from PC Chair agent

State 1
Duplicate each paperTuple to numberDist copies
Duplicate all-paper-title-listTuple to n copies

where n=number of PC Member agent instances

out(req-num-of-paperTuple (numberPaper: Integer)) and
rd(all-paper-title-listTuple ([title: Paper.Title]*)) received from PC Member agent

State 2
(Number of remaining all-paper-title-listTuple = 0) ?

[false]

State 3
Write refuseTuple

(reason = “Have to wait until every
member has read Title List”))

rd(refuseTuple
(reason: String))

received from PC
Member agent

State 4
logTuple(agentID, title) exists?

State 5
Write refuseTuple

(reason = “You have previously
selected this paper”))

rd(refuseTuple
(reason: String))

received from PC
Member agent

State 6
Write logTuple(agentID, title)

[false]

[currentdate < deadline] and
inp(paperTuple

(paper: Paper.ID,
 paper: Paper.Title,
 paper: Paper.Content))

received from PC Member agent

[true]

State 7
For i = 1 to n (n n=number of PC Member agent instances)

Number of logTuple for PCMember agent[i] =
numberPaper?

[false]
State 8

Write (reminderTuple
(reminderMessage = “Please
collect more papers))

269

- the identity of the Agent-TC Interaction Diagrams that govern the conversations

between the acquainted agents and the shared tuplespace/ tuple-centre; and

- the MAS Application ontology(ies) that governs the semantics of the tuples

exchanged during the conversation and which must be shared between the

communication agents77.

This descriptive information is modelled as UML notes attached to each

acquaintance (cf. Figure 6.22).

Figure 6.50 presents the Agent Class Diagram for the Conference Program Management

MAS (cf. Figure 6.7).

Figure 6.58 – Updated Agent Class Diagram of Conference Program Management MAS

The Role Diagram of Role Model Kind should also be checked to ensure that all the

acquaintances between roles have been captured, and all the authority relationships are

still valid. For example, two roles which are initially thought to be in a peer-to-peer

relationship may turn out be in a superior-subordinate relationship after an in-depth

investigation of the agents’ interactions.

6.5.2.3. Verify Agent Interaction Model against Ontology Model

and Agent Internal Model

In both the direct interaction mechanism via ACL and indirect interaction mechanism

via tuplespace/tuple-centre, the semantics of the information conveyed in the ACL

messages and tuples must be consistently interpreted by the interacting agents. To

ensure this consistency, the datatypes of all variable arguments in the exchanged ACL

77 That is, this MAS Application ontology must exist in both agents’ Belief Conceptualisation.

agent class
PC Chair /

PC Chair role

agent class
PC Member /

PC Member role

Agent-TC Interaction Diagram: Paper-Distribution
Ontology: Conference MAS Application Ontology

agent class
Reviewer /

Reviewer role

Agent-TC Interaction Diagram: Inform
Ontology: Conference MAS Application Ontology

270

messages or tuples must be defined using the concepts obtained from the MAS

Application ontology shared between the communicating agents. Being “shared” means

that this ontology must exist in the Belief Conceptualisation of each communicating

agent. Vice versa, only concepts defined in the shared MAS Application ontology can

be used to define the datatypes of the variable arguments in the ACL messages or

tuples. Basic datatypes such as Integer or String are assumed known to every agent and

thus do not need to be defined in an ontology.

For example, in the ACL message sent from a “Searcher” agent to a “Wrapper” agent,

“query-if (carCost:Car.Cost < custPrice: User query.Price)”,

concepts “Car”, “Cost”, “User query” and “Price” should have been defined in the Car

MAS Application Ontology and Query MAS Application Ontology that are shared

between the “Searcher” and “Wrapper” agents (cf. Figures 6.13 and 6.14).

Similarly, in the tuple sent from a “PC Chair” agent to a “PC Member” agent via a shared

tuplespace/tuple center,

“paperTuple(paperID: Paper.ID, paperTitle: Paper.Title,

 paperContent: Paper.Content)”

concepts “Paper”, “ID”, “Title” and “Content” must be defined in a MAS Application

Ontology which is shared between the “PC Chair” and “PC Member” agents.

The above guidelines highlight the need for reciprocal and iterative development of the

Agent Interaction Model and Ontology Model. More specifically, the developer should:

use the concepts defined in the MAS Application ontologies to formulate the content

of the exchanged ACL messages and tuples; and

examine the content of the ACL messages and tuples to determine if any concepts

have not been defined in the developed MAS Application ontologies, thereby

verifying the content of these ontologies.

The developer should also verify the Agent Interaction Model against the Agent Internal

Model, to ensure that the ontology(ies) governing the semantics of communication

between each pair (or group) of agent classes is indeed listed in the Belief

Conceptualisation of each agent class (that is, the ontology is shared by the

271

communicating agent classes). If the communicating agents do not yet share a common

ontology, such an ontology should be built and added to each communicating agent’s

Belief Conceptualisation. This ontology should contain concepts that serve as the inter-

lingua between the agents’ local (heterogeneous) ontological concepts.

6.6. ARCHITECTURE DESIGN ACTIVITY
This activity of MOBMAS deals with various design issues relating to the architecture

of agents and MAS, namely the identification of agent-environment interface

requirements, the selection of agent architecture, the identification of required

infrastructure facilities, the instantiation of agent classes and the deployment

configuration of the agent instances. The product of this activity is an Architecture

Model Kind, which is represented by the following notational components.

Agent-Environment Interface Requirements Specification: documents any

special requirements of agents’ sensor, effector and communication modules.

Agent Architecture Diagram: provides a schematic view of the agent

architecture(s).

Infrastructure Facilities Specification: documents the specifications of the

infrastructure facilities needed to support the target MAS’ operation.

MAS Deployment Diagram: shows the deployment configuration of the target

MAS, including the allocation of agents to nodes and the connections between

nodes.

272

Figure 6.59 – MOBMAS development process

1.
Develop System Task Model

[System Task Model Kind]

2.
Analyse organisational context

(optional)
[Organisational Context Model

Kind]

3.
Develop Role Model
[Role Model Kind]

4.
Develop Ontology Model
[Ontology Model Kind]

5.
Identify ontology management role

[Role Model Kind]

ANALYSIS

AGENT INTERNAL DESIGN

1.
Specify agent class’ belief conceptualisation

[Agent Class Model Kind]

2.
Specify agent goals

[Agent Class Model Kind]

3.
Specify events

[Agent Class Model Kind]

4.
Develop Agent Behaviour Model
[Agent Behaviour Model Kind]

AGENT INTERACTION DESIGN

2.
Develop Agent Interaction Model
[Agent Interaction Model Kind]

1.
Select interaction mechanism

MAS ORGANISATION DESIGN

2.
Develop Agent Class Model
[Agent Class Model Kind]

1.
Specify MAS organisational structure

[Role Model Kind]

3.
Specify resources (optional)

[Resource Model Kind]

4.
Extend Ontology Model to include

Resource application ontologies
(optional)

[Ontology Model Kind]

4.
Instantiate agent classes

[Agent Class Model]

3.
Specify MAS infrastructure facilities

[Architecture Model Kind]

2.
Select agent architecture

[Architecture Model Kind]

1.
Identify agent-environment interface

requirements
[Architecture Model Kind]

ARCHITECTURE DESIGN

5.
Develop MAS Deployment Diagram

[Architecture Model Kind]

273

6.6.1. Step 1 – Identify Agent-Environment Interface

Requirements
An agent may interact with its environment via (van Breemen 2002):

Perception: which is an activity of observing or sensing the state of the environment;

Effect78: which is an activity of changing the state of the environment; and

Communication: which is an activity of exchanging ACL messages or tuples with

other agents.

MOBMAS recommends the developer to investigate the characteristics of the

perception, effect and communication activities to be performed by each agent class, so

as to facilitate the selection of sensors, effectors, agent architectures and/or

implementation platform.

Specifically, with regard to perception and effect, the developer should consider:

whether they are related to the physical world (e.g. observing and changing the

location of a soccer ball) or the virtual world (e.g. observing and changing the price

of a car product) (Russell and Norvig 2003; Weyns et al. 2004). Perception and

effect on the physical world typically require hardware components such as

thermostats, infra-red sensor, wheels and grippers. In such cases, the sensor and

effector of the agents must be able to connect and control these hardware

components (probably by communication with the hardware’s driver software).

Meanwhile, for virtual perception and effect, the sensor and effector of the agents

can directly perceive and impact on the environment without the use of hardware

components;

the degree of complexity of the perceptual inputs and/or effect outputs. If the agents

operate in an open, dynamic and fast changing environment overloaded with sensor

information, they may require robust perception mechanisms and efficient

perception strategies (e.g. filtering) (Wray et al. n.d.). The developer should also

consider employing sensor/effector objects to take care of the perception and effect

activities for the agents, thereby relieving the agents from some workload. For

78 “Effect” is referred to as “action” in van Breemen (2002). However, the term “action” is not used here
because it may be confused with “actions” in Agent Plan Templates and Reflexive Rule Specification.
The latter may or may not result in a change in state of the environment.

274

example, a sensor object can monitor percepts from the environment, thereupon

alerting the agent if certain conditions exist. The sensor object may also serve as a

“historical sensor” that watches for trends and patterns in the incoming percepts

(Kendall et al. 1995); and

interaction with human user: If an agent is required to engage in intensive

interaction with human users, its sensor needs to be connected to an elaborate user-

interface component that provides efficient means for inputs from, and outputs to,

the users.

Regarding inter-agent communication, most existing agent architectures and

implementation platforms provide built-in support for basic communication operations,

e.g. message dispatching/receiving, tuple inserting/reading/removing, and message/tuple

transport services. However, if the target MAS has some special communication

requirements, for example, encryption of exchanged messages, mobile and ubiquitous

communication, or support for binary data exchanged (such as rich multimedia objects),

these requirements should be documented. Note that the interaction mechanism adopted

by the target MAS may also impose certain requirements that are not commonly

supported by existing agent architectures and implementation platforms. For example,

spatially-founded interaction mechanism requires an implementation platform that can

provide a spatially structured environment in which agents can be placed and

communicate, e.g. SWARM (Minar et al. 1996).

At the end of this step, the Agent-Environment Interface Requirement Specification of

the Architecture Model Kind should be developed to document the followings:

any special requirements of the agents’ sensor and effector (e.g. the need for

connecting to hardware components, or the need for using sensor/effector objects);

and

any special requirements of the agents’ communication activities.

All of these specifications can be documented in an informal natural language.

275

6.6.2. Step 2 – Select Agent Architecture
An agent architecture is a structural model of the modules that constitute an agent and

the interconnections between these modules (Lind 1999). Abstract constructs of each

agent class (namely, belief conceptualisation, agent-goals, plans and reflexive rules)

will be mapped onto these concrete modules during implementation, which is not part of

MOBMAS.

Given the availability of a large number of agent architectures, MOBMAS does not

address the issue of agent architecture design, but instead presents guidelines on how to

select the most appropriate agent architecture(s) for the target MAS.

6.6.2.1. Select agent architecture

Agents in a MAS may adopt the same agent architecture or require different

architectures to support their different functional requirements. To select the most

appropriate architectures for agents, the developer should consider the following factors.

Style of agent behaviour: The style of agent behaviour is reflected in the Agent

Behaviour Model Kind. If an agent class adopts planning behaviour to fulfil its

agent-goals, the chosen agent architecture must be able to support planning activities

via the use of planners, reasoners, analysers, or the like. Some well-known planning

architectures are STRIPS (Fikes and Nilsson 1971), IPEM (Ambros-Ingerson and

Steel 1988), IRMA (Bratman et al. 1988), Homer (Vere and Bickmore 1990) and

SOAR (Newell 1990). If otherwise the agent class adopts solely reflexive behaviour,

the chosen agent architecture does not need to support complex symbolic reasoning.

Several well-known architectures for reflexive agents are subsumption architecture

(Brook 1986), PENGI (Chapman and Agre 1986), AuRA architecture (Arkin and

Balch 1997) and situated automata (Kaelbling 1991). In cases when an agent class

exhibits hybrid behaviour (e.g. planning behaviour for some agent-goals and

reflexive behaviour for some other agent-goals), a hybrid agent architecture which

employs a layered structure to support both planning and reflexive behaviour is

required. Example hybrid architectures are RAPs (Firby 1989), ATLANTIS (Gat

1991), TouringMachines (Ferguson 1992), INTERRAP (Muller and Pischel 1993),

276

Prodigy (Carbonell et al. 1991), PRS (Myers 1997; Georgeff and Lansky 1987) and

dMARS (d'Inverno et al 1997).

Required agent behavioural capabilities: The selected agent architecture should

allow an agent to implement its desirable behavioural capabilities. For example, if

an agent class is required to learn, the selected agent architecture should be able to

support learning capability. Or, if the agent class needs to be time-persistent, its

architecture must allow the knowledge structures to be maintained over time and

over unavoidable downtimes (Wray n.d.).

Style of Control: An agent class’ desirable style of control can help to determine the

required agent architecture. Some example styles of control are (Wray n.d.; Lind

1999):

- asynchronous versus synchronous: The former requires an agent architecture that

supports asynchronous processing threads while the latter does not; and

- static versus dynamic: The former can be supported by an agent architecture that

implicitly hardcodes the control flow, while the latter requires an architecture

that allows the control flow to be explicitly specified (e.g. in plan scripts).

Knowledge representation mechanism: The desirable mechanism of agent

knowledge representation should be matched against the mechanism provided by the

agent architecture. For example, an agent architecture may allow the agent

knowledge to be explicitly stored in a knowledge base, or requires the knowledge to

be implicitly embedded in the agent coding (Lind 1999).

Complexity of sensor input: Agents that operate in a dynamic, open and fast-

changing environment often faces overloads in sensor information. They should

therefore adopt an architecture that supports robust perception mechanisms and

efficient sensing strategies (e.g. sensor inputs filtering).

Support for scalability: Some agent architectures such as HOMER experience a

processing slow-down when its episodic knowledge base increases in size (Vere and

Bickmore 1990). Thus, the developer should select an agent architecture that can

277

accommodate the agents’ expansion of knowledge (e.g. via the support for easy-

upsizing of the knowledge base) (Wray n.d.).

Agent-environment interaction requirements: The sensor, effector and

communication modules of the selected agent architecture should be able to support

the requirements specified in the Agent-Environment Interface Requirements

Specification (cf. Section 6.6.1).

6.6.2.2. Develop Agent Architecture Diagram

As mentioned previously, Agent Architecture Diagram is one of the four notational

components of the Architecture Model Kind. It aims to provide a schematic view of an

agent architecture. If agents in the target MAS are homogeneous in architecture, only

one Agent Architecture Diagram would be needed. Otherwise, multiple diagrams are

required.

An Agent Architecture Diagram should specify:

the modules or layers or subsystems of the architecture. These

modules/layers/subsystems should be represented as boxes; and

the potential flows of data between these modules/layers/subsystems. These flows

are represented as arrows.

Figures 6.60 and 6.61 show the Agent Architecture Diagrams for the TouringMachines

and INTERRAP architectures.

Figure 6.60 – Agent Architecture Diagram for TouringMachines architecture (Ferguson 1992)

Architectural
module/layer/subsystem

Data input/output

action
output

Modelling layer

Planning layer

Reactive layer

Perception subsystem Action subsystem

Control subsystem

sensor
input

278

Figure 6.61 – Agent Architecture Diagram for INTERRAP architecture (Wooldridge 1999)

6.6.3. Step 3 – Specify MAS Infrastructure Facilities
As in other computing systems, MAS needs to be supported by various infrastructure

facilities in order to operate. The developer should thus identify these infrastructure

facilities and determine how these facilities can be provided and managed in the target

MAS.

Various potential infrastructure facilities for a MAS system are (Iglesias et al. 1998;

Shen et al. 1999):

Network facilities: e.g. agent naming service, agent creation/deletion service, agent

migration service, security service and accounting service;

Coordination facilities: e.g. agent directory/yellow-page/white-page service,

message transport service, protocol servers and “police” facilities to detect

misbehaviours in agents or misusage of common resources; and

Knowledge facilities: e.g. ontology servers, problem-solving methods servers and

language translation service.

Some of these facilities are only necessary if the MAS is open and/or deployed in a

distributed environment, e.g. agent migration services, security service and agent

directory services. For many applications such as simulation, the MAS can be closed

and run on a single platform, thus they do not require network-related infrastructure

facilities.

279

MOBMAS suggests two common mechanisms for providing and managing

infrastructure facilities.

To employ the “built-in” infrastructure facilities provided by the MAS

implementation platform, without managing them by any dedicated agents. For

example, the kernel of MADKIT platform provides built-in “message transport

services” (MADKIT 2002), while the kernel of AgentTcl offers built-in “agent

migration services” (Gray 1995).

To provide and manage customized infrastructure facilities via the use of some

dedicated agents. For example, “directory services” may be offered by a

“Facilitator/Broker” agent, while “security services” can be handled by a specialised

“Police” agent. These agent classes may have already been defined in the Agent

Class Model, or are now introduced. In both cases, the developer should refine the

Agent Class Model to include new agent classes or to update the specification of the

existing agent classes. All related models, including Agent Behaviour Model and

Agent Interaction Model, should be accordingly revised.

An Infrastructure Facility Specification should be developed and included in the

Architecture Model Kind to document the specifications of all the identified

infrastructure facilities. These specifications can be documented in an informal natural

language.

6.6.4. Step 4 – Instantiate Agent Classes
Each agent class should be instantiated into concrete agent instances. Common types of

cardinality for agent instantiation are (Wooldridge et al. 2000):

n cardinality: i.e. where each agent class is instantiated with exactly n agents;

m..n cardinality: i.e. where each agent class is instantiated with no less than m and

no more than n agents; and

+ cardinality: i.e. where each agent class is instantiated with one or more agents.

The instantiation cardinality of each agent class is represented as an annotation next to

the agent class name in the Agent Relationship Diagram of the Agent Class Model

280

Kind (cf. Figure 6.25). Figure 6.62 presents the updated Agent Relationship Diagram

for the illustrative Product Search MAS.

Figure 6.62 – Updated Agent Relationship Diagram of Product Search MAS

6.6.5. Step 5 – Develop MAS Deployment Diagram
In MOBMAS, the logical architecture of the target MAS is revealed in the Agent

Relationship Diagram of the Agent Class Model Kind. This diagram shows all the agent

classes composing the MAS system, the resources existing in the system, the

acquaintances between agent classes, the connections between agent classes and

resources, and the instantiation of agent classes. In this step, a MAS Deployment

Diagram should be developed to describe how this logical MAS architecture can be

actuated in the operational environment (i.e. how the MAS components can be located,

distributed and connected). This diagram is particularly necessary for highly distributed

MASs where it is important to visualise the system’s physical topology. The MAS

agent class
Ontology Manager1 /

Ontology Manager role

agent class
Feedback Manager1 /

Feedback Manager role

agent class
Searcher+/

Searcher role

agent class
Wrapper+ /

InfoSource Wrapper role

agent class
User Interface+ /

User Interface role

agent class
Resource Broker1 /

Resource Broker Role

wrapwrap

resource
Car Database

resource
Car Web Server

Protocol: Query
Ontology: Car MAS Application

Ontology; Query MAS
Application Ontology

Protocol: Ontology Query
Ontology: Car MAS

Application Ontology

Protocol: Inform Protocol
Ontology: Car MAS

Application Ontology,
Query MAS Application
Ontology

Protocol: Inform Protocol
Ontology: Car MAS

Application Ontology,
Query MAS Application
Ontology

Protocol: Resource Query
Ontology: Car MAS

Application Ontology

281

Deployment Diagram is one of the four notational components of the Architecture

Model Kind as mentioned previously.

Major configuration details to be specified in the MAS Deployment Diagram include:

agent platforms: i.e. the infrastructure on which agents are deployed. Agent

platforms can be single processes containing lightweight agent threads, or fully built

platforms around proprietary or open middleware standards (FIPA 2003);

nodes: i.e. hosts on each agent platform;

agent instances located at each node;

connections between nodes; and

acquaintances between agent instances.

The deployment configuration of MAS can be determined by investigating various

factors, including the message traffic between nodes (estimated from Agent Interaction

Model) and the required processing power of each node to accommodate the behaviour

of agents (estimated from the Agent Behaviour Model).

MOBMAS reuses the notation of AUML Deployment Diagram (FIPA 2003) for its

MAS Deployment Diagram79.

The naming of agent platforms, nodes and agent instances should be specified in the

format
instance-name : class-name

79 AUML Deployment Diagram contains notation for agent mobility. However, since agent mobility is
not discussed in MOBMAS, this notation is not presented.

Agent platform Node Agent instance

Connection between
nodes

Acquaintance between agent
instances

Node of agent platform

282

Figure 6.63 presents an example MAS Deployment Diagram for the Product Search

MAS.

Figure 6.63 – MAS Deployment Diagram for Product Search MAS

6.7. SUMMARY
This chapter has presented the full documentation of MOBMAS – a “Methodology for

Ontology-Based MAS development”. In total, MOBMAS consists of five activities,

twenty steps and nine model kinds. An overview of MOBMAS’ conceptual framework,

development process and model kinds can be found in Section 6.1. Figure 6.2, in

particular, depicts the five activities of MOBMAS, their associated steps, the iterative

flow between these steps, and the model kinds produced or refined by each step. A

detailed description of each MOBMAS’ activity is provided in Sections 6.2 to 6.6.

In the next chapter, Chapter 7, the evaluation and refinement of MOBMAS are

documented. These evaluation and refinements progressively led to the final version of

MOBMAS as presented in this chapter.

LabAServer:Server

WA1:
Wrapper

Joe’s PC: Client

Joe Searcher:
Searcher

WA2:
Wrapper

RA:
Resource Broker

Joe UI:
User Interface

OA:
Ontology Manager

Server PC: Server

FA:
Feedback Manager

283

CHAPTER 7

EVALUATION AND REFINEMENT OF
MOBMAS

7.1. INTRODUCTION
This chapter documents the evaluation and refinement of MOBMAS as resulted from

the execution of Research Activity 3 – “Evaluate and Refine MOBMAS” (cf. Section

4.3). The process of evaluating and refining MOBMAS consisted of three sequential

steps (cf. Section 4.6):

Step 1 - Obtaining expert reviews;

Step 2 - Using MOBMAS on a test application; and

Step 3 - Performing a feature analysis on MOBMAS.

The first two steps resulted in the most refined version of MOBMAS which is presented

in Chapter 6, while the third step evaluated this final version. Sections 7.2, 7.3 and 7.4

respectively report on the performance and outcome of each step.

7.2. EXPERT REVIEWS
The objective of expert reviews was to gather experts’ non-empirical evaluation of the

initial version of MOBMAS, specifically their opinions on the strengths, areas for

improvement of the methodology, and how to improve these areas. The obtained

feedback was used to refine MOBMAS before the methodology was empirically used

on a test application by external developers (Section 7.3).

Section 7.2.1 firstly describes the procedures of the expert reviews, followed by Section

7.2.2 which provides brief biographic information about each expert. Section 7.2.3 then

documents the refinements of MOBMAS as a consequence of the expert reviews.

284

7.2.1. Expert Review Procedures
Each of the two experts was provided with a full documentation of MOBMAS and

requested to:

identify the strengths of the methodology (optional).

identify the areas for improvement of the methodology; and

recommend how to improve these areas (optional).

The evaluation was based on the experts’ non-empirical investigation of the

methodology’s documentation, and documented informally as “comment notes” on the

methodology’s documentation.

The two expert reviews were collected independently and in a sequential order.

Comments from the first expert were used to refine the initial version of MOBMAS

before the second expert was asked to evaluate the refined version. This sequential and

independent procedure

prevented the possibility of two experts identifying the same areas for improvement;

and

helped to identify new areas of improvement that potentially arose from the

refinement of the methodology after the first review. Modifying the methodology

according to the first expert review might introduce new problematic areas, which

would be undetected if the second review was not subsequently conducted.

A face-to-face meeting was then organised with each expert to get a walkthrough of

his/her feedback. This face-to-face communication helped to get an in-depth

understanding of, and avoid any possible misunderstanding of, the experts’ comments.

After MOBMAS was refined in accordance with each expert’s feedback, follow-up

communication via email was carried out with each expert to ensure that the experts

were satisfied with all the refinements made to the methodology.

285

7.2.2. Experts’ Biography
The two experts who participted in the study were Prof. Brian Henderson-Sellers (first

reviewer) and Prof. Mary-Anne Williams (second reviewer). Both experts have active

research interests in agent technology in general and AO methodologies in particular.

They both have made major research contributions to the area.

Prof. Brian Henderson-Sellers is the Director of the Centre for Object Technology

Applications and Research at the University of Technology, Sydney. His research

interest in AO methodologies arose from his long-term involvement in OO

methodologies. He co-organised a number of international workshops on AO

methodologies (including Annual ACM Conference on Object-Oriented

Programming, Systems, Languages & Applications – OOPSLA, and International

Bi-Conference Workshop on Agent-Oriented Information Systems). He is currently

co-leading a research project funded by the Australian Research Council on

“Metamodel-based Methodology for Developing Agent-Oriented Systems”. The

project investigates how to extend the OPEN framework, which was initially

designed for OO development and of which he was a co-founder, to offer support for

AO system development.

Prof. Mary-Anne Williams is the Director of the Innovation and Technology

Research Laboratory at the University of Technology, Sydney. She has been actively

involved in research on both agent technology (particularly in the context of e-

business, interactive marketing and artificial intelligence) and ontology. She has also

supervised PhD students whose research interests were agent technology and/or

ontology. Two of her current research projects are “Agent-Oriented Concept

Management” and “Information and Knowledge Integration”, both of which focused

on agents and ontologies. She has also been the co-organiser of the International

Conference on Principles of Knowledge Representation and Reasoning (KR), which

covers the research topic of ontologies. With regard to this PhD research project,

prior to getting involved as an expert reviewer of the MOBMAS methodology, Prof.

Mary-Anne Williams was involved in the research in two aspects: she helped to

shape the broad topic area of this research by sharing her background knowledge of

the agent literature, and she assisted in recruiting participants for the research’s

286

survey (Section 5.3) by helping to post the survey’s recruiment advertisement on the

UMBC Agents-Digest mailing list and UMBC AgentNews newsletter. At no stage

was Prof. Mary-Anne Williams involved in the design of the MOBMAS

methodology itself. Thus, Prof. Mary-Anne Williams was a totally independent

reviewer of the methodology.

7.2.3. Refinements of MOBMAS
This section documents the refinements made to MOBMAS as a consequence of each

expert’s review. Only the refinements made to the steps and model definitions of

MOBMAS are presented. Refinements made to the wording to improve MOBMAS’

comprehensibility, coherence and expressiveness are not listed. The experts’ comments

are presented in Appendix F.

7.2.3.1. Refinements of MOBMAS as a result of the first expert

review

1. Re-define the origin of MOBMAS modelling notation. If the notation of a particular

MOBMAS notational component is not applicable to be an extension of UML and

AUML (i.e. when all valid UML and AUML extensibility mechanisms80 are

inapplicable), that notation should be documented as MOBMAS’ own notation

rather than UML’s or AUML’s extension. (The initial version of MOBMAS states

that some notational components are an extension of UML/AUML while they are

not). In the refined version of MOBMAS, the notation for the following notational

components is re-defined as MOBMAS’ own notation:

Role Diagram;

Agent Class Diagram81;

Agent Relationship Diagram;

Agent Plan Template; and

Resource Diagram.

80 Namely, “stereotype”, “tagged value” and “constraint” (Object Management Group 2003).
81 For the Agent Class Diagram, the notation of AUML Agent Class Diagram (Huget et al. 2003; Bauer et
al. 2000; Bauer, 2001a; Bauer 2001b) had been considered. However, since much of the syntax and
semantics of the AUML Agent Class Diagram notation has not yet been determined and finalized at the
time of this research, it was not adopted.

287

2. Provide elaborate definition of the syntax and semantics of MOBMAS notation.

Whenever UML or AUML notation was reused or extended (namely in Ontology

Diagram, Agent Plan Diagram, Reflexive Rule Specification, Interaction Protocol

Diagram, Agent-TC Interaction Diagram, Tuple-Centre Behaviour Diagram and

MAS Deployment Diagram), the reused or extended notational elements were

highlighted, followed by the clarification of how the syntax and semantics of

UML/AUML notation have been reused or extended.

3. Document MOBMAS’ conceptual framework, which defines the semantics of the

main abstractions that underlie MOBMAS development process and model kinds. A

diagram that shows the relationships between these abstractions was also added.

4. Extend the modelling of ontological relationships in the Ontology Model Kind to

include the modelling of “composition” relationship. The difference in semantics

between “composition” and “aggregation” was also highlighted.

5. Fix the following notational errors:

An idle state or a decision point in the Tuple-Centre Behaviour Diagram (which

is basically a UML State Chart) should be represented as a circle and not a

diamond , to adhere to UML notation.

Each lifeline in the Interaction Protocol Diagram and Agent-TC Interaction

Diagram of the Agent Interaction Model Kind should represent an agent instance

and not an agent class. Accordingly, there should be a colon (:) in front of the

agent class name in the rectangle above the lifeline.

7.2.3.2. Refinements of MOBMAS as a result of the second

expert review

1. Revise step “Develop System Task Model” and step “Analyse Organisational

Context” of the “Analysis” activity (Section 6.2) to avoid any overlap in the

applicable conditions of these steps. Specifically, in the initial version of MOBMAS,

step “Develop System Task Model” was recommended if

“…the target MAS is a processing application system that does not exhibit any

specific and apparent human organisational structure”,

288

while step “Analyse Organisational Context” was suggested if
“… the target MAS aims to mimic or support a human-like organisation and the

human organisational structure is clear”.

In the refined version of MOBMAS, the developer was recommended to “Analyse

Organisational Context” if
“… the target application satisfies all of the following conditions.

The structure of the real-world organisation is known and clear.

The real-world organisational structure is well-established, not likely to change,

and has proven or been accepted to be an effective way to function. Accordingly, it

is desirable for the future MAS to mimic this existing structure.”

and to “Develop System Task Model” if
“…the target application does not satisfy all of the above conditions, or if the

developer is unsure of whether the target application satisfies all of these conditions.”

2. Change the naming convention of “system-task” from “to do something” (which

sounds like an objective) to “do something” (which sounds more like an activity, e.g.

“Receive user query” or “Get information from resources”).

3. Extend step “Develop Agent Behaviour Model” of the “Agent Internal Design” and

step “Develop Agent Interaction Model” of the “Agent Interaction Design” to

consider the adoption, and allow the developer to adopt, various techniques for

conflict resolution within agent classes and between agent classes. Recommended

techniques included priority conventions (Ioannidis and Sellis 1989), constraint

relaxation (Sathi and Fox 1989), arbitration (Steep et al. 1981) and evidential

reasoning (Carver and Lesser 1995), negotiation (Sycara 1988), voting (Ephrati and

Rosenschein 1991), and standardization and social rules (Shoham and Tennenholtax

1992).

4. Extend step “Select Interaction Mechanism” of the “Agent Interaction Design”

activity to add a new criterion for the comparison between the direct interaction

mechanism via ACL and the indirect interaction mechanism via tuplespace/tuple-

centre: security control. This criterion examines how the two mechanisms differ in

their control and implementation of security.

289

5. Extend step “Develop Agent Interaction Model” of the “Agent Interaction Design”

activity to consider the modes of synchronisation in agent interaction. Two common

modes of synchronisation were described: synchronous and asynchronous.

6. Extend step “Identify agent-environment interface requirements” of the

“Architecture Design” activity to include:

description of the different types of interactions between an agent and its

environment (namely, perception, effect and communication with other agents);

consideration of the differences between physical and virtual environments in

term of the requirements of the agents’ sensor and effector; and

consideration of the requirements of inter-agent communications.

7. Allow the developer to adopt any ontology modelling languages for the Ontology

Model Kind. UML was only used by MOBMAS for illustration purpose.

8. Mention the possibility of a complex tree structure in the System Task Diagram of

System Task Model Kind.

9. Extend step “Specify Resources” of the “MAS Organisation Design” activity to

discuss the distinction between those resources which belong internally to the MAS

system, and those resources which exist externally and are available to agents in

other systems.

10. Change the notation of AND/OR decomposition in the System Task Diagram of

System Task Model Kind from the uncommon notation introduced by TROPOS

(Figure 7.2) to the well-known notation of AND/OR graphs (Figure 7.1).

Figure 7.1 – Notation of AND/OR Graphs

Figure 7.2 – TROPOS notation for AND/OR decomposition

AND Decomposition OR Decomposition

AND Decomposition OR Decomposition

290

7.3. APPLICATION OF MOBMAS
After MOBMAS was refined by Step 1 – “Obtain expert reviews” (Section 7.2), it was

further evaluated and refined by Step 2 – “Using MOBMAS on a test application” (cf.

Section 4.6). In this step, MOBMAS was given to two external developers who

sequentially applied the methodology on a “Peer-to-Peer Information Sharing”

application (Appendix H) and evaluated the methodology according to their experience

of usage. The obtained feedback was investigated to refine MOBMAS into its final

version as presented in Chapter 6. Compared to the expert reviews, the application of

MOBMAS aimed to evaluate the methodology at a more detailed and elaborate level,

specifically at every step and every model kind of the methodology.

Section 7.3.1 firstly describes the procedures of MOBMAS application. Section 7.3.2

then provides biographic information about each external developer. Section 7.3.3

finally reports on the refinements of MOBMAS as a consequence of the developers’

evaluation.

7.3.1. Application procedures
Each of the two developers was provided with a full documentation of MOBMAS and

requested to:

apply it on a test application;

produce a design of MAS by using the methodology and generate a number of

major models to illustrate this design; and

evaluate the methodology based on the usage of the methodology. Each developer

was asked to:

identify the strengths of the methodology (optional);

identify the areas for improvement of the methodology;

recommend how to improve these areas (optional);

rate the “ease of understanding” and “ease of following” of each step of the

methodology on a High-Medium-Low scale; and

rate the “ease of understanding” of each model kind of the methodology on a

High-Medium-Low scale.

291

To help the developers to systematically and thoroughly record their evaluation, an

evaluation form was designed. The form consists of five parts, each collecting the

developers’ evaluation of each activity of the methodology. The full evaluation form

can be found in Appendix G.

MOBMAS was applied by the two developers in a sequential order. Evaluation from the

first developer was obtained and used to refine MOBMAS before the second developer

was asked to apply and evaluate this refined version. Reasons for this sequential

application process are the same as those stated for the expert reviews in Section 7.2.1:

to prevent the possibility of the two developers identifying the same areas for

improvement of MOBMAS; and

to help identifying new areas of improvement that potentially arose from the

refinement of MOBMAS after the first application.

A face-to-face meeting was organised with each developer at the end of each

application to get a walkthrough of his feedback. After MOBMAS was refined in

accordance with each developer’s feedback, follow-up meetings and email

communication were carried out with the developer to ensure that he was satisfied with

the refinement made to the methodology. In addition, the refinements made to

MOBMAS as a result of the second developer’s feedback were also discussed with the

first developer to ensure that no conflicts of opinions incurred.

7.3.2. Developers’ biography
The two developers who participated in the study were Dr. Ghassan Beydoun (first

developer) and Dr. Cesar Gonzalez-Perez (second developer). Both developers have

extensive knowledge and experience in software engineering in general and AO

software engineering in particular.

Dr. Ghassan Beydoun is currently a post-doc research fellow at the University of

New South Wales, Sydney. He is working on a project funded by the Australian

Research Council, entitled “FAME – Futuristic Agent-Oriented Method

Engineering”. The project aims to develop a repository of AOSE method

components that can be used to build a MAS development methodology that suits

292

the application or organisation at hand. Dr. Beydoun’s expertise also covers the

realm of ontology, given his active research involvement in the areas of knowledge

engineering, knowledge management, knowledge representation and acquisition.

Although Dr Beydoun’s research’s location is the same as that of the conductor of

this PhD study, he was not involved in the design and execution of this research in

any way, except for being an independent tester.

Dr. Cesar Gonzalez-Perez is currently a post-doc research fellow at the University of

Technology, Sydney. He is another participant in the FAME project funded by the

Australian Research Council, “Futuristic Agent-Oriented Method Engineering”. His

extensive knowledge and experience on software engineering include the

involvement in developing the “International Standard Metamodel for Software

Development Methodologies” (in progress) and “OPEN/Metis” - an integral, object-

oriented software development framework. Dr. Gonzalez-Perez is also the founder

and former technical director of NECO, a company based in Spain specialising in

software development. While working at the same university as the two expert

reviewers, Prof. Brian Henderson-Sellers and Prof. Mary-Anne Williams (c.f.

Section 7.2.2), Dr Beydoun did not have any communication with these reviewers

with regard to MOBMAS. His testing of the methodology was completely

independent and unbiased by the preceeding expert reviews.

7.3.3. Refinements of MOBMAS
This section documents the refinements made to MOBMAS as a result of each

developer’s comments. Only the refinements made to the steps and model definitions of

MOBMAS are presented. Refinements made to the writing style or wording to improve

MOBMAS’ comprehensibility, coherence and expressiveness are not listed. The two

developers’ comments are presented in Appendix G. These comments were recorded via

an evaluation form. Appendix H documents the “Peer-to-Peer Information Sharing”

application on which MOBMAS was applied, and the major models created by each

developer for the application.

293

7.3.3.1. Refinements of MOBMAS as a result of Developer 1’s

comments

1. Make step “Develop System Task Model” a compulsory step in the “Analysis”

activity (Section 6.2). Step “Analyse Organisational Context”, however, remained

optional. The applicable condition of the latter step was left unchanged.

2. Extend step “Develop Role Model” of the “Analysis” activity to highlight the need

for spiral, iterative development of System Task Model and Role Model.

3. Extend step “Develop Agent Class Model” of the “MAS Organisation Design” and

step “Develop Agent Interaction Model” of the “Agent Interaction Design” activity

to provide support for the modelling of agent class’ dynamics.

4. Extend step “Develop Ontology Model” of the “Analysis” activity to include the

discussion of the use of ontologies to validate System Task Model and Role Model.

5. Extend step “Identify Ontology Manage Roles” of the “Analysis” activity to

describe an alternative design approach where no ontology manager is needed.

Advantages and disadvantages of this alternative design were documented.

6. Move step “Specify MAS Organisational Structure” of the “MAS Organisation

Design” activity in front of step “Develop Agent Class Model” (of the same activity)

to make the steps easier to follow.

7. Extend step “Specify MAS Organisational Structure” of the “MAS Organisation

Design” activity to consider the “hybrid” style of organisational structure.

8. Merge steps “Identify Resource Application Ontologies” and “Develop Resource

Application Ontologies” of the “MAS Organisation Design” activity into one step

“Extend Ontology Model To Include Resource Application Ontologies”.

294

9. Make steps “Specify resources” and “Extend Ontology Model To Include Resource

Application Ontologies” of the “MAS Organisation Design” activity optional,

because these steps are only applicable to heterogeneous systems.

10. Remove step “Develop System Overview Diagram” from the “MAS Organisation

Design” activity. Instead, a sub-step “Update Agent Class Model” was defined

within step “Specify resources” of the same activity to show the overall architecture

of MAS.

11. Simplify Agent Class Diagram by omitting various compartments which were

initially created to store the names of Agent Plan Templates for an agent class. The

Agent Behaviour Model Kind was instead used to capture the specification of these

Agent Plans.

12. Rename the relationships between agent classes in the Agent Relationship Diagram

from “association” to “acquaintance” to clarify that these relationships represent

interaction pathways.

13. Extend step “Specify Agent Class’ Belief Conceptualisation” of the “Agent Internal

Design” activity to discuss the dynamics of the belief conceptualisations and belief

state of agents at run-time.

14. Revise step “Develop Agent Behaviour Model” of the “Agent Internal Design”

activity to re-define the information to be specified in the Agent Plan Template.

Instead of modelling the exact sequences of actions to be performed by an agent to

achieve an agent-goal, an Agent Plan Template should model a repository of

potential actions and/or sub-agent-goals that may be selected by the agent to perform

to achieve the target agent-goal at run-time. The selection of which actions to

perform, and the sequencing of these actions, are delegated to the planners or

reasoners or means-end analysers that are built in to the agent architecture/platform.

The sequencing of sub-agent-goals may be modelled for an Agent Plan if this

sequence is fixed and determinable at design time.

295

15. Extend sub-step “Develop Agent Plan Templates” of step “Develop Agent

Behaviour Model” of the “Agent Internal Design” activity to specify:

“commitment strategy” for each Agent Plan Template; and

“conflict resolution strategy” to deal with conflicts between agent-goals (if any).

16. Extend step “Develop Agent Interaction Model” of the “Agent Interaction Design”

step to:

 address the identification of “communicative actions” in the Agent Plan

Templates and Reflexive Rule Specifications; and

highlight the need for consistency checking between Role Model, Agent Class

Model and Agent Interaction Model (i.e. checking whether all the acquaintances

between roles and agent classes have been captured, and whether all the

authority relationships previously defined for roles and agent are still valid).

17. Extend step “Identify agent-environment interface requirements” of the

“Architecture Design” activity to consider two other characteristics of the perception

and effect activities of agent classes: the degree of complexity of the perceptual

inputs and effect outputs, and the interaction with human user.

18. Revise step “Select agent architecture” of the “Architecture Design” activity to

remove the statement that all agent architectures listed in MOBMAS are commercial

products. Some agent architectures are actually available to only the academic realm

(e.g. SOAR).

19. Extend step “Specify MAS Infrastructure Facilities” of the “Architecture Design”

activity to address the case when MASs are closed and run on a single platform.

20. Remove the notation for agent mobility from the MAS Deployment Diagram, since

MOBMAS does not address mobile agents. However, the capability of the MAS

Deployment Diagram to model agent mobility is noted in a footnote.

296

7.3.3.2. Refinements of MOBMAS as a result of Developer 2’s

comments

1. Provide an explicit definition for the term “(MAS) environment”.

2. Use the term “model kind” to refer to the definition of a class of models. The term

“model” is used to mean a particular work product that is created by the developer at

the design time.

3. Use the term “activity” to refer to a group of steps in MOBMAS instead of the term

“phase” as used in the earlier version of MOBMAS. This change helps to avoid the

implication of temporal ordering between the activities (MOBMAS adopts an

iterative and incremental development life cycle where the developer is allowed to

move back and forth across activities).

4. Refine the diagram that shows MOBMAS’ conceptual framework (i.e. Figure 6.1) to

model the cardinality indicators of the relationships between MOBMAS’

abstractions.

5. Rename the notational components of the Agent Behaviour Model Kind as “Agent

Plan Template” and “Reflexive Rule Specification” instead of “Agent Plan” and

“Reflexive Courses of Actions”.

6. Use the term “authority relationship” to refer to the organisational relationships

between roles (e.g. peer-to-peer relationship or superior-subordinate relationship)

instead of the term “control regime” as used in the earlier version of MOBMAS.

7. Use the term “information sources” to refer to non-agent resources instead of

“knowledge sources”. The former term is more general than the latter because it

encompasses resources such as databases and web servers that are not necessarily

knowledge sources.

297

8. Use the term “belief conceptualisation” to refer to the conceptualisation of an agent

class’ beliefs instead of the term “belief set”. The latter may be misunderstood as a

set of beliefs rather than a conceptualisation of beliefs.

9. Revise step “Develop System Task Model” of the “Analysis” activity to delegate the

identification of system-tasks to a separate Requirements Engineering effort (which

is not part of MOBMAS) instead of identifying system-tasks from system goals as in

the earlier version of MOBMAS. With this change, MOBMAS allows the developer

to identify system-tasks from any constructs, thereby supporting the development of

MASs that do not have clear goals.

10. Revise step “Analyse Organisational Context” of the “Analysis” activity to remove

the use of the term “real-world” when referring to the structure of the MAS’

organisational context. This term may mislead the readers into thinking of only the

“physical” world.

11. Refine the techniques for step “Develop Role Model” of the “Analysis” activity by:

making the heuristic “strong internal coherence and loose coupling” the primary

criterion for grouping system-tasks to roles;

considering the mapping of system-tasks to roles when the system-tasks are fully

and partially decomposed;

using the term “joint task” instead of “social task” to refer to a task that is

collectively carried out by multiple parties. The term “joint task” helps to avoid

any improper implications that may come with the term “social task”, e.g. the

existence of subjective or intersubjective spaces; and

documenting the cardinality of the mapping relationship between system-tasks

and role-tasks.

12. Revise Role Diagram and Agent Class Diagram to remove the use of guillemets in

the label of each compartment in these diagrams. This removal helps to avoid any

potential confusion with the UML stereotypes.

298

13. Revise step “Develop Ontology Model” of the “Analysis” activity to:

re-define an Application ontology as a specialisation of generic Domain

ontologies and Task ontologies, not a composition of these two ontologies as

inaccurately suggested in the earlier version of MOBMAS;

document the need for specifying cardinality of the relationships between

ontological concepts in the Ontology Diagram;

provide examples for each type of ontological relationships; and

recommend the developer to study the extensive literature on “ontological

mappings” for more options on the semantic correspondences between concepts

besides the three basic correspondences – “equivalent”, “subsumes” and

“intersects” which are listed in MOBMAS.

14. Use UML “dependency relationship” to depict ontological mappings in the

Ontology Diagram instead of UML “association relationship”.

15. Refine step “Identify Ontology Management Role” of the “Analysis” activity to note

that “ontology manager” agent classes may have been provided by the development

platform as built-in components. These agent classes therefore do not have to be

designed from scratch.

16. Extend step “Specify MAS Organisational Structure” of the “MAS Organisation

Design” activity to add “modularity” and “non-functional requirements support” as

additional factors to be considered when determining the organisational structure for

the target MAS.

17. Change the notation of the superior-subordinate relationship between roles in the

Role Diagram from Figure 7.3a to Figure 7.3b to improve its comprehensibility.

(a) (b)
Figure 7.3 – Old (a) and new (b) notation for superior-subordinate relationship between roles in Role

Diagram

control Role A Role B controlRole A Role B

299

18. Revise step “Develop Agent Class Model” of the “MAS Organisation Design”

activity to:

add “modularity” and “efficiency consideration” to the list of factors to be

considered when assigning multiple roles to a single agent class; and

remove the consideration of the computation complexity of each agent class and

the available processing power of each node (where the agent classes will be run)

when assigning multiple roles to a single agent class. This removal is necessary

because it is often unknown at the design time as to which hardware platform

will implement the MAS system.

19. Modify Agent Class Diagram to model each agent class’ dynamics as a property of

the agent class instead of the property of the roles played by the agent class.

20. Modify Resource Diagram to remove the modelling of “communication properties”

from the description of each resource, since these details (e.g. networking protocol

and network address) are normally not available at the design time.

21. Revise step “Extend Ontology Model To Include Resource Application Ontologies”

of the “MAS Organisation Design” activity to:

note that Resource Application ontologies can only be derived from the

conceptual schema of the information stored in the resource, not directly

corresponding to this conceptual schema; and

remove the guideline that, if a Resource Application ontology coincides with a

MAS Application ontology, the MAS Application ontology can be used in place

of the Resource Application ontology. Such a guideline will hinder the system’s

ability to accommodate future changes in the conceptual structure of the

resource.

22. Extend step “Specify Agent Class’ Belief Conceptualisation” of the “Agent Internal

Design” activity to discuss the different ways by which the changes in an agent’s

belief conceptualisation can be propagated to other agents at run-time.

300

23. Revise step “Develop Agent Behaviour Model” of the “Agent Internal Design”

activity to rename the two major styles of agent behaviour as “planning” and

“reflexive” instead of “proactive” and “reactive”. This change helps to avoid any

potential misunderstanding of the nature of these two styles. (“Proactive” and

“reactive” may be understood as the two different modes of triggering of a piece of

behaviour, while “planning” and “reflexive” refer to the two different levels of

complexity in agent reasoning exhibited in a piece of behaviour).

24. Extend step “Develop Agent Behaviour Model” of the “Agent Internal Design”

activity and step “Develop Agent Interaction Model” of the “Agent Interaction

Design” activity to address the case when the datatypes of the variables/arguments

are “basic” datatypes such as String and Integer. These datatypes do not need to be

defined in a MAS Application ontology.

25. Revise the “Agent Interaction Design” activity to re-classify the two major

mechanisms of agent interactions into “direct” and “indirect” mechanisms, instead

of “direct” and “tuplespace/tuple-centre” mechanisms as in the earlier version of

MOBMAS. The refined version of MOBMAS acknowledged that the

tuplespace/tuple-centre interaction method is only one of many methods of indirect

interaction, even though it is the most commonly used method.

26. Rename the last activity of MOBMAS as “Architecture Design” instead of

“Deployment Design” as in the earlier version of MOBMAS. This new name

describes more accurately the steps specified in this activity.

27. Refine step “Select Agent Architecture” of the “Architecture Design” activity by

merging the criterion “Size of knowledge base” (which was suggested for

consideration when selecting agent architecture for the target MAS) into criterion

“Support for scalability of agent”.

