MOBMAS - A methodology for ontology-based multi-agent
systems development

Author:
Tran, Quynh Nhu

Publication Date:
2005

DOI:
https://doi.org/10.26190/unsworks/23631

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/24254 in https://
unsworks.unsw.edu.au on 2024-04-27


http://dx.doi.org/https://doi.org/10.26190/unsworks/23631
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/24254
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

MOBMAS

- A Methodology For
Ontology-Based Multi-Agent Systems

Development

by

Quynh Nhu Tran

B. Sc. (Hons), University of Newcastle, Australia

Submitted in total fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
July 2005

School of Information Systems, Technology and Management
The University of New South Wales

Australia



CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge
it contains no material previously published or written by another person, nor material
which to a substantial extent has been accepted for the award of any other degree or
diploma at The University of New South Wales or any other educational institution,
except where due acknowledgement is made in the thesis. Any contribution made to the
resarch by others, with whom I have worked at The University of New South Wales or

elsewhere, is explicitly acknowledged in the thesis.
I also declare that the intellectual content of this thesis is the product of my own work,

except to the extent that assistance from others in the project’s design and conception or

in style, presentation and linguistic expression is acknowledged.

Quynh Nhu Tran



ABSTRACT

“Agent-based systems are one of the most vibrant and important areas of research and
development to have emerged in information technology in the 1990s” (Luck et al.
2003). The use of agents as a metaphor for designing and constructing software systems
represents an innovative movement in the field of software engineering: “Agent-

Oriented Software Engineering (AOSE)” (Lind 2000; Luck et al. 2003).

This research contributes to the evolution of AOSE by proposing a comprehensive
ontology-based methodology for the analysis and design of Multi-Agent Systems
(MAS). The methodology is named MOBMAS, which stands for “Methodology for
Ontology-Based MASs”. A major improvement of MOBMAS over the existing agent-
oriented MAS development methodologies is its explicit and extensive support for
ontology-based MAS development. Ontologies have been widely acknowledged for
their significant benefits to interoperability, reusability, MAS development activities
(such as system analysis and agent knowledge modelling) and MAS operation (such as
agent communication and reasoning). Recognising these desirable ontology’s benefits,
MOBMAS endeavours to identify and implement the various ways in which ontologies
can be used in the MAS development process and integrated into the MAS model
definitions. In so doing, MOBMAS has exploited ontologies to enhance its MAS
development process and MAS development product with various strengths. These
strengths include those ontology’s benefits listed above, and those additional benefits
uncovered by MOBMAS, e.g. support for verification and validation, extendibility,
maintainability and reliability. Compared to the numerous existing agent-oriented
methodologies, MOBMAS is the first that explicitly and extensively investigates the
diverse potential advantages of ontologies in MAS development, and which is able to
implement these potential advantages via an ontology-based MAS development process

and a set of ontology-based MAS model definitions.

Another major contribution of MOBMAS to the field of AOSE is its ability to address
all key concerns of MAS development in one methodological framework. The

methodology provides support for a comprehensive list of methodological requirements,

i



which are important to agent-oriented analysis and design, but which may not be well-
supported by the current methodologies. These methodological requirements were
identified and validated by this research from three sources: the existing agent-oriented
methodologies, the existing evaluation frameworks for agent-oriented methodologies
and conventional system development methodologies, and a survey of practitioners and
researchers in the field of AOSE. MOBMAS supports the identified methodological
requirements by combining the strengths of the existing agent-oriented methodologies
(i.e. by reusing and enhancing the various strong techniques and model definitions of
the existing methodologies where appropriate), and by proposing new techniques and

model definitions where necessary.

The process of developing MOBMAS consisted of three sequential research activities.
The first activity identified and validated a list of methodological requirements for an
Agent Oriented Software Engineering methodology as mentioned above. The second
research activity developed MOBMAS by specifying a development process, a set of
techniques and a set of model definitions for supporting the identified methodological
requirements. The final research activity evaluated and refined MOBMAS by collecting
expert reviews on the methodology, using the methodology on an application and

conducting a feature analysis of the methodology.

il



ACKNOWLEDGEMENTS

First and foremost, I wish to express my deepest gratitude to Prof. Graham Low, my
supervisor of this PhD dissertation, for his valuable guidance and dedication to every
stage of my research. It can be said that apart from myself, he is the one who has read
my dissertation the most often. His meticulous comments on every page of my writing,
and his enthusiastic attention to every step of my research, have resulted in significant

corrections and improvements to my work. His devotion is sincerely appreciated.

I also wish to express special thanks to Prof. Mary-Anne Williams for her wholehearted
support at various important stages of my research. I am thankful especially for her
valuable help in finding the topic for my research, adverstising for my survey,

reviewing MOBMAS and offering important suggestions for improvement.

I am very much indebted to Dr. Ghassan Beydoun for his generous devotion of time and
effort to review my dissertation. His insightful advices have helped to notably improve
the dissertation’s coherence and completeness. 1 also sincerely thank Prof. Brian
Henderson-Sellers and Dr. Cesar Gonzalez-Perez for their enthusiastic and dedicated
involvement in the evaluation of MOBMAS. Their constructive criticisms were truly
valuable to the methodology. It is with much gratitude that I thank Mr. (soon to be Dr.)
Vincent Pang for the countless times when he offered his generous support and

assistance to me during my research, including his help with the binding of this thesis.

My appreciation extends to the Faculty of Economics and Commerce at The University
of New South Wales, who awarded me the “Faculty Postgraduate Research

Scholarship”. Without its financial support, this research would not have been possible.

Last but not least, I am forever thankful to my mother Tuyet Anh Thi Duong, my father
Nam Duc Tran and my sister Dr. Giao Quynh Tran for their never-ending and
immeasurable love, understanding and support. Above all, I am truly grateful to God for
His amazing grace and everything that He has blessed me, including the blessing of the

most wonderful mother and father that I have. This dissertation is dedicated to them.

iv



TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES ceverernnnssesnannne xi
LIST OF TABLES XV
LIST OF ABBREVIATIONS xvii
CHAPTER 1. INTRODUCTION .1
L.I.INTRODUCTION ..ottt ettt sttt st siees 1
1.2. BACKGROUND AND MOTIVATIONS ..ottt 1
1.3. RESEARCH OBJECTIVE......coiiiiiieieeeeete ettt e 4
1.4. SIGNIFICANCE OF THE RESEARCH ......c.ccocviiiiieiieieeeceeee e 5
1.4.1. Application Domains 0f MOBMAS .......ccoociririiiiiiriicenieieteetee ettt 7
1.5. RESEARCH DESIGN ..ottt ettt sttt s 9
1.6. ORGANISATION OF THE DISSERTATION ......ccecoovieiiieiieie e 10
1.7 SUMMARY .ttt sttt ettt 11
CHAPTER 2. BACKGROUND OF AGENTS AND ONTOLOGY ..cccceceeruvecnresences 12
2. 1. INTRODUCTION.....ooitititieeteeteete ettt sttt ettt et 12
2.2. AGENT TECHNOLOGY AND MAS. ...ttt 12
2.2.1. Definition Of AGENt ......cccieuiiieieieierie ettt sttt e sa e e e aestebesbessesseeseensennensan 12
2.2.2. Definition OF MAS ..ottt ettt ettt 14
2.2.3. Motivations for Agents and MASS .........ccceireiiinieirieieeee et ne 14
2.2.4. Limitations of Agents and IMASS .......ccooiriieiiieeee ettt 17