28. Introduce a new model kind, Resource Model Kind, which is depicted by the

Resource Diagram, and extend the Architecture Model Kind to include Agent-

Environment Interface Requirements Specification and Infrastructure Facilities

Specification notational components. This modification removed the need for an

301

Environment Model Kind, which was originally defined to encompass the three

notational components Resource Diagram, Agent-Environment Interface

Requirements Specification and Infrastructure Facilities Specification.

29. Extend Agent Relationship Diagram to model agent classes’ instantiation cardinality

(via the use of annotations next to each agent class’ name). This extension removed

the need for a separate Agent Instantiation Diagram as recommended in the earlier

version of MOBMAS.

30. Refine step “Identify agent-environment interface requirements” of the

“Architecture Design” activity to note that, when interacting with a physical

environment, the sensor and effector of an agent needs to able to connect to, and

control, the drivers of hardware components such as thermostats, infra-red sensor,

wheels and grippers.

7.4. FEATURE ANALYSIS OF MOBMAS
After MOBMAS was refined into its final version by Step 2 – “Using MOBMAS on a

test application” (Section 7.3), Step 3 – “Performing a feature analysis of MOBMAS”

was conducted on this final version. The objectives of this step were to (cf. Section 4.6):

verify whether MOBMAS is able to achieve its goal, that is, to provide support for

ontology-based MAS development and various other important AOSE

methodological requirements that are documented in Section 5.4.3 (which include

the required features, AOSE steps and modelling concepts);

reveal the origin of MOBMAS’ techniques and model definitions; and

compare MOBMAS with the existing AOSE methodologies in term of specific

evaluation criteria. These criteria had previously been used to evaluate the existing

AOSE methodologies in Section 5.4. The comparison also highlights the various

ontology-related strengths of MOBMAS, which are not provided, or provided to a

lesser extent, by the existing AOSE methodologies.

Section 7.4.1 firstly examines the support of MOBMAS for its methodological

requirements (including the support for ontology-based MAS development) and reports

302

on the origin of MOBMAS techniques and model definitions. Section 7.4.2 then

compares MOBMAS with the existing AOSE methodologies.

7.4.1. MOBMAS’ Support for Methodological

Requirements
The methodological requirements of MOBMAS consist of the features, steps and

modelling concepts that are desirable to the development process, techniques and

model kinds of MOBMAS. These requirements have been shown in Tables 5.33, 5.34

and 5.35 of Chapter 5 respectively.

The clarification of MOBMAS’ support for the required features is presented in Table

7.4. Feature “Support for ontology-based MAS development”, in particular, is examined

in detail in Section 7.4.1.1.

The support of MOBMAS for the required steps is documented in Table 7.5. The table

shows the correspondences between MOBMAS’ actual steps and the required AOSE

steps (listed in Table 5.34). The various AOSE steps that were previously identified as

desirable ontology-related steps (cf. Section 5.5) have been highlighted with an

adornment (O).

Table 7.6 lastly clarifies MOBMAS’ support for the required modelling concepts. For

each concept, the table shows the name of the model kind(s) of MOBMAS which

represents or captures the concept.

In all three tables (Tables 7.4, 7.5 and 7.6), column “Origins of MOBMAS techniques

and modelling definitions” provides an account of:

the techniques and/or model definitions that have been reused by MOBMAS

from the existing AOSE methodologies (i.e. “REUSE” subheading). The names

of these source methodologies are shown under the “Sources” subheading. They

are a subset of the “potential sources of techniques and model definitions”

previously identified in Tables 5.33, 5.34 and 5.35 of Chapter 5;

303

the enhancements that were made by MOBMAS on the reused techniques

and/or model definitions (i.e. “ENHANCEMENT” subheading); and/or

the new techniques and/or model definitions that were developed by MOBMAS

and not found in the existing AOSE methodologies (i.e. “NEW” subheading).

The need for some of these techniques and model definitions has previously

been identified in Tables 5.33, 5.34 and 5.35 of Chapter 5.

304

Table 7.4 – MOBMAS’ support for the required features (cf. Table 5.33)

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el
 d

ef
in

iti
on

s

R
E

U
SE

:
A

llo
w

in
g

th
e

de
ve

lo
pm

en
t

pr
oc

es
s

to
 b

e
ite

ra
tiv

e
an

d
in

cr
em

en
ta

l
lif

e
cy

cl
e

w
ith

in
 a

nd
 a

cr
os

s
al

l
ph

as
es

.
So

ur
ce

s:
 M

AS
E,

 H
LI

M
,

PR
O

M
ET

H
EU

S,
 T

RO
PO

S
an

d
su

gg
es

tio
ns

 o
f s

ur
ve

y’
s

pa
rti

ci
pa

nt
s

(S
ec

tio
n

5.
3)

.

R
E

U
SE

:
Su

pp
or

tin
g

ve
rif

ic
at

io
n

an
d

va
lid

at
io

n
vi

a
co

ns
is

te
nc

y
ch

ec
ki

ng
 o

f
m

od
el

ki

nd
s.

So
ur

ce
s:

M

AS
E,

M

AS
SI

VE
,

IN
G

EN
IA

S,

PR
O

M
ET

H
EU

S,
 P

AS
SI

, A
D

EL
FE

 a
nd

 T
RO

PO
S.

E
N

H
A

N
C

E
M

E
N

T
:

Pr
ov

id
in

g
sp

ec
ifi

c
gu

id
el

in
es

 f
or

 th
e

co
ns

is
te

nc
y

ch
ec

ki
ng

 b
et

w
ee

n
pa

rti
cu

la
r m

od
el

 k
in

ds

Se
e

Ta
bl

e
7.

5

Se
e

Ta
bl

e
7.

6

Se
e

Ta
bl

e
7.

5

R
E

U
SE

:
Ite

ra
tiv

el
y

re
fin

in
g

an
d

ex
pa

nd
in

g
th

e
di

ff
er

en
t

m
od

el
s

of
 t

he

m
et

ho
do

lo
gy

th

ro
ug

ho
ut

di

ff
er

en
t

ph
as

es

of

th
e

de
ve

lo
pm

en
t

pr
oc

es
s.

So
ur

ce
s:

 A
ll

ex
is

tin
g

m
et

ho
do

lo
gi

es
 e

xc
ep

t f
or

 S
O

D
A.

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

ad
op

ts
 a

n
ite

ra
tiv

e
an

d
in

cr
em

en
ta

l l
ife

cy

cl
e

M
O

B
M

A
S

pe
rf

or
m

s c
on

si
st

en
cy

 c
he

ck
in

g
be

tw
ee

n
m

an
y

of
 it

s m
od

el
 k

in
ds

 (e
.g

. b
et

w
ee

n
A

ge
nt

 C
la

ss

M
od

el
 K

in
d,

 A
ge

nt
 B

eh
av

io
ur

 M
od

el
 K

in
d,

 A
ge

nt

In
te

ra
ct

io
n

M
od

el
 K

in
d

an
d

O
nt

ol
og

y
M

od
el

 K
in

d)

Se
e

Ta
bl

e
7.

5

Se
e

Ta
bl

e
7.

6

Se
e

Ta
bl

e
7.

5

A
ll

m
od

el
s i

n
M

O
B

M
A

S
ar

e
ite

ra
tiv

el
y

re
fin

ed
 a

nd

ex
pa

nd
ed

 th
ro

ug
ho

ut
 o

f t
he

 sy
st

em
 d

ev
el

op
m

en
t

pr
oc

es
s (

e.
g.

 R
ol

e
M

od
el

, A
ge

nt
 C

la
ss

 M
od

el
,

En
vi

ro
nm

en
t M

od
el

 a
nd

 O
nt

ol
og

y
M

od
el

)

R
eq

ui
re

d
fe

at
ur

es
 o

f M
O

B
M

A
S

de
ve

lo
pm

en
t

pr
oc

es
s

1.
Sp

ec
ifi

ca
tio

n
of

 a
 sy

st
em

 d
ev

el
op

m
en

t
lif

ec
yc

le

2.
Su

pp
or

t f
or

 v
er

ifi
ca

tio
n

an
d

va
lid

at
io

n

3.
Sp

ec
ifi

ca
tio

n
of

 st
ep

s f
or

 th
e

de
ve

lo
pm

en
t

pr
oc

es
s

4.
Sp

ec
ifi

ca
tio

n
of

 m
od

el
 k

in
ds

 a
nd

/o
r n

ot
at

io
na

l
co

m
po

ne
nt

s

5.
Sp

ec
ifi

ca
tio

n
of

 te
ch

ni
qu

es
 a

nd
 h

eu
ris

tic
s f

or

pe
rf

or
m

in
g

ea
ch

 p
ro

ce
ss

 st
ep

 a
nd

 p
ro

du
ci

ng

ea
ch

 m
od

el
 k

in
d

6.
Su

pp
or

t f
or

 re
fin

ab
ili

ty

305

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el

de
fin

iti
on

s

R
E

U
SE

:
Pr

ov
id

in
g

a
co

m
pr

eh
en

si
ve

 s
et

 o
f

m
od

el
 k

in
ds

 th
at

 r
ep

re
se

nt
 t

he

ta
rg

et
 s

ys
te

m
 f

ro
m

 b
ot

h
st

at
ic

 a
sp

ec
ts

 a
nd

 d
yn

am
ic

 a
sp

ec
ts

. T
he

m

od
el

 k
in

ds
 sh

ou
ld

 a
ls

o
be

 a
bl

e
to

 c
ap

tu
re

/re
pr

es
en

t a
 w

id
e

va
rie

ty

of
 c

on
ce

pt
s.

So
ur

ce
s:

 M
AS

E,
 IN

G
EN

IA
S,

 H
LI

M
, P

RO
M

ET
H

EU
S,

PA

SS
I,

AD
EL

FE
,

C
O

M
O

M
AS

,
M

AS
-C

om
m

on
K

AD
S

an
d

TR
O

PO
S.

R
E

U
SE

:
-

Pr
ov

id
in

g
ex

pl
an

at
io

n
of

th

e
se

m
an

tic
s

an
d

sy
nt

ax

of

th
e

m
od

el
lin

g
no

ta
tio

n.
 S

ou
rc

es
:

M
AS

E,
 G

AI
A,

 P
RO

M
ET

H
EU

S
an

d
TR

O
PO

S.
-

A
do

pt
in

g
U

M
L

an
d

A
U

M
L

no
ta

tio
n

w
hi

ch
 a

re
 f

am
ili

ar
 to

 m
os

t
sy

st
em

 d
ev

el
op

er
s.

So
ur

ce
s:

 P
AS

SI
 a

nd
 A

D
EL

FE
.

R
E

U
SE

:
A

llo
w

in
g

th
e

de
ve

lo
pe

r t
o

ea
si

ly
 tr

an
sf

or
m

 b
et

w
ee

n
th

e
m

od
el

 k
in

ds

an
d

no
ta

tio
na

l c
om

po
ne

nt
s,

or
 a

t l
ea

st
 p

ar
tia

lly
 c

re
at

e
a

m
od

el
 k

in
d

or
 n

ot
at

io
na

l c
om

po
ne

nt
 fr

om
 th

e
in

fo
rm

at
io

n
pr

es
en

t i
n

an
ot

he
r.

So
ur

ce
s:

 A
ll

ex
ist

in
g

m
et

ho
do

lo
gi

es
 e

xc
ep

t C
AS

SI
O

PE
IA

 a
nd

 M
AS

-
C

om
m

on
K

AD
S.

E
N

H
A

N
C

E
M

E
N

T
:

Su
gg

es
tin

g
sp

ec
ifi

c
gu

id
el

in
es

 f
or

 t
he

 t
ra

ns
fo

rm
at

io
n

be
tw

ee
n

pa
rti

cu
la

r m
od

el
 k

in
ds

 a
nd

 n
ot

at
io

na
l c

om
po

ne
nt

s

R
E

U
SE

:
D

oc
um

en
tin

g
th

e
ne

ed
 fo

r t
he

 d
iff

er
en

t m
od

el
 k

in
ds

 a
nd

 n
ot

at
io

na
l

co
m

po
ne

nt
s w

hi
ch

 re
pr

es
en

t t
he

 sa
m

e
m

od
el

lin
g

co
nc

ep
t(s

) t
o

be

co
ns

is
te

nt
 w

ith
 e

ac
h

ot
he

r.
So

ur
ce

s:
 M

AS
E,

 S
O

D
A,

 G
AI

A,

IN
G

EN
IA

S,
 H

LI
M

, P
RO

M
ET

H
EU

S,
 P

AS
SI

, A
D

EL
FE

 a
nd

TR

O
PO

S.
E

N
H

A
N

C
E

M
E

N
T

:
Pr

ov
id

in
g

sp
ec

ifi
c

gu
id

el
in

es

fo
r

th
e

co
ns

is
te

nc
y

ch
ec

ki
ng

be

tw
ee

n
pa

rti
cu

la
r m

od
el

 k
in

ds
 a

nd
 n

ot
at

io
na

l c
om

po
ne

nt
s

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

m
od

el
 k

in
ds

 c
an

 re
pr

es
en

t t
he

 ta
rg

et
 sy

st
em

 fr
om

bo

th
 st

at
ic

 a
sp

ec
ts

 su
ch

 a
s a

ge
nt

/ro
le

 a
cq

ua
in

ta
nc

es
, a

ge
nt

in

te
rn

al
 st

ru
ct

ur
e

an
d

sy
st

em
 st

ru
ct

ur
e,

 a
nd

 fr
om

 d
yn

am
ic

as

pe
ct

s s
uc

h
as

 in
te

ra
ct

io
n

pr
ot

oc
ol

s a
nd

 a
ge

nt
 b

eh
av

io
ur

.
M

O
B

M
A

S
m

od
el

 k
in

ds
 c

an
 a

ls
o

ca
pt

ur
e/

re
pr

es
en

t a
 w

id
e

va
rie

ty
 o

f c
on

ce
pt

s (
cf

. T
ab

le
 7

.3
)

M
O

B
M

A
S

cl
ea

rly
 d

ef
in

es
 th

e
se

m
an

tic
s a

nd
 sy

nt
ax

 o
f i

ts

no
ta

tio
n.

 E
xa

m
pl

es
 a

re
 p

ro
vi

de
d

fo
r a

ll
m

od
el

 k
in

ds
 a

nd

no
ta

tio
na

l c
om

po
ne

nt
s

M
O

B
M

A
S

pr
ov

id
es

 te
ch

ni
qu

es
 fo

r t
ra

ns
fo

rm
in

g
be

tw
ee

n
its

m

od
el

 k
in

ds
 a

nd
 n

ot
at

io
na

l c
om

po
ne

nt
s (

e.
g.

 fr
om

 S
ys

te
m

Ta

sk
 M

od
el

 K
in

d
to

 R
ol

e
M

od
el

 K
in

d,
 fr

om
 R

ol
e

M
od

el

K
in

d
an

d
O

nt
ol

og
y

M
od

el
 K

in
d

to
 A

ge
nt

 C
la

ss
 M

od
el

 K
in

d,

an
d

fr
om

 R
ol

e
D

ia
gr

am
 a

nd
 R

es
ou

rc
e

D
ia

gr
am

 to
 A

ge
nt

R

el
at

io
ns

hi
p

D
ia

gr
am

)

M
O

B
M

A
S

pr
ov

id
es

 ru
le

s f
or

 c
on

si
st

en
cy

 c
he

ck
in

g
am

on
g

m
an

y
of

 it
s m

od
el

 k
in

ds
 (e

.g
. b

et
w

ee
n

A
ge

nt
 B

eh
av

io
ur

M

od
el

 K
in

d
an

d
O

nt
ol

og
y

M
od

el
 K

in
d,

 b
et

w
ee

n
A

ge
nt

In

te
ra

ct
io

n
M

od
el

 K
in

d
an

d
O

nt
ol

og
y

M
od

el
 K

in
d,

 b
et

w
ee

n
A

ge
nt

 C
la

ss
 M

od
el

 K
in

d
an

d
A

ge
nt

 B
eh

av
io

ur
 M

od
el

 K
in

d,

an
d

be
tw

ee
n

Sy
st

em
 T

as
k

M
od

el
 K

in
d,

 R
ol

e
M

od
el

 K
in

d
an

d
O

nt
ol

og
y

M
od

el
 K

in
d)

R
eq

ui
re

d
fe

at
ur

es
 o

f M
O

B
M

A
S

m
od

el
 d

ef
in

iti
on

s

1.
H

ig
h

de
gr

ee
 o

f c
om

pl
et

en
es

s/
ex

pr
es

si
ve

ne
ss

2.
H

ig
h

de
gr

ee
 o

f f
or

m
al

is
at

io
n/

pr
ec

is
en

es
s

3.
Pr

ov
is

io
n

of
 g

ui
de

lin
es

/lo
gi

cs
 fo

r m
od

el

de
riv

at
io

n

4.
G

ua
ra

nt
ee

 o
f c

on
si

st
en

cy

306

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el

de
fin

iti
on

s

R
E

U
SE

:
-

M
od

el
lin

g
ag

en
t

cl
as

se
s

as
 e

nt
iti

es
 t

ha
t

en
ca

ps
ul

at
e

ro
le

s.
So

ur
ce

s:
 M

AS
E,

 M
AS

SI
VE

, S
O

D
A,

 B
D

IM
, G

AI
A,

 M
ES

SA
G

E,
IN

G
EN

IA
S

an
d

C
AS

SI
O

PE
IA

.
-

M
od

el
lin

g
ag

en
t

cl
as

se
s

as
 e

nt
iti

es
 t

ha
t

en
ca

ps
ul

at
e

go
al

s.
So

ur
ce

s:

TR
O

PO
S,

M

ES
SA

G
E,

PA

SS
I,

H
LI

M
,

M
EI

an

d
IN

G
EN

IA
S.

N
E

W
:

-
M

od
el

lin
g

ag
en

t
cl

as
se

s’
 b

eh
av

io
ur

 v
ia

 m
od

ul
ar

 a
ge

nt
 p

la
n

te
m

pl
at

es
 a

nd
 re

fle
xi

ve
 ru

le
 sp

ec
ifi

ca
tio

ns
-

M
od

el
lin

g
ag

en
t

cl
as

se
s’

 b
el

ie
f

co
nc

ep
tu

al
is

at
io

n
as

 b
ei

ng
co

m
po

se
d

of
 o

nt
ol

og
ie

s

R
E

U
SE

:
N

ot
 c

ap
tu

rin
g

to
o

m
an

y
co

nc
ep

ts
 i

n
on

e
si

ng
le

 m
od

el
 k

in
d.

A

do
pt

in
g

w
el

l-k
no

w
n

no
ta

tio
n.

 I
f

ne
w

 n
ot

at
io

n
is

 u
se

d,
 i

t
sh

ou
ld

 h
av

e
si

m
pl

e
se

m
an

tic
s a

nd
 sy

nt
ax

. S
ou

rc
es

: A
ll

ex
is

tin
g

m
et

ho
do

lo
gi

es
 e

xc
ep

t S
O

D
A

an
d

IN
G

EN
IA

S.

R
E

U
SE

:
-

D
ev

el
op

in
g

R
ol

e
M

od
el

 K
in

d
at

 v
ar

io
us

 l
ev

el
s

of
 d

et
ai

l.
So

ur
ce

s:
 G

AI
A

an
d

M
AS

E.
-

D
ev

el
op

in
g

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

at
 v

ar
io

us
 l

ev
el

s
of

de

ta
il.

 S
ou

rc
e:

 B
D

IM
.

N
E

W
:

D
ev

el
op

in
g

O
nt

ol
og

y
M

od
el

 K
in

d
at

 v
ar

io
us

 le
ve

ls
 o

f d
et

ai
l

R
E

U
SE

:
M

ak
in

g
it

po
ss

ib
le

 to
 re

us
e

th
e

fo
llo

w
in

g
m

od
el

lin
g

el
em

en
ts

:
ro

le
 p

at
te

rn
s,

pr
ot

oc
ol

 t
em

pl
at

es
 a

nd
 o

rg
an

is
at

io
na

l
st

ru
ct

ur
e.

So

ur
ce

s:
 M

AS
E,

 M
AS

SI
VE

,
G

AI
A,

 B
D

IM
,

PA
SS

I
an

d
M

AS
-

C
om

m
on

K
AD

S.

N
E

W
:

Pr
om

ot
in

g
re

us
ab

ili
ty

 w
ith

 t
he

 u
se

 o
f

on
to

lo
gy

 (
cf

.
Se

ct
io

n
7.

4.
2.

4)

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

m
od

el
s a

ge
nt

 c
la

ss
es

 a
s e

nt
iti

es
 th

at
 e

nc
ap

su
la

te

ro
le

s,
go

al
s,

 a
ge

nt
 p

la
n

te
m

pl
at

es
, r

ef
le

xi
ve

 ru
le

sp

ec
ifi

ca
tio

ns
 a

nd
 o

nt
ol

og
ie

s)

Ea
ch

 M
O

B
M

A
S

m
od

el
 k

in
d

an
d

no
ta

tio
na

l c
om

po
ne

nt

re
pr

es
en

ts
 a

 m
an

ag
ea

bl
e

nu
m

be
r o

f c
on

ce
pt

s

M
an

y
m

od
el

 k
in

ds
 o

f M
O

B
M

A
S

ca
n

be
 d

ev
el

op
ed

 a
t

va
rio

us
 le

ve
ls

 o
f d

et
ai

l (
e.

g.
 A

ge
nt

 C
la

ss
 M

od
el

 K
in

d,
 R

ol
e

M
od

el
 K

in
d

an
d

O
nt

ol
og

y
M

od
el

 K
in

d)

M
O

B
M

A
S

al
lo

w
s t

he
 d

ev
el

op
er

 to
 re

us
e

va
rio

us
 m

od
el

lin
g

el
em

en
ts

 su
ch

 a
s r

ol
e

pa
tte

rn
s,

pr
ot

oc
ol

 te
m

pl
at

es
,

or
ga

ni
sa

tio
na

l s
tru

ct
ur

es
 a

nd
 o

nt
ol

og
ie

s

R
eq

ui
re

d
fe

at
ur

es
 o

f M
O

B
M

A
S

m
od

el
 d

ef
in

iti
on

s

5.
Su

pp
or

t f
or

 m
od

ul
ar

ity

6.
M

an
ag

ea
bl

e
nu

m
be

r o
f c

on
ce

pt
s i

n
ea

ch

m
od

el
 k

in
d

an
d

ea
ch

 n
ot

at
io

na
l c

om
po

ne
nt

7.
M

od
el

 k
in

ds
 e

xp
re

ss
ed

 a
t v

ar
io

us
 le

ve
l o

f
ab

st
ra

ct
io

n
an

d
de

ta
il

8.
Su

pp
or

t f
or

 re
us

e

307

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el
 d

ef
in

iti
on

s

R
E

U
SE

:
-

M
od

el
lin

g
ag

en
t c

la
ss

es
 a

s e
nt

iti
es

 w
ith

 p
ur

po
se

s,
w

hi
ch

 a
re

 re
pr

es
en

te
d

as
 a

ge
nt

 r
ol

es
 a

nd
 g

oa
ls

.
So

ur
ce

s:
 M

AS
E,

 M
AS

SI
VE

,
SO

D
A,

 G
AI

A,
PR

O
M

ET
H

EU
S,

 P
AS

SI
, I

N
G

EN
IA

S
an

d
AD

EL
FE

.
-

M
od

el
lin

g
ag

en
t

cl
as

se
s

as
 e

nt
iti

es
 w

ith
 i

nt
er

na
l

co
nt

ro
l,

w
hi

ch
 i

s
ca

pt
ur

ed

vi
a

ag
en

t
be

lie
fs

/k
no

w
le

dg
e

an
d

pl
an

s.
So

ur
ce

s:
PR

O
M

ET
H

EU
S,

 M
ES

SA
G

E,
 M

AS
-C

om
m

on
K

AD
S,

 T
RO

PO
S,

 B
D

IM
,

H
LI

M
, M

EI
, C

O
M

O
M

AS
 a

nd
 IN

G
EN

IA
S.

R
E

U
SE

:
Su

pp
or

tin
g

ad
ap

ta
bi

lit
y

by

co
ns

id
er

in
g

le
ar

ni
ng

in

se

le
ct

in
g

ag
en

t
ar

ch
ite

ct
ur

e.
 S

ou
rc

es
: M

AS
SI

VE
.

N
E

W
:

D
is

cu
ss

in
g

th
e

po
ss

ib
ili

ty
 o

f
ag

en
t’s

 o
nt

ol
og

ie
s

be
in

g
m

od
ifi

ed

an
d

pr
op

ag
at

ed
 to

 o
th

er
 a

ge
nt

s,
e.

g.
 a

s a
 re

su
lt

of
 le

ar
ni

ng
.

R
E

U
SE

:
C

ap
tu

rin
g

co
op

er
at

iv
e

be
ha

vi
ou

r
vi

a
ag

en
t a

cq
ua

in
ta

nc
es

 a
nd

 in
te

ra
ct

io
n

pr
ot

oc
ol

s.
So

ur
ce

s:
 A

ll
ex

ist
in

g
m

et
ho

do
lo

gi
es

.
N

E
W

:
Su

pp
or

tin
g

bo
th

 d
ire

ct
 in

te
ra

ct
io

ns
 v

ia
 A

C
L

an
d

in
di

re
ct

 in
te

ra
ct

io
ns

 v
ia

tu

pl
es

pa
ce

/tu
pl

e-
ce

nt
re

R
E

U
SE

:
Su

pp
or

tin
g

in
fe

re
nt

ia
l

ca
pa

bi
lit

y
by

 d
ev

el
op

in
g

ag
en

t
pl

an
s.

So
ur

ce
s:

PR
O

M
ET

H
EU

S,
 B

D
IM

, H
LI

M
, M

EI
 a

nd
 T

RO
PO

S.

R
E

U
SE

:
M

od
el

lin
g

ag
en

ts
’

ex
ch

an
ge

d
m

es
sa

ge
s

us
in

g
A

C
L

sp
ee

ch
-a

ct
s

pe
rf

or
m

at
iv

es
.S

ou
rc

es
: B

D
IM

, A
D

EL
FE

, H
LI

M
 a

nd
 M

ES
SA

G
E.

N
E

W
:

Fo
rm

ul
at

in
g

ag
en

ts
’

ex
ch

an
ge

d
m

es
sa

ge
s

in
 t

er
m

s
of

 s
ha

re
d

on
to

lo
gi

es

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

m
od

el
s a

ge
nt

 c
la

ss
es

 a
s e

nt
iti

es

w
ith

 p
ur

po
se

s (
re

pr
es

en
te

d
as

 a
ge

nt
 ro

le
s a

nd

go
al

s)
 a

nd
 e

nt
iti

es
 w

ith
 in

te
rn

al
 c

on
tro

l
(r

ep
re

se
nt

ed
 a

s a
ge

nt
 b

el
ie

fs
, p

la
ns

 a
nd

re

fle
xi

ve
 ru

le
s)

M
O

B
M

A
S

di
sc

us
se

s t
he

 p
os

si
bi

lit
y

of

ag
en

t’s
 o

nt
ol

og
ie

s b
ei

ng
 m

od
ifi

ed
 a

nd

pr
op

ag
at

ed
 to

 o
th

er
 a

ge
nt

s,
 e

.g
. a

s a
 re

su
lt

of

le
ar

ni
ng

, a
nd

 m
en

tio
ns

 th
e

ne
ed

 to
 c

on
si

de
r

le
ar

ni
ng

 (a
m

on
gs

t o
th

er
 re

qu
ire

d
be

ha
vi

ou
r

ca
pa

bi
lit

ie
s o

f a
n

ag
en

t)
w

he
n

se
le

ct
in

g
an

ag

en
t a

rc
hi

te
ct

ur
e

M
O

B
M

A
S

su
pp

or
ts

 th
e

m
od

el
lin

g
of

 a
ge

nt

ac
qu

ai
nt

an
ce

s a
nd

 in
te

ra
ct

io
n

pr
ot

oc
ol

s

M
O

B
M

A
S

su
pp

or
t s

 th
e

m
od

el
lin

g
of

 a
ge

nt

pl
an

 te
m

pl
at

es
 a

nd
 re

fle
xi

ve
 ru

le
s w

hi
ch

 h
el

p
th

e
ag

en
ts

 to
 d

et
er

m
in

e
w

ha
t t

o
do

 to
 a

ch
ie

ve

its
 a

ct
iv

e
go

al
s a

t r
un

-ti
m

e

M
O

B
M

A
S

su
pp

or
ts

 th
e

m
od

el
lin

g
of

 A
C

L
co

m
m

un
ic

at
io

n
m

es
sa

ge
s b

et
w

ee
n

ag
en

ts
,

w
hi

ch
 a

re
 b

as
ed

 u
po

n
sp

ee
ch

-a
ct

pe

rf
or

m
at

iv
es

Ag
en

t p
ro

pe
rti

es
 re

qu
ir

ed
 to

 b
e

ca
pt

ur
ed

/r
ep

re
se

nt
ed

 b
y

M
O

BM
A

S
m

od
el

 k
in

ds

1.
A

ut
on

om
y

2.
A

da
pt

ab
ili

ty

3.
C

oo
pe

ra
tiv

e
be

ha
vi

ou
r

4.
In

fe
re

nt
ia

l c
ap

ab
ili

ty

5.
K

no
w

le
dg

e-
le

ve
l c

om
m

un
ic

at
io

n
ab

ili
ty

308

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el
 d

ef
in

iti
on

s

R
E

U
SE

:
-

M
od

el
lin

g
“e

ve
nt

s”
 t

ha
t

in
cu

r
du

rin
g

ag
en

t
in

te
ra

ct
io

ns
 a

nd
 i

n
ag

en
t

in
te

rn
al

 p
ro

ce
ss

in
g.

 S
ou

rc
es

:
M

AS
E,

 M
ES

SA
G

E,
 I

N
G

EN
IA

S,
 P

AS
SI

,
AD

EL
FE

 a
nd

 M
AS

-C
om

m
on

K
AD

S.
-

D
ev

el
op

in
g

ag
en

t b
eh

av
io

ur
 to

 re
ac

t t
o

ev
en

ts
. S

ou
rc

es
: P

RO
M

ET
H

EU
S,

BD
IM

, H
LI

M
, C

O
M

O
M

AS
 a

nd
TR

O
PO

S.

R
E

U
SE

:
-

C
ap

tu
rin

g
de

lib
er

at
iv

e
be

ha
vi

ou
r

vi
a

ag
en

ts
’

go
al

s.
So

ur
ce

s:
 B

D
IM

 a
n d

H
LI

M
.

-
M

od
el

lin
g

ag
en

t p
la

ns
 to

 a
ch

ie
ve

 th
e

ag
en

t-g
oa

ls
. S

ou
rc

es
: B

D
IM

, H
LI

M
,

TR
O

PO
S

an
d

PR
O

M
ET

H
EU

S.

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el
 d

ef
in

iti
on

s

R
E

U
SE

:
M

od
el

lin
g

re
so

ur
ce

s o
f t

he
 M

A
S

en
vi

ro
nm

en
t.

So
ur

ce
s:

 S
O

D
A

an
d

G
AI

A.
N

E
W

:
-

C
on

si
de

rin
g

th
e

de
si

gn
 o

f a
 “

Re
so

ur
ce

 B
ro

ke
r”

 ro
le

/a
ge

nt
 c

la
ss

-

C
on

si
de

rin
g

th
e

ad
op

tio
n

of
 a

n
in

di
re

ct
 in

te
ra

ct
io

n
m

ec
ha

ni
sm

, w
hi

ch
 is

pa

rti
cu

la
rly

 su
ita

bl
e

to
 o

pe
n

M
A

Ss

-
C

on
si

de
rin

g
sy

st
em

op

en
ne

ss

as

a
cr

ite
rio

n
w

he
n

se
le

ct
in

g
th

e
or

ga
ni

sa
tio

na
l s

tru
ct

ur
e

st
yl

e
fo

r t
ar

ge
t M

A
S

R
E

U
SE

:
Su

pp
or

tin
g

sy
st

em
 d

yn
am

ic
s

by
 a

llo
w

in
g

fo
r

dy
na

m
ic

 a
ss

ig
nm

en
t o

f
ro

le
s

to
 a

ge
nt

s.
So

ur
ce

s:
 M

AS
SI

VE
, H

LI
M

, M
AS

E
an

d
PA

SS
I.

N
E

W
:

D
is

cu
ss

in
g

th
e

m
od

el
lin

g
of

 a
ge

nt
 c

la
ss

es
’

dy
na

m
ic

s
in

 t
he

 A
ge

nt
 C

la
ss

M
od

el
 K

in
d

an
d

A
ge

nt
 In

te
ra

ct
io

n
M

od
el

 K
in

d.

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

m
od

el
s e

ve
nt

s a
nd

 a
ge

nt
s’

 b
eh

av
io

ur

to
 re

ac
t t

o
th

es
e

ev
en

ts

M
O

B
M

A
S

m
od

el
s a

ge
nt

 c
la

ss
es

 a
s e

nt
iti

es
 w

ith

pu
rp

os
es

 (r
ep

re
se

nt
ed

 a
s a

ge
nt

 g
oa

ls
) a

nd

su
pp

or
ts

 th
e

m
od

el
lin

g
of

 a
ge

nt
 p

la
ns

 fo
r

ac
co

m
pl

is
hi

ng
 th

es
e

pu
rp

os
es

 in
 a

 d
el

ib
er

at
iv

e
m

an
ne

r

Su
pp

or
t b

y
M

O
B

M
A

S

M
O

B
M

A
S

fa
ci

lit
at

es
 th

e
op

er
at

io
n

of
 n

ew
ly

-
ad

de
d

ag
en

ts
 a

t r
un

-ti
m

e
by

 e
xp

lic
itl

y
m

od
el

lin
g

th
e

re
so

ur
ce

s o
ff

er
ed

 b
y

th
e

ta
rg

et
 M

A
S

en
vi

ro
nm

en
t a

nd
 a

llo
w

in
g

th
e

sp
ec

ifi
ca

tio
n

of
 a

“r

es
ou

rc
e

br
ok

er
”

ag
en

t w
hi

ch
 b

ro
ke

rs
 th

e
av

ai
la

bl
e

re
so

ur
ce

s t
o

th
e

ne
w

ly
 a

dd
ed

 a
ge

nt
s.

M
O

B
M

A
S

al
so

 a
llo

w
s f

or
 th

e
us

e
of

 in
di

re
ct

in

te
ra

ct
io

n
m

ec
ha

ni
sm

s w
hi

ch
 a

re
 p

ar
tic

ul
ar

ly

su
ita

bl
e

to
 o

pe
n

sy
st

em
s.

M
O

B
M

A
S

al
so

 o
ff

er
s

an
 o

pt
io

n
to

 c
on

ce
pt

ua
liz

e
th

e
ag

en
t i

nt
er

ac
tio

n
pr

ot
oc

ol
s d

ur
in

g
th

e
de

si
gn

 ti
m

e.
 T

hi
s e

xp
lic

it
co

nc
ep

tu
al

iz
at

io
n

w
ill

 a
llo

w
 a

ny
 n

ew
 a

ge
nt

s t
o

jo
in

 th
e

pr
e-

ex
is

tin
g

co
nv

er
sa

tio
ns

, a
nd

 a
llo

w
 th

e
in

te
ra

ct
io

n
pr

ot
oc

ol
s t

o
ch

an
ge

 o
ve

r t
im

e.

M
O

B
M

A
S

su
pp

or
ts

 th
e

dy
na

m
ic

 ro
le

-p
la

yi
ng

be

ha
vi

ou
r o

f a
ge

nt
s a

nd
 o

ff
er

s m
od

el
 k

in
ds

 to

ca
pt

ur
e/

re
pr

es
en

t t
hi

s d
yn

am
ic

s.
M

O
B

M
A

S
al

so

co
ns

id
er

s t
he

 is
su

e
of

 sy
st

em
 d

yn
am

ic
s w

he
n

se
le

ct
in

g
th

e
in

te
ra

ct
io

n
m

ec
ha

ni
sm

 fo
r t

he
 ta

rg
et

M

A
S.

Ag
en

t p
ro

pe
rt

ie
s r

eq
ui

re
d

to
 b

e
ca

pt
ur

ed
/r

ep
re

se
nt

ed
 b

y
M

O
B

M
A

S
m

od
el

ki

nd
s

6.
R

ea
ct

iv
ity

7.
D

el
ib

er
at

iv
e

be
ha

vi
ou

r

R
eq

ui
re

d
fe

at
ur

es
 o

f M
O

B
M

A
S

as
 a

 w
ho

le

1.
Su

pp
or

t f
or

 o
pe

n
sy

st
em

s

2.
Su

pp
or

t f
or

 d
yn

am
ic

 sy
st

em
s

309

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 a
nd

 m
od

el

de
fin

iti
on

s

R
E

U
SE

:
-

A
dd

re
ss

in
g

th
e

m
od

el
lin

g
of

 M
A

S
A

pp
lic

at
io

n
on

to
lo

gi
es

.
So

ur
ce

s:

M
AS

-C
om

m
on

K
AD

S,

PA
SS

I,
M

ES
SA

G
E

an
d

M
AS

E.
-

Fo
rm

ul
at

in
g

ag
en

ts
’

ex
ch

an
ge

d
m

es
sa

ge
s

in
 a

cc
or

da
nc

e
w

ith
 a

 sh
ar

ed
 o

nt
ol

og
y.

 S
ou

rc
e:

 M
AS

E
an

d
PA

SS
I.

N
E

W
:

-
D

is
cu

ss
in

g
th

e
m

od
el

lin
g

of

R
es

ou
rc

e
A

pp
lic

at
io

n
on

to
lo

gi
es

-

C
on

si
de

rin
g

th
e

us
e

of
 o

nt
ol

og
ie

s
to

 v
er

ify
 o

th
er

 m
od

el

ki
nd

s
of

 M
O

B
M

A
S,

 e
.g

. S
ys

te
m

 T
as

k
M

od
el

 K
in

d,
 A

ge
nt

B

eh
av

io
ur

 M
od

el
 K

in
d

an
d

A
ge

nt
 In

te
ra

ct
io

n
M

od
el

 K
in

d
-

M
od

el
lin

g
ag

en
ts

’
be

lie
f

co
nc

ep
tu

al
is

at
io

n
as

be

in
g

co
m

po
se

d
of

 o
nt

ol
og

ie
s

-
M

od
el

lin
g

A
ge

nt

Pl
an

Te

m
pl

at
es

,
R

ef
le

xi
ve

R

ul
e

Sp
ec

ifi
ca

tio
n

an
d

ex
ch

an
ge

d
m

es
sa

ge
s

in
 te

rm
s

of
 c

on
ce

pt
s

de
fin

ed
 in

 o
nt

ol
og

ie
s

-
D

is
cu

ss
in

g
th

e
m

ap
pi

ng
 b

et
w

ee
n

on
to

lo
gi

es

-
Sp

ec
ify

in
g

th
e

st
ep

s
w

he
n

th
e

de
ve

lo
pe

r
sh

ou
ld

st

ar
t

co
ns

tru
ct

in
g

ea
ch

ty

pe

of

on
to

lo
gy

in

th

e
M

A
S

de
ve

lo
pm

en
t p

ro
ce

ss
, a

nd
 p

ro
vi

di
ng

 s
om

e
gu

id
el

in
es

 o
n

th
e

co
ns

tru
ct

io
n

of

th
e

on
to

lo
gi

es
.

So
ur

ce
:

su
gg

es
tio

ns

of

su
rv

ey
’s

 p
ar

tic
ip

an
ts

 in
 C

ha
pt

er
 7

.

R
E

U
SE

:
Su

pp
or

tin
g

sy
st

em
 h

et
er

og
en

ei
ty

 b
y

ad
dr

es
si

ng
 th

e
m

od
el

lin
g

of
 n

on
-a

ge
nt

 so
ftw

ar
e

co
m

po
ne

nt
s.

So
ur

ce
s:

 IN
G

EN
IA

S,

PR
O

M
ET

H
EU

S,
 G

AI
A

an
d

M
AS

SI
VE

.
N

E
W

:
-

D
isc

us
sin

g
th

e
m

od
el

lin
g

of

R
es

ou
rc

e
A

pp
lic

at
io

n
O

nt
ol

og
ie

s
to

 c
on

ce
pt

ua
lis

e
th

e
in

fo
rm

at
io

n
an

d/
or

 s
er

vi
ce

s
pr

ov
id

ed
 b

y
ea

ch
 re

so
ur

ce

-
A

dd
re

ss
in

g
th

e
de

si
gn

 o
f b

ot
h

pl
an

ni
ng

 a
ge

nt
s a

nd
 re

fle
xi

ve
ag

en
ts

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

Se
ct

io
n

7.
4.

1.
1

M
O

B
M

A
S

de
al

s w
ith

 th
e

m
od

el
lin

g
of

 n
on

-a
ge

nt
 re

so
ur

ce
s

ap
ar

t f
ro

m
 a

ge
nt

 c
la

ss
es

. T
he

 a
ge

nt
 c

la
ss

es
 th

em
se

lv
es

 a
re

al

lo
w

ed
 to

 ra
ng

e
fr

om
 p

ur
el

y
pl

an
ni

ng
 a

ge
nt

s t
o

pu
re

ly

re
fle

xi
ve

 a
ge

nt
s,

ea
ch

 w
ith

 a
 d

iff
er

en
t a

ge
nt

 b
eh

av
io

ur
al

st

yl
e.

R
eq

ui
re

d
fe

at
ur

es
 o

f M
O

B
M

A
S

as
 a

 w
ho

le

3.
Su

pp
or

t f
or

 o
nt

ol
og

y-
ba

se
d

M
A

S
de

ve
lo

pm
en

t

4.
Su

pp
or

t f
or

 h
et

er
og

en
eo

us
 sy

st
em

s

310

Table 7.5 – MOBMAS’ support for the required steps (cf. Table 5.34)
O

ri
gi

ns
 o

f M
O

B
M

A
S’

 te
ch

ni
qu

es
 (f

or
 p

er
fo

rm
in

g
st

ep
s)

R
E

U
SE

:
In

cr
em

en
ta

lly
 d

ec
om

po
si

ng
 sy

st
em

-ta
sk

s i
nt

o
su

b-
sy

st
em

-ta
sk

s.
So

ur
ce

: C
O

M
O

M
AS

.
N

E
W

:
-

C
on

si
de

rin
g

fu
ll

ve
rs

us
 p

ar
tia

l d
ec

om
po

si
tio

n
of

 sy
st

em
-ta

sk
s

-
C

on
si

de
rin

g
co

nf
lic

ts
 b

et
w

ee
n

sy
st

em
-ta

sk
s

-
U

si
ng

 O
nt

ol
og

y
M

od
el

 to
 v

al
id

at
e

Sy
st

em
 T

as
k

M
od

el

R
E

U
SE

:
-

U
si

ng
 sy

st
em

-ta
sk

s a
s i

np
ut

s t
o

id
en

tif
y

ro
le

s.
So

ur
ce

s:
 M

AS
SI

VE
 a

nd
 B

D
IM

.
-

M
ap

pi
ng

 a
 “

jo
in

t”
 sy

st
em

-ta
sk

 to
 a

 g
ro

up
 o

f r
ol

es
. S

ou
rc

e:
 S

O
D

A.
-

A
pp

ly
in

g
th

e
pr

in
ci

pl
e

of
 “

st
ro

ng
 i

nt
er

na
l

co
he

re
nc

e
an

d
lo

os
e

co
up

lin
g”

 t
o

gr
ou

p
sy

st
em

-ta
sk

s t
o

ro
le

s.
So

ur
ce

s:
 M

AS
SI

VE
 a

nd
 P

RO
M

ET
H

EU
S.

-
G

ro
up

in
g

di
ff

er
en

t s
ys

te
m

-ta
sk

s
to

 o
ne

 ro
le

 if
 th

e
ta

sk
s

sh
ar

e
a

lo
t o

f c
om

m
on

 d
at

a
or

in

te
ra

ct
 in

te
ns

el
y

w
ith

 e
ac

h
ot

he
r.

So
ur

ce
: P

RO
M

ET
H

EU
S.

-
A

ss
ig

ni
ng

 d
iff

er
en

t
sy

st
em

-ta
sk

s
to

 d
iff

er
en

t
ro

le
s

if
th

ey
 n

ee
d

to
 b

e
ex

ec
ut

ed
 o

n
di

ff
er

en
t p

ro
ce

ss
or

s a
nd

 if
 th

er
e

ex
is

t s
ec

ur
ity

 a
nd

 p
riv

ac
y

re
qu

ire
m

en
ts

.
-

A
na

ly
si

ng
 th

e
st

ru
ct

ur
e

of
 th

e
M

A
S’

 o
rg

an
is

at
io

na
l c

on
te

xt
 (

if
ap

pl
ic

ab
le

)
to

 id
en

tif
y

ro
le

s.
So

ur
ce

: G
AI

A.
N

E
W

:
-

C
on

si
de

rin
g

th
e

m
ap

pi
ng

 o
f s

ys
te

m
-ta

sk
s

to
 ro

le
s

w
he

n
th

e
sy

st
em

-ta
sk

s
ar

e
fu

lly
 a

nd

pa
rti

al
ly

 d
ec

om
po

se
d.

-

C
on

si
de

rin
g

th
e

id
en

tif
ic

at
io

n
of

 “
W

ra
pp

er
”

ro
le

s,
“R

es
ou

rc
e

B
ro

ke
r”

 r
ol

es
 a

nd

“O
nt

ol
og

y
M

an
ag

er
”

ro
le

.

R
E

U
SE

:
-

Id
en

tif
yi

ng
 a

ge
nt

 c
la

ss
es

 f
ro

m
 r

ol
es

.
 S

ou
rc

es
:

M
AS

E,
 G

AI
A,

 M
AS

SI
VE

, P
AS

SI
 a

nd

su
gg

es
tio

ns
 o

f s
ur

ve
y’

s p
ar

tic
ip

an
ts

in
 S

ec
tio

n
5.

3.
-

A
pp

ly
in

g
on

e-
to

-o
ne

 m
ap

pi
ng

 fr
om

 ro
le

s t
o

ag
en

t c
la

ss
es

. S
ou

rc
es

: M
AS

E
an

d
G

AI
A.

-
G

ro
up

in
g

ro
le

s t
o

on
e

ag
en

t c
la

ss
 if

 ro
le

s i
nt

er
ac

t i
nt

en
se

ly
. S

ou
rc

es
: M

AS
E

an
d

BD
IM

.
-

Ev
al

ua
tin

g
th

e
co

he
re

nc
e

of
 e

ac
h

ag
en

t c
la

ss
 b

y
ch

ec
ki

ng
 w

he
th

er
 th

e
ag

en
t c

la
ss

 c
an

be

ea

si
ly

de

sc
rib

ed

by

a
si

ng
le

na

m
e

w
ith

ou
t

an
y

co
nj

un
ct

io
ns

.
So

ur
ce

:
PR

O
M

ET
H

EU
S.

E
N

H
A

N
C

E
M

E
N

T
:

C
on

si
de

rin
g

va
rio

us
 m

od
ul

ar
ity

 a
nd

 e
ff

ic
ie

nc
y

is
su

es
 i

n
th

e
as

si
gn

m
en

t o
f r

ol
es

 to
 a

ge
nt

 c
la

ss
es

Su
pp

or
t b

y
M

O
B

M
A

S?

Se
e

st
ep

 “
D

ev
el

op
 S

ys
te

m
 T

as
k

M
od

el
”

of
 th

e
“A

na
ly

si
s”

 a
ct

iv
ity

Se
e

st
ep

 “
D

ev
el

op
 R

ol
e

M
od

el
”

of

th
e

“A
na

ly
si

s”
 a

ct
iv

ity

Se
e

st
ep

 “
D

ev
el

op
 A

ge
nt

 C
la

ss

M
od

el
”

of
 th

e
“M

A
S

O
rg

an
is

at
io

n
D

es
ig

n”
 a

ct
iv

ity

Pr
ob

le
m

 D
om

ai
n

A
na

ly
si

s
st

ep
s

1.
Id

en
tif

y
sy

st
em

fu

nc
tio

na
lit

y
(O

)

2.
Id

en
tif

y
ro

le
s

3.
Id

en
tif

y
ag

en
t c

la
ss

es

311

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 (f
or

 p
er

fo
rm

in
g

st
ep

s)

R
E

U
SE

:
In

cr
em

en
ta

lly
 a

dd
in

g
do

m
ai

n
co

nc
ep

ts
 a

s t
he

y
ar

is
e

th
ro

ug
ho

ut
 th

e
M

A
S

de
ve

lo
pm

en
t p

ro
ce

ss
. S

ou
rc

e:
M

ES
SA

G
E.

N
E

W
:

Id
en

tif
y

ge
ne

ric
 D

om
ai

n
on

to
lo

gi
es

 a
nd

 T
as

k
on

to
lo

gi
es

 th
at

 c
an

 s
er

ve
 a

s
in

pu
ts

 to
 th

e
co

ns
tru

ct
io

n
o f

M
A

S
A

pp
lic

at
io

n
on

to
lo

gi
es

.