2.3, ONTOLOGY ..ottt ettt ettt et st st ettt et st sae et et ens

2.3.1. Definition Of ONtOIOZY ....c.coverieiiiieeieiei ettt

2.3.2. Motivations for Ontologies in MAS ..........ccooiiiiiee e

2.3.2.1. Benefits of ontologies to interoperability

2.3.2.2. Benefits of ontologies t0 reuSaDIlity............c.ccocoeveeieieeiieieiesieeeee et
2.3.2.3. Benefits of ontologies to MAS development activities .................c..cccoveeeeveveneeeerenne 22
2.3.2.4. Benefits of ontologies 1o MAS OPeration .................ccccceeeeeeeoiaiiesieineieeieeeeeenene 24
2.3.3. TYPOIOZY Of ONTOLOZY -...cuvuiierieiirienieteiet ettt ettt et st b e es e neee 28



2.3.4. Ontology Representation Languages ............coecererieiirieirinieenieeeieneicseeeei e 29

2.3.4.1. Textual representation [ANGUAZES ..................cccoecireoiviinectiiniiiieiseeect et 30
2.3.4.2. Graphical representation [anguages ..................c.ccccceceeeoeieeieeneeieeeieeeeeeee e 32
2.4, SUMMARY .ttt ettt ettt sttt ettt et et st 34

CHAPTER 3. REVIEW OF EXISTING MAS DEVELOPMENT

METHODOLOGIES 35
3.1 INTRODUCTION ...ttt ettt ettt sttt st s as 35
3.2. DESCRIPTION OF EXISTING MAS DEVELOPMENT METHODOLOGIES
............................................................................................................................. 35
B2 L MASE .ttt h bbb bene 36
3.2. 2. MASSIVE . ..ottt ettt sttt 40
323 SODA ettt b et st b ettt e bbb 43
3240 GATA .ottt bbbt 44
3.2.5. MESSAGE ..ottt et 47
3.2.6. Methodology for BDI Agents (BDIM)........cccoeoiririirininieieenieesieeseeseeie e 49
327 INGENIAS ...ttt ettt ettt ettt ettt ettt sttt 53
3.2.8. Methodology with High-Level and Intermediate Levels (HLIM) .......cccccoecininienccnennn 55
3.2.9. Methodology for Enterprise Integration (MEI) ..........ccooiiiiiiiiiiiiieeeeeeee e 57
3.2.10. PROMETHEUS ......cootitiiiirieiiiinircsetssstt sttt sttt ettt ettt e 59
B2 11  PASST ottt e h bbb 62
3202  ADELFE ...ttt ettt et 65
3.2.13. COMOMAS ...ttt ettt sttt bbbttt b ettt b et b e 68
3.2.14. MAS-ComMONKADS ......ccooiriririiririeisiri ettt sttt sttt 70
3.2.15. CASSIOPEIA ..ottt sttt sttt ettt e 72
3.2.16. TROPOS ..ottt ettt 74
3.3. GENERAL LIMITATIONS OF EXISTING MAS DEVELOPMENT
METHODOLOGIES ..ottt sttt 77
3.3.1. Limitations Regarding MAS Analysis and Design ........c.ccoeoeverinineiiinenenecneeecene 78
3.3.2. Limitations Regarding Support for Ontology-Based MAS Development...............c.c........ 81
3.4, SUMMARY ottt e b ettt ettt 84
CHAPTER 4. RESEARCH DESIGN 85
4. 1. INTRODUCTION ..ottt ettt et ete e et e e stvee e s aaeeesaaeeesasaaeenraee s 85
4.2. RESEARCH OBJECTIVE ..ottt 85
4.3. RESEARCH ACTIVITIES ...t 87
4.4. RESEARCH ACTIVITY 1 — IDENTIFY METHODOLOGICAL
REQUIREMENTS OF MOBMAS.....co oottt 91
4.4.1. Step 1 — Identify “Potential” Requirements of MOBMAS ..........ccooooiiiiineiiiieineeene 91
4.4.2. Step 2 — Conduct a Survey on Practitioners and Researchers in the Field of AOSE .......... 92
4.4.3. Step 3 — Perform a Feature Analysis on Existing AOSE Methodologies...........cccocceveuenene 93
4.4.4. Step 4 — Identify Ontology-Related Steps From Amongst the Required MOBMAS’ Steps
.......................................................................................................................................................... 94
4.5. RESEARCH ACTIVITY 2 - DEVELOP MOBMAS ......cccooiiiiiiieieieieenene 95

vi



4.6.

4.7.

5.2

5.3.

5.4.

5.5.
5.6.

RESEARCH ACTIVITY 3 - EVALUATE AND REFINE MOBMAS ............ 97
4.6.1. Step 1 — Obtain EXpert REVIEWS .......ccoiiiiiiiieieiee e 97
4.6.2. Step 2 — Use MOBMAS on a Test Application............ .97
4.6.3. Step 3 — Perform a Feature Analysis on MOBMAS .......cc.cccovmiinnineinrieiree e 98

SUMMARY ..ottt sttt 99

INTRODUCTION ... ..oiiiitiiiteiteieeteee ettt st e 100
IDENTIFICATION OF POTENTIAL REQUIREMENTS OF MOBMAS .....101
5.2.1. Identification of Potential FEatures..........coeeerriereuioinieeeeninieeinrneicereierceneeeeveseseeneveeee
5.2.1.1. Evaluation frameworks for AOSE methodologies .................cccccoevncu.n.
5.2.1.2. Evaluation frameworks for conventional development methodologies .....
5.2.1.3. Potential features of MOBMAS............cccccoviiioiniiioieeet ettt
5.2.1.3.a. Potential features for MOBMAS development process ...
5.2.1.3.b. Potential features for MOBMAS model definitions .................c.ccccccocevunrnunnn...
5.2.1.3.c Potential agent properties to be captured/represented in MOBMAS model kinds
............................................................................................................................................ 109
5.2.1.3.d. Potential features for MOBMAS as a whole...

5.2.2. Identification of Potential StePS.........cccveerieirierieinieieieee et 110
5.2.2.1. Potential Problem Domain ANGLYSIS SIEPS...........ccoeciiueieineiiiiiei et 112
5.2.2.2. Potential Agent Interaction Design steps
5.2.2.3. Potential Agent Internal DeSign STEPS ............cceveeeeeeeeieieieriesieeeseeesiaeneeaensennens
5.2.2.4. Potential Overall System DeSIQN SIEPS ...........c..ccovevereeuieeeieeiieieeeeeeeeeeeeeene e

5.2.3. Identification of Potential Modelling Concepts..
5.2.3.1. Potential Problem DOmMQin CONCEPLS ..........c..ccceoereeiiuiieiiaiieieeei et
5.2.3.2. Potential AGENt CONCEPLS ...........cc.coueueeeeirieisieeeet ettt
5.2.3.3. Potential Agent Interaction concepts............
5.2.3.4. Potential Overall System DesSign CONCEPLS .............ccoereeneorieneniseneeineseneeanens

SURNVEY .ttt st sb et ettt 115

5.3.1. SUIVEY PTOCEAUIE ......ovvvieieiieieiiieieietetcete ettt ettt st ese bbbt e esens 115

5.3.2. SUrvey QUESHIONNAITE .......cveuiuiieieiiiieieieietet ettt ettt sttt ettt b et sanes 117

5.3.3. SUIVEY TESHIIZ ....eveuietiieiieteiiet etttk s b ettt e neeens 119

5.3.4. Statistical Analysis and ReSUILS ..........ccooeriiiiiiininiiic s 120
5.3.4.1. Part 1 — Demographic and professional characteristics of respondents.................. 121
5.3.4.2. Part 2 — Rating and order ranking of FEQtUures.................c.cccccooveneeieeneesenieeaenns 123
5.3.4.3. Part 3 — Rating and order ranking of St€ps..............c.ccoccouieieoiieniiiicieeeeeeene 127
5.3.4.4. Part 4 — Rating and order ranking of Modelling Concepts...............c.ccccocovveevevunenn. 128
5.3.4.5. Part 5 — Recommendations on AOSE methodological iSSUes ................c..cccceveunncn. 130

FEATURE ANALYSIS OF EXISTING MAS DEVELOPMENT

METHODOLOGIES ......vveoeeeeoeeeeeeeeseeeeeeeeeeseeseeeseseeeseseeseesesesessssseesseesesenes 134

5.4.1. Evaluation Framework ..........cccoccoiviiiiiiiiiiiiiiiiciccce e 135

5.4.2. Feature Analysis of Existing MAS Development Methodologies...........cccccceeerenireniennne. 139
5.4.2.1. Evaluation of Support for FeQtures .................c.ccuoeueineoiiensieeieeseieeeee e 139
5.4.2.2. Evaluation of support for Steps
5.4.2.3. Evaluation of support for Modelling CONCepts.................ccocccveevcirenieieneinineeanens 149

5.4.3. Actual Requirements of MOBMAS .........c.coooimiiiiiniiiiirieeneet et 151

5.4.4. Potential Sources of Techniques and Model Definitions for Supporting MOBMAS’ Actual

REQUITEIMENLS ...ttt ettt e bttt se et e st et s st be e s e eee 155

IDENTIFICATION OF ONTOLOGY-RELATED STEPS.......ccccvvviieeiienen. 159

SUMMARY ..ottt ettt sttt 163

vii



CHAPTER 6. DOCUMENTATION OF MOBMAS 165

6.1.