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 (f
or

 p
er

fo
rm

in
g

st
ep

s)

R
E

U
SE

:
Id

en
tif

yi
ng

 a
ge

nt
 a

cq
ua

in
ta

nc
es

 fr
om

 a
cq

ua
in

ta
nc

es
 b

et
w

ee
n

ro
le

s.
So

ur
ce

: C
AS

SI
O

PE
IA

.
N

E
W

:
D

er
iv

in
g

ag
en

t
ac

qu
ai

nt
an

ce
s

fr
om

 c
om

m
un

ic
at

iv
e

ac
tio

ns
 i

n
A

ge
nt

 P
la

n
Te

m
pl

at
es

 a
nd

R
ef

le
xi

ve
 R

ul
e

Sp
ec

ifi
ca

tio
ns

.

R
E

U
SE

:
-

Sp
ec

ify
in

g
co

or
di

na
tio

n
ru

le
s

to
 g

ov
er

n
ag

en
ts

’
in

te
ra

ct
io

ns
 f

or
 a

ch
ie

vi
ng

 i
de

nt
ic

al
 a

ge
nt

-g
oa

ls
.

So
ur

ce
: S

O
D

A.
-

A
llo

w
in

g
fo

r
re

us
e

of
 i

nt
er

ac
tio

n
pr

ot
oc

ol
 t

em
pl

at
es

 f
ro

m
 F

IP
A

.
So

ur
ce

s:
 P

RO
M

ET
H

EU
S,

 M
AS

-
C

om
m

on
K

AD
S

an
d

PA
SS

I.
-

In
di

ca
tin

g
th

e
on

to
lo

gy
 u

se
d

to
 g

ov
er

n
ea

ch
 in

te
ra

ct
io

n
pr

ot
oc

ol
.S

ou
rc

e:
 P

AS
SI

.
N

E
W

:
C

on
si

de
rin

g
bo

th
 d

ire
ct

 in
te

ra
ct

io
ns

 v
ia

 A
C

L
an

d
in

di
re

ct
 in

te
ra

ct
io

n
m

ec
ha

ni
sm

 v
ia

 tu
pl

es
pa

ce
/tu

pl
e-

ce
nt

re

R
E

U
SE

:
-

Sp
ec

ify
in

g
sp

ee
ch

-a
ct

 p
er

fo
rm

at
iv

es
 f

or
 e

ac
h

ex
ch

an
ge

d
m

es
sa

ge
.

So
ur

ce
s:

 P
AS

SI
 a

nd
 M

AS
-

C
om

m
on

K
AD

S.
-

Sp
ec

ify
in

g
ar

gu
m

en
ts

 t
o

be
 p

as
se

d
w

ith
in

 e
ac

h
ex

ch
an

ge
d

m
es

sa
ge

.
So

ur
ce

s:
 M

AS
E,

 P
AS

SI
 a

nd
M

AS
-C

om
m

on
K

AD
S.

-
Fo

rm
ul

at
in

g
ex

ch
an

ge
d

m
es

sa
ge

s
us

in
g

co
nc

ep
ts

 d
ef

in
ed

 i
n

M
A

S
A

pp
lic

at
io

n
on

to
lo

gi
es

. S
ou

rc
e:

PA
SS

I.
E

N
H

A
N

C
E

M
E

N
T

:
-

Pr
ov

id
in

g
ex

te
ns

iv
e

te
ch

ni
qu

es
 f

or
 t

he
 s

pe
ci

fic
at

io
n

of
 e

xc
ha

ng
ed

 m
es

sa
ge

s
in

 e
ac

h
in

te
ra

ct
io

n
m

ec
ha

ni
sm

 (i
.e

. d
ire

ct
 in

te
ra

ct
io

n
vi

a
A

C
L

an
d

in
di

re
ct

 in
te

ra
ct

io
n

vi
a

tu
pl

es
pa

ce
/tu

pl
e-

ce
nt

re
)

-
Sp

ec
ify

in
g

ex
pl

ic
it

ru
le

s t
o

ve
rif

y
th

e
co

nt
en

t o
f t

he
 e

xc
ha

ng
ed

 m
es

sa
ge

s a
ga

in
st

 th
e

co
nc

ep
ts

 d
ef

in
ed

in
 o

nt
ol

og
ie

s.

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

st
ep

 “
D

ev
el

op
 O

nt
ol

og
y

M
od

el
”

of
 th

e
“A

na
ly

si
s”

 a
ct

iv
ity

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

st
ep

 “
D

ev
el

op
 A

ge
nt

 In
te

ra
ct

io
n

M
od

el
”

of
 th

e
“A

ge
nt

 In
te

ra
ct

io
n

D
es

ig
n”

ac

tiv
ity

Se
e

st
ep

 “
D

ev
el

op
 A

ge
nt

 In
te

ra
ct

io
n

M
od

el
”

of
 th

e
“A

ge
nt

 In
te

ra
ct

io
n

D
es

ig
n”

ac

tiv
ity

Se
e

st
ep

 “
D

ev
el

op
 A

ge
nt

 In
te

ra
ct

io
n

M
od

el
”

of
 th

e
“A

ge
nt

 In
te

ra
ct

io
n

D
es

ig
n”

ac

tiv
ity

Pr
ob

le
m

 D
om

ai
n

A
na

ly
si

s
st

ep
s

4.
M

od
el

 d
om

ai
n

co
nc

ep
tu

al
is

at
io

n
(O

)

Ag
en

t I
nt

er
ac

tio
n

D
es

ig
n

st
ep

s

1.
Sp

ec
ify

ac

qu
ai

nt
an

ce
s

be
tw

ee
n

ag
en

t c
la

ss
es

2.
D

ef
in

e
in

te
ra

ct
io

n
pr

ot
oc

ol
s

3.
D

ef
in

e
co

nt
en

t o
f

ex
ch

an
ge

d
m

es
sa

ge
s

(O
)

312

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 (f
or

 p
er

fo
rm

in
g

st
ep

s)

R
E

U
SE

:
Pr

op
os

in
g

a
se

t o
f c

rit
er

ia
 fo

r s
el

ec
tin

g
ag

en
t a

rc
hi

te
ct

ur
e.

 S
ou

rc
e:

 M
AS

SI
VE

.
E

N
H

A
N

C
E

M
E

N
T

:
Pr

op
os

in
g

a
fe

w
 a

dd
iti

on
al

 c
rit

er
ia

 f
or

 s
el

ec
tin

g
ag

en
t

ar
ch

ite
ct

ur
e

th
at

 a
re

 n
ot

 l
is

te
d

in

M
A

SS
IV

E,
 n

am
el

y
 “

re
qu

ire
d

ag
en

t b
eh

av
io

ur
al

 c
ap

ab
ili

tie
s”

, “
co

m
pl

ex
ity

 o
f

se
ns

or
 in

pu
t”

,
“s

up
po

rt
fo

r s
ca

la
bi

lit
y”

 a
nd

 “
ag

en
t-e

nv
iro

nm
en

t i
nt

er
ac

tio
n

re
qu

ire
m

en
ts

”.

N
E

W
:

Li
st

in
g

va
rio

us
 e

xi
st

in
g

ar
ch

ite
ct

ur
es

 fr
om

 w
hi

ch
 th

e
de

ve
lo

pe
r c

an
 c

on
si

de
r f

or
 re

us
e

R
E

U
SE

:
D

is
cu

ss
in

g
th

e
di

ff
er

en
tia

tio
n

be
tw

ee
n

B
el

ie
f

co
nc

ep
tu

al
is

at
io

n
an

d
B

el
ie

f
St

at
es

.
So

ur
ce

:
BD

IM
.

N
E

W
:

-
D

ef
in

in
g

ag
en

ts
’ b

el
ie

f c
on

ce
pt

ua
lis

at
io

n
as

 b
ei

ng
 c

om
po

se
d

of
 o

nt
ol

og
ie

s
-

Pr
ov

id
in

g
de

ta
ile

d
te

ch
ni

qu
es

 fo
r d

et
er

m
in

in
g

w
hi

ch
 o

nt
ol

og
ie

s e
ac

h
ag

en
t s

ho
ul

d
co

m
m

it

R
E

U
SE

:
D

ev
el

op
in

g
ag

en
t p

la
ns

 to
 a

ch
ie

ve
 a

ge
nt

-g
oa

ls
. S

ou
rc

e:
 B

D
IM

.
E

N
H

A
N

C
E

M
E

N
T

:
-

Pr
ov

id
in

g
gu

id
el

in
es

 to
 e

ns
ur

e
co

ns
is

te
nc

y
be

tw
ee

n
A

ge
nt

 P
la

n
Te

m
pl

at
es

, R
ef

le
xi

ve
 R

ul
e

Sp
ec

ifi
ca

tio
n

an
d

A
ge

nt
 B

el
ie

f C
on

ce
pt

ua
lis

at
io

n
-

C
on

si
de

rin
g

bo
th

 p
la

nn
in

g
be

ha
vi

ou
r a

nd
 re

fle
xi

ve
 b

eh
av

io
ur

.
N

E
W

:
Sp

ec
ify

in
g

th
e

st
at

es
 a

nd
 a

ct
io

ns
 o

f
A

ge
nt

 P
la

n
Te

m
pl

at
es

 a
nd

 R
ef

le
xi

ve
 R

ul
e

Sp
ec

ifi
ca

tio
n

in
 a

cc
or

da
nc

e
w

ith
 th

e
co

nc
ep

ts
 d

ef
in

ed
 in

 o
nt

ol
og

ie
s.

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 (f
or

 p
er

fo
rm

in
g

st
ep

s)

R
E

U
SE

:
Sh

ow
in

g
al

l s
ys

te
m

 c
om

po
ne

nt
s a

nd
 th

ei
r c

on
ne

ct
io

ns
. S

ou
rc

es
: I

N
G

EN
IA

S,
 P

RO
M

ET
H

EU
S,

PA

SS
I a

nd
 M

AS
-C

om
m

on
K

AD
S.

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

st
ep

 “
Se

le
ct

 A
ge

nt
 A

rc
hi

te
ct

ur
e”

 o
f t

he

“A
rc

hi
te

ct
ur

e
D

es
ig

n”
 a

ct
iv

ity

Se
e

st
ep

 “
Sp

ec
ify

 A
ge

nt
 C

la
ss

’ B
el

ie
f

C
on

ce
pt

ua
lis

at
io

n”
 o

f t
he

 “
A

ge
nt

 In
te

rn
al

D

es
ig

n”
 a

ct
iv

ity

Se
e

st
ep

s “
Sp

ec
ify

 A
ge

nt
 G

oa
ls

”,
 “

Sp
ec

ify

Ev
en

ts
”

an
d

“D
ev

el
op

 A
ge

nt
 B

eh
av

io
ur

M

od
el

”
of

 th
e

“A
ge

nt
 In

te
rn

al
 D

es
ig

n”

ac
tiv

ity

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

su
b-

st
ep

 “
U

pd
at

e
A

ge
nt

 C
la

ss
 M

od
el

”
of

 st
ep

 “
Sp

ec
ify

 re
so

ur
ce

s”
 o

f t
he

 “
M

A
S

O
rg

an
is

at
io

n
D

es
ig

n”
 a

ct
iv

ity

A
ge

nt
 In

te
rn

al
 D

es
ig

n
st

ep
s

1.
Sp

ec
ify

 a
ge

nt
 a

rc
hi

te
ct

ur
e

2.
D

ef
in

e
ag

en
t i

nf
or

m
at

io
na

l
co

ns
tru

ct
s (

O
)

3.
D

ef
in

e
ag

en
t b

eh
av

io
ur

al

co
ns

tru
ct

s (
O

)

O
ve

ra
ll

Sy
st

em
 D

es
ig

n
st

ep
s

1.
Sp

ec
ify

 sy
st

em
 a

rc
hi

te
ct

ur
e

(i.
e.

 o
ve

rv
ie

w
 o

f a
ll

sy
st

em

co
m

po
ne

nt
s &

 th
ei

r
co

nn
ec

tio
ns

)

313

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 te

ch
ni

qu
es

 (f
or

 p
er

fo
rm

in
g

st
ep

s)
R

E
U

SE
:

-
Su

gg
es

tin
g

co
m

m
on

 s
ty

le
s

of
 o

rg
an

is
at

io
na

l s
tru

ct
ur

es
 w

hi
ch

 M
A

S
m

ay
 a

do
pt

, n
am

el
y

fla
t

an
d

hi
er

ar
ch

ic
al

 st
yl

es
. S

ou
rc

e:
 M

AS
SI

VE
.

-
Su

gg
es

tin
g

th
e

de
ve

lo
pe

r
to

 i
nv

es
tig

at
e

th
e

st
ru

ct
ur

e
of

 t
he

 M
A

S’
 o

rg
an

is
at

io
na

l
co

nt
ex

t
w

he
n

ch
oo

si
ng

 th
e

or
ga

ni
sa

tio
na

l s
tru

ct
ur

e
fo

r t
he

 ta
rg

et
 M

A
S.

 S
ou

rc
e:

 G
AI

A.
E

N
H

A
N

C
E

M
E

N
T

:
-

Ex
te

nd
 th

e
co

m
m

on
 st

yl
es

 o
f M

A
S

or
ga

ni
sa

tio
na

l s
tru

ct
ur

e
to

 in
cl

ud
e

fe
de

ra
tio

n
an

d
hy

br
id

st
yl

es
-

Su
gg

es
tin

g
th

e
de

ve
lo

pe
r

to
 c

on
si

de
r

m
od

ul
ar

ity
 i

ss
ue

s,
no

n-
fu

nc
tio

na
l

re
qu

ire
m

en
ts

 a
nd

th
e

nu
m

be
r o

f r
ol

es
 in

 th
e

sy
st

em
 w

he
n

ch
oo

si
ng

 th
e

or
ga

ni
sa

tio
na

l s
tru

ct
ur

e
fo

r t
he

 ta
rg

et
M

A
S.

R
E

U
SE

M

od
el

lin
g

M
A

S
en

vi
ro

nm
en

t b
y

sp
ec

ify
in

g
re

so
ur

ce
s

of
fe

re
d

by
 th

e
en

vi
ro

nm
en

t.
So

ur
ce

s:
SO

D
A

an
d

G
AI

A.
E

N
H

A
N

C
E

M
E

N
T

:
Pr

ov
id

in
g

sp
ec

ifi
c

gu
id

el
in

es
 f

or
 t

he
 i

de
nt

ifi
ca

tio
n

an
d

m
od

el
lin

g
o f

re
so

ur
ce

s
N

E
W

:
-

M
od

el
lin

g
R

es
ou

rc
e

A
pp

lic
at

io
n

on
to

lo
gy

 fo
r e

ac
h

re
so

ur
ce

-

Sp
ec

ify
in

g
in

fr
as

tru
ct

ur
e

fa
ci

lit
ie

s f
or

 M
A

S

R
E

U
SE

:
C

on
si

de
rin

g
th

e
us

e
of

 c
on

ve
nt

io
na

l o
bj

ec
ts

 a
s s

en
so

rs
 o

r e
ff

ec
to

rs
 fo

r a
ge

nt
s.

So
ur

ce
: M

EI
.

E
N

H
A

N
C

E
M

E
N

T
:

In
ve

st
ig

at
in

g
al

l t
hr

ee
 d

iff
er

en
t m

et
ho

ds
 o

f
ag

en
t-e

nv
iro

nm
en

t i
nt

er
ac

tio
n:

 p
er

ce
pt

io
n,

 e
ff

ec
t

an
d

co
m

m
un

ic
at

io
n

N

E
W

:
Su

gg
es

tin
g

va
rio

us
 c

ha
ra

ct
er

is
tic

s
of

 th
e

ag
en

ts
’

pe
rc

ep
tio

n,
 e

ff
ec

t a
nd

 c
om

m
un

ic
at

io
n

th
at

th
e

de
ve

lo
pe

r
sh

ou
ld

 i
nv

es
tig

at
e

w
he

n
id

en
tif

yi
ng

 t
he

 r
eq

ui
re

m
en

ts
 o

f
ag

en
t-e

nv
iro

nm
en

t
in

te
ra

ct
io

ns

R
E

U
SE

Sp

ec
ify

in
g

ca
rd

in
al

iti
es

 fo
r a

ge
nt

 c
la

ss
es

’ i
ns

ta
nt

ia
tio

n.
 S

ou
rc

e:
 G

AI
A.

R
E

U
SE

:
D

et
er

m
in

in
g

M
A

S
de

pl
oy

m
en

t
co

nf
ig

ur
at

io
n

by
 c

on
si

de
rin

g
th

e
co

m
m

un
ic

at
io

n
tra

ff
ic

be
tw

ee
n

ag
en

ts
, a

nd
 t

he
 p

ro
ce

ss
in

g
po

w
er

 a
va

ila
bl

e
on

 p
ar

tic
ul

ar
 m

ac
hi

ne
s

or
 r

eq
ui

re
d

by
ag

en
ts

. S
ou

rc
e:

 M
AS

E.
E

N
H

A
N

C
E

M
E

N
T

:
Pr

op
os

in
g

a
lis

t
of

 c
on

fig
ur

at
io

n
de

ta
ils

 t
ha

t
ne

ed
 t

o
be

 s
pe

ci
fie

d
fo

r
M

A
S

de
pl

oy
m

en
t.

Su
pp

or
t b

y
M

O
B

M
A

S

Se
e

st
ep

 “
Sp

ec
ify

 M
A

S
O

rg
an

is
at

io
na

l
St

ru
ct

ur
e”

 o
f t

he
 “

M
A

S
O

rg
an

is
at

io
n

D
es

ig
n”

 a
ct

iv
ity

Se
e

st
ep

s “
Sp

ec
ify

 R
es

ou
rc

es
”

an
d

“E
xt

en
d

O
nt

ol
og

y
M

od
el

 to
 in

cl
ud

e
R

es
ou

rc
e

ap
pl

ic
at

io
n

on
to

lo
gi

es
”

of
 th

e
“M

A
S

O
rg

an
is

at
io

n
D

es
ig

n”
 a

ct
iv

ity
, a

nd

st
ep

 “
 “

Sp
ec

ify
 M

A
S

In
fr

as
tru

ct
ur

e
Fa

ci
lit

ie
s”

 o
f t

he
 “

A
rc

hi
te

ct
ur

e
D

es
ig

n”

ac
tiv

ity

Se
e

st
ep

 “
Id

en
tif

y
A

ge
nt

-E
nv

iro
nm

en
t

In
te

rf
ac

e
R

eq
ui

re
m

en
ts

”
of

 th
e

“A
rc

hi
te

ct
ur

e
D

es
ig

n”
 a

ct
iv

ity

Se
e

st
ep

 “
In

st
an

tia
te

 A
ge

nt
 C

la
ss

es
”

of
 th

e
“A

rc
hi

te
ct

ur
e

D
es

ig
n”

 a
ct

iv
ity

Se
e

st
ep

 “
D

ev
el

op
 M

A
S

D
ep

lo
ym

en
t

D
ia

gr
am

”
of

 th
e

“A
rc

hi
te

ct
ur

e
D

es
ig

n”

ac
tiv

ity

O
ve

ra
ll

Sy
st

em
 D

es
ig

n
st

ep
s

2.
Sp

ec
ify

 o
rg

an
is

at
io

na
l

st
ru

ct
ur

e/
in

te
r-

ag
en

t a
ut

ho
rit

y
re

la
tio

ns
hi

ps

3.
M

od
el

 M
A

S
en

vi
ro

nm
en

t (
O

)

4.
Sp

ec
ify

 a
ge

nt
-e

nv
iro

nm
en

t
in

te
ra

ct
io

n
m

ec
ha

ni
sm

5.
In

st
an

tia
te

 a
ge

nt
 c

la
ss

es

6.
Sp

ec
ify

 a
ge

nt
 in

st
an

ce
s

de
pl

oy
m

en
t

314

Table 7.6 – MOBMAS’ support for the required modelling concepts (cf. Table 5.35)
O

ri
gi

ns
 o

f M
O

B
M

A
S’

 m
od

el
lin

g
te

ch
ni

qu
es

 a
nd

 n
ot

at
io

n

R
E

U
SE

:
-

Sh
ow

in
g

a
hi

er
ar

ch
y

of

sy
st

em
-ta

sk
s.

So
ur

ce
s:

M

AS
SI

VE
,

C
O

M
O

M
AS

an

d
M

AS
-

C
om

m
on

K
AD

S.
-

N
ot

at
io

n
fo

r S
ys

te
m

 T
as

k
D

ia
gr

am
. S

ou
rc

e:
 T

RO
PO

S.

R
E

U
SE

:
-

Sh
ow

in
g

ta
sk

s o
f e

ac
h

ro
le

. S
ou

rc
es

: M
AS

E,
 P

AS
SI

 a
nd

 G
AI

A.
-

M
od

el
 c

om
m

un
ic

at
io

n
pa

th
s b

et
w

ee
n

ro
le

s.
So

ur
ce

s:
 M

AS
E,

 G
AI

A,
 P

AS
SI

 a
nd

 IN
G

EN
IA

S.
N

E
W

:
N

ot
at

io
n

fo
r

R
ol

e
D

ia
gr

am
 (

in
cl

ud
in

g
th

e
no

ta
tio

n
fo

r
“j

oi
nt

 r
ol

e-
ta

sk
s”

 i
n

R
ol

e
D

ia
gr

am
)

R
E

U
SE

:
R

ep
re

se
nt

in
g

on
to

lo
gi

ca
l

co
nc

ep
ts

 a
s

cl
as

se
s

in
 U

M
L

C
la

ss
 D

ia
gr

am
,

an
d

on
to

lo
gi

ca
l

re
la

tio
ns

 a
s

re
la

tio
ns

hi
ps

 b
et

w
ee

n
U

M
L

cl
as

se
s.

So
ur

ce
s:

 M
ES

SA
G

E,
 P

AS
SI

 a
nd

 M
AS

-
C

om
m

on
K

AD
S.

N
E

W
: M

od
el

lin
g

m
ap

pi
ng

s b
et

w
ee

n
on

to
lo

gi
es

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 m

od
el

lin
g

te
ch

ni
qu

es
 a

nd
 n

ot
at

io
n

R
E

U
SE

:
-

Sh
ow

in
g

ro
le

s o
f e

ac
h

ag
en

t c
la

ss
. S

ou
rc

es
: M

AS
E,

 G
AI

A
an

d
M

ES
SA

G
E.

-
M

od
el

lin
g

ag
en

t c
la

ss
es

’ d
yn

am
ic

s i
n

ro
le

 p
la

yi
ng

 b
eh

av
io

ur
. S

ou
rc

e:
 P

AS
SI

.
N

E
W

:
-

N
ot

at
io

n
fo

r A
ge

nt
 C

la
ss

 D
ia

gr
am

 a
nd

 A
ge

nt
 R

el
at

io
ns

hi
p

D
ia

gr
am

-
N

ot
at

io
n

fo
r t

he
 m

od
el

lin
g

of
 a

ge
nt

 c
la

ss
es

’ d
yn

am
ic

s i
n

A
ge

nt
 C

la
ss

 D
ia

gr
am

R
E

U
SE

:
-

M
od

el
lin

g
ag

en
t-g

oa
ls

 a
s

st
at

es
 th

at
 a

n
ag

en
t c

la
ss

 a
im

s
to

 a
ch

ie
ve

. S
ou

rc
es

: I
N

G
EN

IA
S

an
d

B
D

IM
.

-
N

ot
at

io
n

fo
r a

ge
nt

-g
oa

ls
. S

ou
rc

e:
 T

R
O

PO
S

N
E

W
:

Sh
ow

in
g

a
hi

er
ar

ch
y

of
 a

ge
nt

-g
oa

ls
 fo

r a
 p

ar
tic

ul
ar

 a
ge

nt
 c

la
ss

 (i
f n

ec
es

sa
ry

) a
nd

 th
e

co
nf

lic
ts

am
on

gs
t t

he
se

 g
oa

ls
 (i

f a
ny

)

Su
pp

or
t b

y
M

O
B

M
A

S

Sy
st

em
 T

as
k

M
od

el
 K

in
d

R
ol

e
M

od
el

 K
in

d

O
nt

ol
og

y
M

od
el

 K
in

d

Su
pp

or
t b

y
M

O
B

M
A

S

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

(A
ge

nt

C
la

ss
 D

ia
gr

am
) a

nd
 A

ge
nt

B

eh
av

io
ur

 M
od

el
 K

in
d

(A
ge

nt

G
oa

l D
ia

gr
am

)

Pr
ob

le
m

 D
om

ai
n

co
nc

ep
ts

1.
Sy

st
em

 fu
nc

tio
na

lit
y

2.
R

ol
e

3.
D

om
ai

n
co

nc
ep

tu
al

is
at

io
n

Ag
en

t c
on

ce
pt

s

1.
A

ge
nt

-ro
le

 a
ss

ig
nm

en
t

2.
A

ge
nt

 g
oa

l/t
as

k

315

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 m

od
el

lin
g

te
ch

ni
qu

es
 a

nd
 n

ot
at

io
n

R
E

U
SE

:
M

od
el

lin
g

be
lie

f c
on

ce
pt

ua
lis

at
io

n
fo

r e
ac

h
ag

en
t c

la
ss

. S
ou

rc
e:

BD
IM

N
E

W
:

M
od

el
lin

g
ea

ch
 a

ge
nt

 c
la

ss
’

be
lie

f
co

nc
ep

tu
al

is
at

io
n

in
 te

rm
 o

f
on

to
lo

gi
es

 (
w

hi
ch

 a
re

 in
 tu

rn
 m

od
el

le
d

in

O
nt

ol
og

y
M

od
el

 K
in

d)

R
E

U
SE

:
-

M
od

el
lin

g
pl

an
s f

or
 a

ge
nt

 c
la

ss
es

. S
ou

rc
es

: B
D

IM
, H

LI
M

, M
EI

 a
nd

 T
RO

PO
S.

-
N

ot
at

io
n

fo
r A

ge
nt

 P
la

n
D

ia
gr

am
. S

ou
rc

es
: B

D
IM

 a
nd

 T
RO

PO
S.

-
Sp

ec
ify

in
g

ev
en

ts
 a

nd
 a

ct
io

ns
 fo

r e
ac

h
ag

en
t p

la
n.

 S
ou

rc
es

: B
D

IM
 a

nd
 P

RO
M

ET
H

EU
S.

E
N

H
A

N
C

E
M

E
N

T
:

C
on

si
de

rin
g

th
e

m
od

el
lin

g
of

 b
ot

h
pl

an
ni

ng
 b

eh
av

io
ur

 a
nd

 r
ef

le
xi

ve
 b

eh
av

io
ur

 f
or

ag

en
t c

la
ss

es

N
E

W
: N

ot
at

io
n

fo
r A

ge
nt

 P
la

n
Te

m
pl

at
e

an
d

R
ef

le
xi

ve
 R

ul
e

Sp
ec

ifi
ca

tio
n

R
E

U
SE

:
Sh

ow
in

g
th

e
lo

gi
ca

l m
od

ul
es

 o
f a

ge
nt

 a
rc

hi
te

ct
ur

e
an

d
po

te
nt

ia
l f

lo
w

s o
f i

nf
or

m
at

io
n

be
tw

ee
n

th
e

m
od

ul
es

.
So

ur
ce

: M
AS

E.
N

E
W

: N
ot

at
io

n
fo

r A
ge

nt
 A

rc
hi

te
ct

ur
e

D
ia

gr
am

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 m

od
el

lin
g

te
ch

ni
qu

es
 a

nd
 n

ot
at

io
n

R
E

U
SE

:
R

ep
re

se
nt

in
g

ag
en

t
ac

qu
ai

nt
an

ce
s

as
 c

on
ne

ct
io

ns
 b

et
w

ee
n

ag
en

t
cl

as
se

s
in

 A
ge

nt
 R

el
at

io
ns

hi
p

D
ia

gr
am

.
So

ur
ce

s:
 M

AS
E,

 G
AI

A,
 M

ES
SA

G
E

an
d

PA
SS

I.
N

E
W

:
Sh

ow
in

g
de

sc
rip

tiv
e

in
fo

rm
at

io
n

ab
ou

t
ea

ch
 a

ge
nt

 a
cq

ua
in

ta
nc

e
(e

.g
.

in
te

ra
ct

io
n

pr
ot

oc
ol

s
an

d
on

to
lo

gy
 th

at
 g

ov
er

n
th

e
ac

qu
ai

nt
an

ce
)

R
E

U
SE

:
U

si
ng

 A
U

M
L

In
te

ra
ct

io
n

D
ia

gr
am

s
fo

r
th

e
m

od
el

lin
g

of
 i

nt
er

ac
tio

n
pr

ot
oc

ol
s

in
 “

di
re

ct
 i

nt
er

ac
tio

n
m

ec
ha

ni
sm

”.
 S

ou
rc

es
: M

ES
SA

G
E,

 P
RO

M
ET

H
EU

S
an

d
PA

SS
I.

N
E

W
:

-
A

da
pt

in
g

A
U

M
L

In
te

ra
ct

io
n

D
ia

gr
am

s
fo

r
th

e
m

od
el

lin
g

of
 i

nt
er

ac
tio

ns
 b

et
w

ee
n

ag
en

ts
 a

nd
 a

 s
ha

re
d

tu
pl

es
pa

ce
/tu

pl
e-

ce
nt

re
 in

 th
e

“i
nd

ire
ct

 in
te

ra
ct

io
n

m
ec

ha
ni

sm
”

-
M

od
el

lin
g

th
e

be
ha

vi
ou

r o
f t

up
le

-c
en

tre
 in

 th
e

“i
nd

ire
ct

 in
te

ra
ct

io
n

m
ec

ha
ni

sm
”

us
in

g
U

M
L

St
at

e
C

ha
rt

Su
pp

or
t b

y
M

O
B

M
A

S

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

(A
ge

nt

C
la

ss
 D

ia
gr

am
)

A
ge

nt
 B

eh
av

io
ur

 M
od

el
 K

in
d

A
rc

hi
te

ct
ur

e
M

od
el

 K
in

d
(A

ge
nt

A

rc
hi

te
ct

ur
e

D
ia

gr
am

)

Su
pp

or
t b

y
M

O
B

M
A

S

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

(A
ge

nt

R
el

at
io

ns
hi

p
D

ia
gr

am
)

A
ge

nt
 In

te
ra

ct
io

n
M

od
el

 K
in

d

A
ge

nt
 c

on
ce

pt
s

3.
A

ge
nt

 b
el

ie
f/k

no
w

le
dg

e

4.
A

ge
nt

 p
la

n/
re

as
on

in
g

ru
le

/p
ro

bl
em

 so
lv

in
g

m
et

ho
d

5.
A

ge
nt

 a
rc

hi
te

ct
ur

e

Ag
en

t I
nt

er
ac

tio
n

co
nc

ep
ts

1.
A

ge
nt

 a
cq

ua
in

ta
nc

e

2.
In

te
ra

ct
io

n
pr

ot
oc

ol

316

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 m

od
el

lin
g

te
ch

ni
qu

es
 a

nd
 n

ot
at

io
n

R
E

U
SE

:
Sp

ec
ify

in
g

sp
ee

ch
-a

ct
 p

er
fo

rm
at

iv
e

fo
r

ea
ch

 e
xc

ha
ng

ed
 m

es
sa

ge
.

So
ur

ce
s:

 M
ES

SA
G

E,
 T

RO
PO

S
an

d
M

AS
-C

om
m

on
K

AD
S.

E
N

H
A

N
C

E
M

E
N

T
: P

ro
vi

di
ng

 d
et

ai
le

d
te

ch
ni

qu
es

 fo
r m

od
el

lin
g

th
e

co
nt

en
t o

f e
ac

h
ex

ch
an

ge
d

m
es

sa
ge

(i.
e.

pe

rf
or

m
at

iv
es

,
va

ria
bl

es
,

da
ta

ty

pe
s)

fo

r
ea

ch

co
or

di
na

tio
n

m
ec

ha
ni

sm

(i.
e.

Tu

pl
e

C
en

tre
C

oo
rd

in
at

io
n

M
ec

ha
ni

sm
 o

r I
nt

er
ac

tio
n-

Pr
ot

oc
ol

 C
oo

rd
in

at
io

n
M

ec
ha

ni
sm

)

O
ri

gi
ns

 o
f M

O
B

M
A

S’
 m

od
el

lin
g

te
ch

ni
qu

es
 a

nd
 n

ot
at

io
n

R
E

U
SE

:
Sh

ow
in

g
an

 o
ve

rv
ie

w
 o

f
al

l
ag

en
t

cl
as

se
s

an
d

re
so

ur
ce

s
in

 A
ge

nt
 R

el
at

io
ns

hi
p

D
ia

gr
am

.
So

ur
ce

s:

PR
O

M
ET

H
EU

S,
 P

AS
SI

, I
N

G
EN

IA
S

an
d

M
AS

-C
om

m
on

K
AD

S.
E

N
H

A
N

C
E

M
E

N
T

:
Sh

ow
in

g
“w

ra
pp

in
g”

 r
el

at
io

ns
hi

ps
 b

et
w

ee
n

ag
en

t
cl

as
se

s
an

d
re

so
ur

ce
s

in
 A

ge
nt

R

el
at

io
ns

hi
p

D
ia

gr
am

R
E

U
SE

:
Sh

ow
in

g
au

th
or

ity
 re

la
tio

ns
hi

ps
 b

et
w

ee
n

ro
le

s
in

 R
ol

e
D

ia
gr

am
. S

ou
rc

es
: G

AI
A,

 M
ES

SA
G

E,
 IN

G
EN

IA
S

an
d

H
LI

M
.

N
E

W
:A

da
pt

in
g

U
M

L
de

pe
nd

en
cy

 re
la

tio
ns

hi
p

fo
r t

he
 m

od
el

lin
g

of
 in

te
r-

ro
le

 a
ut

ho
rit

y
re

la
tio

ns
hi

ps

R
E

U
SE

:
M

od
el

lin
g

re
so

ur
ce

s a
nd

 th
ei

r r
el

at
io

ns
hi

ps
 w

ith
 “

w
ra

pp
er

”
ag

en
t c

la
ss

es
. S

ou
rc

e:
 IN

G
EN

IA
S.

N
E

W
:

-
N

ot
at

io
n

fo
r R

es
ou

rc
e

D
ia

gr
am

-

A
llo

w
in

g
th

e
R

es
ou

rc
e

D
ia

gr
am

 t
o

be
 a

da
pt

ab
le

 t
o

th
e

ta
rg

et
 M

A
S

de
ve

lo
pm

en
t

pr
oj

ec
t

(i.
e.

 t
he

co
nf

ig
ur

at
io

n
di

m
en

si
on

s c
an

 b
e

ch
an

ge
d)

-
M

od
el

lin
g

R
es

ou
rc

e
A

pp
lic

at
io

n
on

to
lo

gy
 fo

r e
ac

h
re

so
ur

ce
 in

 O
nt

ol
og

y
M

od
el

 K
in

d
-

M
od

el
lin

g
M

A
S

in
fr

as
tru

ct
ur

e
fa

ci
lit

ie
s i

n
“ I

nf
ra

st
ru

ct
ur

e
Fa

ci
lit

y
Sp

ec
ifi

ca
tio

n”

R
E

U
SE

:
Sh

ow
in

g
in

st
an

tia
tio

n
ca

rd
in

al
ity

 fo
r e

ac
h

ag
en

t c
la

ss
 S

ou
rc

es
: M

AS
E,

 G
AI

A
an

d
PR

O
M

ET
H

EU
S.

N
E

W
:

N
ot

at
io

n
fo

r m
od

el
lin

g
ag

en
t i

ns
ta

nt
ia

tio
n

in
 A

ge
nt

 R
el

at
io

ns
hi

p
D

ia
gr

am

R
E

U
SE

:
-

Sh
ow

in
g

lo
ca

tio
ns

 o
f a

ge
nt

s.
So

ur
ce

: M
AS

E.
-

Sh
ow

 p
ro

ce
ss

in
g

no
de

s,
ag

en
ts

 a
t e

ac
h

no
de

 a
nd

 c
on

ne
ct

io
ns

 b
et

w
ee

n
no

de
s/

ag
en

ts
. S

ou
rc

e:
 P

AS
SI

.
E

N
H

A
N

C
E

M
E

N
T

:
A

do
pt

in
g

U
M

L
D

ep
lo

ym
en

t
D

ia
gr

am

fo
r

th
e

m
od

el
lin

g
of

ag

en
t

in
st

an
ce

de
pl

oy
m

en
t.

Su
pp

or
te

d
by

 M
O

B
M

A
S?

A
ge

nt
 In

te
ra

ct
io

n
M

od
el

 K
in

d

Su
pp

or
te

d
by

 M
O

B
M

A
S?

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

(A
ge

nt

R
el

at
io

ns
hi

p
D

ia
gr

am
)

R
ol

e
M

od
el

 K
in

d

R
es

ou
rc

e
M

od
el

 K
in

d

A
ge

nt
 C

la
ss

 M
od

el
 K

in
d

(A
ge

nt

R
el

at
io

ns
hi

p
D

ia
gr

am
)

A
rc

hi
te

ct
ur

e
M

od
el

 K
in

d
(M

A
S

D
ep

lo
ym

en
t D

ia
gr

am
)

A
ge

nt
 In

te
ra

ct
io

n
co

nc
ep

ts

3.
C

on
te

nt
 o

f e
xc

ha
ng

ed

m
es

sa
ge

s

O
ve

ra
ll

Sy
st

em
 D

es
ig

n
co

nc
ep

ts

1.
Sy

st
em

 a
rc

hi
te

ct
ur

e

2.
O

rg
an

is
at

io
na

l
st

ru
ct

ur
e/

in
te

r-
ag

en
t

au
th

or
ity

 re
la

tio
ns

hi
p

3.
En

vi
ro

nm
en

t
re

so
ur

ce
/fa

ci
lit

y

4.
A

ge
nt

 in
st

an
tia

tio
n

5.
A

ge
nt

 in
st

an
ce

 d
ep

lo
ym

en
t

317

7.4.1.1. MOBMAS’ support for ontology-based MAS development

MOBMAS offers extensive support for ontology-based MAS development, by using

ontologies in various steps of the MAS development process and integrating ontologies

into the model definitions of various model kinds.

Regarding the MAS development process, a large proportion of MOBMAS’ steps are

ontology-related. In fact, these MOBMAS’ ontology-related steps correspond to those

desirable ontology-related AOSE steps that were previously recommended for

MOBMAS in Section 5.5. The following discussion recapitulates these desirable

ontology-related AOSE steps (c.f. Section 5.5) and reveals their correspondences with

MOBMAS’ actual steps.

1. “Identify system functionality”: This generic AOSE step is supported by MOBMAS

via step “Develop System Task Model” (c.f. Section 6.2.1). Even though MOBMAS

does not cover the process of system tasks elicitation, it suggests the developer to

validate and refine the identified system tasks by examining the application

ontologies captured in the Ontology Model (c.f. Section 6.2.4.1.c).

2. “Model domain conceptualisation”: This desirable AOSE step corresponds to

MOBMAS’ step “Develop Ontology Model” (c.f. Section 6.2.4). This step produces

an Ontology Model to capture all of the application ontologies of the target MAS

and the semantic mappings between these ontologies.

3. “Define content of exchanged messages”: This AOSE step is performed as part of

step “Develop Agent Interaction Model” in MOBMAS (c.f. Section 6.5.2).

MOBMAS uses ontological concepts to formulate the content of the exchanged

messages (particularly the datatypes of the exchanged variables), and requires the

developer to validate the formulated messages against the ontologies in the Ontology

Model and vice versa.

4. “Define agent information constructs”: This desirable AOSE step corresponds to

MOBMAS’ step “Specify agent class’ belief conceptualisation” (c.f. Section 6.4.1).

Ontologies are used by this step as the building blocks for modelling agents’

conceptual beliefs.

318

5. “Define agent behavioural constructs”: This generic AOSE step is supported via

three MOBMAS’ steps: “Specify agent goals”, “Specify events” and “Develop Agent

Behaviour Model” (c.f. Sections 6.4.2, 6.4.3 and 6.4.4). All of these steps refer to the

concepts defined in the application ontologies whenever appropriate to define

agents’ goals, plans, reflexive rules and actions. Ontologies are also used to help

identify and validate the agents’ actions.

6. “Model MAS environment”: This AOSE step is covered via three steps in

MOBMAS: “Specify resources”, “Extend Ontology Model to include Resource

application ontologies” and “Specify MAS infrastructure facilities” (c.f. Sections

6.3.3, 6.3.4 and 6.3.3). The former two82 involve identifying the ontologies which

conceptualise each resource of MAS, and updating the Ontology Model to include

these ontologies (together with their mappings).

As can be seen above, all desirable ontology-related steps that were identified in Section

5.5 are supported by MOBMAS. Consequently, it can be said that MOBMAS is capable

of realising all the benefits of ontology in MAS design and operation as listed in Section

2.3.2. These capabilities will be further confirmed in Section 7.4.2.4. In addition,

MOBMAS also addresses how the MAS development process can assist in the

engineering of ontology. Specifically, the investigation of system’s functionality, agent

goals, plans, reflexive rules, actions and exchanged messages helps to identify and

validate the concepts to be included in ontologies.

Regarding its model definitions, MOBMAS integrates ontologies into five of its nine

model kinds, namely:

Ontology Model Kind;

Agent Class Model Kind;

Resource Model Kind;

Agent Behaviour Model Kind; and

Agent Interaction Model Kind.

These model kinds are the direct products of the previously listed MOBMAS’ ontology-

related steps.

82 Note that step “Specify MAS infrastructure facilities” does not need to involve ontologies.

319

7.4.2. Comparison of MOBMAS and Existing AOSE

Methodologies
This section documents the comparison between MOBMAS and the existing AOSE

methodologies, which uses the same evaluation framework as that used in the feature

analysis of the existing AOSE methodologies in Section 5.4. This evaluation framework

consists of 38 criteria (cf. Section 5.4.1), namely:

36 evaluation criteria on features (Table 5.21);

one criterion on steps (Table 5.22); and

one criterion on modelling concepts (Table 5.23).

The comparison between MOBMAS and the existing methodologies in term of these

evaluation criteria is presented in Sections 7.4.2.1, 7.4.2.2 and 7.4.2.3. It should be

noted that, some of the criteria actually deal with features, steps and modelling concepts

that are not required from MOBMAS (i.e. those identified as “potential requirements”

of MOBMAS but which were not eligible to become MOBMAS’ “actual requirements”

in Section 5.4.3). Consequently, MOBMAS’ support for these criteria may be weak.

These criteria are annotated with symbol “#” in Tables 7.4, 7.5, 7.6 and 7.7.

Section 7.4.2.4 finally provides an account of the important ontology-related strengths

of MOBMAS. These strengths are either not provided, or provided to a lesser extent, by

existing AOSE methodologies due to their lack, or low level, of support for ontology.

7.4.2.1. Comparison of support for Features

Comparison of support for features relating to AOSE process:

Of the fourteen criteria in this category (Table 5.21), only eight criteria are examined

in this section (Table 7.7). The comparison of the remaining six criteria83 will be

discussed in Section 7.4.2.2 alongside criterion “Support for steps”, because these

six criteria need to use the list of AOSE steps presented in Table 5.22 as a common

yardstick.

83 That is, criteria “Specification of model kinds and/or notational components”, “Definition of inputs and
outputs for steps”, “Specification of techniques and heuristics”, “Ease of understanding of techniques”,
“Usability of techniques” and “Provision of examples for techniques”.

320

Justification of MOBMAS’ support for the criteria “Specification of a system

development lifecycle”, “Support for verification and validation”, “Specification of

steps for the development process” and “Support for refinability” of Table 7.7 can be

found in Table 7.4. For criteria “Ease of understanding of the development process”

and “Usability of the development process”, the evaluation of MOBMAS was

obtained from the two developers who used MOBMAS on the “Peer-to-Peer

Information Sharing” application (Section 7.3; Appendix G). The assessment of the

first developer is denoted as “D1”, while that of the second developer is labelled

with “D2”. For criterion “Approach for MAS development”, MOBMAS is Role-

Oriented (denoted as “RO”) because it uses “role” as the building block for defining

agent classes.

Comparison of support for features relating to AOSE model definitions:

Nine evaluation criteria were used to conduct this comparison (Table 5.21). The

comparison results are presented in Table 7.. The support provided by MOBMAS

for each criterion has been justified in Table 7.4, except for criterion “Ease of

understanding of model definitions”, whose evaluation was obtained from the two

developers who used MOBMAS on the “Peer-to-Peer Information Sharing”

application (Section 7.3; Appendix G).

Comparison of support for agent properties:

Nine agent properties were investigated in total (Table 5.21). The comparison

between MOBMAS and the existing methodologies in term of the support for these

properties is shown in Table 7.9. The justification for MOBMAS’ support can be

found in Table 7.4.

Comparison of support for features relating to the methodology as a whole:

There are six high-level, supplementary features that pertain to a MAS development

methodology as a whole. The comparison between MOBMAS and the existing

methodologies with regard to these features is presented in Table 7.10. The

justification for MOBMAS’ evaluation can be found in Table 7.4. For criterion

“Support for agility and robustness”, MOBMAS was given a “possibly” evaluation

because it implicitly models the exceptional situations and the exception-handling

321

behaviour of agents, through the specification of interaction protocols in the “Agent

Interaction Design” activity (Section 6.5).

Table 7.7 – Comparison of support for features relating to AOSE process

A
pp

ro
ac

h
 fo

r
M

A
S

de
v.

R
O

R
O

R
O

R
O

R
O

R
O

R
O

R
O

N
R

O

N
R

O

R
O

N
R

O

N
R

O

N
R

O

R
O

N
R

O

R
O

U
sa

bi
lit

y
of

 th
e

de
v.

pr

oc
es

s

H
ig

h

M
ed

iu
m

Lo
w

M
ed

iu
m

M
ed

iu
m

H
ig

h

Lo
w

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

D
1:

 H
ig

h
D

2:
 H

ig
h

E
as

e
of

un

de
rs

ta
nd

in
g

of

th
e

de
v.

 p
ro

ce
ss

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

D
1:

 H
ig

h
D

2:
 H

ig
h

Su
pp

or
t

fo
r

re
fin

ab
ili

ty

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Sp
ec

ifi
ca

tio
n

of
 st

ep
s f

or
 th

e
de

v.
 p

ro
ce

ss

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Su
pp

or
t f

or

ve
ri

fic
at

io
n

&

va
lid

at
io

n

Y
es

Y
es

N
o

N
o

M
en

tio
ne

d
as

fu

tu
re

 e
nh

an
ce

m
en

t

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

N
o

M
en

tio
ne

d
bu

t n
o

cl
ea

r g
ui

de
lin

es

N
o

Y
es

Y
es

Sp
ec

ifi
ca

tio
n

of
 a

 sy
st

em

de
ve

lo
pm

en
t

(d
ev

.)
lif

ec
yc

le

Ite
ra

tiv
e

ac
ro

ss
 a

ll
ph

as
es

Ite
ra

tiv
e

V
ie

w

En
gi

ne
er

in
g

pr
oc

es
s

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

w
ith

in
 e

ac
h

ph
as

e
bu

t
se

qu
en

tia
l b

et
w

ee
n

ph
as

es

R
at

io
na

l U
ni

fie
d

Pr
oc

es
s

U
ni

fie
d

so
ftw

ar
e

de
ve

lo
pm

en
t

pr
oc

es
s

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

w
ith

in
 a

nd
 a

cr
os

s
th

e
ph

as
es

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

ac
ro

ss
 a

ll
ph

as
es

Ite
ra

tiv
e

ac
ro

ss
 a

nd
 w

ith
in

 a
ll

ph
as

es

R
at

io
na

l U
ni

fie
d

Pr
oc

es
s

N
ot

 sp
ec

ifi
ed

C
yc

lic
 ri

sk
-d

riv
en

 p
ro

ce
ss

N
ot

 sp
ec

ifi
ed

Ite
ra

tiv
e

an
d

in
cr

em
en

ta
l

Ite
ra

tiv
e

an
d

in
cr

em
en

ta
l

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

M
O

B
M

A
S

322

Table 7.8 – Comparison of support for features relating to AOSE model definitions
E

as
e

of

un
de

rs
ta

nd
in

g
of

m

od
el

 d
ef

in
iti

on
s

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

D
1:

 M
ed

iu
m

D

2:
 H

ig
h

Su
pp

or
t f

or

re
us

e

Y
es

Y
es

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

L
ev

el
s o

f
ab

st
ra

ct
io

n

Y
es

Y
es N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es N
o

Y
es N
o

Y
es N
o

Y
es

Y
es

M
an

ag
em

en
t

of
 c

om
pl

ex
ity

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Su
pp

or
t f

or

m
od

ul
ar

ity

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

G
ua

ra
nt

ee
 o

f
co

ns
ist

en
cy

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.

 Y
es

b.

 Y
es

a.

 Y
es

b.

 Y
es

a.

 N
o

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.

 Y
es

b.

 Y
es

a.

 N
o

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 Y

es

b.
 Y

es

a.
 N

o
b.

 Y
es

a.
 N

o
b.

 Y
es

a.
 N

o
b.

 N
A

a.

 Y
es

b.

 Y
es

a.
 Y

es

b.
 Y

es

Pr
ov

is
io

n
of

gu

id
el

in
es

/ l
og

ic
s f

or

m
od

el
 d

er
iv

at
io

n

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o N
A

Y
es

Y
es

Fo
rm

al
iz

at
io

n/

pr
ec

ise
ne

ss

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 M

ed
iu

m

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 L

ow

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 M

ed
iu

m

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

a.
 H

ig
h

b.
 Y

es

C
om

pl
et

en
es

s/

ex
pr

es
si

ve
ne

ss

H
ig

h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
ig

h

M
ed

iu
m

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
ed

iu
m

H
ig

h

H
ig

h

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

M
O

B
M

A
S

323

Table 7.9 – Comparison of support for agent properties
D

el
ib

er
at

iv
e

be
ha

vi
ou

r

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es N
o

Y
es

Y
es

R
ea

ct
iv

ity

Y
es

Po
ss

ib
ly

Po
ss

ib
ly

Po
ss

ib
ly

Y
es

Y
es

Y
es

Y
es

Po
ss

ib
ly

Y
es

Y
es

Y
es

Y
es

Y
es

Po
ss

ib
ly

Y
es

Y
es

Pe
rs

on
al

ity

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

K
no

w
le

dg
e-

le
ve

l
co

m
m

un
ic

at
io

n
ab

ili
ty

Y
es

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

N
o

Y
es

N
o

Y
es

Y
es

In
fe

re
nt

ia
l

ca
pa

bi
lit

y

Po
ss

ib
ly

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Y
es

C
oo

pe
ra

tiv
e

be
ha

vi
ou

r

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es Y
es

Y
es

Y
es

A
da

pt
ab

ili
ty

N
o

Y
es N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

A
ut

on
om

y

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S
C

A
SS

IO
PE

IA

T
R

O
PO

S

M
O

B
M

A
S

324

Table 7.10 – Comparison of support for features relating to the methodology as a whole
Su

pp
or

t f
or

 o
nt

ol
og

y-
ba

se
d

M
A

S
de

ve
lo

pm
en

t

Y
es N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

Y
es N
o

Y
es N
o

N
o

N
o

Y
es

Su
pp

or
t f

or
 m

ob
ile

ag

en
ts

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

N
o

Su
pp

or
t f

or

he
te

ro
ge

ne
ou

s
sy

st
em

s

Y
es

Y
es N
o

Y
es N
o

Y
es N
o

N
o

N
o

Y
es N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Su
pp

or
t f

or
 a

gi
lit

y
&

 r
ob

us
tn

es
s#

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

N
o

Po
ss

ib
ly

Su
pp

or
t f

or

dy
na

m
ic

 sy
st

em
s

Po
ss

ib
ly

Y
es

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

N
o

N
o

N
o

Y
es

N
o

Y
es

Su
pp

or
t f

or
 o

pe
n

sy
st

em
s

N
o

Po
ss

ib
ly

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

Y
es

M
A

SE

M
A

SS
IV

E

SO
D

A

G
A

IA

M
E

SS
A

G
E

IN
G

E
N

IA
S

B
D

IM

H
L

IM

M
E

I

PR
O

M
E

T
H

E
U

S

PA
SS

I

A
D

E
L

FE

C
O

M
O

M
A

S

M
A

S-
C

om
m

on
K

A
D

S

C
A

SS
IO

PE
IA

T
R

O
PO

S

M
O

B
M

A
S

325

7.4.2.2. Comparison of support for Steps

The assessment of MOBMAS with regard to the criterion “Support for steps” (Table

5.22) is presented in Table 7.11. This table also documents the evaluation of MOBMAS

with regard to six other criteria which relate to the AOSE process but had not been

examined in Section 7.4.2.1, namely:

“Specification of model kinds and/or notational components”;

“Definition of inputs and outputs of steps”;

“Specification of techniques and heuristics”;

“Ease of understanding of techniques”;

“Usability of techniques”; and

“Provision of examples for techniques”.

All of these criteria use the list of AOSE steps presented in Table 5.22 as yardstick. This

list had previously been used in the feature analysis of the existing methodologies in

Section 5.4.2 and Appendix D. The meaning of all abbreviations in Table 7.11 is the

same as that in Tables D.1 to D.14 in Appendix D. It should be noted that, the

assessment of MOBMAS’ support for the criteria “Ease of understanding of

techniques” and “Usability of techniques” were obtained from the two developers who

used MOBMAS on the “Peer-to-Peer Information Sharing” application (Section 7.3;

Appendix G). The assessment of each developer is denoted as “D1” and “D2”

respectively.

To compare MOBMAS with the existing 16 AOSE methodologies, readers are referred

to Tables AppendixD.1 to AppendixD.16 in Appendix D, where the individual

assessment of each existing methodology is documented. Since the evaluation findings

of all methodologies are presented in the same format, a direct comparison between

them can easily be made. A bird-eye view of the comparison between all methodologies

is shown in Table 7.12. This table shows only the assessment of the criterion “Usability

of techniques”.

326

Table 7.11 – MOBMAS’ support for steps
MOBMAS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality E System Task

Model Kind B
See Section 6.2.1 –

“Develop System Task
Model”

See Section 6.2.1.1 –
“Notation of System Task

Diagram”

D1: H
D2: M

D1: H
D2: H Y

2. Specify use case
scenarios #

3. Identify roles
E Role Model

Kind B

See Section 6.2.3.1 –
“Identify roles” and Section

6.2.3.2 – “Specify role-
tasks”

See Section 6.2.3.3 –
“Notation of Role Diagram”

D1: H
D2: M

D1: H
D2: H Y

4. Identify agent classes
E

Agent Class
Model Kind B See Section 6.3.2.1 –

“Identify agent classes”

See Section 6.3.2.2 –
“Notation of Agent Class

Model Kind”

D1: H
D2: H

D1: H
D2: M Y

5. Model domain
conceptualisation E Ontology

Model Kind B
See Section 6.2.4.1 –

“Develop MAS Application
ontologies”

See Section 6.2.4.2 –
“Language of Ontology

Model Kind”

D1: M
D2: H

D1: M
D2: H Y

6. Specify acquaintances
between agent classes

E

Agent Class
Model Kind

(Agent
Relationship

Diagram)

B

See Sections 6.5.2.1.c and
6.5.2.2.c – “Update Agent

Class Model and Role
Model”

See Section 6.3.2.2 –
“Notation of Agent Class

Model”

D1: H
D2: H

D1: H
D2: H Y

7. Define interaction
protocols E

Agent
Interaction

Model Kind
B

See Section 6.5.2 –
“Develop Agent Interaction

Model”

See Section 6.5.2 –
“Develop Agent Interaction

Model”

D1: H
D2: H

D1: H
D2: H Y

8. Define content of
exchanged messages E[7]

Agent
Interaction

Model Kind
B

See Section 6.5.2 –
“Develop Agent Interaction

Model”

See Section 6.5.2 –
“Develop Agent Interaction

Model”

D1: H
D2: H

D1: H
D2: H Y

9. Specify agent
communication language# I[8]

Assume the use of any ACL
that use speech-act

performatives (such as
FIPA-ACL or KQML)

10.Specify agent
architecture

E

Architecture
Model Kind

(Agent
Architecture

Diagram)

B See Section 6.6.2.1 –
“Select agent architecture”

See Section 6.6.2.2 –
“Develop Agent

Architecture Diagram”

D1: H
D2: H

D1: H
D2: H Y

11.Define agent
informational constructs
(i.e. beliefs) E

Agent Class
Model Kind
(Agent Class

Diagram);
Ontology

Model Kind

B

See Section 6.4.1.1 –
“Specify Belief

Conceptualisation of Agent
Classes”

See Section 6.4.1.2 –
“Update Agent Class Model

To Show Belief
Conceptualisation”

D1: M
D2: H

D1: H
D2: H Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services) E

Agent
Behaviour

Model Kind;
Agent Class
Model Kind
(Agent Class

Diagram)

B

See Section 6.4.2 –
“Specify agent-goals”,

Section 6.4.3 – “Specify
events” and Section 6.4.4 –
“Develop Agent Behaviour

Model”

See Section 6.4.2 –
“Specify agent-goals”,

Section 6.4.3 – “Specify
events” and Section 6.4.4 –
“Develop Agent Behaviour

Model”

D1: H
D2: M

D1: M
D2: H Y

13.Specify system
architecture (i.e. overview
of all components and
their connections)

E

Agent Class
Model Kin d

(Agent
Relationship

Diagram)

B
See Section 6.3.3.4 –
“Update Agent Class

Model”

See Section 6.3.3.4 –
“Update Agent Class

Model”

D1: H
D2: H

D1: H
D2: H Y

14.Specify organisational
structure/inter-agent
authority relationships

E Role Model
Kind B

See Section 6.3.1.1. –
“Determine MAS

Organisational Structure”

See Section 6.3.1.2 –
“Update Role Model”

D1: H
D2: H

D1: M
D2: H Y

15.Model MAS
environment E Resource

Model Kind B See Section 6.3.3 –
“Specify resources”

See Section 6.3.3.2 –
“Notation of Resource

Diagram”

D1: H
D2: H

D1: H
D2: H Y

16.Specify agent-
environment interaction
mechanism

E

Architecture
Model Kind

(Agent-
Environment

Interface
Requirements
Specification)

B

See Section 6.6.1 –
“Identify agent-environment
interface requirements” and

Section 6.6.3 – “Specify
MAS infrastructure

facilities”

See Section 6.6.1 –
“Identify agent-environment
interface requirements” and

Section 6.6.3 – “Specify
MAS infrastructure

facilities”

D1: M
D2: H

D1: M
D2: H Y

17.Specify agent
inheritance and
aggregation#

18.Instantiate agent
classes

E

Agent Class
Model Kind

(Agent
Relationship

Diagram)

B See Section 6.6.4 –
“Instantiate agent classes”

See Section 6.6.4 –
“Instantiate agent classes”

D1: H
D2: H

D1: H
D2: H Y

19.Specify agent
instances deployment

E

Architecture
Model Kind

(MAS
Deployment

Diagram)

B
See Section 6.6.5 –

“Develop MAS
Deployment Diagram”

See Section 6.6.5 –
“Develop MAS

Deployment Diagram”

D1: H
D2: H

D1: M
D2: H Y

327

Table 7.12 – Comparison re criterion “Usability of techniques”

1. Identify system
 functionality

2. Specify use case scenarios#

3. Identify roles

4. Identify agent classes

5. M
odel dom

ain conceptualisation

6. Specify acquaintances betw
een agent classes

7. D
efine interaction protocols

8. D
efine content of exchanged m

essages

9. Specify agent com
m

unication language#

10. Specify agent architecture

11. D
efine agent m

ental attitudes

12. D
efine agent behavioural interface

13. Specify system
 architecture

14. Specify organisational structure/inter-agent social relationships

15. M
odel M

A
S environm

ent

16. Specify agent-environm
ent interaction m

echanism

17. Specify agent inheritance &
 aggregation#

18. Instantiate agent classes

19. Specify agent instances deploym
ent

MASE H H H H H H H H M M H H

MASSIVE H H L L H H M H H M

SODA L M M H M

GAIA M H H M H H H M H H

MESSAGE H M M M M H L M H H H H L L

INGENIAS H H M H H H M H H H H H

BDIM L H L L H M H M

HLIM H H M M M H M H L H

MEI H H H H H M H

PROME-
THEUS H H H H H L H H H H M H L

PASSI H H H M M H H H H M H H L

ADELFE H H H M M M M H H M H H L M

COMOMAS M M L M L

MAS-
COMMON

AKDS
H H M M H H H L M L M L M M L

CASSIO-
PEIA H M M H L M

TROPOS H H M H M M H H

MOBMAS H
H

H
H

H
M

M
H

H
H

H
H

H
H

H
H

H
H

M
H

H
H

M
H

H
H

M
H

H
H

M
H

328

7.4.2.3. Comparison of support for Modelling Concepts

In this section, MOBMAS is compared with the existing AOSE methodologies in term

of the criterion “Support for concepts” (Table 7.13). This criterion uses the list of AOSE

modelling concepts presented in Table 5.23 as yardsticks. This list had previously been

used in the feature analysis of the existing methodologies in Section 5.4 and Appendix

D.

In Table 7.13, if a methodology provides support for a particular modelling concept, this

support is represented by a tick . Readers are referred to Tables 5.29a and 5.29b for the

names of the model kinds and/or notational components that model the concepts in each

existing methodology. For MOBMAS, this information can be found in Table 7.6.

Table 7.13 – Comparison of support for modelling concepts

1. System
 functionality

2. U
se case scenario#

3. R
ole

4. D
om

ain conceptualisation

5. A
gent-role assignm

ent

6. A
gent goal/task

7. A
gent belief/know

ledge

8. A
gent plan/reasoning

rule/problem
 solving m

ethod

9. A
gent capability/service#

10. A
gent percept/event#

11. A
gent architecture

12. A
gent acquaintance

13. Interaction protocol

14. C
ontent of exchanged m

essages

15. System
 architecture

16. O
rganisational structure/inter-

agent authority relationship

17. Environm
ent resource/facility

18. A
gent aggregation relationship#

19. A
gent inheritance relationship#

20. A
gent instantiation

21. A
gent instance deploym

ent

MASE

MASSIVE

SODA

GAIA

MESSAGE

INGENIAS

BDIM

HLIM

MEI

PROMETHEUS

PASSI

ADELFE

CASSIOPEIA

COMOMAS

MAS-
COMMONKADS

TROPOS

MOBMAS

329

7.4.2.4. Ontology-related strengths of MOBMAS

By using ontologies in the MAS development process and integrating ontologies into

the MAS model definitions, MOBMAS is able to exploit ontologies to enhance its MAS

development process and MAS development product84 with many important ontology-

related strengths. These strengths are either not provided, or provided to a lesser extent,

by the existing AOSE methodologies due to their lack, or low level, of support for

ontology.

The following sections identify and justify the various ontology-related strengths of

MOBMAS, organised into process-related strengths and product-related strengths.

These strengths include those ontology’s benefits that are identified in Section 2.3.2,

and those additional benefits provided by MOBMAS.

Ontology-related strengths of MOBMAS development process
Highly reliable system analysis (cf. Section 2.3.2.3): By acknowledging that an

effective ontology analysis would facilitate the understanding of a particular domain,

MOBMAS recommends using the ontological analysis effort of knowledge

engineers to facilitate and validate the system analysis effort of system developers.

In particular, ontologies can be used to help identify and validate the identification

of system tasks in the System Task Model (cf. Section 6.2.4.1.c). In all other

existing AOSE methodologies, the system analysis process is conducted solely by

the system developer himself and not supplemented by any other analysis effort.

Effective modelling of application domain: As discussed in Section 2.3.2.3, ontology

provides a structured, human-readable and reusable representation mechanism for

modelling application domain of a given MAS system. MOBMAS accordingly

recommends the developer to use ontologies as the modelling mechanism for

application domains (i.e. “MAS application ontologies”; cf. Section 6.2.4.1).

Amongst the existing 16 AOSE methodologies, only MAS-CommonKADS,

MESSAGE, MASE and PASSI exploit ontologies for application domain modelling

(cf. Section 3.3.2).

84 “Product” refers to the final MAS system whose design is developed by MOBMAS.

330

Well-structured, modular modelling of agents’ local knowledge (cf. Section 2.3.2.3):

In MOBMAS, ontologies serve as the building blocks for defining agents’

conceptual knowledge (cf. Section 6.4.1). This ontology-based modelling

mechanism results in agent knowledge models that are much more structured and

modular than those produced by the existing AOSE methodologies. The latter do not

organise agents’ knowledge into any modular conceptual structures.

Systematic modelling of agent local knowledge: If an agent wishes to hold beliefs

about a particular domain or resource, the local knowledge of that class should

contain the corresponding ontology. By implementing this modelling mechanism,

MOBMAS helps the developer to systematically and effectively design the

knowledge model for each agent class (cf. Section 6.4.1). The process of agent

knowledge modelling in the other existing AOSE methodologies is not as simple

and effective, because these methodologies identify agent knowledge in a “bit-by-

bit” manner, e.g. by investigating each agent goal, plan, interaction and/or use cases

(e.g. BDIM, MESSAGE, INGENIAS, HLIM, COMOMAS and MAS-

CommonKADS; cf. Appendix D).

Reliable specification of agents’ behaviour: While the existing AOSE

methodologies only examine constructs such as agent roles, goals, interactions and

use cases to identify agents’ potential actions (e.g. GAIA, BDIM, HLIM,

PROMETHEUS and MAS-CommonKADS; cf. Appendix D), MOBMAS also

examines the ontologies committed by each agent (cf. Section 6.4.4). By using

ontologies as an additional input, the developer may uncover actions that would

otherwise be missed if he only investigates agent roles, goals, interactions and use

cases.

Extensive verification and validation: An ontology development effort is closely

related and supplementary to a MAS development effort, because both involve a

detailed investigation of the target application. As noted in Section 2.3.2.3, a strong

ontological analysis leads to a more complete and accurate understanding of the

target application. Accordingly, MOBMAS recommends that the developer should

331

exploit application ontologies to verify and validate the correctness and

completeness of its MAS analysis and design models, namely System Task Model,

Role Model, Agent Behaviour Model and Agent Interaction Model (cf. Sections

6.2.4.1.c, 6.4.4.1, 6.4.4.3 and 6.4.2.3). Since application ontologies are often

constructed by a separate development team (e.g. domain experts or knowledge

engineers), they can serve as a reliable tool for verification and validation. When

examining the few existing AOSE methodologies that offer support for verification

and validation (e.g. MASE, INGENIAS, PASSI, PROMETHEUS and TROPOS; cf.

Table 5.24), it was found that each methodology simply uses its MAS analysis and

design models to verify and validate against themselves. This mechanism of

verification and validation is undoubtedly less reliable than the use of a separately-

developed ontology model as seen in MOBMAS.

Support for (distributed) team-based development: Sharing an ontology is basically

sharing the same conceptual knowledge of a particular application domain, task or

resource. This consensual knowledge is important to a MAS development project

where multiple, distributed developers are involved. In MOBMAS, where ontologies

are used as a major information source for many MAS analysis and design steps

(e.g. “Develop System Task Model” step, “Specify Agent Class’ Belief

Conceptualisations” step, “Develop Agent Behaviour Model” step and “Develop

Agent Interaction Model” step; cf. Sections 6.2.1, 6.4.1, 6.4.4 and 6.5.2

respectively), the different developers who engage in different development steps

can share the same knowledge base when performing their individual work, thereby

generating consistent work products despite of the distributed development contexts.

In addition, as mentioned in Section 2.3.2.3, the mappings between different

ontologies identify the associations amongst the different application domains, tasks

and/or resources. This identification allows the developers to combine/integrate their

work if each had focused on a different domain, task or resource.

332

Ontology-related strengths of MOBMAS’ development product
Support for interoperability (cf. Section 2.3.2.1): The MASs resulted from

MOBMAS can strongly support interoperability between heterogeneous agents and

between heterogeneous resources, because in these MASs, the knowledge of

heterogeneous agents has been explicitly conceptualised by ontologies (cf. Section

6.4.1), the information/applications of heterogeneous resources have also been

explicitly conceptualised by ontologies (cf. Section 6.3.4), and the semantic

mappings between these ontologies have been explicitly specified (cf. Sections

6.2.4.2 and 6.3.4.1). A detailed discussion of how these factors can support

interoperability is already presented in Section 2.3.2.1. Amongst the existing AOSE

methodologies, INGENIAS, PROMETHEUS, GAIA and MASSIVE are the only

ones that mention the existence of non-agent resources in MAS. However, they do

not discuss how the heterogeneous components of MAS can be interoperated.

Meanwhile, even though MASE considers the use of ontology to support

interoperability between heterogeneous agents, it does not mention the case of non-

agent resources.

Support for reusability (cf. Section 2.3.2.2): The Ontology Model of a MAS

designed by MOBMAS offers a detailed description of the target application.

Therefore, any future MAS development projects can simply examine this model to

determine whether, and which part(s) of, a past MAS design can be reused.

Moreover, since the core design models of MOBMAS are composed in terms of

ontologies and ontological concepts (namely, Agent Belief Conceptualisation, Agent

Behaviour Model and Agent Interaction Model), the developer can adapt the past

MAS design models to a new application by simply changing the ontologies

involved. In addition, MOBMAS has implemented the idea of using ontologies to

decouple the modelling of agents’ domain knowledge from agents’

behavioural/problem-solving knowledge85, thereby supporting the reuse of these two

knowledge components across agents. Lastly, MOBMAS provides extensive support

for interoperability (as discussed above). It therefore shows how legacy agents

and/or resources can be reused by the current MAS system. In summary, compared

85 In MOBMAS, agents’ domain knowledge is captured via ontologies in Agent Belief Conceptualisations
(cf. Section 6.4.1), while agents’ behavioural constructs (i.e. plans, reflexive rules and actions) are
defined in Agent Behaviour Model (cf. Section 6.4.4).

333

to the existing AOSE methodologies, MOBMAS discovers new ways of supporting

reusability through its use of ontologies in MAS development.

Support for semantically-consistent communication between agents (cf. Section

2.3.2.4): Ontology is essential to the successful communication between agents. If

agents use the same ontology to compose and interpret the exchanged messages,

they can convey the information in a uniform and consistent manner. With this

understanding, MOBMAS requires the developer to “datatype” the variables in all

exchanged ACL messages (or tuples) with concepts defined in the ontologies shared

between the communicating parties (cf. Section 6.5.2). With this rule, agents in the

resulting MASs will always be able to interpret the exchanged messages, and

interpret them in a consistent manner. All of the existing AOSE methodologies,

except for MASE and PASSI, do not provide this insurance, since they fail to

recognise the importance of ontology in agent communication (cf. Section 3.3.2).

Support for communication between agents and resources (cf. Section 2.3.2.4): An

explicit conceptualisation of a resource will allow the wrapper agents to determine

which vocabulary they should use to formulate the queries/commands to the

resource and to interpret the queries’ results, without having to access the resource’s

internal structure. This ontology-related benefit is naturally offered by a MAS

produced by MOBMAS, because MOBMAS addresses the modelling of resources’

conceptualisations through ontologies and the specification of mappings between

resources’ ontologies and MAS application ontologies (cf. Section 6.3.4). Even

though four of the existing AOSE methodologies show some consideration for

ontology (i.e. MAS-CommonKADS, MESSAGE, MASE and PASSI), they do not

discuss the modelling of resources’ conceptualisations, thus failing to use ontologies

to facilitate agent-resource communication.

Support for agent reasoning (cf. Section 2.3.2.4): In MOBMAS, the specification of

agents’ behavioural constructs (i.e. plans, reflexive rules and actions) makes

reference to the agents’ ontology-based knowledge (wherever appropriate) to allow

for the agents’ problem-solving knowledge to be linked with the agents’ ontology-

based domain-related knowledge. For example, ontological concepts are used to

334

define the knowledge requirements of each agent’ plans and actions; cf. Section

6.4.4.3). This enables agents’ reasoning (which operationalises the agents’ problem-

solving knowledge) to utilize the ontology-based domain-related knowledge of

agents at run-time. No existing AOSE methodologies are found to explicitly

associate agents’ problem-solving knowledge with agents’ ontological knowledge at

design time. Accordingly, they cannot illustrate whether, and how, agent reasoning

can utilize ontology-based knowledge at run-time.

Support for maintainability: A MAS system produced by MOBMAS can easily be

maintained, even by someone other than the original developer, because the

specification of the underlying application domains, tasks and wrapped resources

has been formally documented in the ontologies of the Ontology Model, and because

the other core MAS design models such as Agent Belief Conceptualisation, Agent

Behaviour Model and Agent Interaction Model are consistently defined in term of

these ontologies. This support for maintainability is not demonstrated in the existing

AOSE methodologies.

Support for extendibility: When a MAS designed by MOBMAS needs to cover new

domains, tasks or resources, its agents can easily extend their knowledge by adding

new ontologies to their knowledge models. New Agent Plan Templates, Reflexive

Rule Specifications and Interaction Diagrams can also be created by referring to the

concepts defined in the new ontologies. Such ease of extendibility is not

demonstrated in the existing AOSE methodologies.

High likelihood of a correct system: This is the direct result of MOBMAS’ extensive

support for verification and validation during the design of core models such as

Agent Behaviour Model (cf. Section “Ontology-related strengths of the MAS

development process of MOBMAS”).

7.5. SUMMARY
This chapter has documented the process of evaluating and refining MOMBAS, which

progressively led to the final version of MOBMAS presented in Chapter 6. The

335

progressive evaluation and refinements of MOBMAS were conducted through the

collection of two expert reviews, the use of MOBMAS on a test application by two

external developers, and a feature analysis of MOBMAS. This feature analysis includes

the justification of MOBMAS’ comprehensive support for ontology-based MAS

development and various other important AOSE methodological requirements, the

comparison between MOBMAS and the existing AOSE methodologies, and the

clarification of MOBMAS’ ontology-related strengths.

336

CHAPTER 8

CONCLUSIONS

8.1. INTRODUCTION
This chapter concludes the thesis by recapitulating the contributions of this research to

the literature on AOSE (Section 8.2). It also identifies the limitations of the process of

conducting the research (Section 8.3) and suggests directions for future research

(Section 8.4). The chapter is closed with some concluding remarks (Section 8.5).

8.2. CONTRIBUTIONS OF THE RESEARCH
The main contribution of this research is the proposal of an AOSE methodology for the

analysis and design of ontology-based MASs, which is named “MOBMAS” –

“Methodology for Ontology-Based Multi-Agent Systems”. MOBMAS offers a software

engineering process comprising of activities and steps to conduct the analysis and

design of an ontology-based MAS, techniques to perform these steps and model kinds

to represent the software artifacts. The methodology is capable of supporting ontology-

based MAS development and various other AOSE methodological requirements which

are important to an AOSE methodology but which may not be well-supported by the

existing methodologies.

With regard to the support for ontology-based MAS development, MOBMAS

surpasses all of the existing AOSE methodologies. Even though four of the existing

methodologies were found to integrate ontologies into MAS design, they fail to

identify and implement the diverse potential ways in which ontologies can be used

in the MAS development process and/or included in the MAS model definitions (cf.

Section 3.3.2). Meanwhile, MOBMAS, with its comprehensive acknowledgement of

ontology’s significant benefits to interoperability, reusability, MAS development

activities (particularly system analysis and agent knowledge modelling) and MAS

337

operation (specifically communication and agent reasoning), has extensively

incorporated ontologies into its MAS development process and model definitions.

- Regarding the MAS development process, MOBMAS makes use of application

ontologies to facilitate the process of constructing and validating its MAS

analysis and design models. In particular, application ontologies are used to help

identify and validate the system tasks of the target MAS, actions of agent classes

and exchanged messages between agents. Moreover, MOBMAS also enables the

MAS development process to, in return, support the development of application

ontologies. Specifically, the analysis of MAS system tasks and the detailed

design of agent classes’ goals, plans, actions and exchanged messages help to

identify and validate the concepts defined in the application ontologies.

- Regarding the MAS model definitions, MOBMAS dedicates one of its model

kinds, namely “Ontology Model Kind”, to the representation of application

ontologies. This model kind captures all of the application ontologies that are

necessary for agents in the target MAS to operate. Agents’ knowledge is then

modelled in term of these ontologies. Agent behaviour modelling and interaction

modelling are also based upon ontologies: concepts in the application ontologies

are used to formulate agent classes’ goals, plans, actions and content of

communication messages. MOBMAS also models the conceptualisation of non-

agent resources (i.e. Resource Application ontologies), and the mappings

between these Resource Application ontologies and the MAS Application

ontologies.

By extensively exploiting ontology as described above, MOBMAS is able to enhance

its MAS development process and MAS development product with many important

ontology-related strengths (cf. Section 7.4.2.4). These strengths include those

widely-acknowledged benefits of ontology to MASs (i.e. support for interoperability,

reusability, system analysis, agent knowledge modelling, communication and agent

reasoning; cf. Section 2.3.2), and those additional benefits of ontology as uncovered

by MOBMAS (e.g. support for verification and validation, maintainability,

extendibility and reliability). These ontology-related strengths are either not

provided, or provided to a lesser extent, by the existing AOSE methodologies due to

their lack, or low level, of support for ontology (cf. Sections 3.3.2 and 7.4.2.4).

338

With regard to the general support for MAS analysis and design, no individual

AOSE methodology was found to address all of the important methodological

requirements of an AOSE methodology (which were identified by this research from

an investigation of the AOSE literature and confirmed by the practitioners and

researchers in the field). MOBMAS, on the other hand, endeavours to support all of

these requirements by combining the strengths of the existing AOSE methodologies

(i.e. by reusing and enhancing the various strong techniques and model definitions

of the existing methodologies where appropriate) and proposing new techniques and

model definitions where necessary.

Given the above major improvements of MOBMAS over the existing AOSE

methodologies, this research helps to cultivate the maturity of the AOSE paradigm,

which is still far away from reaching the maturity level of other conventional software

engineering paradigms such as OO software engineering.

In addition, apart from MOBMAS, this research also makes other notable contributions

to the literature on AOSE.

It recommends a list of methodological requirements for an AOSE methodology.

These requirements consist of a set of features that an AOSE methodology should

support, a set of steps that the MAS development process should include, and a set

of modelling concepts that MAS development model kinds should represent. They

were identified by investigating the literature on AOSE, namely, the various

evaluation frameworks on AOSE methodologies and conventional system

development methodologies, as well as the documentation of the various existing

AOSE methodologies. These requirements were also validated by conducting a

survey on practitioners and researchers in the field.

The identification of AOSE methodological requirements has a significant

contribution to the future research in AOSE, because it establishes a sensible starting

point for the development of new AOSE methodologies, namely new AOSE

development process, techniques and model definitions. To date, no study has been

found that attempts to identify these AOSE methodological requirements. This

research therefore represents a pioneering effort in this area.

339

This research also proposed a comprehensive and multi-dimensional feature analysis

framework for the evaluation and comparison of AOSE methodologies. Developed

from the synthesis of various existing evaluation frameworks (both for AOSE

methodologies and for conventional system development methodologies), the

novelty of the proposed framework lies in the high degree of its completeness and

relevance. The framework consists of evaluation criteria that assess an AOSE

methodology from both the dimensions of system engineering and those specific to

AOSE. It also pays attention to all three major elements of a system development

methodology: development process, techniques and model definitions.

8.3. LIMITATIONS OF THE RESEARCH

8.3.1. Limitations of the survey on practitioners and

researchers
The survey was conducted by this research to validate the methodological requirements

proposed for an AOSE methodology (Section 5.3). Since the AOSE paradigm is still

very young, the number of practitioners and researchers who participated in the survey

was expected to be small. Eventually the survey sample was 41. Although this is not a

small number, a larger sample size would provide a more reliable assessment of the

professional opinions on the importance of the proposed AOSE requirements.

8.3.2. Limitations of the feature analysis on the existing

AOSE methodologies
This research evaluated the 16 existing AOSE methodologies in term of their support

for each AOSE methodological requirement (Section 5.4). This investigation was based

on the published documentation of each methodology. Even though this material

provided a relatively comprehensive description of each methodology, it might omit

discussion of the methodology’s support for some particular features (e.g. which

software development lifecycle the methodology adopts, or whether a methodology is

capable of supporting dynamic systems). Accordingly, this research sometimes had to

deduce a methodology’s support for a particular methodological requirement from the

340

published documentation (if possible), or concluded that the methodology does not

support the feature. This evaluation may be subject to error.

In addition, with regard to the evaluation of criteria “Usability of the development

process” and “Usability of techniques”, this research arrived at its assessment by non-

empirically reviewing the methodology’s steps and model definitions. A more reliable

evaluation would be to empirically apply the 16 methodologies on an (identical)

application. Unfortunately, the constraints in time and resources prevented this research

from conducting such an empirical evaluation.

8.3.3. Limitations of the comparison between

MOBMAS and the existing AOSE methodologies
The comparison of MOBMAS and the 16 existing methodologies in term of criteria

“Usability of the development process” and “Usability of techniques” is potentially

biased, because MOBMAS’ usability was empirically assessed by the two external

developers who used the methodology on an application, while the usability of the

existing methodologies was non-empirically assessed by the researcher. As such, the

evaluators were different and the methods of usability evaluation were also different. To

obtain an ideal comparison, the two developers who evaluated MOBMAS should also

use all of the 16 existing AOSE methodologies on the same application, thereby

comparing the usability of all methodologies. However, the constraints in time and

resources prevented this research from conducting such an empirical comparison.

8.4. SUGGESTIONS FOR FUTURE

RESEARCH
Since the main output of this research is the proposal of an AOSE methodology, there

are basically two general directions of future research: making extensions to the

proposed methodology, and applying the methodology to a variety of applications.

341

8.4.1. Extending MOBMAS
MOBMAS may be extended in two major ways.

Adding more techniques and/or modelling notation to support the currently

provided features, steps and modelling concepts: As research on AOSE continually

grows, new techniques and/or modelling notation may arise for supporting the

features, steps and modelling concepts that are currently addressed in MOBMAS

(e.g. new techniques for the identification of agent classes, new mechanisms for

agent interactions, or new notation for ontology modelling). These new ideas should

be recognised and included in MOBMAS (if applicable) to improve MOBMAS’

powerfulness.

Adding support for new features, steps and modelling concepts: Currently,

MOBMAS provides support for a variety of features, steps and modelling concepts

that have been determined to be important to an AOSE methodology. However, to

extend MOBMAS’ capability and applicability, new features, steps and modelling

concepts can be added to MOBMAS. For example, new techniques and model

definitions can be introduced to provide support for the development of MASs with

mobile agents, or agents with personality.

8.4.2. Applying MOBMAS to a variety of applications
In this dissertation, MOBMAS has been applied to a “Peer-to-Peer Information

Sharing” application by two external developers (Appendix H). To further validate

MOBMAS, the methodology should be tested on other demonstrative applications,

and/or employed in many real-world development projects. Preferably, MOBMAS

should be tested and/or used on applications of diverse domains, sizes and/or degrees of

complexity. In addition, a potential revenue for future research is to apply MOBMAS

on the same application as that previously used by an existing MAS development

methodology(ies). This would facilitate a reliable comparison between MOBMAS and

the existing methodology(ies) in term of usability (as had been discussed in Section

8.3.3).

342

8.5. CONCLUDING REMARKS
In summary, this research has proposed a software engineering methodology for the

analysis and design of ontology-based MASs. This methodology improves on the

existing AOSE methodologies in terms of its comprehensive support for ontology-based

MAS development, and its support for various other important features, steps and

modelling concepts of MAS analysis and design that are not well-supported by the

existing methodologies. The proposed methodology has been applied to a “Peer-to-Peer

Information Sharing” application by two external developers. It is hoped that the

methodology will be applied to many other MAS development projects and widely

recognised and adopted by the AOSE community.

343

REFERENCES

Acronymics Inc. 2004. AgentBuilder. http://www.agentbuilder.com/. (accessed March

17, 2003).

Agent Lab. 2000. Multi-Agent Modeling Language. http://www.maml.hu/. (accessed

February 25, 2003).

Agent Oriented Software. 2004. JACKTM Intelligent Agents Manual. http://www.agent-

software.com/shared/demosNdocs/JACK_Manual.pdf. (accessed May 21, 2004).

Ambros-Ingerson, J. and S. Steel. 1988. Integrating planning, execution and monitoring.

In Proceedings of the 7th National Conference on Artificial Intelligence (AAAI-

88), St. Paul, USA.

Anton, A.I., and C. Potts. 1998. The use of goals to surface requirements for evolving

systems. In Proceedings of 20thInternational Conference on Software Engineering

(ICSE’98), Kyoto, Japan, 157-166.

Anton, A.I., J. H. Dempster, and D. F. Siege. 1996. Deriving Goals from a Use Case

Based Requirements Specification for an Electronic Commerce System. In

Proceedings of the 6th International Workshop on Requirements Engineering:

Foundations for Software Quality, Stockholm, Sweden.

Anton, A.I., W.M. McCracken, and C. Potts. 1994. Goal decomposition and scenario

analysis in business process reengineering. In Proceedings of the 6th International

Conference on Advanced Information Systems Engineering (CaiSE’94), Utrecht,

The Netherlands, 136-144.

Arkin, R., and T. Balch. 1997. AuRA: Principles and Practice in Review. Journal of

Experimental and Theoretical Artificial Intelligence 2-3: 175-189.

Awad E M 1985. Systems Analysis and Design. Illinois: Richard D. Irwin.

Baader, F., D.L. Calvanese, D. McGuinness, D. Nardi and P.F. Patel-Schneider, eds.

2003. The Description Logic Handbook: Theory, Implementation and

Applications. New York: Cambridge University Press.

Bandini, S., S. Manzoni, and G. Vizzari. 2004. A Spatially Dependent Communication

Model for Ubiquitous Systems. In Proceedings of the 1st International Workshop

on Environments for Multiagent Systems, New York, USA.

http://www.agentbuilder.com
http://www.maml.hu
http://www.agent-software.com/shared/demosNdocs/JACK_Manual.pdf
http://www.agent-software.com/shared/demosNdocs/JACK_Manual.pdf
http://www.agent-software.com/shared/demosNdocs/JACK_Manual.pdf

344

Bauer, B. 2001a. UML Class Diagrams revisited in the context of agent-based systems.

In Proceedings of Agent-Oriented Software Engineering (AOSE-2001), Montreal,

Canada, 1-8.

Bauer, B. 2001b. UML Class Diagrams and Agent-Based Systems. In Proceedings

Autonomous Agents 2001, Montreal, Canada, 104-105.

Bauer, B., J.P. Muller, and J. Odell. 2000. Agent UML: A Formalism for Specifying

Multiagent Software Systems. In Proceedings of the 1st International Workshop

on Agent-Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 91-

103.

Bayardo, R.J., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap, T.

Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C.

Unnikrishnan, A. Unruh, and D. Woelk. 1997. InfoSleuth: Agent-Based Semantic

Integration of Information in Open and Dynamic Environments. In Proceedings of

the 1997 ACM SIGMOD International Conference on Management of data,

Tucson, USA, 195-206.

Bechhofer, S., C. Goble, and I. Horrocks. 2001. DAML+OIL is not enough. In

Proceedings of the 1st Semantic Web Working Symposium, Stanford, USA, 151-

159.

Benjamins, R. 1995. Problem solving methods for diagnosis and their role in knowledge

acquisition. International Journal of Expert Systems: Research and Applications

2(8): 93-120.

Benjamins, R., L.N. de Barros, and A. Valente. 1996. Constructing planners through

problem-solving methods. In Proceedings of the Tenth Knowledge Acquisition for

Knowledge-Based Systems Workshop (KAW'96), Banff, Canada.

Bergenti, F., and A. Ricci. 2002. Three approaches to the coordination of multiagent

systems. In Proceedings of the 2002 ACM symposium on applied computing,

Madrid, Spain, 367-372.

Bergenti, F., and A. Poggi. 2001. Agent-oriented Software Construction with UML. In

Handbook of Software Engineering and Knowledge Engineering Vol 2, ed. S.K.

Chang, 757-770. Singapore: World Scientific Publishing Co.

Bergenti, F., and A. Poggi. 2002. Supporting Agent-Oriented Modelling with UML.

International Journal of Software Engineering and Knowledge Engineering 12(6):

605-618.

345

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. The Semantic Web.

http://www.sciam.com/2001/0501issue/0501berners-lee.html. (accessed February

26, 2002).

Bernon, C., M.P. Gleizes, G. Picard, and P. Glize. 2002a. The ADELFE methodology

for an intranet system design. In Proceedings of the 4th International Bi-

Conference Workshop on Agent-Oriented Information Systems (AOIS-2002),

Toronto, Canada.

Bernon, C., M.P. Gleizes, S. Peyruqueou, and G. Picard. 2002b. ADELFE, a

methodology for Adaptive Multi-Agent Systems Engineering. In Proceedings of

the 3rd International Workshop on Engineering Societies in the Agents World

(ESAW-2002), Madrid, Spain.

Beydoun, G., G. Low, C. Conzalez-Perez, and B. Henderson-Sellers. 2005. Synthesis of

a Generic MAS Metamodel. In Proceedings of the 4th International Workshop on

Software Engineering for Large-Scale Multi-Agent Systems (SELMAS’05) St.

Louis, USA, 27-31.

Biegel, G. 2002. Cooperation through the Environment: Stigmergy in CORTEX. In

CORTEX: Preliminary Definition of the Interaction Model, ed. J. Kaiser, 31-38.

http://cortex.di.fc.ul.pt/Deliverables/WP2-D3.pdf. (accessed January 16, 2005)

Bleyer, M. 1998. Multi-Agent Systems for Information Retrieval on the World Wide

Web. Master Thesis, University of Ulm, Germany.

Boer, F. S. 2000. Methodology for Agent-Oriented Software Design.

http://www.cs.uu.nl/people/frankb/nwo.html. (accessed November 15, 2003).

Boicu, M., G. Tecuci, M. Bowman, D. Marcu, S.W. Lee, and K. Wright. 1999. A

Problem-Oriented Approach to Ontology Development. In Proceedings of the 16th

National Conference on Artificial Intelligence Workshop on Ontology

Management, Orlando, Florida.

Bonabeau, E., F. Henaux, S. Guerin, D. Snyers, P. Kuntz, and G. Theraulaz. 1998.

Routing in Telecommunications Networks with “Smart” Ant-Like Agents. In

Proceedings of the 2nd International Workshop on Agents in Telecommunications

Applications (IATA '98), Paris, France.

Booch, G. 1994. Object-oriented Analysis and Design. 2nd ed. Massachusetts: Addison-

Wesley.

Bordart, F., A. Flory, M. Leonard, A. Rochefeld, C. Rolland, and H. Tardieu. 1983.

Evaluation of CRIS 1 I.S. Developments Methods Using a Three Cycles. In

http://www.sciam.com/2001/0501issue/0501berners-lee.html
http://cortex.di.fc.ul.pt/Deliverables/WP2-D3.pdf
http://www.cs.uu.nl/people/frankb/nwo.html

346

Information Systems Design Methodologies - A Feature Analysis, ed. T.W. Olle,

H.G. Sol and C.J. Tully, 63-85. Amsterdam: Elsevier Science Publishers.

Borgida, A., R.J. Brachman, D.L. McGuinness, and L.A. Resnick. 1989. CLASSIC: A

structural data model for objects. In Proceedings of the 1989 ACM SIGMOD

International Conference on Management of Data, Portland, USA, 59-67.

Brachman, R.J., and J.G. Schmolze. 1985. An overview of the KL-ONE knowledge

representation system. Cognitive Science 9(2): 191-216.

Brandt, I. 1983. A Comparative Study of Information Systems Design Methodologies.

In Information Systems Design Methodologies - A Feature Analysis, ed. T.W.

Olle, H.G. Sol and C.J. Tully, 63-85. Amsterdam: Elsevier Science Publishers.

Bratman, M.E., D.J. Israel, and M.E. Pollack. 1988. Plans and resource-bounded

practical reasoning. Computational Intelligence 4:349-355.

Bresciani, P., P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. 2004.

TROPOS: An Agent-Oriented Software Development Methodology. Journal of

Autonomous Agents and Multi-Agent Systems 8(3): 203-236.

Brueckner, S. 2000. Return from the Ant. PhD thesis, Humboldt-Universität zu Berlin,

Germany.

British Telecommunications. 2002. Zeus. http://more.btexact.com/projects/agents/

zeus/index.htm. (accessed June 5, 2003).

Brooks, R. A. 1986. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation RA-2: 14-23.

Burrafato, P., and M. Cossentino. 2002. Designing a multi-agent solution for a

bookstore with the PASSI methodology. In Proceedings of the 4th International

Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2002),

Toronto, Canada.

Cabri, G., L. Leonardi, and F. Zambonellli. 2000. XML Dataspaces for mobile agent

coordination. In Proceedings of the 2000 ACM symposium on Applied computing,

Como, Italy, 181-188.

Cairo, O. and J.C. Alvarez. 2004. The KAMET II Approach for Knowledge-Based

system Construction. In Proceedings of the 8th International Conference on

Knowledge-Based Intelligent Information and Engineering Systems (KES 2004),

Wellington, New Zealand, 1227-1234.

http://more.btexact.com/projects/agents

347

Calvanese, D., G. De Giacomo, and M. Lenzerini. 2001. A framework for ontology

integration. In Proceedings of the 1st International Semantic Web Working

Symposium, Stanford, USA, 303–317.

Carbonell, J.G., C.A. Knoblock, and S. Minton. 1991. PRODIGY: An Integrated

Architecture for Prodigy. In Architectures for Intelligence, ed. K. VanLehn, 241-

278. New Jersey: Lawrence Erlbaum Associates.

Cardelli, L. 1994. Obliq: A Language with Distributed Scope. Technical report, Digital

Equipment Corp, Systems Research Center, California, USA.

Carver, N., and V. Lesser. 1995. The DRESUN Testbed for research in FA/C

Distributed situation assessment: extensions to the model of external evidence. In

Proceedings of the 1st International Conference on Multi-Agent Systems, San

Francisco, USA, 33-40.

Castro, J., M. Kolp, and J. Mylopoulos. 2001. A Requirements-Driven Development

Methodology. In Proceedings of the 13th International Conference on Advanced

Information Systems Engineering CAiSE 01, Interlaken, Switzerland.

Castro, J., M. Kolp, and J. Mylopoulos. 2002. Towards Requirements-Driven

Information Systems Engineering: The Tropos Project. Information Systems 27:

365-389.

Ceccaroni, L. 2001. What if a wastewater treatment plant were a town of agents. In

Proceedings of the workshop Autonomous Agents 2001 - W03: Ontologies in

Agent Systems, Montréal, Canada.

Cernuzzi, L., and G. Rossi. 2002. On the Evaluation of Agent-Oriented Modelling

Methods. In Proceedings of the OOPSLA Workshop on Agent-Oriented

Methodologies, Seattle, USA, 21-33.

Chandrasekaran, B., J.R. Josephson, and V.R. Benjamins. 1999. What are ontologies,

and why do we need them? IEEE Intelligent Agents 14(1): 20-26.

Chapman, D., and P. Agre. 1986. Abstract reasoning as emergent from concrete

activity. In Proceedings of the 1986 Workshop on Reasoning About Actions

&Plans, Los Altos, USA, 411-424.

Chatley, R. n.d. Hybrid Deliberative/Reactive Agents. http://www.iis.ee.ic.ac.uk/~frank/

surp99/article2/rbc97/. (accessed May 21, 2002).

Cheikes, B.A. 1995. GIA: An Agent-Based Architecture for Intelligent Tutoring

Systems. In Proceedings of the CIKM'95 Workshop on Intelligent Information

Agents, Baltimore, USA.

http://www.iis.ee.ic.ac.uk/~frank

348

Chelberg, D., L. Welch, A. Lakshmikumar, G. Matthew, and Q. Zhou. 2001. Meta-

Reasoning For a Distributed Agent Architecture. In Proceedings of the South-

Eastern Symposium on System Theory, Ohio, USA, 377-381.

CHI Software Inc. 2003. iGEN The Cognitive Agent Software Toolkit.

http://www.cognitiveagent.com/. (accessed April 28, 2002).

Ciancarini, P. 1996. Coordination models and languages as software integrators. ACM

Computing Surveys 28(2): 300-302.

Ciancarini, P., O. Nierstrasz, and R. Tolksdorf. 1998. A case study in coordination:

Conference Management on the Internet. ftp://cs.unibo.it/pub/cianca/

coordina.ps.gz. (accessed April 20, 2004).

Ciancarini, P., A. Omicini, and F. Zambonelli. 1999. Multiagent System Engineering:

the Coordination Viewpoint. In Proceedings of the 6th International Workshop on

Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL),

Orlando, USA, 250-259.

Collinot, A., and A. Drogoul. 1998. Using the Cassiopeia Method to Design a Soccer

Robot Team. Applied Artificial Intelligence Journal 12(2-3): 127-147.

Collinot, A., A. Drogoul, and P. Benhamou. 1996. Agent Oriented Design of a Soccer

Robot Team. In Proceedings of the 2nd International Conference on Multi-Agent

Systems (ICMAS’96), Kyoto, Japan, 41-47.

Conri, S.E., R.A. Meyer, and V.R. Lesser. 1988. Multistage negotiation in distributed

planning. In Distributed Artificial Intelligence, ed. A.H. Bond and L. Gasser, 367-

384. California: Morgan Kaufmann Publishers Inc.

Cossentino, M. 2002. Different perspectives in designing multi-agent systems. In

Proceedings of Agent Technology and Software Engineering Workshop (AGES

'02), Erfurt, Germany.

Cossentino, M., and M. Potts. 2002. A CASE tool supported methodology for the

design of multi-agent systems. In Proceedings of the 2002 International

Conference on Software Engineering Research and Practice (SERP’02).