6.2.

6.3.

6.4.

OVERVIEW OF MOBMAS ...ttt 165
6.1.1. MOBMAS Conceptual Framework ...........ccoceciviriveininnieinineiciinnccieeceseeeeeenene 166
6.1.2. MOBMAS Development PTOCESS .........cceoereriiririeieieienieniesiesteteete ettt tesessesteseesae e 170
6.1.3. MOBMAS Model KindS .....c.ccoourueviirinieieininieiciinetecninietcice ettt ettt sessenenes 174
6.1.4. THUStrative APPIICALIONS ....c.eeuieeuiieeieteieeieie ettt ettt ebe st b e b se e ebe e ese e e esens 177
6.1.4.1. Product search QpPliCAtioN ..................ccoeiieiiiiniiiiiieiieee e 178
6.1.4.2. Conference program management APPLICAtION ................ccoeveecveceeceeeeseneneeeeeaneens 178
ANALYSIS ACTIVITY oottt 179
6.2.1. Step 1 — Develop System Task Model..........cccoiviiiiiiinieeeeeee e 180
6.2.1.1. Notation of System Task DiG@ram..................c.ccocccvoeneiinioiaiinioiiiieieneeeseeene 182
6.2.2. Step 2 — Analyse Organisational Context (Optional) ..........cccccoevveueerneerinirieerenneeenenns 182
6.2.2.1. Develop Organisational Context Model Kind
6.2.3. Step 3 — Develop Role Model........cooouiiiiiiieieeee e
0.2.3.1. IAERLILY FOLES ...ttt
6.2.3.1.a. Identify roles from SyStem tASKS.............ccoccooieiriniiiieoiiieiee e
6.2.3.1.b. Identify roles from the structure of MAS’ organisational context (optional) .. 187
6.2.3.2. SPECIY FOI-ASKS ...t 188
6.2.3.3. Notation of RoOle DiGQIam ...............cccccoceiiiieiiiiiieeieeee et 189
6.2.4. Step 4 — Develop Ontology Model ..........ooeiiiiieiiiieieeee e 191
6.2.4.1. Develop MAS Application ORtolOZIES .............c.ccoecveceeieieiieiiiieieieieieiese e 193
6.2.4.1.a. Identify input Domain ontologies and Task ontologies for the construction of
MAS Application ONIOIOQIES ................ccooeiiiiieiiiieieee et 193
6.2.4.1.b. Specify ontological mappings between MAS Application ontologies 196
6.2.4.1.c. Validate System Task Model and Role Model against Ontology Model .......... 197
6.2.4.2. Language for Ontology Model Kind ...................cccovioeninieiiniiieiniseeesseeeenees
6.2.5. Step 5 — Identify Ontology-Management Role
MAS ORGANISATION DESIGN ACTIVITY .cciiiiiiiiiiiieiieeieeeeeeeeen 203
6.3.1. Step 1 — Specify MAS Organisational Structure .............cceeeeveeirierieeniecinenieeereeeeeeeeeenns 204
6.3.1.1. Determine MAS organisational structure
6.3.1.2. Update Role MOdel...................c.cocooiiiieiiiiiiieieeee et
6.3.2. Step 2 — Develop Agent Class Model.........c.ooeeiiiieineineneeeeee e
6.3.2.1. Identify agent classes
6.3.2.1.a. Characterise agent class’ AYRAMICS..............cccooeeeeeieeeaieiieeieteeeeeeeee e 210
6.3.2.2. Notation of Agent Class Model Kind ...................cccocooeeiioiiimiinioiiineiieeeeeeee, 211
6.3.3. Step 3 — Specify Resources (Optional)
0.3.3. 1. IACNLIY FESOUFCES ...ttt ebe s ense e
6.3.3.2. Notation of ReSOuUrce DIiaQUAM ..............ccoccueceeeeieieesieiesiesieeiieeeeeeseieaesesie e seenseens
6.3.3.3. Revise Role Model
6.3.3.4. Update Agent Class Model.....................cccooooeiioiniioineiiiieieeeeee e
6.3.4. Step 4 — Extend Ontology Model to Include Resource Application Ontologies (Optional)
........................................................................................................................................................ 219
6.3.4.1. Specify ontological mappings between Resource Application ontologies And MAS
APPLICAtion ONEOIOZIES ...............cocuiieiiieieiee ettt 219
AGENT INTERNAL DESIGN ACTIVITY .ot 221
6.4.1. Step 1 — Specity Agent Class’ Belief ConceptualiSation ............coceeereeeeeeeriesverienenenenns 222
6.4.1.1. Specify belief conceptualisation of agent classes
6.4.1.1.a. Identify ontology commitments of agent classes..............c.cccccuveeiroenevenenennns. 223
6.4.1.2. Update Agent Class Model to show belief conceptualisation ....................cc.ccc........ 225
6.4.2. Step 2 — Specify Agent Goals
6.4.2.1. Update Agent Class Model to Show agent-goals................c.ccccovveoervvcennncvnnennns 226
6.4.2.2. Develop Agent Goal Diagram (Optional).................c.cccoceeeieeeieeeeniaineieeeeeeens 227
6.4.3. Step 3 — Specity Events
6.4.3.1. Update Agent Class Model t0 ShOW eVeRLS ...............ccccecireieinioiiiieiieieeee, 230

viii



6.4.4. Step 4 — Develop Agent Behaviour Model...........coeoviiniiiiniiniceeececeeeeee 231
6.4.4.1. Develop Agent Plan Templates

6.4.4.1.a. Notation of Agent Plan Template..................cccocooveeiooinciiiiieiieieeseeeeene
6.4.4.2. Develop Reflexive Rule SpeCifiCations ...............ccociioeeeciiiniiineiieneieeeeeee e
6.4.4.2.a. Notation of Reflexive Rule Specification

6.4.4.3. Verify Agent Behaviour Model against Ontology Model ...............c..ccccovvveevrcunnns 242
6.4.4.4. Verify Agent Behaviour Model against Agent Class Model.......................cccccoo..... 243
6.5. AGENT INTERACTION DESIGN ACTIVITY .cooiiiiiiiiiiieieeeeeeee 244
6.5.1. Step 1 — Select Interaction MEChANISI..........ccocerverirreieiiieieteiereeeeeeieeee e eeeeseneesenes 245
6.5.1.1. Overview of interaction MECRANISMS ..............c..ccccccoeeirirecinieiineiineneee e 245

6.5.1.2. Select interaction MECHANISM. ..................cccccceecimeeiiinieiiiieieieeteeetee e 246
6.5.1.2.a. Comparison between direct interaction mechanism and tuplespace/tuple-centre
indirect interaction MECHANISI ...............c.ccccvvireicininieieieieeeeeree et 247