Cranefield, S., and M. Purvis. 1999. UML as an ontology modelling language. In

Proceedings of the Workshop on Intelligent Information Integration, 16th

International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm,

Sweden.

Cranefield, S., S. Hausteiny, and M. Purvis. 2001. UML-based ontology modelling for

software agents. In Proceedings of Ontologies in Agent Systems Workshop, 21-28.

http://www.cognitiveagent.com
ftp://cs.unibo.it/pub/cianca

349

Cranefield, S., M. Purvis, M. Nowostawski, and P. Hwang. 2002. Ontologies for

interaction protocols. In Proceedings of the 2nd International Workshop on

Ontologies in Agent Systems, Bologna, Italy.

Cremonini, M., A. Omicini, and F. Zambonelli. 1999. Multi-agent systems on the

Internet: Extending the scope of coordination towards security and topology. In

Proceedings of the 9th European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW’99), Valencia, Spain, 77-88.

Cuesta, P., A. Gómez, J.C. González, and F.J. Rodríguez. 2002. The MESMA approach

for AOSE. In Proceedings of 4th Iberoamerican Workshop on Multi-Agent

Systems (Iberagents'2002), Málaga, Spain.

Cuppari, A., P.L. Guida, M. Martelli, V. Mascardi, and F. Zini. 1999. Prototyping

Freight Trains Traffic Management Using Multi-Agent Systems. In Proceedings

of IEEE International Conference on Information, Intelligence and Systems,

Bethesda, USA, 646-653.

Dardenne, A., A. van Lamsweerde, and S. Fickas. 1993. Goal-Directed Requirements

Acquisition. Science of Computer Programming 20: 3-50.

Davis, D. 1995. A design for the robot crèche scenario.

http://citeseer.nj.nec.com/davis95design.html. (accessed October 25, 2002).

de Bruijn, J. 2003. Using Ontologies. Enabling Knowledge Sharing and Reuse on the

Semantic Web. Technical Report, Digital Enterprise Research Institute, Ireland.

Decker, K.S., V.R. Lesser, M.V. Nagendra-Prasad, and T. Wagner. 1995. MACRON:

an architecture for multi-agent cooperative information gathering. In Proceedings

of the CIKM-95 Workshop on Intelligent Information Agents, Baltimore, USA.

Decker, S., M. Erdmann, D. Fensel., and R. Studer. 1999. Ontobroker: Ontology Based

Access to Distributed and Semi-Structured Information. In Proceedings of the

IFIP TC2/WG2.6 8th Working Conference on Database Semantics-Semantic

Issues in Multimedia Systems, New Zealand, 351-369.

Degirmenciyan, I., F. Marc, and A. ElFallah-Seghrouchni. 2003. Modeling multi-agent

plans with hybrid automata. In Proceedings of the workshop FAMAS 03 ETAPS

03, Warsaw, Poland.

DeLoach, S.A. 1999. Multiagent Systems Engineering: A methodology and language

for designing agent systems. In Proceedings of Agent-Oriented Information

Systems (AOIS’99), Seattle, USA, 45-57.

http://citeseer.nj.nec.com/davis95design.html

350

DeLoach, S.A. 2005. Multiagent Systems Engineering of Organization-based

Multiagent Systems. In Proceedings of the 4th International Workshop on

Software Engineering for Large-Scale Multi-Agent Systems (SELMAS’05) St.

Louis, USA, 5-11.

DeMarco, T. 1978. Structured Analysis and System Design. New York: Yourdon Press.

Demazeau, Y., and A.C.R. Costa. 1996. Populations and organizations in open multi-

agent systems. In Proceedings of the 1st National Symposium on Parallel and

Distributed AI, Hyderabad, India.

Dennis, A., and B. Wixom. 2003. Systems analysis design. 2nd ed. New York: J. Wiley.

Denti, E., and A. Omicini. 2001. LuCe: A tuple-based coordination infrastructure for

Prolog and Java agents. Autonomous Agents and Multi-Agent Systems 4(1/2):139–

141.

Denti, E., A. Natali, and A. Omicini. 1998. On the expressive power of a language for

programming coordination media. In Proceedings of the 1998 ACM Symposium

on Applied Computing, Atlanta, USA, 169-177.

desJardins, M.E., E.H. Durfee, C.L. Ortiz, and M.J. Wolverton. 2000. A Survey of

Research in Distributed, Continual Planning. AI Magazine 4: 13-22.

DiLeo, J., T. Jacobs, and S. DeLoach. 2002. Integrating Ontologies into Multiagent

Systems Engineering. In Proceedings of the 4th International Bi-Conference

Workshop on Agent-Oriented Information Systems (AOIS-2002), Bologna, Italy.

Ding, Y. 2001. IR and AI: The role of ontology. In Proceedings of the 4th International

Conference of Asian Digital Libraries (ICADL 2001), Bangalore, India.

d'Inverno, M., D. Kinny, M. Luck, and M. Wooldridge. 1997. A formal specification of

dMARS. In Proceedings of the 4th International Workshop on Agent Theories,

Architectures and Languages, Providence, USA, 155-176.

Durfee, E.H. 1999. Distributed Problem Solving and Planning. In Multiagent Systems:

A Modern Approach to Distributed Artificial Intelligence, ed. G. Weiss, 121-164.

London: The MIT Press.

Duursma, C. 1993. Task Model definition and Task Analysis process. ESPRIT Project

P5248 KADS-II KADS-II/M5/VUB/RR/004/1.1c, Vrije Universiteit Brussel.

Ehrig, M., and Y. Sure. 2004. Ontology Mapping an Integrated Approach. In

Proceedings of the 1st European Semantic Web Symposium, Heraklion, Greece.

351

Elammari, M., and W. Lalonde. 1999. An Agent-Oriented Methodology: High-Level

and Intermediate Models. In Proceedings of the 1st Bi-Conference Workshop on

Agent-Oriented Information Systems (AOIS’99), Heidelberg, Germany.

Eliason, A.L. 1990. Systems development: analysis, design and implementation. 2nd ed.

Glenview: Scott, Foresman/Little, Brown Higher Education.

Ephrati, E., and J.S. Rosenschein. 1991. The Clarke Tax as a consensus mechanism

among automated agents. In Proceedings of the 9th National Conference on

Artificial Intelligence, San Jose, USA, 173-178.

Erdur, R.C., O. Dikenelli, and H. Sengonca. 1999. A Multiagent System for Searching

and Retrieving Reusable Software Components. In Proceedings of 14th

International Conference on Computer and Information Sciences - ISCIS XIV,

Kusadasi, Turkey.

Eurescom. 2001a. MESSAGE: Methodology for Engineering Systems of Software

Agents – Final Guidelines for the Identification of Relevant Problem Areas where

Agent Technology is Appropriate. http://www.eurescom.de/public/projectresults/

P900-series/907d2.asp. (accessed Oct 7, 2003).

Eurescom. 2001b. Methodology for Agent-Oriented Software Engineering.

http://www.eurescom.de/public/projectresults/P900-series/907ti1.asp. (accessed

March 21, 2004).

Fabio, B., G. Caire, T. Trucco, and G. Rimassa. 2004. JADE Programmer’s Guide.

http://jade.tilab.com/doc/programmersguide.pdf. (accessed Dec 14, 2004).

Falasconi, S., G. Lanzola, and M. Stefanelli. 1996. Using Ontologies in Multi-Agent

Systems. In Proceedings of the 10th Knowledge Acquisition for Knowledge-Based

Systems Workshop (KAW’96), Banff, Canada.

Falbo, R.A., C.S. Menezes, and A.R.C. Rocha. 1998. A Systematic Approach for

Building Ontologies. In Proceedings of the 6th Ibero-American Conference on AI:

Progress in Artificial Intelligence, 349-360.

Falbo, R.A., G. Giancarlo, and K.C. Duarte. 2002. An Ontological Approach to Domain

Engineering. In Proceedings of the 14th international conference on Software

engineering and knowledge engineering, Ischia, Italy, 351-358.

Falkenberg, E., G.M. Nijssen, A. Adams, L. Bradley, P. Bugeia, A.L. Campbell, M.

Carkeet, G. Lehmann, and A. Shoesmith. 1983. Feature Analysis of ACM/PCM,

CIAM, ISAC and NIAM. In Information Systems Design Methodologies - A

http://www.eurescom.de/public/projectresults
http://www.eurescom.de/public/projectresults/P900-series/907ti1.asp
http://jade.tilab.com/doc/programmersguide.pdf

352

Feature Analysis, ed. T.W. Olle, H.G. Sol and C.J. Tully, 63-85. Amsterdam:

Elsevier Science Publishers.

Fan, X. 2000. Towards a building methodology for software agents. In Proceedings of

the 6th International Conference on Object-Oriented Information Systems,

London, UK, 45-53.

Farquhar, A., R. Fikes, and J. Rice. 1996. The Ontolingua Server: A tool for

collaborative ontology construction. Technical Report 926-26, Knowledge

Systems Laboratory, Stanford University.

Fensel, D. 1997. An Ontology-Based Broker: Making Problem-Solving Method Reuse

Work. In Proceedings of the Workshop on Problem-Solving Methods for

Knowledge-based Systems held in conjunction with the 15th International Joint

Conference on Artificial Intelligence (IJCAI'97), Nagoya, Japan, 23-29.

Fensel, D. 2001. Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce. Berlin: Springer-Verlag.

Fensel, D., E. Motta, S. Decker, and Z. Zdrahal. 1997. Using Ontologies For Defining

Tasks, Problem-Solving Methods and Their Mapping. In Proceedings of 10th

European Workshop on Knowledge Acquisition, Modeling, and Management

(EKAW-97), Heidelberg, Germany, 113-128.

Ferber, J., and O. Gutknecht. 1998. A Meta-Model for the Analysis and Design of

Organizations in Multi-Agent Systems. In Proceedings of the 3rd International

Conference on Multi-Agent Systems (ICMAS’98), Paris, France, 128-135.

Ferguson, I. A. 1992. TouringMachines: An Architecture for Dynamic, Rational, Mobile

Agents. PhD thesis, University of Cambridge, UK.

Fernandez, M., A. Gomez-Perez, and N. Juristo. 1997. METHONTOLOGY: From

Ontological Art Towards Ontological Engineering. In Proceedings of the AAAI

Spring Symposium on Ontological Engineering, California, USA, 33-40.

Fikes, R.E., and N. Nilsson. 1971. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 5(2): 189-208.

Finkelstein, A. 1998. Interoperable Systems: An introduction. In Information Systems

Interoperability, ed. B.J. Kramer, M.P. Papazoglou and H.-W. Schmidt, 1-9.

England: Research studies press.

FIPA. n.d.a. FIPA Agent Communication Language Specifications. http://www.fipa.org/

repository/aclspecs.html. (accessed January 6, 2003).

http://www.fipa.org

353

FIPA. n.d.b. The Foundation for Intelligent Physical Agents. http://www.fipa.org/.

(accessed February 24, 2002).

FIPA. 2001a. FIPA Agent Software Integration Specification. http://www.fipa.org/

specs/fipa00079/XC00079B.html. (accessed June 25, 2004).

FIPA. 2001b. FIPA Ontology Service Specification. http://www.fipa.org/specs/

fipa00086/XC00086D.html. (accessed June 10, 2002).

FIPA.2001c. FIPA Interaction Protocol Library Specification. http://www.fipa.org/

specs/fipa00025/XC00025E.html. (accessed January 21, 2003).

FIPA. 2002. FIPA Interaction Protocols Specifications. http://www.fipa.org/repository/

ips.php3. (accessed September 3, 2002).

FIPA. 2003. FIPA Modeling Area: Deployment and Mobility. http://www.auml.org/

auml/documents/DeploymentMobility.zip. (accessed August 24, 2003).

FIPA. 2004. FIPA Agent Management Specification. http://www.fipa.org/specs/

fipa00023/SC00023K.html. (accessed May 19, 2003).

Firby, R.J. 1989. Adaptive Execution in Dynamic Domains. PhD thesis, Yale

University, Computer Science Department, USA.

Firesmith, D.G., and Henderson-Sellers, B. 2002. The OPEN Process Framework: An

Introduction. London: Addison-Wesley.

Fisher, M., J. Muller, M. Schroeder, G. Staniford, and G. Wagner. 1997.

Methodological Foundations for Agent-Based Systems. The Knowledge

Engineering Review 12(3): 323-329.

Flores-Mendez, R.A. 1999. Towards a Standardization of Multi-Agent System

Frameworks. ACM Crossroads Student Magazine 5(4). http://www.acm.org/

crossroads/xrds5-4/multiagent.html. (accessed January 8, 2002).

Franklin, S. and A. Graesser. 1996. Is it an agent or just a program?: A Taxonomy for

Intelligent Agents. In Proceedings of the 3rd International Workshop on Agent

Theories, Architectures and Languages, Budapest, Hungary, 21-35.

Franzén, T., S. Haridi, and S. Janson. 1992. An Overview of the Andorra Kernel

Language. In Proceedings of the 2nd Workshop on Extensions to Logic

Programming, Stockholm, Sweden, 163-180.

Gamper, J., W. Nejdl, and M. Wolpers. 1999. Combining Ontologies and Terminologies

in Information Systems. In Proceedings of the 5th International Congress on

Terminology and Knowledge Engineering, Innsbruck, Austria, 152-168.

http://www.fipa.org
http://www.fipa.org
http://www.fipa.org/specs
http://www.fipa.org
http://www.fipa.org/repository
http://www.auml.org
http://www.fipa.org/specs
http://www.acm.org
http://www.fipa.org

354

Gat, E. 1991. Integrating planning and reacting in a heterogeneous asynchronous

architecture for mobile robots. SIGART Bulletin 2: 70-74.

General Magic Inc. 1995. The Telescript Language Reference.

http://www.science.gmu.edu/~mchacko/Telescript/docs/telescript.html. (accessed

September 23, 2002).

Genesereth, M.R., and N.J. Nilsson. 1987. Logical Foundation of Artificial Intelligence.

California: Morgan Kaufmann.

Genesereth, M.R., and R.E. Fikes. 1992. Knowledge Interchange Format Version 3.0

Reference Manual. Logic Group Technical Report Logic-92-1, Stanford

University Logic Group, Standford University, USA.

Gennari, J.H., S.W. Tu, T.E. Rotenfluh, and M.A. Musen. 1994. Mapping domains to

methods in support of reuse. International Journal of Human-Computer Studies,

41: 399-424.

Georgeff, M.P. 1994. Distributed multi-agent reasoning systems (dMARS). Technical

report, Australian Artificial Intelligence Institution, Melbourne, Australia.

Georgeff, M. P., and A.L. Lansky. 1987. Reactive reasoning and planning. In

Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-

87), Seattle, USA, 677-682.

Girardi, R. and C.G. de Faria. 2004. An Ontology-Based Technique for the

Specification of Domain and User Models in Multi-Agent Domain Engineering.

Clei Electronic Journal 7(1).

Girardi, R., C.G. de Faria, and L. Balby. 2004. Ontology-based Domain Modeling of

Multi-Agent Systems. In Proceedings of the 3rd International Workshop on Agent-

Oriented Methodologies at OOPSLA 2004, Vancouver, Canada, 51-62.

Glaser, N. 1996. Contribution to Knowledge Acquisition and Modelling in a Multi-

Agent Framework (the CoMoMAS Approach). PhD Thesis, University of Navy 1,

France.

Glaser, N. 1997a. The CoMoMAS Approach: From Conceptual Models to Executable

Code. In Proceeding of the 8th European Workshop On Modelling Autonomous

Agents in a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-97),

Ronneby, Sweden.

Glaser, N. 1997b. The CoMoMAS Methodology and Environment for Multi-Agent

System Development. In Multi-Agent Systems – Methodologies and Applications,

ed. C. Zhang and D. Lukose, 1-16. Berlin: Springer-Verlag.

http://www.science.gmu.edu/~mchacko/Telescript/docs/telescript.html

355

Glass, G. 1998. ObjectSpace Voyager – The Agent ORB for Java. In Proceedings of the

2nd International Conference on Worldwide Computing and Its Applications,

Tsukuba, Japan, 38-55.

Goldin, D., and D. Keil. 2004. Toward Domain-Independent Formalization of Indirect

Interaction. In Proceedings of the 13th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE'04),

University of Modena and Reggio Emilia, Italy, 393-394.

Gray, R.S. 1995. Agent Tcl: A transportable agent system. In Proceedings of the CIKM

Workshop on Intelligent Information Agents, 4th International Conference on

Information and Knowledge Management (CIKM 95), Baltimore, USA.

Gruber, T. 1993a. Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. International Journal of Human-Computer Studies 43(5-6): 907-928.

Gruber, T. 1993b. A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition 5(2):199-220.

Grüninger, M., and M.S. Fox. 1995. Methodology for the Design and Evaluation of

Ontologies. In Proceedings of IJCAI-95 Workshop on Basic Ontological Issues in

Knowledge Sharing, Montreal, Canada.

Guarino, N. 1997. Semantic Matching: Formal Ontological Distinctions for Information

Organization, Extraction, and Integration. In Information Extraction: A

Multidisciplinary Approach to an Emerging Information Technology, ed. N.

Guarino, 139-170. Berlin: Springer Verlag.

Guarino, N. 1998. Formal Ontology and Information Systems. In Proceedings of the 1st

International Conference on Formal Ontology in Information Systems, Trento,

Italy.

Guarino, N., and P. Giaretta. 1995. Ontologies and Knowledge Bases: Towards a

Terminological Clarification. In Towards Very Large Knowledge Bases:

Knowledge Building and Knowledge Sharing, ed. N. Mars, 25-32. Amsterdam:

IOS Press.

Guessoum, Z., and J.P. Briot. 1999. From active objects to autonomous agents. IEEE

Concurrency 7(3): 68-76.

Guilfoyle, C., and E. Warner. 1994. Intelligent agents: The new revolution in software.

Ovum Report.

Gutierrez-Casorran, C., J.T. Fernandez-Breis, and R. Martinez-Bejar. 2001. Ontological

modelling of natural categories-based agents: an ant colony. In Proceedings of the

356

Workshop on Ontologies in Agent Systems, 5th International Conference on

Autonomous Agents, Montreal, Canada.

Haumer, P., K. Pohl, and K. Weidenhaupt. 1998. Requirements Elicitation and

Validation with Real World Scenes. IEEE Transactions on Software Engineering

24(12): 1036-1054.

Henderson-Sellers, B., A. Simons, and H. Younessi. 1998. The OPEN Toolbox of

Techniques. England: Addison Wesley Longman Ltd.

Herrero, P. and de Antonio, A. 2002. A Human Based Perception Model for

Cooperative Intelligent Virtual Agents. In Proceedings of the 10th International

Conference on Cooperative Information Systems (CoopIS 2002), California. USA,

195-212.

Hevner, A.R., S.T. March, J. Park, J., and S. Ram. 2004. Design science in information

systems research. MIS Quarterly, 28(1): 75-106.

Honavar, V. 1999. Intelligent Agents and Multi Agent Systems - Tutorial at IEEE CEC.

http://www.cs.iastate.edu/%7Ehonavar/agent99.pdf. (accessed October 10, 2002).

Horlait, E. 2003. Mobile Agents for Telecommunication Applications (Innovative

Technology Series: Information Systems and Networks). England: Kogan Page

Science.

Horrocks, I., and F. van Harmelen. 2001. Reference Description of the DAML+OIL

Ontology Markup Language. Technical report.

http://www.daml.org/2001/03/reference.html. (accessed May 16, 2004).

Huget, M.P., B. Bernhard, J. Odell, R. Levy, P. Turci, R. Cervenka, M. Nodine, S.

Cranefield, and H. Zhu. 2003. FIPA Modeling: Agent Class Diagrams.

http://www.auml.org/auml/documents/main.shtml. (accessed September 5, 2003).

Huhns, M.N. and L.M. Stephens. 1999. Multiagent Systems and Societies of Agents.

Journal of Applied Artificial Intelligence. In Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence, ed. G. Weiss, 79-120. London:

The MIT Press.

Huhns, M.N., and M.P. Singh. 1997. Ontologies for agents. IEEE Internet Computing

1(6): 81-83.

Huhns, M.N., and M.P. Singh, eds. 1998. Readings in Agents. California: Morgan

Kaufmann Publishers Inc.

http://www.cs.iastate.edu/%7Ehonavar/agent99.pdf
http://www.daml.org/2001/03/reference.html
http://www.auml.org/auml/documents/main.shtml

357

Humphreys, B.L, and D.A. Lindberg. 1993. The UMLS project: making the conceptual

connection between users and the information they need. Bulletin of Medical

Library Association 81(2):170-177.

Hwang, C.H. 1999. Incompletely and imprecisely speaking: Using dynamic ontologies

for representing and retrieving information. Technical report, Microelectronics

and Computer Technology Corporation, Texas, USA.

IBM. 2002. Aglets. http://www.trl.ibm.com/aglets/. (accessed April 25, 2003).

IEEE – Institute of Electrical and Electronics Engineers. 1990. IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries.

New York.

Iglesias, C.A., M. Garijo, and J.C. Gonzalez. 1999. A survey of agent-oriented

methodologies. In Proceedings of the 5th International Workshop on Intelligent

Agents V: Agent Theories, Architectures, and Languages (ATAL-98), Paris,

France, 317-330.

Iglesias, C.A., M. Garijo, J.C. Gonzalez, and J.R. Velasco. 1996. A Methodological

Proposal for Multi-Agent Systems Development Extending CommonKADS. In

Proceedings of the 10th Knowledge Acquisition for Knowledge-Based Systems

Workshop, Banff, Canada.

Iglesias, C.A., M. Garijo, J.C. Gonzalez, and J.R. Velasco. 1998. Analysis and Design

of Multi-Agent Systems using MAS-CommonKADS. In Intelligent Agents IV

(LNAI Volume 1365), ed. M.P. Singh, A. Rao, and M. Wooldridge, 313-326.

Berlin: Springer-Verlag.

Iivari, J. and P. Kerola. 1983. A Sociocybernetic Framework for the Feature Analysis of

Information Systems Design Methodologies. In Information Systems Design

Methodologies - A Feature Analysis, ed. T.W. Olle, H.G. Sol and C.J. Tully, 63-

85. Amsterdam: Elsevier Science Publishers.

Institut de Recherche en Informatique de Toulouse. n.d. ADELFE: Atelier de

Développement de Logiciels à Fonctionnalité Emergente. http://www.irit.fr/

ADELFE/. (accessed July 25, 2002).

Ioannidis, Y.E., and T.K. Sellis. 1989. Conflict Resolution of rules assigning values to

virtual attributes. In Proceedings of ACM SIGMOD 1989 International

Conference on Management of Data, Portland, USA, 205-214.

http://www.trl.ibm.com/aglets
http://www.irit.fr

358

JAFMAS Java-Based Framework for Multi-Agent Systems. Ohio: University of

Cincinnati. http://www.ececs.uc.edu/~abaker/JAFMAS/. (accessed April 25,

2003).

Jayaratna, N. 1994. Understanding and Evaluating Methodologies - NIMSAD A

Systematic Framework. England: McGraw-Hill.

Jennings, N. R. 1993. Specification and implementation of a belief desire joint-intention

architecture for collaborative problem solving. Journal of Intelligent and

Cooperative Information Systems 2(3):289-318.

Jennings, N.R. 2001. Building complex, distributed systems: the case for an agent-based

approach. Communications of the ACM 44(4): 35-41.

Jennings, N.R., and M. Wooldridge. 1995. Applying Agent Technology. Applied

Artificial Intelligence 9 (4): 351-359.

Jennings, N.R., and M. Wooldridge. 1998. Applications of Intelligent Agents. In Agent

Technology: Foundations, Applications, and Markets, ed. N. Jennings, and M.

Wooldridge, 3-28. Berlin: Springer-Verlag.

Jennings, N.R., and M. Wooldridge. 2001. Agent-Oriented Software Engineering. In

Handbook of Agent Technology, ed. J. Bradshaw. USA: AAAI/MIT Press.

Jennings, N.R., S. Sycara, and M. Wooldridge. 1998. A Roadmap of Agent Research

and Development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):

7-38.

Kaelbling, L.P. 1991. A situated automata approach to the design of embedded agents.

SIGART Bulletin 2(4): 85-88.

Kalfoglou, Y., M. Schorlemmer. 2003. IF-Map: an ontology mapping method based on

Information Flow theory. Journal on Data Semantics 1(1): 98-127.

Kankaanpää, T. 1999. Design and Implementation of a Conceptual Network And

Ontology. Master thesis, Helsinki University of Technology, Finland.

Karp, P. D., V.K. Chaudhri, and J. Thomere. 1999. XOL: An XML-Based Ontology

Exchange Language. Technical report version 3. ftp://smi.stanford.edu/pub/bio-

ontology/xol.doc. (accessed May 17, 2004)

Kendall, E.A. 1999. Role modelling for agent system analysis, design, and

implementation. In Proceedings of the 1st International Symposium on Agent

Systems and Applications, Palm Springs, California, 204-218.

http://www.ececs.uc.edu/~abaker/JAFMAS
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
http://www.ececs.uc.edu/~abaker/JAFMAS

359

Kendall, E.A. 2000. Agent Software Engineering with Role Modelling. In Proceedings

of the 1st International Workshop on Agent-Oriented Software Engineering

(AOSE-2000), Limerick, Ireland, 163-170.

Kendall, K. E., and J. E. Kendall. 2002. Systems Analysis and Design, 5th ed. New

Jersey: Prentice Hall.

Kendall, E.A., and L. Zhao. 1998. Capturing and Structuring Goals. In Proceedings of

Conference on Object-Oriented Programming, Systems, Languages, and

Applications OOPSLA'98, Vancouver, Canada.

Kendall, E.A., M.T. Malkoun, and C. Jiang. 1995. A methodology for developing Agent

based Systems for Enterprise Integration. In Proceedings of the 1st Australian

Workshop on Distributed Artificial Intelligence: Architecture and Modelling,

Canberra, Australia, 85-99.

Khan, L.R. 2000. Ontology-based information selection. PhD thesis, University of

South California, USA.

Kifer, M., G. Lausen, and J. Wu. 1995. Logical foundations of Object-Oriented and

Frame-Based Languages. Journal of ACM 42(4): 741 - 843.

Kinny, D., and M. Georgeff. 1996. Modelling and Design of Multi-agent Systems. In

Proceedings of the 3rd International Workshop on Agent Theories, Architectures,

and Languages (ATAL'96), Budapest, Hungary, 1-20.

Kinny, D., M. Georgeff, and A. Rao. 1996. A Methodology and Modelling Technique

for Systems of BDI Agents. In Proceedings of the 7th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),

Eindhoven, The Netherlands, 56-71.

Klampanos, I.A., J.J. Barnes, and J.M. Jose. 2003. Evaluating Peer-to-Peer Networking

for Information Retrieval within the Context of Meta-Searching. In Proceedings

of the 2003 European Colloquium on IR Research, Pisa, Italy, 528-536.

Klampanos, I.A., and J.M. Jose. 2003. An Architecture for Peer-to-Peer Information

Retrieval. SIGIR’03, 401-402.

Knoblock, C.A., A. Arens, and C.N. Hsu. 1994. Cooperating Agents for Information

Retrieval. In Proceedings of the 2nd International Conference on Cooperative

Information Systems, Toronto, Canada.

Knowledge Based Systems Inc. 1994. IDEF5 Method Report.

http://www.idef.com/Downloads/pdf/Idef5.pdf. (accessed October 16, 2001).

http://www.idef.com/Downloads/pdf/Idef5.pdf

360

Kolp, M. , Castro, J. and Mylopoulos, J. 2001. A social organization perspective on

software architectures. In Proceedings of the 1st International Workshop from

Software Requirements to Architectures (STRAW’01), Toronto, Canada, 5-12.

Kotonya, G, and I. Sommerville. 1998. Requirements Engineering: Processes and

techniques. John Wiley & Sons.

Kung, C.H. 1983. An Analysis of Three Conceptual Models with Time Perspective. In

Information Systems Design Methodologies - A Feature Analysis, ed. T.W. Olle,

H.G. Sol and C.J. Tully, 63-85. Amsterdam: Elsevier Science Publishers.

Leach, C. 1979. Introduction to statistics: a nonparametric approach for the social

sciences. New York: Wiley.

Lenat, D.B., and R.V. Guha. 1990. Building large knowledge-based systems:

Representation and inference in the CYC project. USA: Addison-Wesley.

Lesser, V.R. 1996. Cooperative Multi-agent systems: A personal View of the State of

the Art. IEEE Transactions on Knowledge and Data Engineering 11(1): 133 -

142.

Lind, J. 1999. MASSIVE: Software Engineering for Multiagent Systems. PhD Thesis,

University of Saarbrucken, Germany.

Lind, J. 2000a. The MASSIVE development method for Multiagent Systems. In

Proceedings of the 5th International Conference on the Practical Application of

Intelligent Agents and Multi-Agents (PAAM2000), Manchester, UK.

Lind, J. 2000b. Issues in Agent-Oriented Software Engineering. In Proceedings of the

1st International Workshop on Agent-Oriented Software Engineering (AOSE-

2000), Limerick, Ireland, 45-58.

Luck, M., P. McBurney, and C. Preist. 2003. Agent Technology: Enabling Next

Generation Computing: A roadmap for Agent Based Computing. AgentLink

Lueg, C., and Salomon, R. 1997. A New AI Perspective on Software Agents:

Preliminary Report. In Proceedings of the 2nd German Workshop on Artificial Life

(GWAL 97), Dortmund, Germany, 59-60.

Macaulay, L. 1996. Requirements Engineering. Berlin: Springer-Verlag.

Madhavan, J., P.A. Bernstein, P. Domingos, and A.Y. Halevy. 2002. Representing and

reasoning about mappings between domain models. In Proceedings of the 18th

National Conference on Artificial Intelligence, Alberta, Canada, 80 – 86.

MADKIT. 2002. http://www.madkit.org/. (accessed July 20, 2002).

Maes, P. 1991. The agent network architecture. SIGART Bulletin 2(4): 115-120.

http://www.madkit.org

361

Mahalingam, K., and M.N. Huhns. 1997. An ontology tool for query formulation in an

agent-based context. In Proceedings of the 2nd IFCIS International Conference on

Cooperative Information Systems (CoopIS '97), Kiawah Island, USA, 170-178.

Malucelli, A., and E. Oliveira. 2004. Ontology-Services Agent to Help in the Structural

and Semantic Heterogeneity. In Proceedings of PRO-VE'04 - 5th IFIP Working

Conference on Virtual Enterprises, Toulouse, France.

Mamei, M., and F.Zambonelli. 2004. Motion Coordination in the Quake 3 Arena

Environment: A Field-based Approach. In Proceedings of the 1st International

Workshop on Environments for Multiagent Systems, New York, USA.

March, S. and G.F. Smith. 1995. Design and natural science research on information

technology. Decision Support Systems, 15: 251-266.

Mars, N.J.I., W.G. Ter Stal, H. De Jong, P.E. Van Der Vet, and P.-H. Speel. 1994.

Semi-automatic Knowledge Acquisition in Plinius: An Engineering Approach. In

Proceedings of the 8th Banff Knowledge Acquisition for Knowledge-based Systems

Workshop, Banff, Canada, 4.1-4.15.

Mason, C.L., and R.R. Johnson. 1989. DATMS: a framework for distributed assumption

based reasoning. In Distributed Artificial Intelligence II, ed. L. Gasser and M.N.

Huhns. London: Pitman/Morgan Kaufman

Masuoka, R., and A. Sato. 1999. Agent Description Ontology - Version 2 (CFP6 014).

http://www.flacp.fujitsulabs.com/~rmasuoka/papers/fipa99-nice-proposal.pdf.

(accessed July 10, 2003).

Mena, E., A. Illarramendi, V. Kashyap, and A. Sheth. 2000. OBSERVER: An approach

for query processing in global information systems based on interoperation across

pre-existing ontologies. International Journal on Distributed and Parallel

Databases 8(2): 223--271.

Miles, S., M. Joy, and M. Luck. 2000. Designing Agent-Oriented Systems by Analysing

Agent Interactions. In Proceedings of the 1st International Workshop on Agent-

Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 171-184.

Mine, T., D. Matsumo, A. Kogo, and M. Amamiya. 2004. Design and Implementation

of Agent Community Based Peer-to-Peer Information Retrieval Method. In

Proceedings of the 8th International Workshop on Cooperative Information

Agents, Erfurt, Germany, 31-46.

http://www.flacp.fujitsulabs.com/~rmasuoka/papers/fipa99-nice-proposal.pdf

362

Mishra, S., and P. Xie. 2003. Interagent Communication and Synchronization Support

in the DaAgent Mobile Agent-Based Computing System. IEEE Transactions on

Parallel and Distributed Systems 14(3): 290-306.

Mitsubishi Electric Research Laboratories. 2004. Concordia.

http://www.merl.com/projects/concordia/. (accessed April 15, 2003).

Moukas, A., and P. Maes. 1998. Amalthaea: an evolving multi-agent information

filtering and discovery system for the WWW. Autonomous Agents and Multi-

agent Systems 1(1): 59-88.

Mountzia, M.A. 1996. An Intelligent-Agent based Framework for Distributed Systems

Management. In Proceedings of the 3rd HP OVUA Workshop, Toulouse, France.

Mueller, H.J. 1997. Towards agent systems engineering. International Journal on Data

and Knowledge Engineering (Special Issue on Distributed Expertise) 23: 217-245.

Mukherjee, R., P.S. Dutta, and S. Sen. 2000. Analysis of domain specific ontologies for

agent-oriented information retrieval. In Working notes of the AAAI-2000

Workshop on Agent-Oriented Information Systems.

Muller, J.P. 1999. Architectures and applications of intelligent agents: A survey.

Knowledge Engineering Review 13(4):353-380.

Muller, J.P., and M. Pischel. 1993. The Agent Architecture InteRRaP: Concept and

Application. Technical Report RR-93-26, German Research Center for Artificial

Intelligence, Saarbrucken, Germany.

Myers, K.L. 1997. User Guide for the Procedural Reasoning System. Technical Report,

Artificial Intelligence Center, California, USA.

Nareyek, A. 2001. EXCALIBUR: Adaptive Constraint-Based Agents in Artificial

Environments. http://www.ai-center.com/projects/excalibur/documentation/

(accessed December 10, 2004)

Newell, A. 1990. Unified Theories of Cognition. Massachusetts: Harvard University

Press.

Newell, A. and H. Simon. 1963. GPS: A program that simulates human thought. In

Computers and Thought, ed. E.A. Feigenbaum and J. Feldman. New York:

McGraw-Hill.

Nissen, H.E. 1983. Subject Matter Separability in Information Systems Design

Methods. In Information Systems Design Methodologies - A Feature Analysis, ed.

T.W. Olle, H.G. Sol and C.J. Tully, 63-85. Amsterdam: Elsevier Science

Publishers.

http://www.merl.com/projects/concordia
http://www.ai-center.com/projects/excalibur/documentation

363

Nodine, M. H., and A. Unruh. 1997. Facilitating open communication in agent systems:

the InfoSleuth infrastructure. In Proceedings of the 4th International Workshop on

Intelligent Agents IV, Agent Theories, Architectures, and Languages, 281-295.

Noy, N.F., and D.L. McGuinness. 2001. Ontology Development 101: A Guide to

Creating Your First Ontology. Technical report KSL-01-05, Stanford Knowledge

Systems Laboratory.

Nwana, H., and M. Wooldridge. 1996. Software agent technologies. BT Technology

Journal 14(4): 68-79.

Object Agency Inc. 1995. A Comparison of Object-Oriented Development

methodologies. http://www.toa.com/smnn?mcr.html. (accessed November 9,

2002)

Object Management Group. 2000. Agent Technology Green Paper version 1.

http://www.jamesodell.com/ec2000-08-01.pdf. (accessed May 27, 2003).

Object Management Group. 2003. OMG Unified Modeling Language Specification.

http://www.omg.org/technology/documents/formal/uml.htm. (accessed October

20, 2004).

O’Brien, P.D., and R.C. Nicol. 1998. FIPA - Towards a Standard for Software Agents.

BT Technology Journal 16(3): 51-59.

Odell, J., and M.-P. Huget. 2003. FIPA Modeling: Interaction Diagrams.

http://www.auml.org/auml/documents/ID-03-07-02.pdf. (accessed December 17,

2003).

Odell, J., H.V.D Parunak, and B. Bauer. 2000a. Extending UML for Agents. In

Proceedings of the Agent-Oriented Information Systems Workshop at the 17th

National conference on Artificial Intelligence, Austin, USA, 3-17.

Odell, J., H.V.D Parunak, and B. Bauer. 2000b. Representing agent interaction

protocols in UML. In Proceedings of the 1st International Workshop on Agent-

Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 121-140.

Odell, J., H.V.D. Parunak, S. Brueckner, and J. Sauter. 2003b. Temporal aspects of

dynamic role assignment. In Proceedings of the 4th International Workshop on

Agent-Oriented Software Engineering (AOSE 2003), Melbourne, Australia.

Olive, A. 1983. Analysis of Conceptual and Logical Models in Information Systems

Design Methodologies. In Information Systems Design Methodologies - A Feature

Analysis, ed. T.W. Olle, H.G. Sol and C.J. Tully, 63-85. Amsterdam: Elsevier

Science Publishers.

http://www.toa.com/smnn?mcr.html
http://www.jamesodell.com/ec2000-08-01.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.auml.org/auml/documents/ID-03-07-02.pdf

364

Olle, T.W., H.G. Sol, and C.J. Tully, eds. 1983. Information Systems Design

Methodologies - A Feature Analysis. Amsterdam: Elsevier Science Publishers.

O’Malley, S.A., and S.A. DeLoach. 2001. Determining When to Use an Agent-Oriented

Software Engineering Paradigm. In Proceedings of the 2nd Workshop on Agent-

Oriented Software Engineering (AOSE-2001), Montreal, Canada, 188-205.

Omicini, A. 2000. SODA: Societies and Infrastructure in the Analysis and Design of

Agent-Based Systems. In Proceedings of the 1st International Workshop on

Agent-Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 185-194.

Omicini, A., and E. Denti. 2001. From tuple spaces to tuple centres. Science of

Computer Programming 41(3): 277-294.

Omicini, A., and F. Zambonelli. 1999. Coordination for Internet Application

Development. Autonomous Agents and Multi-Agent Systems 2(3): 251-269.

Omicini, A., E. Denti, and A. Natali. 1995. Agent coordination and control through

logic theories. In Proceedings of the 4th Congress of the Italian Association for

Artificial Intelligence on Topics in Artificial Intelligence, Florence, Italy, 439 -

450.

Padgham, L., and M. Winikoff. 2002a. Prometheus: A methodology for developing

intelligent agents. In Proceedings of 3rd International Workshop on Agent-

Oriented Software Engineering (AOSE-2002), Bologna, Italy.

Padgham, L., and M. Winikoff. 2002b. Prometheus: A pragmatic methodology for

engineering intelligent agents. In Proceedings of the OOPSLA 2002 Workshop on

Agent-Oriented Methodologies, Seattle, USA, 97-108.

Papadopoulos, G.A. 2001. Models and technologies for the coordination of Internet

agents: A survey. In Coordination of Internet Agents: Models, Technologies, and

Applications, ed. A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, 25-56.

London: Springer-Verlag.

Papadopoulos, G.A., and F. Arbab. 1998. Coordination models and languages.

Advances in Computers 46: 329-400.

Parent, C., and S. Spaccapietra. 1998. Issues and approaches of database integration.

Communications of the ACM 41(5): 166-178.

Parrott, L, R. Lacroix, and K. M. Wade. 2003. Design considerations for the

implementation of multi-agent systems in the dairy industry. Computers and

Electronics in Agriculture 38(2): 79-98.

365

Pavon, J., and J. Gomez-Sanz. 2003. Agent Oriented Software Engineering with

INGENIAS. In Proceedings of 3rd International Central and Eastern European

Conference on Multi-Agent Systems, CEEMAS 2003, Prague, Czech Republic,

394-403.

Pavon, J., J. Gomez-Sanz, and R. Fuentes. 2005. The INGENIAS Methodology and

Tools. In Agent-Oriented Methodologies, ed. B. Henderson-Sellers and P.

Giorgini. Pennsylvania: Idea Group Publishing (in press).

Pazzaglia, J-C. R., and S.M. Embury. 1998. Bottom-up Integration of Ontologies in a

Database Context. In Proceedings of the 5thInternational Workshop on Innovative

Application Programming and Query Interfaces, Seattle, USA, 7.1-7.7.

Pednault, E. 1989. ADL: Exploring the middle ground between STRIPS and the

situation calculus. In Proceedings of the 1st International Conference on

Principles of Knowledge Representation and Reasoning, Toronto, Canada, 324-

332.

Picco, G.P., A.L. Murphy, and G.-C. Roman. 1999. LIME: Linda meets mobility. In

Proceedings of the 21st International Conference on Software Engineering

(ICSE’99), Los Angeles, USA, 368-377.

Poggi, A., G. Rimassa, and P. Turci. 2002. Engineering CoMMA Multiagent System

with Agent UML. In Proceedings of the Workshop from Objects to Agents, Milan,

Italy.

Potts, C. 1999. ScenIC: A Strategy for Inquiry-Driven Requirements Determination. In

Proceedings of the 4th IEEE International Symposium on Requirements

Engineering, Limerick, Ireland, 58-65.

Rao, A.S., and M.P. Georgeff. 1991. Modelling rational agents within a BDI

architecture. In Proceedings of the 2nd International Conference on Principles of

Knowledge Representation and Reasoning, Cambridge, USA, 473-484.

Rao, A.S., and M.P. Georgeff. 1995. BDI agents: from theory to practice. In

Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-

95), San Francisco, USA, 312-319.

Richards, D. 2000. The Reuse of Knowledge: A User-Centered Approach. International

Journal of Human Computer Studies 52(3): 553-579.

Robinson, D.J. 2000. A Component Based Approach to Agent Specification. Master

thesis, Air Force Institute of Technology, USA.

366

Rolland, C., C. Souveyet, and C.B. Achour. 1998. Guiding Goal Modeling Using

Scenarios. IEEE Transactions on Software Engineering 24(12): 1055-1071.

Russell, S., and P. Norvig. 1995. Artificial Intelligence: A Modern Approach. 2nd ed.

New Jersey: Prentice Hall.

Russell, S., and P. Norvig. 2003. Artificial Intelligence: A Modern Approach. 2nd ed.

New Jersey: Prentice Hall.

Sabas, A., M. Badri, and S. Delisle. 2002. A Multidimensional Framework for the

Evaluation of Multiagent System Methodologies. In Proceedings of the 6th World

Multiconference on Systemics, Cybernetics and Informatics (SCI-2002), Orlando,

USA, 211-216.

Sargent, P. 1992. Back to school for a brand new ABC. The Guardian, March 12: 28.

Sathi, A., and M.S. Fox. 1989. Constraint-directed negotiation of resource reallocations.

In Distributed Artificial Intelligence II, ed. L. Gasser and M.N. Huhns. London:

Pitman/Morgan Kaufman.

Schreiber, A.T., B. J. Wielinga, R. de Hoog, J. M Akkermans, and W. Van de Velde.

1994. CommonKADS: A comprehensive methodology for KBS development.

IEEE Expert 9(6): 28-37.

Shave, M.J.R. 1997. Ontological Structures for Knowledge Sharing. New Review of

Information Networking 3: 125-133.

Shehory, O., and A. Sturm. 2001. Evaluation of modeling techniques for agent-based

systems. In Proceedings of the 5th International Conference on Autonomous

agents, Montreal, Canada, 624-631.

Shen, W., and D.H. Norrie. 1999. Agent-Based Systems for Intelligent Manufacturing:

A State-of-the-Art Survey. Knowledge and Information Systems 1(2): 129-156.

Shen, W., D.H. Norrie, and R. Kremer. 1999. Towards an Infrastructure for Internet

Enabled Collaborative Agent Systems. In Proceedings of the 12th Workshop on

Knowledge Acquisition, Modeling and Management (KAW'99), Banff, Canada.

Sheth, A.P., and J.A. Larson. 1990. Federated database systems for managing

distributed, heterogeneous and autonomous databases. ACM Computing Surveys

22(3): 183-236.

Shoham, Y. 1993. Agent-oriented programming. AI 60(1): 139-159.

Shoham, Y., and M. Tennenholtax. 1992. On the synthesis of useful social laws for

artificial agent societies. In Proceedings of the 10th National Conference on

Artificial Intelligence, Menlo Park, California, 276-281.

367

Shoham, Y., and S.B. Cousins. 1994. Logics of mental attitudes in AI: A very

preliminary survey. In Foundations of Knowledge Representation and Reasoning,

ed. G. Lakemeyer and B. Nebel, 296-309. Berlin, Heidelberg: Springer Verlag.

Siau, K., and M. Rossi. 1998. Evaluation of Information Modeling Methods – A

Review. In Proceedings of the 31st Annual Hawaii International Conference on

System Sciences, Hawaii, USA, 314-322.

Silva, V., A. Garcia, A. Brandao, C. Chavez, C. Lucena, and P. Alencar. 2003. Taming

Agents and Objects in Software Engineering. In Software Engineering for Large-

Scale Multi-Agent Systems – Lecture Notes in Computer Science, ed. A. Garcia, C.

Lucena, J. Castro, A. Omicini, and F. Zambonelli, 1-26. Springer Verlag.

Silva, V.T.D., and C.J.P.D. Lucena. 2004. From a Conceptual Framework for Agents

and Objects to a Multi-Agent System Modeling Language. Autonomous Agents

and Multi-Agent Systems 8: 1-45.

Singh, D. 2000. An agent based architecture for query planning and cost modelling of

web sources. Master Thesis, University of Georgia.

Sowa, J.F. 2000. Knowledge Representation: Logical, Philosophical, and

Computational Foundations. Pacific Grove: Brooks/Cole Thompson Learning.

Standards Australia. 2004. Standard metamodel for software development

methodologies (AS-4651-2004). http://www.standards.com.au/.

Steep, R., S. Cammarata, F.A. Hayes-Roth, P.W. Thorndyke, and R.B. Wesson. 1981.

Architectures for distributed intelligence for air fleet control. Technical report R-

2728-ARPA, Rand Corporation, Santa Monica, California.

Studer, R., H. Eriksson, J. H. Gennari, S. Tu, D. Fensel, and M. Musen. 1996.

Ontologies and the Configuration of Problem-Solving Methods. In Proceedings of

the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,

Banff, Canada.

Stone, P., and M. Veloso. 2000. Multiagent Systems: A Survey from a Machine

Learning Perspective. Autonomous Robots 8(1): 345-383.

Stumme, G., and A. Maedche. 2001. Ontology merging for federated ontologies on the

semantic web. In Proceedings of Workshop on Ontologies and Information

Sharing (IJCAI' 01), Seattle, USA.

Sugumaran, V., and V.C. Storey. 2001. Creating and Managing Domain Ontologies for

Database Design. In Proceedings of the 6th International Workshop on

Applications of Natural Language to Information Systems, Madrid, Spain, 17-26.

http://www.standards.com.au

368

Sundsted, T. 1998. An introduction to agents. Javaworld, June 6.

http://www.javaworld.com/javaworld/jw-06-1998/jw-06-howto.html. (accessed

August 25, 2002).

Sycara, K. 1998a. Resolving goal conflict via negotiation. In Proceedings of the 7th

National Conference on Artificial Intelligence, Minnesota, USA, 245-250.

Sycara, K. 1998b. Multiagent Systems. AI Magazine 19(2): 79-92.

TACOMA – Tromso and Cornell Moving Agents. Tromso: University of Tromso.

http://www.tacoma.cs.uit.no/. (accessed July 10, 2003).

Tahara, Y., A. Ohsuga, and S. Honiden. 1999. Agent system development based on

agent patterns. In Proceedings of the 21st International Conference on Software

Engineering, California, USA, 356–367.

Tamma, V., M. Wooldridge, and I. Dickinson. 2002a. An ontology for automated

negotiation. In Proceedings of the International Workshop on Ontologies in Agent

Systems (OAS’02), Bologna, Italy.

Tamma, V., M. Wooldridge, and I. Dickinson. 2002b. An ontology based approach to

automated negotiation. In Proceedings of the 4th Workshop on Agent Mediated

Electronic Commerce (AMEC IV), Bologna, Italy.

Tamma, V., S. Phelps, I. Dickinson, and M. Wooldridge. 2005. Ontologies for

supporting negotiation in e-commerce. Engineering Applications of Artificial

Intelligence 18: 223-236.

Taveter, K. 1998. Intelligent Information Retrieval Based on Interconnected Concepts

and Classes of Retrieval Domains. In Proceedings of the 8th DELOS Workshop

User Interface in Digital Libraries, Stockholm, Sweden, 39-43.

Telecom Italia Lab. 2004. Java Agent Development Framework – an Open Source

platform for peer-to-peer agent based applications. http://jade.tilab.com/.

(accessed August 14, 2002).