6.5.2. Step 2 — Develop Agent Interaction Model..........coeovvireineneiinineneneeee e 250

6.5.2.1. Develop Agent Interaction Model for Direct Interaction Mechanism...................... 250

6.5.2.1.a. Define interaction protoCols..................ccccccuiioeeeiiieeieiieieeee e 251

6.5.2.1.b. Notation of Interaction Protocol Diagrams...................cccoceeeicineeiieneennncn, 254

6.5.2.1.c. Update Agent Class Model and Role Model .....................ccccovcvvcurvvicencncannnn. 256

6.5.2.1.d. Conceptualise interation protocols with ontology (Optional).......................... 257

6.5.2.2. Develop Agent Interaction Model for Tuplespace/Tuple-Centre Interaction

MECHANISI ...ttt ettt ettt ettt nenes 262
6.5.2.2.a. Develop Agent-TC Interaction Diagrams

6.5.2.2.b. Develop Tuple-Centre Behaviour Diagram (Optional)...................ccccocunne.. 266

6.5.2.2.c. Update Agent Class Model and Role Model .................c...ccccocoovvinnvivinnenncnn. 268

6.5.2.3. Verify Agent Interaction Model against Ontology Model and Agent Internal Model

.................................................................................................................................................. 269

6.6. ARCHITECTURE DESIGN ACTIVITY ..oootiiiiiiiieeeee et 271

6.6.1. Step 1 — Identify Agent-Environment Interface Requirements..............ccceoevenieinenieennee. 273

6.6.2. Step 2 — Select Agent ATCHITECIUIE ... ....coveuiieiieierieiieteee ettt 275

06.6.2.1. Select agent QreRiteCtiure.............cc.ccooueeiuieiieieeeeee e 275

6.6.2.2. Develop Agent Architecture Diagram........... e 277

6.6.3. Step 3 — Specify MAS Infrastructure Facilities..... et e 278

6.6.4. Step 4 — Instantiate Agent Classes.........ccccccvvvuneeee ettt 279

6.6.5. Step 5 — Develop MAS Deployment Diagram ...........cccoueererenirienieinieieeee e 280

6.7. SUMMARYY ..ottt ettt ettt st s b et e bt e 282

CHAPTER 7. EVALUATION AND REFINEMENT OF MOBMAS. .................. 283

7.1 INTRODUCTION......eiiiiiiriteniteieeteeee ettt 283

7.2. EXPERT REVIEWS ...ttt 283

7.2.1. Expert Review ProCedures ..........ccooeiriririirieieieieieete ettt 284

7.2.2. EXPerts’ BIOZIAPIY ...c..c.eruiiiiiniiiiiiieieeee ettt 285

7.2.3. Refinements of MOBMAS ...ttt e 286

7.2.3.1. Refinements of MOBMAS as a result of the first expert review ..............c.cccocuueue.. 286

7.2.3.2. Refinements of MOBMAS as a result of the second expert review ........................... 287

7.3. APPLICATION OF MOBMAS. .......ooott ettt 290

7.3.1. APPlICation PrOCEAUIES ........ceevirievirieiiitiieieiee et ettt eie st etestese st st teneeseeaeneeseneeseesens 290
7.3.2. Developers’ biography

7.3.3. Refinements of MOBMAS ..ottt 292

7.3.3.1. Refinements of MOBMAS as a result of Developer 1’s comments............................ 293

7.3.3.2. Refinements of MOBMAS as a result of Developer 2°s comments........................... 296

ix



7.4. FEATURE ANALYSIS OF MOBMAS .....coooiiiiiiiieeeeeeeeeeee e 301

7.4.1. MOBMAS’ Support for Methodological Requirements..............cccocereirenieeneniecneene 302
7.4.1.1. MOBMAS’ support for ontology-based MAS development..............c....ccccovevnen.. 317
7.4.2. Comparison of MOBMAS and Existing AOSE Methodologies..........c.cccoeverveiereieneneenenn. 319
7.4.2.1. Comparison of Support for Features..................cc.cccouuoeoioeniiiseniiieeieeses e 319
7.4.2.2. Comparison of SUPPOFTE JOF SEPS..........ccoeeiiirieiieieiieieiieie ettt 325
7.4.2.3. Comparison of support for Modelling CONCEPLs .............cccccoeveniiincoiiineiieee 328
7.4.2.4. Ontology-related strengths of MOBMAS..........c..ccooooeeoiivieiiiieieieeeeee e 329
7.5. SUMMARY ...ttt ettt ettt et nbae e 334
CHAPTER 8. CONCLUSIONS 336
8.1. INTRODUCTION .....cotiiiiiiiiiiieeteeetesteste ettt sttt 336
8.2. CONTRIBUTIONS OF THE RESEARCH ........cccoviiiiiiieiiieeiee e 336
8.3. LIMITATIONS OF THE RESEARCH .......cccoviiiiiiiiiiieeceeeeee e 339
8.3.1. Limitations of the survey on practitioners and researchers............coccoeeeeerereerenneneennes 339
8.3.2. Limitations of the feature analysis on the existing AOSE methodologies .............cc......... 339
8.3.3. Limitations of the comparison between MOBMAS and the existing AOSE methodologies
........................................................................................................................................................ 340
8.4. SUGGESTIONS FOR FUTURE RESEARCH ......ccccceoviiiiiiiiiieiiiiiiecnieeen 340
8.4.1. Extending MOBMAS ........oooi ittt sttt sttt ettt st b besaesbeeseeneennenne 341
8.4.2. Applying MOBMAS to a variety of applicCations............cceeeeieeeruenieniereneeeeeeieieseseenes 341
8.5. CONCLUDING REMARKS ..ottt 342
REFERENCES 343
APPENDIX A. ADVERTISEMENT FOR SURVEY RECRUITMENT .................... 374
APPENDIX B. ONLINE SURVEY QUESTIONNAIRE .......ccoceeiiiiiiiiiieieeieeee 375

APPENDIX C. DEMOGRAPHIC AND PROFESSIONAL CHARACTERISTICS OF
SURVEY RESPONDENTS ..ottt 388

APPENDIX D. EVALUATION OF EXISTING MAS DEVELOPMENT

METHODOLOGIES ......ooooiiiiieeeeeee et 392
APPENDIX E. MODELLING NOTATION OF MOBMAS ........ccoiiiiiiieiieeeieeees 410
APPENDIX F. EXPERT REVIEWS OF MOBMAS........ooiiiieieeeeeeee et 415
APPENDIX G. EXTERNAL DEVELOPERS’ EVALUATION OF MOBMAS ........ 420
APPENDIX H. APPLICATION OF MOBMAS ..ottt 447



LIST OF FIGURES

Figure 2.1 — Approaches for ontological mapping (Wache et al. 2001)..........cccceeirieineneiineieeeieeeenne 21
Figure 2.2 — Sharing of knowledge between wrapper agents .
Figure 2.3 — Agent-resource COMMUINICALION ......c.coveueruirteutetereetieteseateateseeteeesesseseasesseseeteeeseseeseeseneesenseneeneas

Figure 2.4 — User query formulation using concepts from ontology ...........ccceeeeeririnerneneineineneennene 26

Figure 2.5 — Example fragment of Car Domain Ontology .........cccccevueviruerieirienieineiniinieeeeneeicsreeeicseeenene 27

Figure 2.6 — Example ontological mappings between Car Domain Ontology and Entertainment System
OMEOLOZY ..ttt ettt ettt ettt ettt ettt st e st e e et et et eseeeese et et s e b eneebe st eseeseneebeneeseneane

Figure 2.7 — Types of ontology (GUarino 1997)........cccivereireieeeceeee et
Figure 2.8 — Example of ontology representation in UML (Cranefield and Purvis 1999)
Figure 2.9 — Example of ontology representation in IDEF5 Schematic Language (Knowledge Based

SYSLEMS INC 1994) ...ttt st st ebe et et se ettt ebe s enes 33
Figure 2.10 — Example of ontology representation in LINGO (Falbo et al. 1998) ...... .34
Figure 3.1 — Overview of MASE (Wood and DeLoach 2000a).... .36
Figure 3.2 — MASE Role Model (Wood and DeLoach 2000a)................... .37
Figure 3.3 — MASE Agent Class Diagram (Wood and DeLoach 2000@)..........cccceeveierierienienieneereniieeeneenes 38
Figure 3.4 — MASE Communication Class Diagram for initiator (left) and responder (right) (Wood and
DEeL0aCh 2000Q) ......cuevenieiiieieieietieteiete sttt ettt et ettt et ne bt ebe st eneebe st neseneesenens 38
Figure 3.5 — MASE Deployment Diagram (Wood and DeLoach 2000a)...... .39
Figure 3.6 — Overview of extended version of MASE (DiLeo et al. 2002)... ... 40
Figure 3.7 — MASSIVE Iterative View Engineering process (Lind 2000a).. .41
Figure 3.8 — MASSIVE Task View (Lind 1999).....c.cccceeveeeineereeeerenennn .41
Figure 3.9 — GAIA Role Model (Zambonelli et al. 2003)................ ... 45
Figure 3.10 — GAIA Interaction Model (Wooldridge et al. 2000)... .45
Figure 3.11 — GAIA Agent Model (Wooldridge et al. 2000).................. ...46
Figure 3.12 — GAIA Acquaintance Model (Wooldridge et al. 2000)....... . 47
Figure 3.13 —- MESSAGE Organisation Model — Structural Relationships (left) and Acquaintance
Relationships (right) (Eurescom 2001D).......cceoiririeirieniiineeeereeeeteee e 48
Figure 3.14 — MESSAGE Organisation Model - Agent/Role and Resources Acquaintance Relationships
(EUreSCOm 2001D) ..o.vevveiieeieiiereeieeeietetetete et steeteeteesee s essessessessessessessassessesseessesseseessessensesnes
Figure 3.15 — MESSAGE Domain Model (Eurescom 2001b)
Figure 3.16 — MESSAGE Interaction Model (Eurescom 2001D) ........cceoveirieoirineiniiieeceeeeeeeeeeeenne 49
Figure 3.17 — BDIM Agent Model (Kinny et al. 1996)
Figure 3.18 — BDIM Plan Diagram (Kinny et al. 1996)
Figure 3.19 — BDIM Belief Set (Kinny and Georgeff 1996) ........ccocveiereniniiineeieeieeeeeeeeeeveiene 52
Figure 3.20 — Outputs of each phase and workflow of INGENIAS development process (Pavon et al.
2005) .ttt etttk h bbbt b bbbt et h ettt ettt ettt ettt ene 53
Figure 3.21 — INGENIAS Organisation Model (Pavon et al. 2005).........ccceoireieineneneneeeeeeeeane 55
Figure 3.22 — HLIM Use Case Map (Elammari and Lalonde 1999) .........cccocoviiiiniininnineiincneeene 56
Figure 3.23 — HLIM Internal Agent Model (Elammari and Lalonde 1999)........cccocecvviiinneccnenneenene 56
Figure 3.24 — HLIM Dependency Diagram (left) and Jurisdictional Diagram (Elammari and Lalonde
1999) ettt ettt ettt
Figure 3.25 — HLIM Conversational Model (Elammari and Lalonde 1999)
Figure 3.27 — MEI agent structure (Kendall et al. 1995) .....c..coioiiiiiiiiiiiiiceeeeeseeece e
Figure 3.28 — MEI sensors and effectors specification (Kendall et al. 1995).......ccoceevvieinninciinneencne 59
Figure 3.29 — Overview of PROMETHEUS (Padgham and Winikoff 2002a) ...........cccceoevrineinenieeenene 60
Figure 3.30 —- PROMETHEUS Interaction Diagram (left) and Interaction Protocol (right) (Padgham and
Winikoff 2002a) 61
Figure 3.31 — PROMETHEUS System Overview Diagram (Padgham and Winikoff 2002a)... .61
Figure 3.32 — PROMETHEUS Agent Overview Diagram (Padgham and Winikoff 2002a)...................... 62
Figure 3.33 — PROMETHEUS Capability Diagram (Padgham and Winikoff 2002a)............ccccccveneenene 62
Figure 3.34 — Overview of PASSI (Burrafato and Cossentino 2002) .62
Figure 3.35 — PASSI Agent Identification Diagram (Burrafato and Cossentino 2002) ...........c.ccceereenene 63
Figure 3.36 — PASSI Domain Ontology Diagram (Burrafato and Cossentino 2002) ..........cccoceeuererueveenens 64
Figure 3.37 — PASSI Communication Ontology Diagram (Burrafato and Cossentino 2002) .................... 64

Xi



Figure 3.38 — PASSI Roles Description Diagram (Burrafato and Cossentino 2002)...........ccoeceveeerereeenne
Figure 3.39 — PASSI MAS Structure Definition Diagram (Burrafato and Cossentino 2002)

Figure 3.40 — PASSI Agent Structure Definition Diagram (Burrafato and Cossentino 2002) ................... 65
Figure 3.41 — ADELFE Preliminary Class Diagram (Institut de Recherche en Informatique de Toulouse
T1.0) ettt ettt ettt et b e beebe bt e st et e et b et et et et e ebaete et e ertessensessebereereeseeneentan 67
Figure 3.42 — ADELFE Refined Class Diagram (Institut de Recherche en Informatique de Toulouse n.d.)
.................................................................................................................................................. 67
Figure 3.43 — ADELFE Agent Internal Structure (Bernon et al. 2002a) ...68
Figure 3.44 — ADELFE Non-Cooperative Situation (Bernon et al. 2002a) 68
Figure 3.45 — COMOMAS steps and models (Glaser 1997a).........ccooeirinenininenneieineee e 68
Figure 3.46 — COMOMAS Expertise Model (Glaser 1997a) ... ...69
Figure 3.47 — COMOMAS Agent Model (Glaser 1997@)........cccevrirueirirnieinnieieininieieieeieieeseeree s 70
Figure 3.48 — MAS-CommonKADS Message Sequence Chart (left) and Event Flow Diagram (right)
(Iglesias €t @l. TO98) .......cuieueieeieie ettt ettt b ettt a e b b ea e ee 71
Figure 3.49 — MAS-CommonKADS High Level Message Sequence Chart (left) and State Transition
Diagram (right) (Iglesias et al. 1998).......ccieieieiiirieiereeeeeeeteee et ee 71
Figure 3.50 — MAS-CommonKADS Domain Knowledge Ontology (Schreiber et al. 1994).... .71
Figure 3.51 — MAS-CommonKADS Inferences Diagram (Iglesias et al. 1998)....................... LLT12
Figure 3.52 — MAS-CommonKADS Organisation Model (Iglesias et al. 1998) ..... 72
Figure 3.53 — CASSIOPEIA Coupling Graph (Collinot and Drogoul 1998) .........ccceceveiiinniineiiiieene 73

Figure 3.54 — TROPOS Strategic Dependency Model in Early Requirement phase (Castro et al. 2002).. 74
Figure 3.55 — TROPOS Strategic Rationale Model in Early Requirement phase (Castro et al. 2001)....... 74
Figure 3.56 — TROPOS Strategic Dependency Model in Late Requirement phase (Castro et al. 2001).... 76
Figure 3.57 — TROPOS Strategic Rationale Model in Late Requirement phase (Castro et al. 2001) ........ 76
Figure 3.58 — TROPOS Agent Class Diagram (Castro et al. 2002)
Figure 3.59 — TROPOS Plan Diagram (Castro et al. 2002) ..........ccveriririerinineinieiecseeee e

Figure 4.1 — Associations between “process”, “activity”, “step” and “technique” (represented in UML) 88
Figure 4.2 — Components of MOBMAS (represented in UML).........ccoooiiiiinieiniieeeeeeeeeeeeee 89
Figure 4.3 — Determination of “actual” requirements of MOBMAS...........ooooiiiiiiiinicereeeceeeeeene 92

Figure 5.11 — Distribution of four eXpertise Variables ............ccocieieierienieneninieieieseseee e seeee e 122
Figure 5.13 — Examples of ranking order reSUILS.........cccverviririririnieieriesiesiese ettt 125
Figure 5.17 — Survey respondents’ suggestions on MAS development SDLC ......................................... 130
Figure 5.18 — Survey respondents’ suggestions on the importance of a MAS development methodology to

commit to an agent ArChILECUIE ..........eoveuirieirieetereeee et 132

Figure 5.19 — Survey respondents’ suggestions on the approaches to agent identification ...