Thangarajah, J., L. Padgham, and J. Harland. 2002. Representation and Reasoning for

Goals in BDI Agents. In Proceedings of the twenty-fifth Australasian conference

on Computer science - Volume 4, Melbourne, Australia, 259–265.

Tolkdorf, R. 1997. Berlinda: an object-oriented platform for implementing coordination

languages in Java. In Proceedings of the 2nd International Conference on

Coordination Languages and Models, Berlin, Germany, 430-433

http://www.javaworld.com/javaworld/jw-06-1998/jw-06-howto.html
http://www.tacoma.cs.uit.no
http://jade.tilab.com

369

Tout, H. 2001. An Informational Model for Cooperative Information Gathering. In

Proceedings of the Workshop on Ontologies in Agent Systems, 5th International

Conference on Autonomous Agents, Montreal, Canada.

Tran, Q.N., G. Low, and M.A. Williams. 2003. A Feature Analysis Framework for

Evaluating Multi-agent System Development Methodologies. In Proceedings of

the 14th International Symposium on Methodologies for Intelligent Systems

ISMIS’03, Maebashi, Japan, 613-617.

Tran, Q.N., G. Low, and M.A. Williams. 2004. A Preliminary Comparative Feature

Analysis of Multi-agent Systems Development Methodologies. In Proceedings of

the 6th International Bi-Conference Workshop on Agent-Oriented Information

Systems (AOIS-2004), Riga, Latvia, 386-397.

Tran, Q.N., and G. Low. 2005. Comparison of Methodologies. In Agent-Oriented

Methodologies, ed. B. Henderson-Sellers and P. Giorgini. Pennsylvania: Idea

Group Publishing (in print).

Tveit, A. 2001. A survey of Agent-Oriented Software Engineering. In Proceedings of

the 1st NTNU Computer Science Graduate Student Conference, University of

Science and Technology, Norway.

UMBC Lab for Advanced Information Technology. n.d.a. UMBC KQML Web.

http://www.cs.umbc.edu/kqml/. (accessed January 6, 2003).

UMBC Lab for Advanced Information Technology. n.d.b. UMBC AgentNews.

http://agents.umbc.edu/agentnews/ (accessed April 22, 2003).

UMBC Lab for Advanced Information Technology. n.d.c. The Software Agents Mailing

List. http://www.csee.umbc.edu/agentslist/ (accessed May 5, 2003).

Uschold, M., and M. Gruninger. 1996. Ontologies: principles, methods, and

applications. Knowledge Engineering Review 11(2): 93-155.

Uschold, M., and M. King. 1995. Towards A Methodology for Building Ontologies. In

Proceedings of IJCAI-95 Workshop on Basic Ontological Issues in Knowledge

Sharing, Montreal, Canada.

Valckenaers, P., H. Van Brussel, H. Karuna, M. Kollingbaum, O. Bochmann. 2002.

Multi-Agent Manufacturing Control Using Stigmergy. In Proceedings of the 15th

IFAC World Congress on Automatic Control, Barcelona, Spain.

van Breemen, A.J.N. 2002. Integrating Agents in Software Applications. In Proceedings

of Workshops at Net.Objectdays, Erfurt, The Netherlands, 278-289.

http://www.cs.umbc.edu/kqml
http://agents.umbc.edu/agentnews
http://www.csee.umbc.edu/agentslist

370

van Heijst, G., A. Schreiber, and B. Wielinga. 1997. Using Explicit Ontologies in KBS

Development. International Journal of Human computer studies 46: 183-292.

van Lamsweerde, A. 2001. Goal-Oriented Requirements Engineering: A Guided Tour.

In Proceedings of the 5th IEEE International Symposium on Requirements

Engineering, Toronto, Canada, 249-263.

Vere, S., and T. Bickmore. 1990. A Basic Agent. Computational Intelligence 6: 41-60.

Vidal, J.M., P.A. Buhler, and M.N. Huhns. 2001. Inside an Agent. IEEE Internet

Computing 5(1): 82-86.

Vlado, K. 1998. Multi-agent systems for Internet information retrieval using natural

language processing. Master thesis., University of Waterloo.

Wache, H., U. Visser, U., and T. Scholz. 2001. Ontology construction – an iterative and

dynamic task. In Proceedings of the 15th International Florida Artificial

Intelligence Research Society Conference, Florida, USA, 445-449.

Wasserman, A.I., Freeman, P. and M. Porcella. 1983. Characteristics of Software

Development Methodologies. In Information Systems Design Methodologies - A

Feature Analysis, ed. T.W. Olle, H.G. Sol and C.J. Tully, 63-85. Amsterdam:

Elsevier Science Publishers.

Wegner, P. 1996. Coordination as constrained interaction. In Proceedings of the 1st

International Conference on Coordination Languages and Models

(COORDINATION '96), Cesena, Italy, 28-33.

Weiss, G., eds. 1999. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. Massachusetts: MIT Press.

Weyns, D., and T. Holvoet. 2003. Synchronous versus Asynchronous Collaboration in

Situated Multi-agent Systems. In Proceedings of the 2nd International Joint

Conference on Autonomous Agents and Multiagent Systems, Melbourne,

Australia, 1156-1157.

Weyns, D., H.V.D. Parunak, F. Michel, T. Holvoet, and J. Ferber. 2004. Environments

for Multiagent Systems State-of-the-Art and Research Challenges. In Proceedings

of the 1st International Workshop on Environments for Multiagent Systems, New

York, USA.

Wiegers, K. 2003. Software Requirements. 2nd ed. Washington: Microsoft Press.

Winikoff, M., and L. Padgham. 2004. The Prometheus Methodology. In Methodologies

and Software Engineering for Agent Systems. The Agent-Oriented Software

371

Engineering handbook, ed. F. Bergenti, M.P. Gleizes, and F. Zambonelli, Chapter

11. Kluwer Academic Publishers.

Winikoff, M., L. Padgham, and J. Harland. 2001. Simplifying the Development of

Intelligent Agents. In Proceedings of the 14th Australian Joint Conference on

Artificial Intelligence: Advances in Artificial Intelligence, Adelaide, Australia,

557-568.

Wood, S. 1993. Planning and Decision Making in Dynamic Domains. Chchester: Ellis

Horwood.

Wood, M. F. 2000. Multiagent Systems Engineering: A Methodology for Analysis and

Design of Multiagent Systems. Master thesis, Air Force Institute of Technology,

USA.

Wood, M., and S.A. DeLoach. 2000a. An Overview of the Multiagent Systems

Engineering Methodology. In Proceedings of the 1st International Workshop on

Agent-Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 207-221.

Wood, M., and S.A. DeLoach. 2000b. Developing Multiagent Systems with agentTool.

In Proceedings of the 7th International Workshop on Agent Theories,

Architectures, and Languages, Boston, USA, 46-60.

Wood, B., R. Pethia, L.R. Gold, and R. Firth. 1988. A Guide to the Assessment of

Software Development Methods. Technical Report CMUSEI-88-TR-8, SEI,

Software Engineering Institute, Carnegie Mellon University.

Wooldridge, M. 1997. Agent-based software engineering. IEEE Proceedings on

Software Engineering 144(1): 26-37.

Wooldridge, M. 1999. Intelligent Agents. In Multiagent Systems: A Modern Approach

to Distributed Artificial Intelligence, ed. G. Weiss, 27-77. London: The MIT

Press.

Wooldridge, M. 2002. An Introduction to MultiAgent Systems. Chichester: John Wiley

& Sons.

Wooldridge, M., and N.R. Jennings. 1995. Agent Theories, Architectures and

Languages: a survey. In Proceedings of the workshop on agent theories,

architectures, and languages on Intelligent agents, Amsterdam, The Netherlands,

1-39.

Wooldridge, M., and N.R. Jennings. 1998. Pitfalls of Agent-Oriented Development. In

Proceedings of the 2nd International Conference on Autonomous Agents,

Minneapolis, USA, 385-391.

372

Wooldridge, M., and P. Ciancarini. 2000. Agent-Oriented Software Engineering: The

State of the Art. In Proceedings of the 1st International Workshop on Agent-

Oriented Software Engineering (AOSE-2000), Limerick, Ireland, 1-28.

Wooldridge, M., N.R. Jennings, and D. Kinny. 1999. A Methodology for Agent-

Oriented Analysis and Design. In Proceedings of the 3rd International Conference

on Autonomous Agents (Agents ’99), Seattle, Washington, 69-76.

Wooldridge, M., N.R. Jennings, and D. Kinny. 2000. The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3):

285-312.

Wray, R., R. Chong, J. Phillips, S. Rogers, and B. Walsh. n.d. A Survey of Cognitive

and Agent Architectures. http://ai.eecs.umich.edu/cogarch0/index.html. (accessed

April 20, 2002)

Wu, X., and A.C. Esterline. 1999. Representing Multi-agent Plans Using Statecharts

with Explicit Aggregation. In Proceedings of ADMI-99 Minority Institutions

Computing Conference, Duluth, USA.

Xu, D., R. Volz, T. Ioerger, and J. Yen. 2002. Modeling and verifying multi-agent

behaviors using predicate/transition nets. In Proceedings of the 14th international

conference on Software Engineering and Knowledge Engineering, Ischia, Italy,

193-200.

Yan, Q., L.J. Shan, and X.J. Mao. 2003. RoMAS: A Role-Based Modeling Method for

Multi-Agent System. In Proceedings of International Conference on Active Media

Technology, Chongqing, China.

Yourdon, E. 1989. Modern Structured Analysis. Englewood Cliffs, New Jersey:

Yourdon Press.

Yu, E. 1995. Modelling Strategic Relationships for Process Reengineering. PhD thesis,

University of Toronto, Canada.

Yuan, S.T. 1999. Ontology-Based Agent Community for Information Gathering and

Integration. Proceedings of the National Science Council: Physical Science and

Engineering (Part A) 23(6): 766-780.

Zambonelli, F. 2000. Organisational Abstractions for the Analysis and Design of Multi-

Agent Systems. In Proceedings of the 1st International Workshop on Agent-

Oriented Software Engineering, Limerick, Ireland, 127-141.

http://ai.eecs.umich.edu/cogarch0/index.html

373

Zambonelli, F., N. Jennings, and M. Wooldridge. 2001a. Organisational Rules as an

Abstraction for the Analysis and Design of Multi-Agent Systems. International

Journal of Software Engineering and Knowledge Engineering 11(3): 303-328.

Zambonelli F., N. Jennings, and M. Wooldridge. 2003. Developing Multiagent Systems:

The Gaia Methodology. ACM Transactions on Software Engineering and

Methodology 12(3): 317-370.

Zambonelli, F., N.R. Jennings, A. Omicini, and M. Wooldridge. 2001b. Agent-oriented

software engineering for Internet applications. In Coordination of Internet Agents,

ed. A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, 326-346. New York:

Springer-Verlag.

Zhou, J., M. Zhou, and Q. Wu. 2000. An Agent Framework Based on Distributed

Object. In Proceedings of the 36th International Conference on Technology of

Object-Oriented Languages and Systems (TOOLS-Asia'00), Xi’an, China, 188-

194.

374

APPENDIX A

ADVERTISEMENT FOR SURVEY
RECRUITMENT

Dedicated Agent Researchers and Developers Needed!

If you have knowledge and/or experience in agent-oriented software engineering, please take

your time to complete a Multi-Agent Development Methodology Survey, which is available at

http://129.94.244.146/personal/numi+tran/surveyq.nsf/survey/.

Access password: MAS

The survey is part of a doctoral research project and its purpose is to gather your professional

opinions and suggestions on what generic features, process steps and modelling concepts

should be part of a methodology for developing Multi-Agent Systems. The features, steps and

modelling concepts must be ranked and rated with regard to their importance. The survey can

be completed in stages and will take approximately 30-40 minutes to finish. The Closing Date is

31 Jan 2003.

The survey is demanding, but the acquired information will prove to be invaluable to the Agent

community. Participation is completely voluntary and you can remain anonymous. Contact:

Quynh Nhu Numi Tran mailto:numitran@unsw.edu.au.

http://129.94.244.146/personal/numi+tran/surveyq.nsf/survey
mailto:numitran@unsw.edu.au

375

APPENDIX B

ONLINE SURVEY QUESTIONNAIRE

START-UP PAGE

Methodology for Multi-Agent Systems Development

Please enter password:

Password protection is implemented to prevent unauthorized access. It is NOT used for

identification purposes.

WELCOME PAGE86

Methodology for Multi-Agent Systems Development
(For those who wish to continue their partially completed survey,

please click here87)

Firstly, thank you in anticipation for participating in this survey. We appreciate you giving up

some of your time to assist us in this study.

PURPOSE OF THE SURVEY
The survey is the basis for a doctoral research project at the School of Information Systems,

Technology and Management - The University of New South Wales. The research’s aim is to

propose a software engineering methodology for developing Multi-Agent Systems (MAS).

The intention is to reuse and enhance the existing techniques and model definitions offered by

the current agent-oriented software engineering methodologies where appropriate, and

introduce new techniques and model definitions where necessary.

86 This page is loaded when button “Continue” in “Start-up page” is clicked.
87 This is a hyperlink which when clicked will load “Survey Return page”.

Continue

376

The survey aims to gather your professional opinions and suggestions on what features, steps
and modelling concepts should be supported by an Agent-Oriented Software Engineering

(AOSE) methodology for developing MAS.

If you wish, the findings of the survey and the final results of the research will be forwarded to

you when available.

WHO SHOULD PARTICIPATE IN THE SURVEY

 Project managers, system analysts, system designers or system developers who have been

involved in developing at least one MAS.

 Researchers/academics whose area of interest is MAS development.

RESEARCH CONTACTS
If you have any questions on the survey, please contact:

Miss Quynh-Nhu (Numi) Tran
School of Information Systems, Technology and Management

The University of New South Wales

numitran@unsw.edu.au

Prof. Graham Low
Head of School

School of Information Systems, Technology and Management

The University of New South Wales

g.low@unsw.edu.au

INSTRUCTIONS PAGE88

Methodology for Multi-Agent Systems Development

GUIDELINES FOR QUESTIONNAIRE
The survey questionnaire consists of 5 parts.

Part 1 collects your demographic and background information.

Part 2 gathers your opinions on a list of features in terms of how important these features

are to a “standard” MAS development methodology.

Part 3 seeks your opinions on a list of steps with regard to how important these steps are to

a “standard” MAS development process.

88 This page is loaded when button “Continue” on “Welcome page” is clicked.

Continue

mailto:numitran@unsw.edu.au
mailto:low@unsw.edu.au

377

Part 4 obtains your opinions on a list of concepts with respect to how important these

concepts are to models of a “standard” MAS development methodology.

Part 5 asks for your recommendations on various issues relating to the construction of a

MAS development methodology.

The whole questionnaire takes approximately 30-40 minutes in total to complete.

IMPORTANT NOTES
1. You do NOT have to complete the whole questionnaire in one go. After starting the survey,

you can leave the questionnaire at any point and come back later for further completion.

To save a partially completed questionnaire, you just need to click on the button “Save and Exit
Survey” at the end of each part (as shown on the picture below).

When you leave a partially completed survey, you will be given an ID Number which allows you

to return to the questionnaire later. You can save and go back to your partially completed

questionnaire as many times as you like until you finish the survey.

2. It is required to enable Javascript on your browser to allow the questionnaire to function.

3. Please navigate between the questionnaire parts using the navigation buttons at the end of
each part, and not the browser’s “Back” and “Forward”.

SURVEY PART 1 PAGE89

Methodology for Multi-Agent Systems Development

PART 1
This part of the survey questionnaire aims to gather some background information about you

and your experience with Multi-Agent Systems (MAS) and Multi-Agent System development.

You can remain anonymous if you wish.

89 This page is loaded when button “Start” on “Instructions page” is clicked.

Back to Part 1 Save and Exit Continue to Part 3

Start

378

If you would like to remain anonymous, please tick below:

1. Name:

2. Organisation:

3. Department:

4. Email:

(required if wish to receive feedback on the survey’s findings and/or final result of the

research)

5. Please tick if you would like to be informed of

Please provide the following information even if you wish to remain anonymous.

6. What is your IT role of work? (multiple choices are allowed)

7. How would you describe your current theoretical knowledge of Multi-Agent Systems (MAS)?

8. How would you describe your current industrial experience with MASs?

9. How would you describe your current theoretical knowledge of MAS development?

10. How would you describe your current industrial experience with MAS development?

11. Have you been involved in developing any MAS?

If Yes,

 11a. How many MAS development projects have you been involved with?

11b. What is the number of agents in these MASs? (multiple choices are allowed)

11c. How do you perceive the average level of complexity of these MASs? (e.g. in terms

of agent cognitive ability and intelligence, agent interactions and system dynamics)

11d. What is/are the application area(s) of these MASs? (multiple choices are allowed)

Anonymous

Survey’s findings Research’s final result (i.e. documentation of the

proposed MAS development methodology

Project manager Programmer

System analyst Researcher/Academic

System developer/developer Other. Please specify below

1 2 3 4 5 6 7Low Extensive

1 2 3 4 5 6 7Low Extensive

1 2 3 4 5 6 7Low Extensive

1 2 3 4 5 6 7Low Extensive

Yes No

Fewer than 10 10-50 51-99 100 or more

1 2 3 4 5 6 7Very low Very high

Others. Please specify

Personal Assistance Information Gathering & Management

Electronic Commerce Simulation

Automated Control/Monitoring System and Network Management

379

11e. Did you follow any system development methodology in any of these projects?

 If yes, what is/are the methodology(ies)? (Please provide as many details as you

can on the methodology’s names, authors and/or references)

11f. Have you been involved in developing Ontology-Based MASs (i.e. MASs whose

design specification explicitly includes ontologies, and ontologies are used by

agents at run-time to facilitate the operation of MAS)

SURVEY PART 2 PAGE90

Methodology for Multi-Agent Systems Development

PART 2
This part of the survey questionnaire aims to gather your opinions and suggestions on what

generic features should be offered by an AOSE methodology for MAS development. (From here

on, the term “AOSE methodology” will be used to mean “AOSE methodology for MAS

development”).

INSTRUCTIONS

Below you will find a list of features that may be offered by an AOSE methodology. Although all

of them are important, some of the features are more important to be supported by an AOSE

methodology than the others. Thus, we ask for your opinion on this prioritisation.

Desirable features of an AOSE process
Please order rank the following features in terms of their importance to be provided by an AOSE

process. Please also indicate the rating of their importance.

Note: Please try to give each feature a unique ranking. But if you cannot differentiate, features

can be ranked equally.

90 This page is loaded when button “Continue to Part 2” on “Survey Part 1 page” is clicked.

(4 more parts to go)

Yes No

Yes No

Save and Exit Continue to Part 2

380

 91

1. Specification of a system development lifecycle

2. Support for verification and validation (more) 92

3. Specification of steps for the development process

4. Specification of models and/or notational components

 to be generated from each process step

5. Specification of techniques and heuristics for

 performing each process step and for producing

 each model

6. Support for refinability (more)

Desirable features of AOSE model definitions
Please order rank the following features in terms of their importance to be provided by AOSE

model definitions. Please also indicate the rating of their importance.

Note: Please try to give each feature a unique ranking. But if you cannot differentiate, features

can be ranked equally.

1. High degree of completeness/expressiveness (more)

2. High degree of formalisation/preciseness (more)

3. Provision of guidelines/logics for model

 derivation (more)

4. Guarantee of consistency (more)

5. Support for modularity (more)

6. Manageable number of concepts in each model

 and each notational component

7. Models expressed at various levels of abstraction

 and detail

8. Support for reuse

Agent properties desirable to be captured/represented by AOSE models
Please order rank the following agent properties in terms of their importance to be

captured/represented by AOSE models. Please also indicate the rating of their importance.

Note: Please try to give each agent property a unique ranking. But if you cannot differentiate,

agent properties can be ranked equally.

91 This is a combo box which contains 5 possible ratings: “Very High”, “High”, “Medium”, “Low” and
“Very Low”.
92 “more” is a programmed hyperlink which when clicked will open a small pop-up screen to show more
explanation about a particular feature.

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th 6th 7th 8th

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th 6th

381

1. Autonomy (more)

2. Adaptability (more)

3. Cooperative behaviour (more)

4. Inferential capability (more)

5. Knowledge-level communication ability
(more)

6. Personality (more)

7. Reactivity (more)

8. Deliberative behaviour (more)

Desirable features of an AOSE methodology as a whole
Please order rank the following features in terms of their importance to be supported by an

AOSE methodology. Please also indicate the rating of their importance.

Note: Please try to give each feature a unique ranking. But if you cannot differentiate, features

can be ranked equally.

1. Support for open systems (more)

2. Support for dynamic systems (more)

3. Support for agility and robustness (more)

4. Support for heterogeneous systems (more)

5. Support for mobile agents (more)
6. Support for ontology-based MAS development (more)

YOUR SUGGESTIONS ON FEATURES

If you have any suggestions on other desirable features to be supported by a MAS

methodology, please provide details below:

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th 6th 7th 8th

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th 6th

(3 more parts to go)
Save and ExitBack to Part 1 Continue to Part 3

382

SURVEY PART 3 PAGE93

`Methodology for Multi-Agent Systems Development

PART 3
Typically, an AOSE methodology should present a system development process, which involves

steps to guide the system developers through the process. This part of the survey questionnaire

aims to gather your opinions and suggestions on what steps should be included in an AOSE

process.

INSTRUCTIONS

Please order rank the following steps in terms of their importance to be provided by an AOSE

process. Please also indicate the rating of their importance.

Note: Please try to give each step a unique ranking. But if you cannot differentiate, steps can be

ranked equally.

Problem Domain Analysis steps

1. Identify system functionality

2. Specify use case scenarios

3. Identify roles

4. Identify agent classes

5. Model domain conceptualisation

Agent Interaction Design steps

1. Specify acquaintances between agent classes

2. Define interaction protocols

3. Define content of exchanged messages

4. Specify agent communication language

93 This page is loaded when button “Continue to Part 3” on “Survey Part 2 page” is clicked.

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th

383

Agent Internal Design steps

1. Specify agent architecture

2. Define agent informational constructs (i.e. beliefs)

4. Define agent behavioural constructs (e.g. goals, plans,

actions, services)

Overall System Design steps

1. Specify system architecture (more)

2. Specify organisational structure/inter-agent control

 regimes

3. Model MAS environment (more)

4. Specify agent-environment interaction mechanism

5. Specify agent inheritance and aggregation

6. Instantiate agent classes

7. Specify agent instances deployment

YOUR SUGGESTIONS ON STEPS

If you have any suggestions on other desirable steps to be included in an AOSE process,

please provide details below:

SURVEY PART 4 PAGE94

Methodology for Multi-Agent Systems Development

PART 4
Typically, besides a system development process, a MAS methodology should also present a

set of model definitions which capture/represent various concepts. This part of the survey

questionnaire aims to gather your opinions and suggestions on what concepts should be

captured/ represented in AOSE models.

94 This page is loaded when button “Continue to Part 4” on “Survey Part 3 page” is clicked.

Most
important

Least
important Rating of importance

1st 2nd 3rd

Rating of importance
Most
important

Least
important

1st 2nd 3rd 4th 5th 6th 7th

(2 more parts to go)
Save and ExitBack to Part 2 Continue to Part 4

384

INSTRUCTIONS

Please order rank the following concepts in terms of their importance to be captured/

represented in AOSE models. Please also indicate the rating of their importance.

Note: Please try to give each step a unique ranking. But if you cannot differentiate, concepts

can be ranked equally.

Problem Domain concepts

1. System functionality

2. Use case scenario

3. Role

4. Domain conceptualisation

Agent concepts

1. Agent-role assignment

2. Agent goal/task

3. Agent belief/knowledge

4. Agent plan/reasoning rule/problem solving method

5. Agent capability/service

6. Agent percept/event

7. Agent architecture

Agent Interaction concepts

1. Agent acquaintance

2. Interaction protocol

3. Content of exchanged message

Overall System Design concepts

1. System architecture

2. Organisational structure/ inter-agent control
 regimes

3. Environment resource/facility

4. Agent aggregation relationship

5. Agent inheritance relationship

6. Agent instantiation

7. Agent instance deployment

Rating of importance

1st 2nd 3rd 4th 5th 6th 7th

Most
important

Least
important

Most
important

Least
important Rating of importance

1st 2nd 3rd

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th 5th 6th 7th 8th

Most
important

Least
important Rating of importance

1st 2nd 3rd 4th

385

YOUR SUGGESTIONS ON STEPS

If you have any suggestions on other desirable concepts to be captured/represented by AOSE

models, please provide details below:

SURVEY PART 5 PAGE95

Methodology for Multi-Agent Systems Development

PART 5
Please provide your opinions and recommendations on the following issues.

1. If an AOSE methodology must incorporate a system development lifecycle (SDLC), which

SDLC do you think it should be (e.g. waterfall)?

Please list reasons for your answer (if any)

2. Please indicate the importance of an AOSE methodology to commit to a particular agent

architecture (e.g. BDI architecture).

Rating of importance96

 Please list reasons for your answer (if any)

95 This page is loaded when button “Continue to Part 5” on “Survey Part 4 page” is clicked.
96 This is a combo box which contains 5 possible ratings: “Very High”, “High”, “Medium”, “Low” and
“Very Low”.

(1 more part to go)

Save and ExitBack to Part 3 Continue to Part 5

386

3. Which approach do you think an AOSE methodology should adopt for the development of

MAS?

 If you selected the second choice, please indicate the constructs

 Please list reasons for your answer (if any)

THANK YOU PAGE97

Thank You!

Thank you for your time and effort in completing this survey! Your contribution is highly

appreciated, and will enable us to develop an effective software engineering methodology for

developing Multi-Agent Systems.

If you chose to be contacted for follow-up session(s) or survey/research findings, look forward to

contact you again.

Research Contacts:
Miss Quynh-Nhu (Numi) Tran
School of Information Systems, Technology and Management

The University of New South Wales

numitran@unsw.edu.au

Prof. Graham Low
Head of School

School of Information Systems, Technology and Management

The University of New South Wales

g.low@unsw.edu.au

97 This page is loaded when button “Submit Survey” on “Survey Part 5 page” is clicked.

Role-oriented approach (more)

Non-role-oriented approach (more)

Save and ExitBack to Part 4 Submit Survey

mailto:numitran@unsw.edu.au
mailto:low@unsw.edu.au

387

SURVEY RETURN PAGE98

Methodology for Multi-Agent Systems Development

To return to your partially completed survey questionnaire,

please enter your ID Number:

SURVEY SAVE AND EXIT PAGE99

Methodology for Multi-Agent Systems Development

Thank you for your partial completion of the survey. Your responses have been saved. Please

return at a later time to continue with your saved survey. Your ID Number is:

98 This page is loaded when hyperlink “here” on “Welcome page” is clicked. It will direct the respondent
back to the survey part which he had partially completed.
99 This page is loaded whenever button “Save and Exit” on other pages is clicked.

Return to Survey

Return to Survey

[An ID Number is to be shown here]

388

APPENDIX C

DEMOGRAPHIC AND
PROFESSIONAL CHARACTERISTICS
OF SURVEY RESPONDENTS

This appendix presents the descriptive statistics of seven variables that pertained to the

demographic and professional characteristics of survey respondents. The other four

demographic variables, namely “Theoretical knowledge of MAS”, “Theoretical

knowledge of MAS development”, “Industrial experience with MAS” and “Industrial

experience with MAS development”, are analysed in Section 5.3.4.1.

Variable “Field of work”
A majority of the respondents worked in the field of research/academia (Figure

AppendixC.1). Four respondents were involved in multiple fields, including two who

worked as both researcher and system developer/developer, one who worked as both

researcher and project manager, and two who worked concurrently as researcher,

programmer and system developer/developer.

3 4
7 8

21

4

0

5

10

15

20

25

N
um

be
r o

f r
es

po
nd

en
ts

Pr
oj

ec
t m

an
ag

er

Sy
st

em
 a

na
ly

st

Sy
st

em
de

si
gn

er
/d

ev
el

op
er

Pr
og

ra
m

m
er

R
es

ea
rc

he
r/A

ca
de

m
ia

O
th

er
s

Figure AppendixC.1 – Survey respondents’ field of work

389

Variable “Involvement in MAS development projects”
A high proportion of the respondents (33 out of 41) had participated in at least one MAS

development project (Figure AppendixC.2). Out of these respondents, twenty-six had

engaged in 1-5 projects, while two had participated in more than 10 projects.

An exploratory analysis was conducted to discover if “Involvement in MAS development

projects” had any significant impact on the respondents’ “rating of importance” and

“order ranking” of features, steps and modelling concepts in Parts 2, 3 and 4 of the

survey. For this analysis, Mann-Whitney Tests100 were performed to compare the

“ratings of importance” and “order ranks” from two different groups of respondents –

those who had participated in at least one MAS project and those who had not. The

comparisons were carried out for all features, steps and modelling concepts. However,

no significant difference was detected between the two groups at a significance level of

5%. Consequently, the data obtained from both groups of respondents was combined to

form the final survey data set.

Figure AppendixC.2 – Survey respondents’ involvement in MAS development projects

Variable “Size of past MAS projects”
This variable, as well as the succeeding four variables, were collected from respondents

who had been involved in at least one MAS development project (i.e. 33 respondents).

Most respondents had developed small-sized to medium-sized MASs, i.e. MASs with

less than 10 agents and from 10 to 50 agents respectively (Figure AppendixC.3). Six

respondents were involved in multiple MAS projects of different sizes.

100 Mann-Whitney Test was chosen because it is a well-known test for comparing two independent
samples with continuous ordinal data (Leach 1979). The two samples in this case were the rating (or order
ranking) data of the respondents who have involved in MAS projects and those who have not, with regard
to a particular feature, step or concept. The samples are thus independent and the collected data is ordinal
and continuous.

390

17

13

3

6

0

2

4

6

8

10

12

14

16

18

<10 agents 10-50 agents 51-100 agents >100 agents

Figure AppendixC.3 – Size of past MAS projects

Variable “Level of complexity of past MAS projects”
The median complexity of the past MAS development projects that the respondents had

been involved in was “5” (on a 7-point Likert scale ranging from “Very low” to “Very

high”), indicating an average level of medium complexity for the involved MAS

development projects (Figure AppendixC.4).

7.06.05.04.03.02.0

Fr
eq

ue
nc

y

10

8

6

4

2

0

Figure AppendixC.4 – Level of complexity of involved MAS projects

Variable “Application areas of past MAS projects”
A large number of involved MAS projects were in the areas of Information

Gathering/Management, Simulation and Personal Assistant (Figure AppendixC.5). Nine

respondents had been involved in projects of two different application areas, while six

respondents were involved in three different application areas.

391

N
um

be
r o

f r
es

po
nd

en
ts

Figure AppendixC.5 – Application areas of involved MAS projects

Variable “Adoption of AOSE methodologies in past

MAS projects”
A large proportion of the respondents (26 out of 33101) did not follow any AOSE

methodology or framework in their past MAS projects. Of the respondents that did

follow a methodology or framework, the listed AOSE methodologies and frameworks

were:

PROMETHEUS (Padgham and Winikoff 2002a; Padgham and Winikoff 2002b);

GAIA (Wooldridge et al. 1999; Wooldridge et al. 2000);

INGENIAS (Pavon and Gomez-Sanz 2003; Pavon et al. 2005);

RoMAS (Yan et al. 2003);

MESMA (Cuesta et al 2002);

JADE framework (Telecom Italia Lab 2004);

FIPA specifications (FIPA n.d.b); and

Adapted OO frameworks and techniques for agent-oriented development, including

Rational Unified Process, UML and design patterns.

Variable “Involvement in Ontology-Based MAS

development projects”
Of the respondents who had been involved in MAS development projects, only a small

proportion had experienced the construction of Ontology-Based MASs (15 out of 33).

101 The proportion was calculated out of the respondents who had been involved in at least one MAS
development project, i.e. 33 respondents.

392

APPENDIX D

EVALUATION OF EXISTING MAS
DEVELOPMENT METHODOLOGIES

This appendix presents the evaluation of 16 AOSE methodologies according to criterion

“Support for steps” (cf. Table 5.22) and six other criteria relating to the AOSE process,

namely (cf. Table 5.21):

“Specification of model kinds and/or notational components”;

“Definition of inputs and outputs of steps”;

“Specification of techniques and heuristics”;

“Ease of understanding of techniques”;

“Usability of techniques”; and

“Provision of examples for techniques”.

All of these criteria used the list of steps in Table 5.22 as yardsticks.

If a methodology was found to provide “support for [a particular] step”, this support

was evaluated as “explicit” (“E”) or “implicit” (“I”) (cf. Tables 8.9a to 8.9p). The

former applies if the methodology specifies the step as a distinct activity in its

development process. The latter incurs when the step is implicitly fulfilled as part of

another step, or only briefly mentioned by the methodology. If a step is specified as part

of, or in conjunction with, another step, this other step is indicated in the square brackets

[].

Evaluation for “Definition of inputs and outputs of steps” is denoted as “I” if only inputs

are specified, “O” if only outputs are specified, and “B” if both inputs and outputs are

defined. Criterion “Specification of techniques and heuristics” was assessed in two

parts: “Techniques used to perform each step” and “Techniques used to produce each

model or notation component” (cf. Table 5.21 in Section 5.4.1). “Ease of understanding

of techniques” and “Usability of techniques” were evaluated as either “high” (“H”),

“medium” (“M”) or “low” (“L”).

393

Table AppendixD.1 – Support for steps of MASE
MASE

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E Goal hierarchy
diagram B

Analyze initial system
specifications, e.g. technical
documents, user stories, and se
cases. Identify tasks that each
role should perform to achieve
goals

Hierarchically organise goals
in the order of importance. All
sub-goals should relate
functionally to their parent.
Attach tasks to roles in
Extended role diagram

H H Y

2. Specify use case
scenarios E Use case

diagrams B Conventional OO techniques Conventional OO techniques H H Y

3. Identify roles
E Role diagram B

Typically one-to-one mapping
between goals and roles

Show roles, their related goals,
and communication paths
between roles

H H Y

4. Identify agent classes
E Agent class

diagram B
Group roles into agent classes Show agent classes, related

roles, and acquaintances
between agents

H H Y

5. Model domain
conceptualisation

E B

Define purpose and scope of the
ontology, collect data from the
information domain, form the
initial ontology, and finally refine
the ontology into a complete
version

H H Y

6. Specify acquaintances
between agent classes I

[5]
Agent class

diagram B

Any communication paths
between 2 roles indicate
acquaintances between their
respective agent classes

H H Y

7. Define interaction
protocols

E Communication
class diagrams B

Specify conversations between
agents by analyzing inter-role
interactions in use cases, and task
descriptions in Task state
diagrams

Produce a Communication
class diagram (which is a finite
state machine) for each
participant in the conversation

H H Y

8. Define content of
exchanged messages

E[8] Communication
class diagrams B

Analyze inter-role interactions in
use cases, and task descriptions
in Task state diagrams

Model messages as transitions
between states in
Communication class diagram.
Specify performatives and
parameters

H H Y

9. Specify ACL
10.Specify agent
architecture E

Agent class
architecture

diagram
O

Refer to the work of (Robinson
2000)

Refer to the work of
(Robinson 2000) H M Y

11.Define agent
informational constructs
(i.e. beliefs) I[4] Task state

diagram B

Specify how a role/agent can
fulfill a task with a structured set
of activities and communications.
This implicitly represents an
agent’s plan for achieving tasks.

Depict the task processing as a
finite state machine

H M Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes E Deployment

diagram B
Similar to instantiating objects
from object classes

Show numbers and types of
agents H H Y

19.Specify agent
instances deployment E

[18]
Deployment

diagram B

Consider message traffic between
agents, and processing power
available on particular machines
and required by particular agents

Show locations of agents (e.g.
hostname and address) H H Y

394

Table AppendixD.2 – Support for steps of MASSIVE
MASSIVE

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E Task View B

Analyze the intended workflow to
specify what to be done. The
functional decomposition of tasks
can be supported by Structured
Analysis

Construct the Task Tree
following hierarchical
decomposition. The
granularity of decomposition
depends on the specific
problem, but should not
become a specification of a
particular algorithm

H H Y

2. Specify use case
scenarios

3. Identify roles
E Role View B

Group atomic activities (from Task
View) into roles while satisfying the
physical constraints of the
operational environment

H H Y

4. Identify agent
classes I[3]

Role View,
Architectural

View
B L L Y

5. Model domain
conceptualisation

6. Specify
acquaintances between
agent classes

I[7] Interaction
View L L Y

7. Define interaction
protocols E Interaction

View B

Characterise the nature of agent
interactions, thereby choosing
appropriate interaction scheme and
protocols

H H Y

8. Define content of
exchanged messages

9. Specify ACL I[7] Interaction
View O Recommend KQML as a de-factor

standard for ACL Y

10.Specify agent
architecture E Architectural

View B
Characterise the requirements of the
agent architecture, thereby selecting
a suitable architecture

H H Y

11.Define agent
informational
constructs (i.e. beliefs)

12.Define agent
behavioural constructs
(e.g. goals, plans,
actions services)

13.Specify system
architecture (i.e.
overview of all system
components and their
connections)

E Architectural
View B

Examine the overall nature of the
system, then choose an architectural
patterns that firs H M Y

14.Specify
organisational
structure/inter-agent
authority relationships

E Society View B

Characterise the target system
society and design/choose an
optimal social structure accordingly H H Y

15.Model MAS
environment

E Environment
View B

Characterise MAS’ environment
from both the perspectives of the
developer and of the system.

Characterise organisational
context (e.g. accessible or
inaccessible, deterministic or
non-deterministic, episodic or
non-episodic, static or
dynamic) and runtime
environment (programming
model, programming
language, and communication
mode)

H H Y

16.Specify agent-
environment interaction
mechanism

E
[15]

Environment
View O

Determine a generic model of
sensors + effectors that allows
agents to interact with the
environment.

H M Y

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

395

Table AppendixD.3 – Support for steps of SODA
SODA

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

I[3] Role Model O

 Specify each task in terms of its
responsibilities, competences and
required resources. Classify each
task to either “individual” task or
“social” task

H L N

2. Specify use case
scenarios

3. Identify roles

E Role Model B

Associate each
“individual” task to an
“individual” role, each
“social” task to a group
of “social” roles.

Define each role/role-group in terms
of its individual and/or social tasks,
permissions to resources (which are
identified in Resource Model), and
interaction protocols and rules
(which are defined in Interaction
Model).

H M N

4. Identify agent classes

E Agent Model B

Groups roles into agent
classes

Define each agent by its
individual/social tasks, permissions
to resources, interaction protocols
associated with its roles, cardinality,
location and source (i.e. from inside
or outside the system).

H M N

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes

I[7] Interaction Model

7. Define interaction
protocols

E Interaction Model O

Define the interaction
protocols for roles and
for resources, as well as
interaction rules for role-
groups

An interaction protocol specifies the
information required/provided by a
role to accomplish its tasks, or by a
resource to invoke its services. An
interaction rule for a role-group
governs the interactions among
social roles and resources so as to
make the group accomplish its
social task

H H N

8. Define content of
exchanged messages

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs)

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

E Resource Model,
Environment Model O

Identify resources offered
by environment. Map
these resources onto
infrastructure classes.
Specify the topological
model of environment

Define resource in terms of services,
access modes and permissions
granted to roles and role-groups.
Describe each infrastructure class is
described in terms of services,
interfaces, location, owner and
cardinality

H M N

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes I[4] Agent Model

19.Specify agent
instances deployment I[4] Agent Model

396

Table AppendixD.4 – Support for steps of GAIA
GAIA

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

I
[3] Role model O

Specified as “liveness
responsibilities” of roles

Each liveness responsibility is
made up of “actions” and/or
“protocols”

H M Y

2. Specify use case
scenarios

3. Identify roles
E Role model B

Identify roles from individuals,
departments/offices, or sub-
organisations in the target system

Model each role by its
“responsibilities” (including
“liveness” and “safety”) and
“permissions”

H H Y

4. Identify agent classes
E Agent model B

Typically one-to-one mapping
between roles and agent classes

Show identifier of agent
classes and their respective
roles

H H Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes E Acquaintance

model B
Identify acquaintances from Role,
Agent and (inter-role) Interaction
models

Show agent classes and
communication paths between
them

H M Y

7. Define interaction
protocols

E Interaction
model O

Only specifies protocols for inter-
role interactions. Each protocol
defines an institutionalized pattern
of interaction with no detailed
sequences of exchanged messages

Specify purpose, initiator,
responder, inputs, outputs, and
(informal) processing
description for each inter-role
protocol

H H Y

8. Define content of
exchanged messages

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs)

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

E Service model B

Identify agents’ services by
analyzing their roles’
responsibilities, actions, and
protocols.

Show inputs, outputs, pre-
condition, and post-condition
for each agent’s service H H Y

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships E

Organisational
structure

model
B

Choose a structure that optimizes
the organisational efficiency and
simplicity, respects organisational
rules, and reflects the structure of
real world organisation.

Specify organisational
dependencies between roles

H H Y

15.Model MAS
environment

E Environmental
model B

Identify abstract computational
resources (e.g. tuples/variables) that
are available to agents for sensing,
effecting or consuming

Specify a symbolic name,
types of actions permitted on
each environmental resource,
and their textual/structural
descriptions

H M Y

16.Specify agent-
environment interaction
mechanism

I
Implicitly indicates that agents
interact with environment via
sensors and affectuators. No
additional information provided

17.Specify agent
inheritance and
aggregation

I[4] Agent model B

Aggregation occurs when an agent
class is composed of the roles that
make up other agent classes. Does
not consider inheritance

Show an aggregate agent class
as the parent of the children
classes in the tree structure of
Agent model

H H N

18.Instantiate agent
classes E

[4] Agent model O

 Specify numbers of instances
for each agent class by
annotating the class with
qualifiers from Fusion

H H Y

19.Specify agent
instances deployment

397

Table AppendixD.5 – Support for steps of MESSAGE
MESSAGE

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

Te
ch

ni
qu

es

fo
r

st
ep

Te
ch

ni
qu

es

fo
r

m
od

el
lin

g

Ea
se

 o
f

un
de

rs
ta

nd
in

g

U
sa

bi
lit

y

E
xa

m
pl

es

1. Identify system
functionality

E Goal/Task
view B

Analyze organisation chart, company
goals description, and business processes
to identify goals. Identify services that
can be performed by roles to satisfy these
goals, and tasks that can be implemented
to fulfill these services

Show a hierarchy of goal
decomposition in Goal
diagram. Describe the flow of
tasks to achieve a service in a
Workflow diagram

H H Y

2. Specify use case
scenarios

3. Identify roles

E Agent /Role
view B

 Associate roles to goals in
Delegation structure diagram,
and to services and tasks in
Workflow diagrams. Describe
each role with Role Schema

H M Y

4. Identify agent classes

E Agent /Role
view B

Assign roles to agents based on the
developer’s experience and heuristics

Describe each agent with an
Agent Schema and an Agent
diagram (which shows the
associated roles, goals, tasks
and assessed data sources)

H M Y

5. Model domain
conceptualisation E Domain view B

Incrementally add domain concepts and
relations to Domain view as they are
needed in other views

Specify concepts as classes in
UML class diagram H M Y

6. Specify acquaintances
between agent classes E Organisation

View B
 Specify acquaintances between

roles/agents in Organisation
view.

H M Y

7. Define interaction
protocols

E Interaction
view B

Incrementally built from Analysis to
Design. In Analysis phase, only need to
highlight which, why and when roles
communicate. In Design phase, elaborate
each interaction considering the
assignment of roles to agents and
implementation of services in terms of
tasks

May model each protocol with
AUML protocol diagrams or
UML statechart. Can model
the behaviour of each
agent/role in a protocol with
statecharts

H H Y

8. Define content of
exchanged messages I[7] Interaction

view O
 Define each message in

appropriate ACL in protocol
diagrams.

H L N

9. Specify ACL
E O

In Agent-Platform Driven design
approach, the developers should choose
an ACL and content language to use, e.g.
KQML/KIF or FIPA-ACL/SL

H M N

10.Specify agent
architecture E B

Select an architecture that suits the
functional requirements of agents (e.g.
cognitive versus reactive)

Specify architecture
components/layers, depending
on the chosen architecture

H H Y

11.Define agent
informational constructs
(i.e. beliefs)

E B

Depending on the agent architecture,
various categories of knowledge may
need to be specified, including domain
knowledge, social knowledge, and
behavioural knowledge. These can be
determined by analyzing the Domain
view, Organisation view, and Goal/Task
view.

Represent domain entities (for
domain knowledge), social
constraints (for social
knowledge), and rules,
objectives, and tasks (for
behavioural knowledge)
probably using UML notation

H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

E
[14]

System
architecture

diagram
B

Derive system architecture from
Organisation Model

Show all system components
as a package structure

H H Y

14.Specify organisational
structure/inter-agent
authority relationships

E Organisation
view B

Incrementally built from Analysis to
Design. Start by analyzing organisation
chart and business process documentation

Show stakeholders/users,
agents/roles, resources, sub-
organisations, and
relationships bet them (e.g.
power/peer-to-peer
organisational relationships,
acquaintances)

H H Y

15.Model MAS
environment I

[14]
Organisation

view O
Identify resources that agents use, control
or receive input from (e.g. databases,
computational resources)

Show resources and their
relationships with agents in
Organisation view

H L N

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes I[4]

Mentioned but no techniques/model kinds
provided L L N

19.Specify agent
instances deployment

398

Table AppendixD.6 – Support for steps of INGENIAS
INGENIAS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E Goals and
Tasks model B

Identify goals from system
requirements or objectives
associable to agents. Derive
tasks from system
requirements or from goals

Show goals, goal-subgoals
dependencies, tasks, tasks’ pre-
conditions, post-conditions, and
goals-tasks associations

H H Y

2. Specify use case
scenarios E Use case

diagrams O Incrementally identified and
refined Conventional OO techniques H H Y

3. Identify roles
I[4,15,

7]

Agent model,
Organisation

model,
Interaction

model

B

Identify roles from the analysis
of workflows and tasks in
Organisation model

Show roles as actors of
workflows/tasks in Organisation
model, as participants in
Interaction model, and associated
to agents in Agent model

H M Y

4. Identify agent classes
E Agent model B

Apply “rationality principle”
on system components to
identify agents.

Describe each agent in terms of
its roles, goals, tasks, mental
states, and control
structure/process.

H H Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes

E Interaction
model B

In Analysis phase, identify
significant interactions
between actors (i.e.
agents/roles) and initial
schemes of exchanged info.

Show participants (agents/roles)
and goals pursued by each
interaction H H Y

7. Define interaction
protocols

E[6] Interaction
model B

In Design phase, elaborate
each interaction with detailed
description of exchanged
elements (e.g. messages,
tuples, method calls)

Specify exchanged elements and
order of their execution (e.g.
iteration, concurrency,
branching)

H H Y

8. Define content of
exchanged messages E[7] Interaction

model B
 For each message, show name of

operation, parameters, guards,
and annotation of sequence

H M Y

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs)

E Agent model B

Determine agent’s “mental
states” from analysis of goals,
tasks, and interactions. Define
the “control” of agent to assure
desired transitions between Its
mental states

Represent mental states in terms
of goals, tasks, facts, or any other
entity that helps in state
description. Agent goals can be
modelled as initial state. Can
model agent control as
algorithms or complex
deliberative process

H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

I[14] Organisation
model B

 Implicitly reflected in the
Organisation model where all
system components and their
connections are shown

H H Y

14.Specify organisational
structure/inter-agent
authority relationships E Organisation

model B

Incrementally identify and
refine the org. structure in
terms of system components
(i.e. agents, roles, resources,
and applications), and social
dependencies among them

Show how system components
are grouped, their social
dependencies (e.g. subordination
and client-server relations),
task/workflow assignment, and
resources used/produced.

H H Y

15.Model MAS
environment

E Environment
model B

Identify resources and
applications in the
environment by analyzing
system requirements and agent
requirements

Model resources and applications
as objects. Specify internal states
and operations for applications,
and initial states, category, and
limit of consumption for
resources.

H H Y

16.Specify agent-
environment interaction
mechanism E[15] Environment

model B

Determine how agents
perceive outputs of
applications in the
environment. Possible
perception mechanisms:
sampling or notification

Represent agent’s perception
mechanism as a type of
association relationship between
the agent and an application in
Environment model

H H Y

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

399

Table AppendixD.7 – Support for steps of BDIM
BDIM

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

2. Specify use case
scenarios

3. Identify roles
E B

Roles can be organisational or
functional; can be domain
dependent or required by system
implementation

M L Y

4. Identify agent
classes

E Agent
Model B

Group roles (that have common
lifetime and intense interactions)
into a draft agent hierarchy. Refine
the hierarchy to introduce new
abstract agent classes, new concrete
agent classes and agent instances

Produce Agent Class Diagram and
Agent Instance Diagram (may be
combined into a single diagram if
the number of agents is small) H H Y

5. Model domain
conceptualisation

6. Specify
acquaintances between
agent classes

E Interaction
Model B

Identify interactions between agents
by analyzing the provision of
services among agents.