Figure 5.20 — Evaluation framewWork .............cocovieiriiieiiniinieieeieeec et 135
Figure 6.1 - MOBMAS abstractions and their relationships (represented in UML) .........ccccecovivriinnen. 170
Figure 6.2 — MOBMAS development PrOCESS .......c.coueveuerieirieieieieiieienieeseeeeeeseeseseseeseneesessesesseneeseseseens 173

Figure 6.3 - MOBMAS Model Kinds
Figure 6.4 — MOBMAS deVelOpmMENt PrOCESS .......ccceevieieieieieierieieriestessessesseeseeseeeessessessessessessessessesseens
Figure 6.5 — System Task Diagram for Product Search MAS ........c..ccoiiiiiniinininieeceeeees
Figure 6.6 — Organisation Context Chart for the Conference Program Management MAS
Figure 6.7 — Final roles for Product Search MAS ..ot
Figure 6.8 — Role Diagram for Product Search MAS (cf. Figure 6.6).......ccccocevevivieeinneinnecnnecinnes
Figure 6.9 — Role Diagram for Conference Program Management MAS
Figure 6.10 — MAS Application ontologies and Resource Application ontologies ...........c.coceeevreruereenne
Figure 6.11 — Application ontology as a specialization of Domain ontology and Task ontology,
represented in UML (GUarino 1998) .......cccoeoiiiriiiinieineeereereeee et 193
Figure 6.12 — Association Class in an ONtOIOZY .......ccecvreriieriiirieninirieeeereet et s 199
Figure 6.13 — Notation for ontology MapPiNg..........cccecieveirririeirieieiterenteiereteestetesestesessessesesseseesesensens
Figure 6.14 — Car MAS Application Ontology
Figure 6.15 — Query MAS Application ONtOlOZY .......cceeerieirieieiiieiieieiee ettt
Figure 6.16 — Ontology Manager TOLE .........cc.coueirieiriiniiiinienieicte ettt sttt ebe et
Figure 6.17 — Ontology servers without Ontology Manager role.....
Figure 6.18 — Updated Role Diagram for Product Search MAS.........cccccoeiiiininiiniineccnceenne
Figure 6.19 — MOBMAS development process
Figure 6.20 — Styles of organisational structure

Figure 6.21 — Notation for authority relationships between roles in Role Diagram.........c..c.cccceceeruennen. 207
Figure 6.22 — Updated Role Model for Product Search MAS (cf. Figure 6.17).......cccccvveinncirncennnns 208
Figure 6.23 — Updated Role Model for Conference Program Management MAS (cf. Figure 6.8) .......... 208

Xii



Figure 6.24 — Agent Class DIagram...........ccceueieirieiiiiireneesieeee ettt et es bbb
Figure 6.25 — Agent Relationship Diagram
Figure 6.26 — Preliminary Agent Class Diagram for Product Search MAS ..........cccooiiiiiiiiinie 213
Figure 6.27 — Preliminary Agent Relationship Diagram for Product Search MAS ... 213
Figure 6.28 — Internal resources (a) and external resources (b)
Figure 6.29 — Resource Diagram of Product Search MAS .........cccooiriiienienieeseceeeeete e

Figure 6.30 — Updated Role Diagram for Product Search MAS (cf. Figure 6.17)......cccovveirneicennuecnnns 217
Figure 6.31 — Updated Agent Relationship Diagram for Product Search MAS

Figure 6.32 — CarInfo Resource Ontology and its mappings to Car MAS Application Ontology ........... 220
Figure 6.33 — MOBMAS deVEIOPIMENt PIOCESS .....c.erveurrieieiirieiirienietirietereeerestetestestseeeeie et seeneesesesennenae 221

Figure 6.34 — Agent Belief State
Figure 6.35 — Agent Belief Conceptualisation
Figure 6.36 — Updated Agent Class Diagram for Product Search MAS (“Searcher ” agent class)........ 225
Figure 6.37 — Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS..... 227

Figure 6.38 — Agent Goal Diagram of “Searcher” agent class of Product Search MAS ..........ccceorenee. 229
Figure 6.39 — Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS.....230
Figure 6.40 — Formation of plans by planner (Wooldridge 2002) ..........cceoereirenieiniieeseneeeeeeceiceee 233
Figure 6.41 — Agent Plan Template and Reflexive Rule Specification (represented in UML)................. 234
Figure 6.42 — Agent Plan Template ........c.coooiirieiiiiiieeercetei ettt 238
Figure 6.43 — Agent Plan Template for agent-goal “Information is gathered from resources” of
“Searcher” agent class in Product Search MAS ...........ccccooviiiiiiieiiiieeeeeeeeee e 239
Figure 6.44 — Agent Plan Diagram .........ccccecvevieriiiiniieieieieieieie ettt ste st s saesesesaens 239

Figure 6.45 — Agent Plan Diagram for agent-goal “Information is gathered from resources” of

“Searcher” agent class in Product Search MAS
Figure 6.46 — Reactive Rule Specification ...........
Figure 6.47 — MOBMAS development process
Figure 6.48 — AUML notation for the dynamics of agents’ role-playing behaviour (Bauer 2001b)........ 255
Figure 6.49 — AUML notation for concurrent threads of interaction...........cccceeceverivinecneneenccenenenenn 255
Figure 6.50 — AUML notation for concurrent threads of processing..........cccovvevererreereinenerecrnerecnneenes 255

Figure 6.51 — Interaction Protocol Diagram for Product Search MAS..........cccoiiiiiiiiiieecee 256
Figure 6.52 — Updated Agent Relationship Diagram for Product Search MAS...........ccocoiiiiiniiniinnn 257
Figure 6.53 — Protocol ONtOIOZY .......c.eruiiriiriiiriiiciiieseee ettt st et 260
Figure 6.54 — Ontology-based definition of “Query Protocol” (c.f. Figure 6.46) .........ccccecevierirrevrnennenenn 261
Figure 6.55 — Updated Agent Class Diagram (for “Searcher” agent class) of Product Search MAS..... 262
Figure 6.56 — Agent-TC Interaction Diagram for Conference Program Management MAS.................... 265
Figure 6.57 — Tuple-Centre Behaviour Diagram for Conference Program Management MAS ............... 268

Figure 6.58 — Updated Agent Class Diagram of Conference Program Management MAS...................... 269
Figure 6.59 — MOBMAS deVElOPMENt PIOCESS .....eovievierierierieieieieierieriessesiessessessesseeseeseessesensensessessessenns 272
Figure 6.60 — Agent Architecture Diagram for TouringMachines architecture (Ferguson 1992) ............ 277

Figure 6.61 — Agent Architecture Diagram for INTERRAP architecture (Wooldridge 1999)................. 278
Figure 6.62 — Updated Agent Relationship Diagram of Product Search MAS ..........cocooiiiniiniiiienn 280
Figure 6.63 — MAS Deployment Diagram for Product Search MAS ..o 282
Figure 7.1 — Notation of AND/OR GIaphs.........ccoeerueueriririeiininieieeirieieienisetetse et 289
Figure 7.2 — TROPOS notation for AND/OR decOMPOSITION ........coveuiirieeiieririereinirieieinteiereeneeieneeneeeenes 289
Figure 7.3 — Old (a) and new (b) notation for superior-subordinate relationship between roles in Role
DHAGIAIN ...ttt ettt b bbbt be et eb ettt ee bttt