Offer no modelling notation for
Interaction Model Developers can
use any notation that fits

M L N

7. Define interaction
protocols

8. Define content of
exchanged messages E

[6]
Interaction

Model

For each interaction, identify the
speech acts required for the
messages and the messages’
information content.

Offer no modelling notation

M L N

9. Specify ACL
10.Specify agent
architecture I

BDIM adopts a BDI agent
architecture

11.Define agent
informational
constructs (i.e. beliefs) E

Goal
Model,
Belief
Model,

Plan Model

B

Identify agent goals from agent’s
service. For each goal, identify
means for achieving the goal (i.e.
plans) and the context, conditions,
inputs and outputs of goals and
plans (i.e. beliefs)

A Goal/Belief Model consists of 1
Goal/Belief Set and many
Goal/Belief States. A Plan Model
contains a set of plan diagrams H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans,
actions, services)

E B

For each agent, identify its
responsibilities and the services
provided/used to fulfill these
responsibilities

H M Y

13.Specify system
architecture (i.e.
overview of all system
components and their
connections)

14.Specify
organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

E Agent
Model B

Identify inheritance and aggregation
relationships by examining
similarity in lifetime, services and
interaction interfaces of agents

Inheritance allows an agent to
override/extend the
Goal/Belief/Plan Model of its
superclass(es). Aggregation allows
for agents with independent
Goal/Belief/Plan Models to be
combined into an aggregate class

H H Y

18.Instantiate agent
classes

E Agent
Model B

 Capture instantiation information
(e.g. instance identification and
cardinality) either in Agent Class
Diagram or separately in Agent
Instance Diagram

M M Y

19.Specify agent
instances deployment

400

Table AppendixD.8 – Support for steps of HLIM
HLIM

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E
[2]

High Level
Model B

Identify system tasks as
“responsibilities” appearing in
use case scenarios

Each path in the UCM connects
responsibilities, indicated by
named points along paths

H H Y

2. Specify use case
scenarios E High Level

Model B

Develop a Use Case Map (UCM)
for each use case scenario, where
the UCM’s path traces a scenario
from a start to finish

H H Y

3. Identify roles E
[2]

High Level
Model O

 Roles are represented by “slots”
(boxes with dashed lines) along
UCM’s paths

H M Y

4. Identify agent classes
E

[2]
High Level

Model B

Identify agents as carrier of
responsibilities in UCMs. Initial
agents can be extracted from
essential and active entities that
exist in the problem domain.

Represent agents as boxes
incorporating responsibilities
along UCM’s paths. H M Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes I[7] Conversation

Model B

Derive necessary agent
interactions from Agent
Relationship Model and Internal
Agent Model

M M Y

7. Define interaction
protocols

E Conversation
Model B

Each type of dependency
relationships and jurisdictional
relationships has a predefined
interaction protocol associated
with it

Express a protocol as a set of
performatives that are
specified in the exchanged
messages

H H Y

8. Define content of
exchanged messages

E Conversation
Model B

Identify what messages are
required to fulfill the dependency
and jurisdictional relationships.
The content of messages is
determined by examining plans
that satisfy the dependencies.

Use tabular format. A table for
each agent. 3 columns: receive,
send and comment. Each
message contains a performative
and parameters.

H M Y

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs) E Internal Agent

Model B

Derive agents’ goals, tasks,
beliefs and plans directly from
UCM’s components in High
Level Model

Use tabular template, where
agent goals, tasks and beliefs are
specified in columns. Plans are
combinations of goals, tasks and
beliefs (i.e. rows)

H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

E Contract
Model O

 Services provided by each agent
are captured in its contracts with
other agents M L Y

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships E

Agent
Relationship

Model
B

Identify organisational
relationships by analysis of path
segments responsibilities in
UCMs.

Model organisational
relationships as Dependency and
Jurisdictional relationships. Each
type is captured in Dependency
Diagram and Jurisdictional
Diagram respectively

H H Y

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

401

Table AppendixD.9 – Support for steps of MEI
MEI

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality E IDEF/CIMOSA

Function Model O
Borrow techniques from
enterprise modelling

Borrow techniques from
enterprise modelling H H Y

2. Specify use case
scenarios E Use Case Model O Borrow techniques from OOSE

Borrow techniques from OOSE,
including use case extension and
inheritance

H H Y

3. Identify roles
4. Identify agent classes

E B

Identify agents from actors in use
cases and resources/mechanism
in CIMOSA/IDEF function
model

H H Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes E B

Agent collaboration exists if there
is more than 1 actor per use case
or more than 1 resource per
enterprise function

H H Y

7. Define interaction
protocols E Coordination

Protocol Script B
Derive protocols from event trace
of use cases and information
exchanges between resources

Use State Diagrams to model
protocol scripts for each agent H H Y

8. Define content of
exchanged messages

9. Specify ACL
10.Specify agent
architecture I

MEI adopts a BDI-like model of
agency, where each agent is
composed of goals, plans and
beliefs

11.Define agent
informational constructs
(i.e. beliefs)

E
Goal-Plan

Diagram, Plan
State Diagrams

B

Derive agents’ Goals and Plans
from use cases and enterprise
functions with control outputs.
Context/ invocation conditions of
plans can be derived from control
inputs of enterprise functions, or
input from actor and entity
objects. Agent Beliefs correspond
to domain objects in use cases
and entities in IDEF Information
Model.

An agent’s goals and plans can
be depicted as a tree structure,
where goals are the root nodes
and plans are leaves. Each plan
can be further defined by a state
diagram H M Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

I O

Agents interact with environment
via sensor and effector objects,
which communicate with co-
existing objects or sensor/effector
objects of other agents

Each agent may have many
sensor/effector objects

H H Y

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

402

Table AppendixD.10 – Support for steps of PROMETHEUS
PROMETHEUS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality E Functionality

descriptor B
Identify a set of functionalities
by considering groupings of
goals.

Describe each functionality in terms
of its goals, actions, percepts/events
and potential data read/written

H H Y

2. Specify use case
scenarios E Use case

descriptor B

Identify sequences of steps
that describe how the system
achieves a goal or responds to
an event

Annotate each step with associated
functionality and data read/written H H Y

3. Identify roles
4. Identify agent classes

E Agent class
descriptor B

Assign functionality to agent
class based on the criteria of
strong coherence and loose
coupling

Describe each agent class in terms
of its functionality, goals, events,
actions, and data read/written,
cardinality, agent lifetime).

H H Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes

E Interaction
diagrams B

Whenever there’s a step in a
use case that involves
functionality from a new
agent, there must be an
interaction pathway from a
previously involved agent and
this new agent

Show the core interaction channels
between agents using sequence
diagrams

H H Y

7. Define interaction
protocols

E

[6]
Interaction
protocols B

Elaborate each complex
interaction with protocol by
analyzing use case scenarios

Show all variations of interaction
sequences that are valid in the
system. Each protocol may be split
into smaller chunks

H H Y

8. Define content of
exchanged messages

I
[6,
7]

Interaction
diagrams and

protocols
B

Analyze use case scenarios
H L Y

9. Specify ACL
10.Specify agent
architecture

E

Agent
overview
diagram B

 Show the top-level view of an
agent’s internals, including top-level
capabilities, events connecting these
capabilities, and data objects
internal to the agent

H H Y

11.Define agent
informational constructs
(i.e. beliefs)

E
Plan

descriptor,
Data

descriptor

B

Recursively decompose each
agent’s capability into plans,
events connecting plans, data
read/written by plans, and sub-
capabilities.

Describe each agent “plan” in terms
of input/output events, actions, and
messages. Describe each “data
object” used by the agent with fields
and methods.

H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

E Capability
diagram B

Identify agent “capabilities”
by analyzing functionalities
assigned to the agent

Describe each capability in terms of
sub-capabilities, plans, events, and
data read/written in Capability
diagram

H H Y

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

E
System

overview
diagram

B

Describe how the system as a
whole will function

Show an overview of all agent
classes in the system, events
connecting classes, and shared data
objects

H H Y

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS
environment E

System
overview
diagram

O

There may be data objects
existing in the environment
that must be shared among
agents (e.g. databases)

Show and link shared data objects to
agents in System overview diagram H M Y

16.Specify agent-
environment interaction
mechanism E

Percepts
descriptor,

Actions
descriptor

B

Specify raw data available to
the system as “percepts”, and
activities performed by the
system on the environment as
“actions”

Specify percepts and actions for
each system functionality in
Percepts and Actions descriptors H H Y

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes I[4] Agent class

descriptor O
 Specify cardinality for each agent in

its Agent class descriptor H L N

19.Specify agent
instances deployment

403

Table AppendixD.11 – Support for steps of PASSI
PASSI

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

Te
ch

ni
qu

es

fo
r

st
ep

Te
ch

ni
qu

es

fo
r

m
od

el
lin

g

Ea
se

 o
f

un
de

rs
ta

nd
in

g

U
sa

bi
lit

y

E
xa

m
pl

es

1. Identify system
functionality E

System
requirements

model
O

Follow standard requirements
elicitation techniques in OO,
or scenario-based teleological
methods such as GBRAM

Specify functionality as use cases in
Use case diagrams H H Y

2. Specify use case
scenarios

E
[1]

System
requirements

model
B

Develop a hierarchical series of use
case diagrams. The uppermost
serves as a context diagram

H H Y

3. Identify roles

E

System
requirements
model, Agent
society model

B

Identify roles for each agent
by exploring all the possible
scenarios of inter-agent
interaction (captured in Agent
identification diagram – step
5)

For each inter-agent interaction
scenario, develop a Role
identification diagram to specify the
roles that agents play during the
interaction. Describe roles with a
Role description diagram, which
shows their agents, role changes
within an agent, roles’ tasks, roles’
interactions and dependencies.

H H Y

4. Identify agent classes
E

System
requirement

model
B

Package use cases into agents Show agents, their respective use
cases, and interaction paths between
use cases in Agent identification
diagram

H M Y

5. Model domain
conceptualisation E Agent society

model O
Specify concepts/entities that
define the domain’s
knowledge.

Represent domain ontology as an
XML schema or class diagram in
Domain ontology diagram

H M Y

6. Specify acquaintances
between agent classes I[4]

System
requirement

model
B

 Agent acquaintances are reflected
via the interaction paths between
use cases in Agent identification
diagram

H H Y

7. Define interaction
protocols

E Agent society
model B

Select and refine protocol for
each agent acquaintance by
consulting e.g. FIPA library.
Should also specify the
ontology used with the
protocol

Document each protocol in Protocol
description diagram (which may be
AUML sequence diagram). Specify
identifier of protocol and ontology
for each agent acquaintance in
Communication ontology diagram.

H H Y

8. Define content of
exchanged messages

I
Agent

implementation
model

B

Specify messages’
performatives as required by
the interaction protocol and
messages’ contents by using
concepts defined in Domain
ontology diagram.

Model exchanged messages
(including their performatives and
contents) as transitions between
agents in the Multi-agent behavior
description diagram

H H Y

9. Specify ACL
10.Specify agent
architecture

E
Agent

implementation
model

B

Define agent structure as being
composed of one main agent
class and a set of inner classes,
each representing a task of the
agent

Specify data structures and methods
of the agent and its tasks in the main
agent class and task classes
respectively.

H H Y

11.Define agent
informational constructs
(i.e. beliefs)

I
[10]

Agent
implementation

model
B

Specify agent “knowledge” by
using the concepts defined in
Domain ontology diagram

Model knowledge as agent data
structures in Single-agent structure
definition diagram

H M Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services) E

System
requirements
model, Agent

implementation
model

B

Agent’s capabilities are
represented by its tasks, which
can be identified by analyzing
its roles and interactions
described in Role
identification diagrams

Show all tasks of an agent in a Task
specification diagram. Further
describe each method required to
achieve each task in Single-agent
behavior description (using flow
charts, state diagrams, or text
description)

H H Y

13.Specify system
architecture E

Agent
implementation

model
B

 Show all agent classes, their
knowledge, tasks, and connections
with external actors in Multi-agent
structure diagram

H H Y

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment E Deployment

model O

 Show processing units, agents in
each unit, agent movements, and
units/agents connections in
Deployment configuration diagram.

H L N

404

Table AppendixD.12 – Support for steps of ADELFE
ADELFE

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

Te
ch

ni
qu

es

fo
r

st
ep

Te
ch

ni
qu

es

fo
r

m
od

el
lin

g

Ea
se

 o
f

un
de

rs
ta

nd
in

g

U
sa

bi
lit

y

E
xa

m
pl

es

1. Identify system
functionality

E
[2] Use case model O

Identify the different functionalities
the system has to carry out

Express each functionality as a
use case H H Y

2. Specify use case
scenarios E Use case model B

Apart from identifying use cases,
need to also highlight the possible
cooperation failures in the identified
use cases

 Conventional OO techniques H H Y

3. Identify roles
4. Identify agent
classes

E
Software

architecture
document

B

First, decompose system into
entities. Determine which entities fit
to be agents, i.e. whether they are
autonomous, goal-directed,
dynamic, and need to deal with
unpredictable events. If an agent
needs to be adaptive/evolving, it
should be decomposed into a
collective of sub-agents.

Show entities and their
relationships in Preliminary
class diagram. Update this
diagram to indicate which
classes are agents H H Y

5. Model domain
conceptualisation

6. Specify
acquaintances between
agent classes

E
Software

architecture
document B

Identify potential interaction
relationships between agents, and
also between agents and non-agent
active/passive entities

Model interaction relationships
with sequence diagrams or
collaboration diagrams H M Y

7. Define interaction
protocols

E
Interaction
languages
document

B

Analyze each use case and
interaction scenarios

Elaborate each interaction
relationship with a protocol
diagram that specifies
information exchanges
between agents and between
agents and non-entities

H M Y

8. Define content of
exchanged messages

E
[7]

Interaction
languages
document

B
As above. Also select the
communication languages for
specifying the messages

H M Y

9. Specify ACL
E

[8]

Interaction
languages
document

O

 ACL used to implement the
exchanged messages is
documented in Interaction
Languages document

H M N

10.Specify agent
architecture E

Detailed
architecture
document

O

Agent architecture should contain 5
components: representations, social
attitudes, interaction languages,
aptitudes, and skills

Model each agent in terms of
the 5 listed components H H Y

11.Define agent
informational
constructs (i.e. beliefs)

E
Detailed

architecture
document

B

“Representations” are agent’s
beliefs about itself and environment.
“Social attitudes” contain rules for
dealing with non-cooperative
situations. “Interaction languages”
involve protocols used by the agent.

Specify attributes and methods
for agent’s representations.
Select protocols for agent’s
interaction languages from the
set defined in step 8. Specify
non-cooperative situations and
rules for cooperative attitudes.

H H Y

12.Define agent
behavioural constructs
(e.g. goals, plans,
actions, services)

E
Detailed

architecture
document

B

“Skills” are capabilities that an
agent brings to its collective.
“Aptitudes” are agent’s capabilities
on its knowledge.

Specify methods and/or
attributes for agent’s “skills”
and “aptitudes” H M Y

13.Specify system
architecture (i.e.
overview of all system
components and their
connections)

E
Detailed

architecture
document

Define the system architecture in
terms of packages and classes (of
agents and objects). Should use
design patterns and/or re-usable
components

Generate a Class diagram for
each package

H H Y

14.Specify
organisational
structure/inter-agent
authority relationships

15.Model MAS
environment

E
Environment

definition
document

B

Identify active and passive entities
in the environment; characterise the
system’s environment as being
accessible or not, deterministic or
not, static or dynamic, and discrete
or continuous

H H Y

16.Specify agent-
environment interaction
mechanism

I
[11]

Detailed
architecture
document

O

Agents interact with environment
via percepts and actions, implicitly
specified in agents’ “skills”,
“aptitudes” and “interactions”.

H L N

17.Specify agent
inheritance and
aggregation

I Detailed
architecture
document

O
 Show aggregation

relationships between agents
in Class diagrams

H M Y

18.Instantiate agent
classes

19.Specify agent
instances deployment

405

Table AppendixD.13 – Support for steps of COMOMAS
COMOMAS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E Task Model O

Identify tasks to be solved by the
target MAS and data/control
dependencies between them

Develop a task hierarchy, along
with each task’s details (i.e. input,
output and control structure). Can
use Conceptual Modelling
Language (CML) as notation

H M Y

2. Specify use case
scenarios

3. Identify roles
4. Identify agent classes

E Agent Model B

Identify agents by clustering the
competencies for solving tasks
(Expertise Model) while
respecting the design
requirements (Design Model)

Model each agent as a composition
of knowledge structures obtained
from other models. Can use CML as
modelling notation

H M Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes

7. Define interaction
protocols

E Cooperative
Model O

 Specify cooperation protocols,
cooperation methods (e.g. data
sharing or message exchange) and
conflict resolution methods. Can use
CML as modelling notation

H L Y

8. Define content of
exchanged messages

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs)

E Expertise
Model B

Determine agent competencies
required to solve system tasks
and social knowledge required to
enable it to act smoothly during
interaction

Competencies include “task
knowledge” (i.e. agents’ experience
on previously solved tasks),
“problem-solving knowledge” and
“reactive knowledge” (i.e. agents’
reactive responses to stimuli).
“Social knowledge” includes roles,
association between beliefs,
commitments, intentions and goals.
Can use CML as modelling
notation.

H M Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships

E System Model B M L Y

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

406

Table AppendixD.14 – Support for steps of MAS-CommonKADS
MAS-CommonKADS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

Te
ch

ni
qu

es

fo
r

st
ep

Te
ch

ni
qu

es

fo
r

m
od

el
lin

g

Ea
se

 o
f

un
de

rs
ta

nd
in

g

U
sa

bi
lit

y

E
xa

m
pl

es

1. Identify system
functionality

E Task model O

Decompose tasks following a
top-down approach

Show tasks in an and/or tree.
Describe each task in terms of
inputs, outputs, task structure,
required capabilities of
performer, and preconditions

H H N

2. Specify use case
scenarios

E Use case B

Perform user-centered analysis
during Conceptualization phase
to identify potential users and
how the system processes a user
request

Conventional OO techniques H H Y

3. Identify roles
4. Identify agent classes

E Agent model B

Analyze various sources e.g. use
cases, statement problems,
heuristics, initial Task and
Expertise models

Describe each agent in terms of
type, role, position, description,
offered/used services, goals,
plans, knowledge, collaborates,
skills (sensors and effectors),
reasoning capabilities, general
capabilities norms, preferences
and permissions.

H M Y

5. Model domain
conceptualisation E

[11]
Expertise

model O

Specify domain conceptualisation
as agent’s domain knowledge

Represent concepts, properties,
expressions, and relationships in
the domain using e.g. class/object
diagrams

H M Y

6. Specify acquaintances
between agent classes

E Coordination
model B

Identify prototypical
conversations between agents by
analyzing the results of
techniques used for identifying
agents (e.g. use cases, heuristics,
task model, and CRC cards).

Model conversations by using
Message Sequence Charts and
Event flow diagrams H H Y

7. Define interaction
protocols E

[6]
Coordination

model B

Identify protocols for complex
conversations by consulting
existing libraries and reuse
protocol definitions

Model protocols using high level
Message Sequence Charts. Model
the processing states of an agent
during a protocol using State
transition diagrams

H H Y

8. Define content of
exchanged messages E

[7]
Coordination

model B

Analyze use cases and Expertise
model

Model data interchanged in each
interaction in terms of data
structures specified in Expertise
model

H H Y

9. Specify ACL
10.Specify agent
architecture

E Design model B

Select an appropriate architecture
and map the elements defined in
Coordination, Expertise, Agent,
and Task models onto modules of
the architecture. No techniques or
models are discussed

H L N

11.Define agent
informational constructs
(i.e. beliefs) E Expertise

model B

Specify domain knowledge, task
knowledge, inference knowledge,
and problem solving knowledge
for each agent

Describe each type of knowledge
in Domain knowledge ontology,
Inference diagrams, Task
knowledge specification, or
Problem solving method
diagrams/templates.

H M Y

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

I
Agent model;
Organisation

model
O

 Identify the services that an agent
offers to other agents and
document this in Agent Model
and/or Organisation Model

H L Y

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

E Organisation
model B

 Show all agents, objects and their
relationships (e.g. inheritance,
association, agent-object
relationship)

H M Y

14.Specify organisational
structure/inter-agent
authority relationships

I
[13]

Organisation
model

 Agent organisational
relationships are modelled as
association relationships
annotated with roles (of each
involved agent)

H L Y

15.Model MAS
environment

E

Reaction
cases;

Design model B

Perform environment-centered
analysis during
Conceptualization phase to
identify objects in the
environment and potential events
coming from each object and
actions performed by agents on
each object.
Identify networking, knowledge
and coordination facilities.

Describe the reaction cases
coming from interaction of
agents with objects in the
environment

H M N

16.Specify agent-
environment interaction
mechanism

407

17.Specify agent
inheritance and
aggregation E Organisation

model B

Specify aggregation relationships
for agent groups, and inheritance
relationships for agents that
inherit from the values of the
precedent agents

H M Y

18.Instantiate agent
classes I Organisation

model O
Mentioned but no techniques
discussed

Organisation model can be
developed for both agent classes
and agent instances

H L N

19.Specify agent
instances deployment

408

Table AppendixD.15 – Support for steps of CASSIOPEIA
CASSIOPEIA

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E B

Employ existing functional or OO
analysis techniques

Define system behaviour at
a level of abstraction that
makes sense to the
achievement of the system’s
collective task

H H Y

2. Specify use case
scenarios

3. Identify roles

E Coupling
Graph B

CASSIOPEIA identifies 3 layers of
roles: domain-dependent roles,
relational roles and organisational
roles. Identify domain-dependent roles
by grouping elementary behaviors
needed to achieve the task. See steps 7
and 16 for other 2 types of roles

H M Y

4. Identify agent classes
E Coupling

Graph B

Group roles into agents. One agent
may play many roles (one of which is
active at a point in time) and one role
may be played by many agents

H M Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes E Coupling

Graph B

Identify dependencies between
domain-dependent roles, thereafter
deriving dependencies/acquaintances
between agents.

Specify “relational roles”
for each agent, i.e. the role
of an “influencing” agent or
an “influenced” agent

H H Y

7. Define interaction
protocols E

[6] O

Specify “influence signs” (i.e.
interaction messages) between
influencing and influenced agents by
analyzing the domain-dependent roles
that each agent is playing.

H L Y

8. Define content of
exchanged messages

9. Specify ACL
10.Specify agent
architecture

11.Define agent
informational constructs
(i.e. beliefs)

12.Define agent
behavioural constructs
(e.g. goals, plans, actions,
services)

13.Specify system
architecture (i.e. overview
of all system components
and their connections)

14.Specify organisational
structure/inter-agent
authority relationships

E B

Analyze the agents’ dependencies and
relational roles to determine their
“organisational roles”, i.e. role of
“group initiator” and “group
participant”. Also identify the
“organisational behaviors” of agents
when playing these organisational
roles, i.e. group formation behaviour,
commitment behaviour and dissolution
behaviour.

H M Y

15.Model MAS
environment

16.Specify agent-
environment interaction
mechanism

17.Specify agent
inheritance and
aggregation

18.Instantiate agent
classes

19.Specify agent
instances deployment

409

Table AppendixD.16 – Support for steps of TROPOS
TROPOS

Steps

Su
pp

or
te

d?

M
od

el
 k

in
ds

/
N

ot
at

io
na

l
co

m
po

ne
nt

s?

In
pu

ts
/

O
ut

pu
ts

?

T
ec

hn
iq

ue
s

fo
r

st
ep

T
ec

hn
iq

ue
s

fo
r

m
od

el
lin

g

E
as

e
of

un

de
rs

ta
nd

in
g

U
sa

bi
lit

y

Ex
am

pl
es

1. Identify system
functionality

E
Actor

diagram,
Rationale
diagram

B

In Early Requirements, identify
goals and softgoals of
stakeholders, and perform means-
end analysis to determine how
these goals can be fulfilled. In
Late Requirements, focus on the
target system and how it can
fulfill the assigned goals. Perform
means-end analysis to identify
tasks to achieve goals during both
Early and Late Requirements

Show task dependencies
among stakeholders and
system in Actor diagram.
Show how goals are achieved
through tasks in Rationale
diagram. H H Y

2. Specify use case
scenarios

3. Identify roles
4. Identify agent classes

E Actor diagram B

Depending on the chosen
organisational structure,
decompose the system into sub-
actors, each of which can be
recursively refined into sub-
actors (can consult catalogues of
agent patterns for this activity).
Assign sub-actors to agents.

Show sub-actors within each
system actor, and
goal/task/resource
dependencies among them H H Y

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes E

Sequence
diagrams,

Collaboration
diagrams

B

Identify interactions between
agents to fulfill particular tasks H M Y

7. Define interaction
protocols E

[6]
Sequence
diagrams B

Elaborate each inter-agent
interaction in greater detail (e.g.
by introducing additional or
refined exchanged messages)

H H Y

8. Define content of
exchanged messages

I[6,
7]

 Model each message as a
communication act in ACL H M Y

9. Specify ACL
10.Specify agent
architecture I

BDI agent
architecture

TROPOS adopts BDI model for
agent architecture

11.Define agent
informational constructs (i.e.
beliefs) E

Plan diagrams,
Agent class
diagram

B

Define agent’s “plans” to achieve
a goal, perform a task, or respond
to a (communicative) event.
Identify resource entities that are
incorporated in the agent’s
knowledge base

Specify Plan diagrams at a
directly executable level.
Represent resource entities as
component classes of an agent
class in Agent class diagram

H M Y

12.Define agent behavioural
constructs (e.g. goals, plans,
actions, services)

13.Specify system
architecture (i.e. overview of
all system components and
their connections)

14.Specify organisational
structure/inter-agent
authority relationships E

Non-
functional

requirement
model

B

Select a suitable organisational
structure style (e.g. from the set
proposed by TROPOS) by
evaluating its quality attributes
against the system’s softgoals.

Specify how well each
alternative organisational
structure style fulfils the
system’s softgoals

H H Y

15.Model MAS environment
I[1] Actor diagram B

 Model environment via
stakeholders, and their goal/
task/resource dependencies
with the system

H H Y

16.Specify agent-
environment interaction
mechanism

17.Specify agent inheritance
and aggregation

18.Instantiate agent classes
19.Specify agent instances
deployment

410

APPENDIX E

MODELLING NOTATION OF
MOBMAS

The modelling notation of MOBMAS is mostly reused or adapted from UML, AUML

and other sources (such as the existing AOSE methodologies), except for the following

notation components that are represented using MOBMAS’ own notation:

Role Diagram;

Agent Class Diagram;

Agent Relationship Diagram;

Agent Plan Template; and

Resource Diagram.

The notation proposed by MOBMAS has a similar syntax to UML. For example, an

agent class or a role or a resource is represented as a rectangular box with multiple

compartments, each specifying a different property of the target entity. The similarity in

syntax between MOBMAS notation and UML is intentional, because it facilitates the

use of MOBMAS by developers who are familiar with UML.

A summary of MOBMAS notational syntax is presented below.

SYSTEM TASK DIAGRAM

P

System-task

AND Decomposition OR Decomposition

System-task conflict

AND Decomposition OR Decomposition
T

411

ORGANISATION CONTEXT CHART

ROLE DIAGRAM

ONTOLOGY DIAGRAM

Adapt the notation of UML Class Diagram (Object Management Group 2003).

Ontological concepts are represented as UML classes, attributes or predicates

that describe the associations between concepts.

Relations between ontological concepts are represented as UML relationships

between classes, which can be specialisation, aggregation or association.

Ontological mappings are represented as UML dependency relationships:

AGENT CLASS DIAGRAM

Organisational unit Acquaintance relationship

Membership relationship

role
role-name

role-tasks
role-task-name1 (J)
role-task-name2 (J)
role-task-name3 (J)

Role Acquaintance relationship

semantic correspondence

agent class (S) or (D)
agent-class-name /

role-name1, role-name2, role-name3…

beliet conceptualization
ontology-name1
ontology-name2

ontology-name3…

agent-goals
agent-goal-name1
agent-goal-name2

agent-goal-name3…

events
event-name1
event-name2
event-name3

Agent class

412

AGENT RELATIONSHIP DIAGRAM

RESOURCE DIAGRAM

AGENT GOAL DIAGRAM

AGENT PLAN TEMPLATE

agent class
agent-class-namecardinality /

role-name1, role-name2,…
Agent class Acquaintance relationship

Protocol or Agent-TC Interaction Diagram:
Protocol/diagram name

Ontology: Ontology Name

Descriptive information of
each acquaintance

resource
resource-name

resource-type
resource-type-name

resource-application-ontology
ontology-name

Resource

Connection between resource
and wrapper agent class

wrap

agent class
agent-class-namecardinality /

role-name1, role-name2,…
Agent class

Agent-goal AND Decomposition OR Decomposition

Agent-goal conflict

Initial state: state definition

Target agent-goal: state definition

Commitment strategy: e.g. blind, single-minded or open-minded

List of sub-agent-goals (if any): state definition and name of the Agent Plan Template

that achieves the sub-agent-goal

List of actions (if any): action name and parameter list

 Pre-condition: state definition

 Post-condition: state definition

Events: list of events

Conflict resolution strategy (if applicable): strategy name for each agent-goal

413

AGENT PLAN DIAGRAM

REFLEXIVE RULE SPECIFICATION

Adapt the notation of UML Activity Diagram (Object Management Group 2003).

Actions are represented as UML activities.

Events, internal processing triggers and guard conditions are represented as

UML events and guard conditions.

INTERACTION PROTOCOL DIAGRAM / AGENT-TC INTERACTION

DIAGRAM

Reuse AUML Interaction Diagrams

TUPLE-CENTRE BEHAVIOUR DIAGRAM

Adapt UML Statechart Diagram.

Reactions are represented as states.

Events are represented as transitions between states.

AGENT ARCHITECTURE DIAGRAM

Architectural
module/layer/subsystem

Data input/output

Plan Name

Plan Graph

activation event [activation condition] / activation action

Plan Graph

State
action(s)

event / action event [condition]

event [condition] / action

[condition] / action

any [abort condition] / abort action

fail / fail action

pass / pass action

414

MAS DEPLOYMENT DIAGRAM

Agent platform Node Agent instance

Connection between
nodes

Acquaintance between agent
instances

Node of agent platform

415

APPENDIX F

EXPERT REVIEWS OF MOBMAS

This appendix documents the two expert reviews of MOBMAS which were obtained

from Prof. Brian Henderson-Sellers and Prof. Mary-Anne Williams. Each review

contained each expert’s opinions on the strengths of the methodology, areas for

improvement and how to improve these areas. These opinions were recorded informally

as comment notes on MOBMAS’ documentation which was initially given to each

expert.

Expert Review 1
EXPERT: PROF. BRIAN HENDERSON-SELLERS

Strengths of MOBMAS

1. The overall methodology is easy to understand and appears to be easy to follow.

2. The methodology is comprehensive and offers support for diverse aspects of MAS

development, covering from analysis to agent internal design to agent interaction

design.

3. While the modelling notation of MOBMAS needs to be revised, the steps and

techniques are mostly practical and comprehensive.

4. The methodology proposes a clear mapping from roles to agent classes, and from

role-tasks to agent-goals and events, thus providing a smooth transition from MAS

analysis to agent internal design. The classification of role-tasks into reactive and

proactive tasks, thereby identifying agent-goals and events, is also original.

Areas for improvement and suggestions on how to improve these areas

1. Many notational components of MOBMAS are described as extensions of UML

notational components. However, some extensions are inappropriate because the

extended notation is too semantically distant from the original UML notation

(namely, MOBMAS Role Diagram, Agent Class Diagram and Resource Diagram).

Some other extensions are appropriate but the semantics of the extended modelling

notation are not well-documented.

416

Therefore, it is necessary to determine whether a particular MOBMAS notational

component is eligible to be an extension of a UML component. Valid UML

extension mechanisms are “stereotypes”, “tagged values” and “constraints”. Thus, if

a MOBMAS notational component cannot be mapped to an UML component via

these permissible mechanisms, it should be regarded as MOBMAS’ own modelling

notation. For example, although the Agent Class Diagram of MOBMAS has a

similar appearance to UML Class Diagram (with multiple compartments, each

modelling a different property of the class), the semantics of each compartment in

MOBMAS Agent Class Diagram is very different from the semantics of each

compartment in the UML Class Diagram. The difference in semantics is too

significant to be expressed by stereotypes, tagged values or constraints.

If a MOBMAS notational component is eligible to be considered as an extension of

UML, the methodology should explicitly specify the extension mechanism adopted,

and clearly define the semantics of the extended notation.

2. Throughout the development process, MOBMAS employs a variety of modelling

concepts, including “system-task”, “role-task”, “agent class”, “agent-goal” and

“agent”. Although the semantics of these concepts are defined at their first

occurrence in the methodology, it is hard for the readers to recall the meaning of a

particular concept, especially after many other concepts have been introduced (for

example, concepts “system-task” and “role-task”, or “agent class” and “agent” can

be easily confused). Moreover, various modelling concepts in MOBMAS are closely

linked (e.g. “system-task” is associated to “role-task”, which is mapped onto “agent-

goal”). Even though these linkages are highlighted in the documentation of the

respective steps and model kinds, it is difficult for the readers to recall these

associations when numerous associations exist.

A meta-model of the core modelling concepts of MOBMAS should be

developed. This meta-model will assist the readers in their understanding and

remembering of the semantics and associations of these concepts.

417

3. The following errors in modelling notation should be fixed:

An idle state or a decision point in the tuple-centre Behaviour Diagram (which is

basically a UML State Chart) should be represented as a circle and not a

diamond , to adhere to UML specification of state charts.

The actors in Interaction Diagrams of Agent Coordination Model should be

agent instances instead of agent classes. Accordingly, the names of agent classes

in the boxes above the lifelines should be preceded with a colon (:) to represent

instances.

4. The modelling of relationships between ontological concepts in the Ontology Model

should include the modelling of “composition” relationship apart from the

“aggregation” relationship. The difference in semantics between these two

relationships should be highlighted.

Expert Review 2
EXPERT: PROF. MARY-ANNE WILLIAMS

Strengths of MOBMAS

1. The methodology provides extensive support for the openness, heterogeneity and

dynamics of MAS.

2. Ontology modelling is tightly incorporated into the analysis and design of MAS,

with numerous two-way verification and input linkages between Ontology Model

and other MAS analysis and design models (such as Agent Class Model, Agent

Behaviour Model and Agent Interaction Model).

3. The methodology provides comprehensive support for MAS development,

incorporating diverse analysis and design activities and modelling MAS from

diverse aspects (from internal to external).

4. The internal and interaction design of agents are relatively detailed.

Areas for improvement and suggestions on how to improve these areas

1. Regarding steps “Develop System Task Model” and “Analyse Organisational

Context” of MOBMAS, the applicable conditions of each step are not appropriate

because they may be overlapped. Specifically, for step “Analyse Organisational

Context”, the recommended applicable condition is that

418

“…the target MAS is a processing application system that does not exhibit any

specific and apparent human organisational structure”

and for step “Develop System Task Model”, the condition is that
“if the target application exhibits a clear organisational structure, roles can later be

identified directly from this structure, thus making the adoption of the Organisation

Analysis Approach beneficial”.

Accordingly, most MASs are eligible for step “Analyse Organisational Context”

because they aim to support a human organisation whose structure is clear. But at the

same time, these MASs are also eligible for step “Develop System Task Model”

because they do not aim to adopt the human organisational structure.

Therefore, the application conditions of each step should be made clearer and more

sensible, avoiding any potential overlaps. The methodology should also give

consideration to whether or not the target MAS should adopt the existing human

organisational structure.

2. For the naming of system-tasks, MOBMAS adopts the naming format of “To do

something” (e.g. “To receive user query” or “To get information from resources”).

This naming format makes system-tasks appear like an abstract objective. It may be

more appropriate to name system-tasks as phrases starting with imperatives to

signify activities/actions.

3. MOBMAS offers only one technique for the resolution of conflicts within agents

and between agents: “priority conventions”. The methodology should consider the

adoption, or allow the developer to adopt, other techniques of conflict resolution.

4. When comparing between the direct interaction mechanism via ACL and the

tuplespace/tuple-centre interaction mechanism in step “Select interaction

mechanism”, MOBMAS does not consider the issue of security support by the two

coordination mechanisms. Since security is an important matter in agent

interactions, it should be included as a criterion for the comparison between the two

coordination mechanisms.

419

5. In step “Develop Agent Interaction Model”, the issue of agent synchronisation is not

discussed. This step should be extended to include the specification of agent

synchronisation in the design of agent interactions.

6. For step “Identify agent-environment interface requirements”, the provided

techniques are insufficient because:

they do not address inter-agent communication; and

they only focus on “hardware” sensors and effectors (e.g. camera and wheels).

The support for this step should be extended to account for the various categories of

agent-environment interactions and various types of sensors and effectors.

7. In Ontology Model, MOBMAS considers the adoption of only UML notation for the

representation of ontologies. This may limit MOBMAS’ applicability because UML

notation may not be sufficiently powerful for the modelling of highly complicated

ontologies. The developer should be allowed to adopt other notation for Ontology

Model if necessary.

8. For System Task Model, MOBMAS should mention the possibility of a complex

tree structure where two or more system-tasks share the same sub-system-task(s).

9. In step “Specify resources”, MOBMAS should distinguish between resources that

are available to the agents within the system only and those that are available to

other systems. This differentiation will help to clarify the system boundary during

design.

10. The AND/OR decomposition of system-tasks and agent-goals should be represented

using the well-known notation of AND/OR graphs (Figure AppendixF.1) rather than

adopting the uncommon notation introduced by TROPOS (Figure AppendixF.2).

Figure AppendixF.1 – Notation of AND/OR Graphs

Figure AppendixF.2 – TROPOS notation for AND/OR decomposition

AND Decomposition OR Decomposition

AND Decomposition OR Decomposition

420

APPENDIX G

EXTERNAL DEVELOPERS’
EVALUATION OF MOBMAS

This appendix documents the evaluation of MOBMAS by Dr. Ghassan Beydoun and

Dr. Cesar Gonzalez-Perez, who used MOBMAS on a “Peer-to-Peer Information

Sharing” application (cf. Appendix H). Each evaluation contained each developer’s

opinions on the strengths, areas for improvement, how to improve these areas, the ease

of understanding and the ease of following of the steps and model kinds of MOBMAS.

These opinions were recorded via a specially-designed evaluation form. It should be

noted that the forms used by the two developers is slightly different from each other,

because they were built upon the two different versions of MOBMAS102. Some steps

and model kinds listed in the evaluation forms are also different from those specified in

the final version of MOBMAS. This is because these forms were based upon the earlier

versions of MOBMAS.

Evaluation of Developer 1
DEVELOPER: DR. GHASSAN BEYDOUN

Overall ease of understanding of the development process: High

Overall usability of the development process: High

Overall ease of understanding of model definitions: Medium

102 Recall that MOBMAS was refined after the evaluation of the first developer.

421

Evaluation of Analysis Phase
Evaluation of steps

Steps Comments on weaknesses of
step and techniques for step

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Develop
System Task Model

(optional)

- MOBMAS overlooks the fact that organisational

chart can be seen as a result of functional

analysis.

- Analysis of system functionality should be done

for all applications. Analysis of real-world

organisational structure can be optional.

High Medium

STEP 2. “Analyse

Organisational
Context” (optional)

The real-world organisational structure does not

always necessarily correlate with software agent

roles.

High High

STEP 3. Specify roles MOBMAS does not accommodate dynamic roles. High High

STEP 4. Identify
Application Ontologies

High High

STEP 5. Develop

Application Ontologies

How the role and task models can be used here is

not articulated. There is a lot of focus on notation

instead.

Medium Medium

STEP 6. Identify
ontology management

roles

This step is described as an option, but there are

not any guidelines of when to use this step. High Medium

Evaluation of models

Models
Comments on weaknesses of

models and modelling techniques

Ease of understanding

(High, Medium or Low)

System Task Model High

Real-World
Organisational Chart

High

Role Model
Relationships between this and organisational charts

are not explicit.
High

Ontology Model
Class diagrams are sufficiently powerful to express

ontologies. How some of previous models can be

used to develop parts of this model is mentioned

briefly, without any specific procedures to follow.

High

Comments on the strengths of Analysis steps and techniques for performing steps:

The first three analysis steps make the transition from the ‘system requirement realm’ (creating System Task Model) to

the agent description realm (Role Model). Development steps offer two layers of abstractions (from system-tasks to

roles), getting closer to the agent world design and implementation. The analysis phase also suggests steps from

moving from layer 1 (system-tasks) to layer 2 (roles). This layered abstraction view is a useful and intuitive complexity

management approach to analyse and implement MAS.

The development steps involved in the above 2-layered abstraction generate (as a by-product) parts of the MAS

Application Ontology. Having a stream in the analysis effort focussed on ontology development can be used to verify the

completeness of the two earlier models (system-tasks and roles).

422

Comments on the strengths of Analysis models and modelling techniques:

As earlier commented, the two models System Task Model and Role Model are logically related. The notation

suggested for the System Task Model is intuitive (And-Or graph) for non programmers to follow (this notation has been

used before in AI to represent declarative knowledge). The process of generating the two models produces parts of the

MAS Application Ontology. The development of MAS Application Ontology can serve as the completeness verification of

the previous models. If developed by a different person, it may also serve as the validation of the previous two models.

Any suggestions for improvements on Analysis steps and techniques for performing these steps?

I wonder if there should be a spiral development between System Task Model and Role Model. From our experience in

the Peer2Peer application with MOBMAS, identifying roles may lead to articulating some lower level system-tasks. For

example, in P2P experience, identifying the role ‘Portal agent’ led to some deeper insights into refining the task

‘Locating a Portal Agent’.

Any suggestions for improvements on Analysis models and modelling techniques?

The two models (System Task Model and Role Model) have some ontological units and relationships uncovered.

Viewing the ontological view of the system, as a refinement of the view articulated by the two models, may allow the

refinement and validation of the two models based on the ontological analysis. For example, a developed MAS

Application Ontology can lead to the refinement of the System Task Model, and if another person undertakes the

development of the ontology, this may serve as a validation. For example, if the notion of ‘time’ is captured in the

ontology of the P2P system, then the task of ‘Timeout recovery’ may become relevant.

Evaluation of Architectural Design Phase
Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High, Medium

or Low)

STEP 1. Specify agent
classes

High High

STEP 2. Specify MAS
organisational

structure

Hybrid structures where peers talk to each other

and report to a mediator at the same time are not

discussed. Maybe a new structure (‘hybrid’) is

worth considering.

High Medium

STEP 3. Specify
resources

This is for heterogeneous systems only.
High High

STEP 4. Develop
System Overview

Diagram

This is too small to be a step. Is it not combining

steps 1 and 3? What does this step do in addition

to 1 and 3?

High High

STEP 5. Identify
Resource Application

Should this not be merged with step 6?
High High

STEP 6. Develop
Resource Ontologies

High High

423

Evaluation of models

Models Comments on weaknesses of
models and modelling techniques

Ease of understanding

(High, Medium or Low)

Agent Class
Diagram

Too many fields. I wonder whether it is possible to

fit everything. With respect to ‘ontologies’: it is not

clear what is meant by this.

Medium
Agent
Class

Model
Agent

Relationship

Diagram

Association is very general. There are not any

specified relationships between classes.
Medium

MAS Organisational
Structure Model

High

Environment Model Medium

Comments on the strengths of Architectural Design steps and techniques for performing steps:

Considers a wide range of possibilities.

Has a good focus on open heterogeneous systems.

Comments on the strengths of Architectural Design models and modelling techniques:

NA

Any suggestions for improvements on Architectural Design steps and techniques for performing these steps?

The number of steps should be reduced. Too many steps which are similar confuses. Suggestions to do this: note that

the fundamental exercise is one of modelling. The result of this are models. Models can be represented in many ways,

diagrams is one way to represent models. For instance, identifying the ontology is a modelling exercise. Why not

combine ‘identification’ and construction of ontologies into one step: ‘developing ontology’. An ontology is a model.

Diagrammatic representation of the ontology is not a new modelling task. You can use the word ‘diagram’ instead of

model, and combine similar steps into a single step which includes identification (I assume you mean by this

identification of the basic units), development (you call this construction) and drawing.

In relation to the above point, you can present organisational structure first, then agent classes (e.g. authority can be

mapped to classes relationships in the developed structure); or possibly you can combine these steps into one

modelling task which is closely related to the Role Model. Some explicit spiral between the three (agent roles, classes

and organisation structure) might be fruitful.

Much of the steps related to resources are related to a specific kind of MAS, heterogeneous systems. I recommend that

this point is emphasised more.

Any suggestions for improvements on Architectural Design models and modelling techniques?

See above

424

Evaluation of Agent Internal Design Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for step

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Specify
Agent Belief Set

If the initial belied set is to be modified, it is not clear

what MOBMAS recommends (in terms of believed

revision).
Medium High

STEP 2. Specify

Agent-goals and
Events

It is not clear how an agent would handle conflicting

goals. Commitment strategies are not also discussed. High Medium

STEP 3. Specify

Agent Plans

It is not clear whether the plan is a sequence of sub-

goals or a sequence of actions. It ought to be

sequence of sub-goals if it is to be general.
High Medium

Evaluation of models

Model Comments on weaknesses of
models and modelling techniques

Ease of understanding

(High, Medium or Low)

Agent Behaviour
Model

See earlier comment regarding agent plans Medium

Comments on the strengths of Agent Internal Design steps and techniques for performing steps:

It relates the earlier analysis of the system-tasks to the internal structure and behaviour of individual agents. It goes a

long way towards this.

Comments on the strengths of Agent Internal Design models and modelling techniques:

The Agent Behaviour Model is a powerful modelling bridge to link the structure of the internals of agents to system-tasks

from the analysis phase.

Any suggestions for improvements on Agent Internal Design steps and techniques for performing these steps?

In complex scenarios, the modelling units of a general plan model can not be the exact actions to be performed by the

agents. One way to keep the plan model general is to express it in terms of sub-agent-goals that can be used later on

by an off-the-shelf planning language (e.g. STRIPS or ADL). Specifically, these planners will select which actions to

perform at run-time, and the sequence of these actions.

Other points which MOBMAS might want to comment on:

 Belief revision and how this or is not related to capabilities of an agent (e.g. learning)

 Commitment strategies (recognition of failed plans)

 Conflict between agent goals (preference and selection of goals)

It is not expected from a single methodology to handle all possible scenarios to deal with those issues. However, an

awareness of those issues seems to be in place since the methodology discusses goal modelling to a great degree and

learning to a lesser degree.

425

Any suggestions for improvements on Agent Internal Design models and modelling techniques?
It is not clear how far this phase wants to go into capturing details of an agent. It seems that it is going to very low level

(e.g. in verification of ontologies against plans). This probably led to some of the observations above, with respect to

how plans should be modelled.

Evaluation of Agent Interaction Design Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for steps

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Select interaction
mechanism

High High

 For direct
interaction
mechanism

The structure of the organisation of the system

can be checked here.
High High

STEP 2.
Develop

Agent
Interaction
Model

For

tuplespace/
tuple-centre

interaction
mechanism

The structure of the organisation of the system

can be checked here.

High High

Evaluation of models

Model Comments on weaknesses of models and

techniques to produce models

Ease of understanding

(High, Medium or Low)

Agent Interaction Model High

Comments on the strengths of Agent Interaction Design steps and techniques for performing steps:

Integrating standard interaction mechanisms with the rest of the methodology makes the methodology much more

useable.

Comments on the strengths of Agent Interaction Design models and modelling techniques:

Integrating standard interaction modelling notations (e.g. A-UML Interaction diagrams) with the rest of the methodology

makes the methodology much more useable.

Any suggestions for improvements on Agent Interaction Design steps and techniques for performing these
steps?

My only concern in this step is where the ‘communicative actions’ are coming from.

Any suggestions for improvements on Agent Interaction Design models and modelling techniques?

The Agent Interaction Model can be used to verify the system organisational structure as well as the Agent Class Model.

426

Evaluation of Deployment Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for steps

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Identify agent-

environment interface
requirements

There is lots of effort on the distinction between

physically embedded agents and software

embedded agents.

Medium Medium

STEP 2. Select agent
architecture

Some mentioned agent architectures are not

‘market’ products (e.g. SOAR is not a market

product). Some planning languages are out there in

the market (e.g. STRIPS but the more commonly

superseding language is ADL).

High High

STEP 3. Specify
infrastructure facilities

It assumes distributed processing. How about MAS

built for simulations.
High High

STEP 4. Instantiate
agent classes

High High

STEP 5. Specify

deployment
configuration

Agent mobility is represented in this phase.

However, from earlier discussion on the architecture

phase, mobility is excluded in MOBMAS otherwise.

High Medium

Evaluation of models

Model Comments on weaknesses of
models and modelling techniques

Ease of understanding

(High, Medium or Low)

Environment Model High

Architecture Model Mobile agents are discussed only in this model

(namely Deployment Diagram).
Medium

Comments on the strengths of Deployment Design steps and techniques for performing steps:

They take into account important issues: number of agents deployed and organisation of external resources.