Figure AppendixC.1 — Survey respondents’ field of WOrk .........c.cocoouiiniiiniiiiiniineee e
Figure AppendixC.2 — Survey respondents’ involvement in MAS development projects ...
Figure AppendixC.3 — Size of past MAS PIOJECES ...cueueruerieirieieieieiieie ettt ettt be e
Figure AppendixC.4 — Level of complexity of involved MAS projects.........coceeeereeireneeenieceeeceeeene
Figure AppendixC.5 — Application areas of involved MAS projects
Figure AppendixF.1 — Notation of AND/OR GIaphs .........ccceceeiriiiirienieninieieieieieiesie et
Figure AppendixF.2 — TROPOS notation for AND/OR decompoSition .............cceeererueveeennieierenirinieneenens
Figure AppendixH.1 — System Task Diagram by Developer 1
Figure AppendixH.2 — Ontology Diagram for Movie Ontology by Developer 1 ...........cccccveininncnnencnn
Figure AppendixH.3 — Ontology Diagram for File Retrieval Ontology by Developer 1.........c..ccocceueenn.
Figure AppendixH.4 — Role Diagram by Developer 1
Figure AppendixH.5 — Agent Relationship Diagram by Developer 1..........cocooiiiiiiiininniiienceee
Figure AppendixH.6 — Agent Class Diagram by Developer 1 (for Mediator agent class) ......................

xiii



Figure AppendixH.7 — Agent Plan Template Diagram by Developer 1 (for History Manager agent class)
................................................................................................................................................ 451
Figure AppendixH.8 — Interaction Protocol Diagram by Developer 1 ........c.ccoceeeiniiiienieinicieieeen 452
Figure AppendixH.9 — System Task Diagram 1 by Developer 2 ..........ccceoevivrineinineeneneeceeeeceeeene
Figure AppendixH.10 — System Task Diagram 2 by Developer 2
Figure AppendixH.11 — System Task Diagram 3 by Developer 2
Figure AppendixH.12 — Ontology Diagram for File Sharing Ontology by Developer 2...........cccoeueeenne 453
Figure AppendixH.13 — Role Diagram by Developer 2
Figure AppendixH.14 — Agent Relationship Diagram by Developer 2..........cccoceveiririnenenncneceenen
Figure AppendixH.15 — Agent Class Diagram by Developer 2 (for Server agent class)..........ccoeeueeenee
Figure AppendixH.16 — Agent Plan Template by Developer 2 (for Server agent class) ...
Figure AppendixH.17 — Agent Plan Diagram by Developer 2 (for Server agent class) .........c.coeeereneenee
Figure AppendixH.18 — Interaction Protocol Diagram by Developer 2

X1iv



LIST OF TABLES

Table 3.26 — Summary of mappings from Use Case Model and IDEF/CIMOSA Models to MAS design in

MEI (Kendall €t al. 1995) ...oouiuiiiieieeeeee ettt sttt 58
Table 5.1 — Selection of features from Shehory and Sturm’s framework (2001).........coceieiirinicninnnenn 102
Table 5.2 — Selection of features from O’Malley and DeLoach’s framework (2001) .........ccoccceverieennene 103

Table 5.3 - Selection of features from Cernuzzi and Rossi’s framework (2002)
Table 5.4 - Selection of features from Sabas et al.’s framework (2002) ..........cceovvurueerirereinnieirinereenens
Table 5.5 - Selection of features from Wood et al.’s framework (1988)........cccceevivieieievieniieeeeeieenene
Table 5.6 - Selection of features from NIMSAD framework (1994)
Table 5.7 - Selection of features from IFIP WG 8.1 frameworks (1983)
Table 5.8 - Selection of features from the Object Agency’s framework (The Object Agency Inc 1995) 107
Table 5.9 — Identification of steps from the existing AOSE methodologies ...........ccoceevevieirieieinieinrenns 111
Table 5.10 - Identification of modelling concepts from the existing AOSE methodologies..................... 113
Table 5.12 — Number of respondents in each SUDJECt SIOUP .....ccuerveuireiieiiiieiiiieeiee e 123
Table 5.14 — “Rating of importance” and “order rank™ of fEAtUIES ........c.coereriririeiriieereeecce 125
Table 5.15 — “Rating of importance” and “order rank™ Of StEPS .....c.evevvererierierierierereeieieeeeeie e 127
Table 5.16 — “Rating of importance” and “order rank” of modelling CONCEPLS ........ceerevveveeriereerreenencns 129
Table 5.21 — Evaluation criteria on fEatUres ...........ccveueiririeiieninieieinecieien ettt 136

Table 5.22 — Evaluation criterion on steps ............c.cecceervenenn ettt sttt ettt 138
Table 5.23 — Evaluation criterion on modelling CONCEPLS. ... ..cceerveueriririirieieirieeetei e 139
Table 5.24 — Evaluation of support for features relating to AOSE process.........coceccvevveneeneneenennnenn 143

Table 5.25 — Evaluation of support for features relating to AOSE model definitions ...........ccccceeueuennee. 144
Table 5.26 — Evaluation of support for agent properties...........eoeeeeeereererieieieiceeeeecee e 145
Table 5.27 — Evaluation of support for features relating to the methodology as a whole...........c.ccccueuee 146
Table 5.28 — Evaluation of “Usability of teChRIGUES” .............cceeueeuerereeieieieieieteeeiesee e 148
Table 5.29a — Evaluation of support for modelling concepts (part a)..... ettt st et ene 149
Table 5.29b — Evaluation of support for modelling concepts (Part b) ........ceeereverueeerrieerirneeneriniecenees 150

Table 5.30 — Selection of MOBMAS’ “actual” fEatures..........covveveereueuinineereininienienieieeinneneeeseneeseseneenes 152
Table 5.31 — Selection of MOBMAS’ “aCtual” STEPS.......eerueerririeririiieieienietesreieteseeeeie et see e neene 153
Table 5.32 — Selection of MOBMAS’ “actual” modelling conCepts.........cocevereererieeirenenenieeinieenicnenenne 154
Table 5.33 - MOBMAS?’ required features and sources of potential techniques and/or model definitions
for Supporting these fRATUIES .........cc.erveuirieieieieiee ettt 156

Table 5.34 - MOBMAS?’ required steps and sources of potential techniques for supporting these steps 157
Table 5.35 - MOBMAS’ required modelling concepts and sources of potential techniques and/or model
definitions for SUPPOItiING thESE CONCEPLS ....cuveuverrirrierierieieierierieeieeteeeeie et ere e see e see e 158
Table 7.4 — MOBMAS?’ support for the required features (cf. Table 5.33)...ccccccevivirveiienenirirerieieene 304
Table 7.5 — MOBMAS’ support for the required steps (cf. Table 5.34)
Table 7.6 — MOBMAS’ support for the required modelling concepts (cf. Table 5.35) ...c.ccceveveineenene
Table 7.7 — Comparison of support for features relating to AOSE Process ........ccccveevrererenencenecnnnenn
Table 7.8 — Comparison of support for features relating to AOSE model definitions....
Table 7.9 — Comparison of support for agent ProPerties. .........coureveeriruereririeierirenieieeriseereeseeeseseseesesenennes

Table 7.10 — Comparison of support for features relating to the methodology as a whole...................... 324
Table 7.11 - MOBMAS’ support for steps

Table 7.12 — Comparison re criterion “Usability of techniques”.........c.coeeveirenireneinineeceeeeecee 327
Table 7.13 — Comparison of support for modelling CONCEPLS.......c.eveirreieririerieriieiriiiee e 328
Table AppendixD.1 — Support for steps of MASE