Comments on the strengths of Deployment Design models and modelling techniques:

It focuses on distributed environment issues, physically embedded agents and external resources planning.

Any suggestions for improvements on Deployment Design steps and techniques for performing these
steps?

MAS built for simulations are not accommodated in this phase. In addition, mobile agents seem to appear only

in this phase. I have been under the impression that MOBMAS does not deal with mobile agents.

Any suggestions for improvements on Deployment Design models and techniques modelling

techniques

Explicitly exclude mobility or qualify and reconcile why it is accommodated here and is not accommodated elsewhere. If

the notation for MAS Deployment Diagram accommodates mobile agents, but MOBMAS does not, I suggest that this is

explicitly stated e.g. in a footnote. MOBMAS should also address the case of MASs developed for simulation.

427

Evaluation of Developer 2
DEVELOPER: DR. CESAR GONZALEZ-PEREZ

Overall ease of understanding of the development process: High

Overall usability of the development process: High

Overall ease of understanding of model definitions: High

Overall comments on MOBMAS
MOBMAS is described as being composed of a process, a collection of techniques and models. I imagine that you

mean model specifications. As far as I understand, MOBMAS does not contain models; the models will be built by

people using MOBMAS. MOBMAS contains the specifications (or definitions, if you want) of how to build these models.

You can use the terms “model specifications”, “model definitions” or, even better, “model kinds”. Thus you could

describe, for example, the Agent Interaction Model Kind, which specifies how developers can build Agent Interaction

Models. But these models (which users will create) are not part of MOBMAS; they are an outcome of applying

MOBMAS. I would suggest changing the wording wherever it is necessary to clarify this point, because in its current

form it results confusing and detracts significantly from the otherwise excellent conceptualisations found in MOBMAS’

documentation. You can have a look at the Australian Standard AS 4651 “Standard Metamodel for Software

Development Methodologies”, which defines concepts such as Model, Model Kind, Model Unit and Model Unit Kind

(what you call “modelling concepts”). This could be useful to you.

MOBMAS is also described as being composed of “phases”. What do you mean by “phase” here? From the text I

imagine that you see “phase” as meaning the description of certain work that must be done. For example, the

Architectural Design phase is different from the Agent Internal Design phase because it involves work of different a kind.

If I am right, the correct term in software engineering is not “phase” but “activity” (OPEN) or “process” (ISO 15504,

OOSPICE), or even “discipline” (SPEM). If you say “phase”, software engineers will immediately think of temporal

concerns. Phases mean giving temporal structure to the work defined by activities. Since you claim that MOBMAS is

iterative and incremental (more on this later) and that the described phases do not necessarily have to be performed in

order, then they are not phases because they do not address timing concerns. I suggest you drop the term “phase” in

this context and adopt “activity” instead. After this, and only if you want to go beyond, you can organise your five

activities into phases to give them temporal structure.

MOBMAS identifies system-tasks from system-goals. What if the target system does not have a single or overall goal?

This is a criticism that has been made repeatedly to functional decomposition in traditional structured analysis and

design approaches. Imagine an operating system. What is the System Goal? I can argue that there is no overall goal,

and if you come up with one, I can show that it is a shoehorned example. If you really want to use the concept of

System Goal, then you are constraining your methodology to systems that can be successfully described by an overall

goal. You need to acknowledge this and accept that MOBMAS will not be usable for other kinds of systems.

You then define some terms such as System Task or Role. I have a couple of comments on the definitions. First, some

of them (Role and Agent Class) are not definitions but comments and discussion. Regarding Role, you say that a role is

“something similar to…” which is not really a definition. I would suggest that you try to find a proper definition as you

have done with other concepts. Secondly, I would try to keep definitions concise and unambiguous. For example, you

define System Task as “a concrete, low-level activity, or unit of work, that…”. What is the meaning of “or” here? Is a

System Task either a low-level activity or a unit of work? Is “low-level activity” the same as “unit of work”? You probably

want to simplify this definition. Also, when defining Agent Class, you say that “agent class is abstract and…”. What do

428

you mean by “abstract”? Finally, when defining Agent Plan Template, you use the concept of “sub-Agent Goal” that has

not been introduced.

I also have some comments about the contents of the definitions. First, in Agent Goal, you say that the agent goal

implies proactiveness, since agents need to take the initiative to satisfy their goals. I don’t agree with this. For example, I

have a phone switch router agent that has the goal “route incoming calls to their destination using the optimal path”. It is

a purely reactive agent, which uses a collection of lookup tables to decide how to do the routing. But it still has a goal.

For this agent, having a goal does not imply that it is proactive or takes the initiative. I think that having a goal and being

or not proactive are completely unrelated things. Secondly, you define Event as something to which an agent reacts.

There is a subtle issue here. Imagine an event that happens and no agents react to it. It is still an event, right? Whether

or not some agents react to an event is up to the agents, and is not dependent on the event. I suggest you change “to

which an agent reacts” to “to which agents may react”. Thirdly, you define Reflexive Rules as “a sequence of actions

that an agent performs to react to an event”. I would say “when reacting” rather than “to react”, since the reactive course

is part of the reaction itself.

Figure 6.1 shows MOBMAS’ core concepts plus the relationships amongst them. You say that it is a meta-model. I

would not use that term, since “meta-model” implies that this is a model of another model. This can be circumstantially

true in this case, but is not the focus of the discussion. In my opinion, you are just presenting a diagram, not a meta-

model. If you use the term “meta-model” I would expect a reason why this is so and not just a simple model or even a

diagram. In addition, what is the notation being used for Figure 6.1? I mean, what is the meaning of the boxes, lines,

arrowheads, diamonds, etc.? You need to include a legend or either make a reference to some well-known notation

such as UML. Then you need to make sure that you stick to the standard. Secondly, the diagram does not show

cardinalities, which would be very useful. For example, I can see in the diagram that role-tasks are derived from system-

tasks, but how many of each? Furthermore, the diagram includes boxes labelled “Action” and “sub-Agent Goal”, which

have not been defined or introduced previously. You probably need to check the consistency of this.

Section 6.1.3 describes the notational components for each model. You use the term “composed of” (or a synonym of

this) to describe the relationship between a model kind (such as System Task Model) and the notational components

that can be used to depict it (System Task Diagram in this case). I don’t think the relationship is of containment or

composition. A model does not contain a diagram, but can be depicted by it. I would rather say that models can be

depicted by notational components. This happens all over Section 6.1.3 at least. Moreover, I would expect the notational

components to “depict” or “show” (or even “document”) things, but not “define” or “capture” or “specify” anything. Models

define, capture and specify; notations show or depict. However, some of the notational components are described as

defining, capturing or specifying their contents. I suggest you change these terms to “depict” or “show”. This also

happens within other model kinds in this section. You also say that four models in MOBMAS reuse and extend UML

notation. If they are models, how can they reuse a notation? You probably want to say that the notational components

that depict MOBMAS models reuse and extend UML notation. I suggest clarifying this.

In the Organisational Context Model Kind, you use the term “real-world” quite often to refer to the organisational

structure. Why “real-world”? From the explanation in the text, I know that you want to emphasise that the modelling is of

the organisational context of the system rather than the system itself, but wouldn’t “organisational” be enough? If you

add “real-world”, you are introducing two potential problems. First, I could ask “what do you mean by ‘real’?”, or “real to

whom?”. This is a complex philosophical issue that I bet you don’t want to get into. Secondly, you are limiting your

model to the “real” world (whatever it means) and discarding other “non-real” worlds. And software is plenty of non-real,

virtual worlds! For example, if we take “real” as meaning simply the physical world in which we live, then a fictitious

organisation that I find in a novel is not part of the real world. Can I still use MOBMAS to model it? I’m sure I can. But

your Organisational Context Model is not depicting the real world. I would suggest getting rid of “real-world” in this

context.

429

When describing Agent Behaviour Model, you introduce the notational components named “Agent Plans” and “Reflexive

Rules”. I don’t think these are good names for notational components, because they are just the plural form of modelling

concepts. “Agent Plans” really means a collection of agent plans; it does not convey the idea of a diagram or a

document. But you want it to mean some other thing, namely a specific notational component that depicts a view of the

Agent Behaviour Model. I think that you probably need to name it accordingly. For example, “Agent Plan Diagram” or

“Agent Plan Description” or something like that. The same happens with “Reactive Rules”.

Evaluation of Analysis phase
Evaluation of steps

Steps Comments on weaknesses of
step and techniques for step

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Develop
System Task Model

- You claim (backed by Fan 2000) that users often have

a clearer idea of system goals than of system tasks. In

the experience of other authors (me included) this is

quite the other way around.

- You say that use cases can be used to identify system

goals, but do not say how.

- You talk about system goals producing and

consuming resources. How can a goal produce or

consume anything? Goals are states. You need some

kind of process, activity or task in order to produce or

consume resources.

- I would suggest you have a look at “Software

Requirements” by Karl Wiegers. Very different

approach to the classical references. There is a new

second edition now.

- You make constant references to the “actors” or

“performers” of system goals and tasks. But we

haven’t determined them yet. We know nothing about

them at this stage!

- You talk about system tasks being “fulfilled”. I imagine

you mean “executed”.

Medium High

STEP 2. “Analyse
Organisational
Context” (optional)

- You start saying that the previous step elicits system

functionality. I think it models system functionality.

Elicitation is only a part of requirements engineering.

- I would avoid using the term “real-world” here. Please

High High

STEP 3. Develop
Role Model

- One of the biggest problems of traditional structured

methods is that they rely too much on functional

decomposition. You are at risk of falling in the same

trap here. You say that “System-tasks that share the

same parent […] are typically related strongly in term

of functionality, thus being good candidates for being

combined into one role.”. I strongly disagree. Sharing

a common parent is a functional property, completely

unrelated to the structural property of who the

responsible for such piece of functionality is. Sharing

or not sharing a parent is irrelevant as far as role

Medium High

430

Evaluation of steps

Steps Comments on weaknesses of

step and techniques for step

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

assignment is concerned. Only this way you will avoid

creating a system organised around a functional

decomposition of its requirements.

- Furthermore, you say that System Tasks should not

be associated to the same role when they are

expected to be executed on distributed physical

locations or when they interface with distributed or

different kinds of resources. Why? Some roles are

precisely defined to coordinate tasks like this!

- I don’t think that the term “social task” is appropriate.

The term “social” (systematically misused by the AI

community) has strong implications such as the

existence of a common set of rules and both

subjective and inter-subjective spaces. I don’t think

you mean this. I would avoid this term and use “joint”,

“distributed” or “collective” instead. If this is what you

mean, why use another word?

- The cardinality of the relationship between System

Tasks and Role Tasks is not clear.

- You use guillemets to label the different sections in a

box representing a role. This is extremely confusing

since UML uses the same symbol for stereotypes. I

would simply remove these symbols.

STEP 4. Develop
Ontology Model

- You state that the Conference Program Management

system does not need a Domain ontology because the

information to be handled is just “profiles” of the

conference papers. First, I don’t understand what you

mean by “profiles”. Secondly, I can see a clear

Conference Program domain ontology containing the

concepts Paper, Reviewer, etc.

- I would say that an application always relates to a

particular domain. Actually, I can argue that

“application” and “domain” are almost synonyms.

Therefore, you cannot say that an application only

needs Task ontology without needing Domain

ontology. If an ontology defines concepts and their

relations (structure), this is orthogonal to any usage

(behaviour) that you may do of such concepts. For

example, you say that User Query, Keyword and

Result List are domain independent and you build a

“task ontology” for them because you happen to use

them for a particular task. I would adopt a different

approach. To me, these concepts belong to a Query

Management domain that exists on its own and which

High High

431

Evaluation of steps

Steps Comments on weaknesses of

step and techniques for step

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

you happen to need for your particular task.

- In connection with the previous point, it seems that an

ontology that “specialises” from a more general one

can do it by (a) adding subtypes of the concepts in the

general ontology and (b) incorporating specific

instances of such concepts. This is not said. For

example, Diabetes is not “subsumes” by Disease, but

is an instance of it. Similarly, Hyperglycaemia and

Hypoglycaemia are instances of Symptom, and not

subtypes.

- You need to say what notation you are using for the

diagrams. You say earlier that UML is used for

ontology diagrams, but the reader will not know that

when looking at diagrams before that.

- You say that MOBMAS recommends a graphical

language for ontology modelling but, if not powerful

enough, a textual one can be used. Are you assuming

that graphical languages are, in general, less powerful

than textual ones? I would differentiate between

power of expression and power of communication.

The first relates to the abstract syntax and the

semantics of the language, which are not related to

graphical vs. textual whatsoever. The second relates

to concrete syntax or notation, which does relate to

graphical vs. textual. Some clarification would be

helpful here.

- You introduce the concept of generalisation but define

specialisation!

- You introduce the concepts of aggregation and

composition. These concepts are poorly defined by

UML, and they can get you in some trouble (see some

papers by Henderson-Sellers on whole/part

relationships). If you are taking these concepts

straight from UML, I would recommend you just point

to the definitions in UML and avoid including your own

definition. If you want to enhance over UML, then you

need to be careful with how you define these terms.

See Brian’s papers for details.

- You say that relationships may be annotated with

cardinality indicators. If this is only optional, how are

the relationships supposed to be implemented? You

need cardinality specifications for every single

relationship before you can put them into a computer.

- You consider three types of “ontological mapping”

432

Evaluation of steps

Steps Comments on weaknesses of

step and techniques for step

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

relationships: equivalent, subsumes and intersects. I

can see two problems with this. First, how is

subsumption different from instantiation or

specialisation? The definition is not clear; you say that

“…one concept includes the other…”, but the meaning

of this can be either instantiation or specialisation.

Secondly, and most importantly, an association in

object-oriented modelling (e.g. UML) describes a

potential relationship between instances of the

involved classes. It does not describe a relationship

between the classes themselves. However, from the

definitions and description of your three stereotypes,

you are trying to characterise relationships between

classes. For example, if you say that Disease

subsumes Diabetes, that means that instances of

Disease may subsume instances of Diabetes. And this

is not what you mean; you mean that the class

Disease subsumes the class Diabetes. In summary:

associations are not the appropriate mechanism to do

this.

- In Figure 6.13, how can a “Hit” be equivalent to a

“Car”?

STEP 5. Identify
ontology

management roles

To me, ontology management looks similar to database

management in traditional systems. It is an

infrastructural service provided to applications, and

therefore application development usually does not deal

with the modelling of such infrastructure. If this is not the

case and ontology management is not an infrastructural

service of MAS applications, this must be clearly stated

to avoid confusion.

High High

Evaluation of models

Models
Comments on weaknesses of

models and modelling techniques

Ease of understanding

(High, Medium or Low)

System Task Model High
Organisation Context High

Role Model High

Ontology Model High

Comments on the strengths of Analysis steps and techniques for performing steps:

A lot of heuristics are given, which is unusual for a text on methodologies and extremely welcome.

Comments on the strengths of Analysis models and modelling techniques:

See above evaluation

433

Any suggestions for improvements on Analysis steps and techniques for performing these steps?
See above evaluation

Any suggestions for improvements on Analysis models and techniques modelling techniques

See above evaluation

Evaluation of Architectural Design Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for steps

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Specify MAS
organisational

structure

- The phase is called “architectural design” but you

talk about specifying the “organisational structure” of

the system. What is the meaning of “organisational”

here? If you mean architecture, just say

“architecture” instead of “organisational structure”.

- You mention the term “control regimes” a few times.

What is it? Control issues in a system are part of the

system dynamics, which happen at run-time. On the

other hand, architecture is a structural, design-time

concept. Architecture cannot specify control, but

support it.

- All your discussion of organising roles in layers or

federated groups seems to be based exclusively in

performance reasons (“helps to reduce interaction

traffic”, “interaction costs are sufficiently low”). This

is not the reason that most authors would give for

architecting a system in layers or blocks. The main

reasons are two: (a) modularity (most important)

and (b) non-functional requirement support.

Modularity is concerned with separation of

concerns, technological isolation and, in general,

encapsulation and containment. Non-functional

requirement support is related to providing the

necessary structural mechanisms so the necessary

non-functional requirements (robustness, integrity

and performance) are met. As you can see,

performance is only a small bit.

- You keep using keywords enclosed in guillemets,

which closely resemble UML stereotypes. I don’t

think this is a good idea.

- You use an arrow sign embedded in the «control »

keyword. This does not look very intuitive.

Furthermore, it ties the model to the graphical

representation, which is not a good idea. I would try

to replace it by an adorned line, perhaps.

- After Figure 11.6, you say that roles should be

organised so they highlight the layers or groupings

High High

434

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

adopted. Well, I think that this works the other way

around. Once you organise your roles in a sensible

manner, layers or groupings will arise. You cannot

force your roles into groups just to make the model

look neat.

STEP 2. Develop Agent
Class Model

- You talk about “grouping” roles into agent classes. I

would say “associating” roles to agent classes.

- The reasons that you give to associate multiple

roles to a single agent class look very arguable to

me. First, you say that if two roles interact

intensively with each other, they should be

associated to the same class. I don’t think this is

right. A client and a server (in whichever domain you

want to think of) interact intensively but are, by

definition, well separated entities. Second, you say

that if two roles share a lot of common data or

resources, then they again should be mapped to the

same class. Again, I disagree. In my view, the most

important issue you need to look at in order to

decide whether or not to put two roles together into

a single class is semantics. Look at their names,

look at whether it makes sense, from a semantic

perspective, that a single class plays both roles. You

hint at this by talking about coherence and having a

single class name with no conjunctions. This is OK;

now you need to change your heuristics (currently

based on interaction bandwidth and shared data) to

match this.

- You give some advice on the computational

complexity of agent classes. I think this is not

realistic at this point. When you develop a software

system in the real world, you almost never know

what kind of hardware is going to run it, and even if

you know it, it will change every 12 or 18 months

most probably. So any reasoning based on

processor load, at this stage, seems inappropriate to

me.

- There is a great and ongoing ambiguity between

“agent” and “agent class”. You sometimes talk about

assigning roles to agents, but you have just said that

roles are assigned to agent classes. You probably

want to revise this whole section and make sure that

“agent” and “agent class” are used with rigour.

- For the Agent Class Diagram, you say that when an

High Medium

435

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

agent class dynamically plays a particular role, this

role must be differentiated from other static roles by

being annotated with an adornment. I don’t think this

is useful at all. Structural models show static

properties of entities, i.e. properties that are

observable at any point in time. When you represent

an agent class in the Agent Class Diagram and

enumerate its roles besides its name, you are

saying that in the system there will be agents of that

class and they will be able to play these roles.

Whether or not a specific agent is playing a specific

role cannot be guaranteed to be observable at any

point in time. All roles look the same, no matter

whether they are static or dynamic. That is a

dynamic concern. You should remove the special

annotation that dynamic roles are supposed to have

in the current model definition, since it does not

make sense in a structural model.

- Some of the examples in the text are not very

fortunate, in my view. For example, a Search Agent

class is assigned roles User Interface and Searcher.

The encapsulation of a computation (searching) and

a user interaction (user interface) in the same entity

violates the n-tier philosophy of separating

persistent data from data access from computation

(business logic) from user interaction. I am not sure

whether this is a characteristic of agent modelling or

just an oversight.

STEP 3. Specify
resources

- In your characterisation of resources, you use the

term “knowledge source” to refer to databases and

web servers. Well, a database can be seen as a

data source, but only very arguably as a knowledge

source. Why not use a more conventional, all-

encompassing term such as “information sources”?

Knowledge is a different thing.

- You introduce an Environment Model which

contains 3 notational components. One component

(Resource Diagram) is developed in this step, while

the remaining two will be dealt with in Deployment

Design. I don’t like this because, to me, a model

describes its target at a certain level of abstraction

and from a certain perspective. Phases as different

as Architectural Design and Deployment Design

almost certainly vary significantly in abstraction and

High High

436

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

purpose, so how can they all be major contributors

to the same model?

- In the modelling of resources, you mention the

“communication properties” dimension. This is very

low level at this stage. Things like the IP address of

a machine are probably irrelevant at the

architectural design level (which is what you are

doing here). I would remove this bit and move it to

Deployment Design, perhaps.

- You recommend considering the introduction of a

Resource Broker role. This looks to me like

something belonging to the infrastructural services

of the run-time environment, not something that

each application needs to design. It is similar to a

name server or a middleware service in traditional

services: they are already there for you to use. You

don’t design a new one for each application you

write.

- This step uses some not very good examples. For

example, role task “Provide yellow page services”

and “Display acknowledgement” are at very different

levels of granularity. I would try to keep role tasks

(or any other model units of the same kind) at the

same level of granularity. Furthermore, the

Feedback Manager role has been assigned the task

“Display acknowledgement”, which seems to belong

more naturally to the User Interface role. Similarly,

the User Interface role contains the task “Extract

keywords from user query” which looks like a

computation and not a user interface operation.

STEP 4. Extend
Ontology Model to

include Resource
Application ontology

- You say that for resources that are information

sources, the resource ontology is the conceptual

schema of the information stored in the resource.

This is arguable. Consider levels of abstraction: the

information source may store information at a very

low level of abstraction, and therefore its conceptual

schema would contain all sorts of details that are

irrelevant (and even harmful) to you. You need a

different ontology, one that maps to this conceptual

schema but removes unnecessary detail. In my

experience, this happens all the time in real-life

projects with databases. So you cannot simply say

that the conceptual schema of the information

source is equivalent to the resource ontology.

High High

437

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

- You say that, in some cases, a resource ontology

can coincide with (a fragment of) the application

ontology, and that, in this case, the application

ontology will suffice. I don’t agree, because the non-

agent resource, by definition, is external to your

system, and keeping a separate ontology for it, even

if it repeats concepts in you application ontology, is

recommendable for the sake of modularity. Imagine

that you want to make a change in your application

ontology but need to keep the resource ontology

untouched: you cannot do it unless you have the

two ontologies separate.

Evaluation of models

Models Comments on weaknesses of
models and modelling techniques

Ease of understanding

(High, Medium or Low)

Agent Class

Diagram
 High

Agent

Class
Model

Agent

Relationship
Diagram

 High

MAS Organisational
Structure Model

High

Environment Model Medium

Comments on the strengths of Architectural Design steps and techniques for performing steps:

NA.

Comments on the strengths of Architectural Design models and modelling techniques:

NA.

Any suggestions for improvements on Architectural Design steps and techniques for performing
these steps?

See above evaluation

Any suggestions for improvements on Architectural Design models and techniques modelling

techniques

See above evaluation

438

Evaluation of Agent Internal Design Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for step

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Specify Agent
Belief Set

- The name “belief set” is not intuitive. “Belief set”

means a set of beliefs, not a formal structure of

beliefs. You may want to change this name.

- Along the whole chapter, there is an ambiguity of

“agent” vs. “agent class”. This also happened in

earlier chapters. For example, you talk about

defining the belief set “for each agent”, when you

surely mean “for each agent class”.

- When a belief set changes (because the ontologies

change), the belief state must also change

accordingly, adjusting itself to the new structure.

You don’t discuss this. How are agents notified of

ontology changes?

- A belief set, as defined, is one or more ontologies to

which the agent commits. Isn’t this overkill? I can

think of many cases in which an agent would only

need a small bit of an ontology to do its work.

Therefore it would be nice if agents could commit to

a subset of a given ontology.

High High

STEP 2. Specify Agent-
goals and Events

- Across the whole chapter, it is stated (and assumed)

that reactive agents exhibit simple behaviour while

pro-active agents exhibit complex behaviour. For

example, you give some rules to classify a Role

Task of an agent class as pro-active if the task will

need deliberation and complex processes. Also, you

recommend a reactive architectural style if the

agents hold a simple representation of the world,

while a pro-active style is suggested if the

knowledge involved is more complex. In my view,

this is wrong. Two different concerns are being

mixed here. The first is pro-activity vs. reactivity and

the second is the complexity of behaviour. Pro-

activity and reactivity are related only to the

particular way in which a piece of behaviour (an

action, a goal, whatever you want to call it) is

triggered. The degree of complexity of this

behaviour is completely orthogonal to how it is

triggered. For example, I have a phone switch router

agent that is completely reactive: only does

something when a call comes in. The behaviour that

this triggers, however, is highly complex, and a lot of

deliberation with other agents is necessary.

High High

439

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for step

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

- You classify the tasks “Extract keywords from user

query” and “Get information from resources” as pro-

active tasks. I disagree. You state that they are

triggered by some stimuli, so they are a reaction to

something. Therefore, they are reactive. You say

that they are pro-active because they are highly

complex, which is true, but not related to

proactivity/reactivity at all.

- In connection with the above two paragraphs, I think

that the concepts of proactivity and reactivity are

useful as abstract ideas to characterise agents, but

they are not that useful at a detailed level. In

software systems (and in most systems, actually),

everything is reactive to a high degree. You keep

talking about stimuli that trigger proactive tasks (see

Figure 12.11 for example). This is an oxymoron.

Only really complex entities (such as human beings)

can be truly pro-active, i.e. initiate action without a

stimulus. I am aware that this is a deep issue with

multiple ramifications, but unfortunately I cannot

defend your usage of proactivity/reactivity.

- Regarding events, you define them as something

significant that happens in the environment. Now,

how do you define “environment”? Does the

environment include other agents? Does it include

all the agents, including self?

STEP 3. Develop Agent
Behaviour Model

- For each action, you define preconditions and

effects. Why don’t you use the term “postconditions”

instead of “effects”, for the sake of symmetry?

- You mention that two (or more) agents can share

the same agent-goal. However, from you previous

chapters, I recall that each agent has its own agent-

goal, but the definitions of these goals are the same.

So, strictly speaking, they do not share a goal, but

have equivalent (or identical) agent-goals. This may

seem a bit of word play but it is not, as you can see

in the next paragraph.

- You say that when two (or more) agents “share” the

same agent-goal, they will have to interact to

achieve that goal and possibly do some distributed

planning. I don’t think this is necessarily true. Since

agents do not actually share a goal but have goals

that are identical (see previous paragraph), they

may as well pursue their identical goals separately.

Medium High

440

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for step

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

So, distributed planning is only an option.

- The differences between blind (or fanatical), single-

minded and open-minded strategies are hard to

understand. I suggest you use the exact same

words to define each one changing only the

minimum.

- Your usage of “vice versa” is a bit odd. This

expression means that the same relationship that

happens between A and B also happens between B

and A. But in most of the cases where you use it,

the relationship between the parties involved is not

the same in one way and in the other.

- You use attributes from the ontologies as datatypes.

For example, you define carModel: Car.Model. This

gives no room for using “basic” parameters such as

a string or an integer that bear no relationship at all

to the ontologies. For example, if you want to

display a message to the user or wait for a specific

number of seconds, you would need to pass a string

or an integer, respectively. Forcing the developer to

create a class in the ontology (and perhaps a whole

new ontology!) because of this seems inappropriate.

Evaluation of models

Model Comments on weaknesses of
models and modelling techniques

Ease of understanding

(High, Medium or Low)

Agent Behaviour
Model

 High

Comments on the strengths of Agent Internal Design steps and techniques for performing steps:

A lot of heuristics are given, which is unusual for a text on methodologies and extremely welcome.

Comments on the strengths of Agent Internal Design models and modelling techniques:

NA.

Any suggestions for improvements on Agent Internal Design steps and techniques for performing
these steps?

See above evaluation

Any suggestions for improvements on Agent Internal Design models and techniques modelling
techniques

See above evaluation

441

Evaluation of Agent Interaction Design Phase
Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for steps

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium

or Low)

STEP 1. Select interaction

mechanism

- The capitalisation of “tuple centre” is random. You

may want to homogenise it.

- You frequently use the term “coordination” when you

really mean “interaction”. Many interactions are not

related to coordination at all. I think you should use

“interaction” where you say “coordination”, except

for the (perhaps) few places where you really mean

“coordination”.

- You say that using a tuple centre and using direct

messages between agents are the two common

agent interaction mechanisms. However you do not

say which others exist, or where to find them. In this

step, things are explained as if these two

mechanisms where the only ones.

- You say that “…the ACL interaction mechanism […]

infers a strong…”. I am not sure what you mean with

this sentence, but “to infer” means to deduce, to

conclude. Is that what you mean?

- Also in the same section, you sometimes use the

term “agent” when you really mean “agent class”.

This is extremely confusing. For example, you say

that embedding the constraints that govern agent

interaction into the agents themselves can be

difficult if the number of agents is large. You mean

agent classes, I bet. Otherwise, the sentence does

not make any sense.

- In a footnote in the same section, you say that if an

agent goes down, then another agent of the same

class can replace it. I don’t think this is the rule. As

you well know, agents obtain knowledge during their

lives, so two agents of the same class that have

lived for a while will probably have different beliefs

and intentions. How can then one replace the other?

- You say that the ACL Interaction Mechanism is not

as “efficient” (I would suggest “appropriate” instead)

as using the tuple centre mechanism when the MAS

is open and dynamic, contains heterogeneous

agents, and when the agents have many shared

agent-goals. You say that this happens because

there is a strong coupling between “the agents’

behaviour and the management of the coordination

process”. I think you should change the wording

here, because the coordination process is part of

Medium High

442

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium

or Low)

agents’ behaviour. How an agent interacts with

other agents, what for and when, is all part of the

agent’s behaviour. In addition, I don’t think that

agents have “shared agent-goals”. They may have

the same agent-goals, but not shared. I already

discussed this in a previous chapter.

- You say several times that the tuple centre is

capable of some “reasoning”, or even “low-level

reasoning”. Do you mean “processing”? If so, I

would use “processing”, which has the right

technical meaning. “Reasoning” is what humans do.

STEP 2.
Develop

Agent
Interaction
Model

 For direct
interaction

mechanism

- In “Specify agent synchronisation” you supposedly

describe two synchronisation methods: synchronous

and asynchronous. Well, these are not

synchronisation methods, especially the latter. If a

MAS adopts an asynchronous approach, the agents

in it are not synchronised at all, by definition. They

will need to use mutexes or some other

synchronisation objects to actually synchronise with

one another. This would be “synchronisation

methods”. What you are describing are

“synchronisation approaches” or “modes” but not

“methods”. What’s the meaning of “method”, by the

way?

- You define a guard condition as the condition “by

which” the message is sent. I can’t understand this.

Is it the condition that sends the message, that

makes sensing the message possible, that triggers

the message being sent…? You need a better

definition here.

- You try to define “sequence-expression” but the

words are not a definition. It is only a comparison

with UML.

- When describing the content of messages, you use

datatypes that look very much like coming from an

ontology. However, you don’t say that. I think it

would be good, at this stage, to say explicitly that

datatypes map to the some ontology.

- You use some “built-in” datatypes such as “Integer”.

What do you mean by “built-in”? Where are they

built-in? Who or what provides these datatypes?

High High

443

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium

or Low)

For
tuplespace/
tuple-centre

interaction
mechanism

- Again, in the message content, you use datatypes

that look like coming from an ontology but you say

nothing about this. This is puzzling for the reader.

- Again, you mention the existence of “built-in”

datatypes. Where are they built in?

- You describe “synchronisation methods” which are

really approaches or modes, not methods.

- Figure E.6 shows an “out” arrow coming out of the

tuple centre into an agent. I think that is wrong since

“out” arrows always go into the tuple centre.

- What does an interaction diagram represent? You

don’t say that anywhere. Is it a specific

conversation, or is it a specification of the

conversations that may take place?

High High

Evaluation of models

Model Comments on weaknesses of models and
techniques to produce models

Ease of understanding

(High, Medium or Low)

Agent Interaction Model High

Comments on the strengths of Agent Interaction Design steps and techniques for performing steps:

A lot of heuristics are given, which is unusual for a text on methodologies and extremely welcome.

Comments on the strengths of Agent Interaction Design models and modelling techniques:

NA.

Any suggestions for improvements on Agent Interaction Design steps and techniques for performing
these steps?

See above evaluation

Any suggestions for improvements on Agent Interaction Design models and techniques modelling
techniques

See above evaluation

444

Evaluation of Deployment Design Phase

Evaluation of steps

Steps Comments on weaknesses of
steps and techniques for steps

Ease of
understanding

(High, Medium

or Low)

Ease of
following

(High,

Medium or

Low)

STEP 1. Identify agent-

environment interface
requirements

- Again, you sometimes use the term “coordination”

meaning “interaction”, like in the previous chapter.

- You keep mentioning the implementation phase but

it is not discussed in MOBMAS. Since you refer to it

in specific terms, I wonder how you conceptualise it.

What kind of work is expected to be done? What

products are generated? Can you add some

information on this to your work?

- I would think that designing the agent’s interface

with its environment is not related to deployment at

all but architecture or detailed design. It is an

integral part of the agent, not related to the specifics

of the run-time infrastructure.

- You mention differences between sensors/effectors

in hardware and software. In real life situations,

software developers do not interact with hardware;

hardware is virtualised or wrapped by driver

components so other software components interface

directly with them. For example, if your agent has an

effector to move a robotic arm and you want to

make it move the arm, you will talk to a software

component that virtualises the physical arm. You

don’t have to worry about the hardware. So, for the

software developer, there is no difference at all

between interfacing with software or hardware.

- As part of the identification of agent-environment

interaction requirements (you use “interaction” here

rather than “coordination”, which is good), you

include issues that have already been dealt with in

previous phases, such as deciding whether to use a

tuples centre or direct messages.

- You explain that the Environment Model contains 3

notational elements, 1 of which is created by the

Architectural Design phases. I have already

commented on this. But here you can see very

clearly how the different notational elements of this

model have really nothing to with each other. They

are not view on the same model but completely

unrelated models. I suggest you decompose the

Environment Model into smaller models which will

make much more sense.

High High

445

Evaluation of steps

Steps Comments on weaknesses of

steps and techniques for steps

Ease of

understanding

(High, Medium

or Low)

Ease of

following

(High,

Medium or

Low)

STEP 2. Select agent

architecture

- You talk about the Implementation phase, but you

have not mentioned it before. Is there one?

- You say that there are a number of agent

architectures available on the market. What do you

mean? Are agent architectures products that you

can buy?

- You mix the concerns of proactivity/reactivity with

the complexity of behaviour, as I said some

paragraphs earlier. You probably want to revise this.

- Two of the criteria that you mention are “Size of

knowledge base” and “Support for scalability”. The

differences between these two are not clear.

- Figure 6.51 shows some little solid black circles that

are not defined.

High High

STEP 3. Specify

infrastructure facilities

In my view, everything in this step is actually

architecture design, not deployment design. Specifying

how a system will interact with other systems,

including its infrastructure, is part of architecture. What

do you understand by “deployment”?

High High

STEP 4. Instantiate
agent classes

You use a rounded rectangle to represent an agent

instance in the Agent Instantiation Diagram. What do

you need this for? Agent instance icons bear no

information and add no value to the diagram. Can’t

you get rid of them altogether?

High High

STEP 5. Specify
deployment
configuration

You use the word “physical” quite often. For example,

you say that agent platforms are the physical

infrastructure in which agents are deployed. And

nodes are physical hosts. And they are linked by

physical connections. I am not sure what you mean by

“physical”, but if you delete the word from these

sentences everything makes sense and, in addition,

you are not limited to “physical” entities. For example,

nodes do not have to be real computers; they can be

virtual machines or other non-physical processors. The

same for connections between nodes. Network

connections are physical at a very low level, but most

application deployment activities take place at high

levels where the physical topology of the network is

not important, only its logical topology. I would suggest

deleting this word unless you have a good reason to

keep it.

High High

446

Evaluation of models

Model Comments on weaknesses of

models and modelling techniques

Ease of understanding

(High, Medium or Low)

Environment Model Medium

Architecture Model High

Comments on the strengths of Deployment Design steps and techniques for performing steps:

NA

Comments on the strengths of Deployment Design models and modelling techniques:

NA.

Any suggestions for improvements on Deployment Design steps and techniques for performing these
steps?

See above evaluation

Any suggestions for improvements on Deployment Design models and techniques modelling
techniques

See above evaluation

447

APPENDIX H

APPLICATION OF MOBMAS

This appendix documents the “Peer-to-Peer Information Sharing” application on which

MOBMAS was used by the two developers, Dr. Ghassan Beydoun and Dr. Cesar

Gonzalez-Perez. The appendix also presents the major models produced by each

developer to illustrate the design of MAS for the application as a result using

MOBMAS.

Problem Description – “Peer-to-Peer Information

Sharing”

In recent years, the Peer-to-Peer (P2P) networking paradigm has become one of the

most rapidly developing areas of modern computing (Klampanos and Jose 2003). P2P

contrasts with the well-known Client-Server networking model in that all nodes in the

network are capable of acting as both server and client, that is, each node can serve as

both provider and user of services (Klampanos et al. 2003; Mine et al. 2004). The P2P

networking model helps to avoid the problems of bottle-neck and heavy traffic that is

commonly witnessed in the Client-Server architecture.

In this application, the P2P model is employed for information sharing. Information to

be shared is files such as HTML, pdf and multimedia (e.g. music or video). The users of

the system are distributed “peers” in the information sharing network. Their knowledge

bases (i.e. stored files) are enlisted, and the users can communicate directly with each

other to exchange this knowledge.

System requirements

Each user possesses a knowledge base containing files that he/she is willing to distribute

to other peer users. Each file is identified by its title and type (e.g. HTML, pdf, music or

video).

448

Any user in the network can enter a query to request for files that satisfy his/her query.

Each query contains a set of keywords. The system is responsible for identifying those

candidate users who may have files that satisfy the query, and sending the query to these

users. The answer from each candidate user may either be:

the titles and types of the files that satisfy the query; or

a refusal of service (either because no appropriate files are found, or because the

user is unwilling to supply the files at the time of request).

When the answers are received from all candidate provider users, the system will

combine and refine the results to compose a list of files’ titles and types, which is then

presented to the user. The user can then select which files he/she wants to download.

The system then contacts the respective provider user to carry out the file transfer

process. After a successful transfer, the user’s knowledge base is updated to contain the

new received file(s).

Each user keeps a record of his/her history of information sharing. The history contains:

a list that records the queries made by the user and their responders; and

a list that records the queries received by the user and their senders.

The former needs to be updated every time the user receives a result list from the

system, while the latter requires update every time the user replies to a query sent by the

system. This history lists help the system to produce short lists of candidate providers

for future queries, by calculating the similarity between the user’s query and a past

query (Mine et al. 2004). If no candidate providers can be identified this way, or if all

candidate users do not provide the service required, the system will need to broadcast

the query to all users in the community, so as to identify new candidate providers. The

new providers are eventually added to the history of the user, thereby expanding the

user’s contact circle.

Although the above schema of information sharing can be applied to any application

domain, this research illustrates the use of MOBMAS on the Movies domain. An

ontology for this domain (written in DAML) is currently available from

http://www.cse.dmu.ac.uk/~monika/Pages/Ontologies/CinemaAndMovies.daml.

http://www.cse.dmu.ac.uk/~monika/Pages/Ontologies/CinemaAndMovies.daml

449

Major models produced by Developer 1

DEVELOPER: DR. GHASSAN BEYDOUN

System Task Model

Figure AppendixH.1 – System Task Diagram by Developer 1

Ontology Model

Figure AppendixH.2 – Ontology Diagram for Movie Ontology by Developer 1

(based upon DAML ontology at

http://www.cse.dmu.ac.uk/~monika/Pages/Ontologies/CinemaAndMovies.daml)

Process file-sharing request

Satisfy user search query Carry out file-transfer process

Accept user query Display result list

Find answer for user
query

Obtain answers from
candidate providers

Identify candidate
providers

T

T

P

Download file

Update file-sharing
history

P

Identify candidate
providers from file-sharing

history

Identify new
candidate providers

P

Accept user
selection

instance_of

1..*

1

has_genre

1..* 1..*showing_atMovie
movieName
actor
actress
producer
director
musicdirector
screenplay
duration
synopsis

Cinema
cinemaName
address
telephonenumber
email

Genre

Action Horror Thriller Comedy Musical

http://www.cse.dmu.ac.uk/~monika/Pages/Ontologies/CinemaAndMovies.daml

450

Figure AppendixH.3 – Ontology Diagram for File Retrieval Ontology by Developer 1

Role Model

Figure AppendixH.4 – Role Diagram by Developer 1

control

role
User Interface

role-tasks
Accept user query
Display result list

Accept user selection

role
History Manager

role-tasks
Update file-sharing history
Identify candidate providers

from file-sharing history

role
Information Retriever

role-tasks
Find answer for user query
Identify candidate providers

Obtain answers from candidate providers
Carry out file-transfer process

Download file

role
Portal

role-tasks
Identify new candidate

providers

peer

peer

1..*

1

1..*1..*
1

provided-by

1..*

Userquery
QueryID
Time-received

Keyword

File
Filename
Filetype

Provider
Agent-name
Address

1..*
file-key

1..*1..*

Result

has-result

0..*

Ontology-concept

0..*

0..*

History

1..* 1..*

1..*

Enquirer
Agent-name
Address

451

Agent Class Model

Figure AppendixH.5 – Agent Relationship Diagram by Developer 1

Figure AppendixH.6 – Agent Class Diagram by Developer 1 (for Mediator agent class)

Agent Behaviour Model

Figure AppendixH.7 – Agent Plan Template Diagram by Developer 1 (for History Manager agent class)

agent class
Mediator / Portal role

belief conceptualisation
Movie Ontology

 File Retrieval Ontology

agent-goals
Address of potential providers are identified given
particular keywords

events
 Keywords received from Information Retriever agent
class

Protocol Diagram: Figure AppendixH.8
Ontology: Movie Ontology

agent class
User Interface+ /

User Interface role

agent class
Information Retriever+/

Information Retriever role

agent class
Mediator+/
Portal role

agent class
History Manager+/

History Manager role

Protocol Diagram: Figure
AppendixH.8
Ontology: Movie Ontology, File
Retrieval Ontology

Protocol Diagram: Figure AppendixH.8
Ontology: Movie Ontology, File
Retrieval Ontology

Initial state: kw: Keyword is received from Information Retriever agent
Target agent-goal: filepointer: File and p:Provider are identified and sent to Information Retriever agent
Commitment strategy: single-minded
List of sub-agent-goals: OntologyConcept_Identified, FileLocated, HistoryUpdated
List of actions:
Action 1: MatchKeyword (kw: Keyword, h: History)
 Pre-condition: kw is received from Information Retriever agent
 Post-condition: oc: Ontology-concept is identified

Action 2: RetrieveFile (oc: Ontology-concept, h: History)
 Pre-condition: oc is identified
 Post-condition: filepointer:File and corresponding p:Provider are located

Action 3: UpdateHistory (oc: Ontology-concept, agent_ID:Enquirer.Agent-name)
 Pre-condition: oc is identified
 Post-condition: History is updated with agent_ID

Events: message(kw: Keyword) arrives from Information Retriever agent

452

Agent Interaction Model

Figure AppendixH.8 – Interaction Protocol Diagram by Developer 1

Major models produced by Developer 2

DEVELOPER: DR. CESAR GONZALEZ-PEREZ

System Task Model

Figure AppendixH.9 – System Task Diagram 1 by Developer 2

Satisfy user

Download necessary files Process upload enquiries

T

Query Processing Protocol

inform(kw: Keyword)

:IR Agent “ Provider)”
IR role

inform(kw: Keyword,
[filepointer: File]n,
[p: Provider] n)

inform(kw: Keyword,
[filepointer: File]n,
[p: Provider] n)

inform(kw: Keyword, [filepointer: File]n, p: Provider)

inform(kw: Keyword, [p: Provider] n)

[norecord=true] inform(kw: Keyword)

inform(kw: Keyword,
norecord)

inform(kw: Keyword)
inform(kw: Keyword)

:UI Agent/
UI role

:IR Agent “Inquirer”/
IR role

:HM Agent/
HM role

:Mediator Agent/
Portal role

inform(kw: Keyword,
[filepointer: File]n,
[p: Provider] n)

X

453

Figure AppendixH.10 – System Task Diagram 2 by Developer 2

Figure AppendixH.11 – System Task Diagram 3 by Developer 2

Ontology Model

Note that Ontology Diagram for Movie Ontology is reused from that developed by

Developer 1 (Figure AppendixH.2).

Figure AppendixH.12 – Ontology Diagram for File Sharing Ontology by Developer 2

TT

Download necessary files

Display candidate files Accept file selection Download necessary files

Accept user
query

Obtain result list

Display result
list

Obtain partial lists Compose result list

Make download
requests

Receive file

T

T P

Compile user
query

Determine target
servers

Send queries to
servers

Receive query
results

T

T

Generate
download requests

Send download
requests to servers

Receive files from
servers

Notify user with
reception
summary

Satisfy upload enquiries

Send result list to upload
query

Send files upon upload
request

T

1

1..*

Queryspec
QueryID
Time-received

Keyword

File
Filename
Filetype

1..*1..*

1..*
file-key

Result

has-result

0..*

Resultlist

454

Role Model

Figure AppendixH.13 – Role Diagram by Developer 2

Agent Class Model

Figure AppendixH.14 – Agent Relationship Diagram by Developer 2

peer
peer

controlcontrol

role
UserInterfaceManager

role-tasks
Accept user query
Display result list

Accept file selection
Notify user with reception summary

role
Searcher

role-tasks
Compile user query

Determine target servers
Send queries to servers
Receive query results
Compose result list

role
Downloader

role-tasks
Generate download requests

Send download requests to servers
Receive files from servers

role
FileServer

role-tasks
Send result list to upload queries
Send files upon upload requests

Protocol Diagram: Figure AppendixH.18
Ontology: Movie Ontology, File Sharing Ontology

agent class
UserInterfaceManager+ /

UserInterfaceManager role

agent class
Client+/

Searcher role, Downloader role

agent class
Server+/

FileServer role

Protocol Diagram: Figure AppendixH.18
Ontology: File Sharing Ontology

455

Figure AppendixH.15 – Agent Class Diagram by Developer 2 (for Server agent class)

Agent Behaviour Model

Figure AppendixH.16 – Agent Plan Template by Developer 2 (for Server agent class)

Figure AppendixH.17 – Agent Plan Diagram by Developer 2 (for Server agent class)

agent class
Server / FileServer role

belief conceptualisation
Movie Ontology
File Sharing Ontology

agent-goals
Upload query is responded as soon as it is received
Upload request is satisfied as soon as it is received

events
 Upload query arrives
Upload request is received

q

Initial State: any
Agent Goal: Upload query is responded as soon as it is received
Commitment Strategy: single-minded
Action 1: ValidateQuerySyntax(q: QuerySpec)

Pre-condition: true
Post-condition:: Query q is valid OR refusal message has been replied

Action 2: ExecuteQuery(q: QuerySpec)
Pre-condition: q is valid
Post-condition:: Query q has been executed and result list is known

Action 3: ReplyToQuery(rl: ResultList)
Pre-condition: true
Post-condition: Result list rl has been sent back to remote server s

Event 1: Query arrives from remote server s

Plan for Agent-goal “Upload query is responded as soon as it is received”

Query q arrives from remote server s

ValidateQuerySyntax(q: QuerySpec)

ExecuteQuery(q: QuerySpec)

Query q is malformed

Query q is well-formed

SendRefusalMessage

ReplyToQuery(rl : :ResultList)

Activate goal “Upload query is responded as soon as it is received”

456

Agent Interaction Model

Figure AppendixH.18 – Interaction Protocol Diagram by Developer 2

: Client Agent/
Searcher Role/Downloader role

inform (q:QuerySpec)Loop (all servers)

inform (r: Result)

: UserInterfaceManager Agent/
UserInterfaceManager role

inform (q:QuerySpec)

inform (rl: ResultList)

: Server Agent/
FileServer role

Query Processing Protocol

	Title Page: MOBMAS- A Methodology ForOntology-Based Multi-Agent Systems Development
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS

	CHAPTER 1 - INTRODUCTION
	CHAPTER 2 - BACKGROUND OF AGENTS AND ONTOLOGY
	CHAPTER 3 - REVIEW OF EXISTING MAS DEVELOPMENT METHODOLOGIES
	CHAPTER 4 - RESEARCH DESIGN
	CHAPTER 5 - METHODOLOGICAL REQUIREMENTS OF MOBMAS
	CHAPTER 6 - DOCUMENTATION OF MOBMAS
	CHAPTER 7 - EVALUATION AND REFINEMENT OF MOBMAS
	CHAPTER 8 - CONCLUSIONS
	REFERENCES
	APPENDIX A - ADVERTISEMENT FOR SURVEY RECRUITMENT
	APPENDIX B - ONLINE SURVEY QUESTIONNAIRE
	APPENDIX C - DEMOGRAPHIC AND PROFESSIONAL CHARACTERISTICS OF SURVEY RESPONDENTS
	APPENDIX D - EVALUATION OF EXISTING MAS DEVELOPMENT METHODOLOGIES
	APPENDIX E - MODELLING NOTATION OF MOBMAS
	APPENDIX F - EXPERT REVIEWS OF MOBMAS
	APPENDIX G - EXTERNAL DEVELOPERS’ EVALUATION OF MOBMAS
	APPENDIX H - APPLICATION OF MOBMAS