Table AppendixD.2 — Support for steps 0f MASSIVE .......ccooiiiiiieeeeeeeee e 394
Table AppendixD.3 — Support for steps 0f SODA ........civieieieieeieere et sre e 395
Table AppendixD.4 — Support for steps of GAIA

Table AppendixD.5 — Support for steps 0of MESSAGE .........ccooiiiiiiiiiniieeeeeeeese et 397
Table AppendixD.6 — Support for steps of INGENIAS ........co.ooiiiiiiieeeee e 398

Table AppendixD.7 — Support for steps of BDIM
Table AppendixD.8 — Support for steps of HLIM
Table AppendixD.9 — Support for steps 0f MEI .........c.coiiiiiiiiniiiiiinicinreeeeeeee e

Table AppendixD.10 — Support for steps of PROMETHEUS.........c.ccooniiiiiiniiininicccneecseecees 402

XV



Table AppendixD.11 — Support for steps 0f PASSI.......ccooiiiiiiieee e
Table AppendixD.12 — Support for steps of ADELFE
Table AppendixD.13 — Support for steps of COMOMAS
Table AppendixD.14 — Support for steps of MAS-CommonKADS .........ccooeoiiiiiineninieeeeeene 406
Table AppendixD.15 — Support for steps of CASSIOPEIA
Table AppendixD.16 — Support for steps of TROPOS .......ccoooveiirieiiiiceceeeeeeeeee e

XVi



LIST OF ABBREVIATIONS

ACL
AOSE
BDI
BDIM
HLIM
MAS
MEI
OCL
00
pP2p
PC
SDLC
UML
UCM

Agent Communication Language
Agent-Oriented Software Engineering
Belief-Desire-Intention agent architecture
Methodology for BDI agents
Methodology with High-Level and Intermediate levels
Multi-Agent System

Methodology for Enterprise Integration
Object Constraint Language

Object Oriented

Peer to peer

Program Committee

System Development Lifecycle

Unified Modelling Language

Use Case Map

Xvii



CHAPTER 1
INTRODUCTION

“There is still much work to do and a long way to go before agent-oriented
software engineering can evolve into its maturity.”

(Fan 2000, p45)

1.1. INTRODUCTION

This chapter firstly provides some brief background on the Agent paradigm and
Ontology, thereby revealing the motivations for an ontology-based Agent-Oriented
Software Engineering (AOSE) methodology for Multi-Agent Systems (MAS)
development (Section 1.2). Section 1.3 then specifies the objective of this PhD research,
followed by Section 1.4 which highlights the significance of the research. The
research’s design is summarised in Section 1.5, while the dissertation’s outline is

presented in Section 1.6.

1.2. BACKGROUND AND MOTIVATIONS

Agent technology has become one of the most active and promising areas of research
and development activity in computing in recent years (Wooldridge and Ciancarini
2000; Mountzia 1996). Agents are highly autonomous, situated, interactive software
entities that have been hailed as “the next significant breakthrough in software
development” (Sargent 1992, p28), “the new revolution in software” (Guilfoyle and
Warner 1994, pl) and “the backbones for the next generation of mainstream software
systems” (Fan 2000, p45). Originating from artificial intelligence, agent technology has
progressively drawn on a diversity of computing areas, including software engineering,
distributed computing, networking, mobile computing, collaborative computing,

security and robotics (Sundsted 1998; Honavar 1999).

The greatest potential of agent technology is revealed through MASs (Wooldridge
1997; Huhns and Singh 1998; Zambonelli 2000). MASs are computational systems in

1



which two or more agents are interacting or working together to achieve a set of goals
(Lesser 1996). The coordination between agents possessing diverse knowledge and
capabilities would enable the achievement of global goals that cannot be otherwise
achieved by a single agent working in isolation (Huhns and Singh 1998; Nwana and
Wooldridge 1996). The powerfulness of MASs can be particularly realised in the
engineering of open systems, distributed systems, heterogeneous systems, dynamic and

adaptive systems.

It is widely accepted that appropriate AOSE methodologies, guiding developers, are
required for agent technology to become a widespread commercial success (Flores-
Mendez 1999; Jennings and Wooldridge 1995; Sycara 1998b; Zambonelli 2000). While
for small development projects it may be acceptable to apply informal software
engineering principles to the development of MASs, the absence of specialised AOSE
methodologies for MAS construction will generally result in cumbersome, error prone,
and hence expensive, application development (Eurescom 2001b; Lind 2000b). The
disregard for AOSE methodologies is seen as the main reason for the failure of many
past MAS development experiences (Fan 2000). Indeed, a number of methodologies
have been proposed to support the analysis and design of MASs. Nevertheless, an
evaluation of prominent methodologies revealed that most are lacking in one or more of
the following areas of MAS development: agent internal design (i.e. the design of agent
mental constructs such as beliefs, goals, plans and actions), agent interaction design, and
MAS organisation modelling (i.e. the design of acquaintances and authority
relationships amongst agents/agents’ roles). This research also conducted a survey of
AOSE experts and practitioners, and a feature analysis of the existing AOSE
methodologies, which together confirmed that no individual methodology offers support

for developing all of the requirements of an MAS system.

In addition to the absence of a comprehensive methodology which addresses common
concerns for any given system, it was noted that two concerns are largely ignored by all
existing methodologies. These are: extending the functionality and lifetime of a system,
through interoperability with other systems in heterogeneous environments and reuse of
system design as requirements change. These are critical long-term concerns for any
system, which will ultimately affect the take-up of the agent technology by the industry.

In this thesis, a methodology which addresses those two concerns and combines all key

2



concerns of AOSE practitioners is synthesized. The methodology is called:
Methodology for Ontology-Based MASs (MOBMAS). The current research is driven
by both the growing interest in agent technology and MASs, and the increasing
recognition of ontologies in the computing community as a cornerstone towards
interoperability and software reuse (Malucelli and Oliveira 2004; Uschold and

Gruninger 1996; Richards 2000; Shave 1997).

In recent years, ontologies have been employed in many computing areas, including
knowledge engineering, knowledge management, natural language processing,
information retrieval and integration, and database design and integration (Gamper et al.
1999; Guarino 1998; Fensel 2001). In the realm of MAS, ontologies have been
acknowledged for being beneficial to various MAS development activities, particularly
system analysis and agent knowledge modelling (Uschold and Gruninger 1996;
Falasconi et al. 1996; Weiss 1999; Shave 1997). Ontological modelling of agent
knowledge is also regarded as essential to the operation of MAS, particularly to the
communication between system components (e.g. between agents or between agents
and non-agent software components) and the reasoning of agents. Reusability of system
design through ontology has been recognised in single agent knowledge-based systems
(Uschold and Gruninger 1996; Chandrasekaran et al. 1999; Mukherjee et al. 2000;
Falasconi et al. 1996). Notwithstanding the benefits of ontology to MASs, most of the
existing AOSE methodologies do not provide support for ontology-based MAS
development. Specifically, they neither support the use of ontologies in the MAS
development process, nor the inclusion of ontologies in the MAS development model
definitions. Even though a few existing methodologies show some consideration for
ontology, they do not comprehensively investigate the diverse ways in which ontology
can be integrated into the MAS development process and MAS model definitions as
MOBMAS endeavours. As a result, the development processes and products of the
existing AOSE methodologies either do not provide, or provide to a lesser extent, the
various important capabilities that an ontology-based development process and product

can naturally provide, for example, support for interoperability and reusability.



1.3. RESEARCH OBJECTIVE

This research was conducted to

“Contribute to the field of AOSE by proposing a comprehensive ontology-based AOSE
methodology for the analysis and design of MASs. This methodology aims to provide
support for ontology-based MAS development and various other AOSE methodological
requirements which are important to an AOSE methodology but which may not be well-
supported by the existing methodologies. The proposed AOSE methodology is named
“MOBMAS ", which stands for “Methodology for Ontology-Based Multi-Agent

Systems”.

A MAS system is ontology-based when its design specification explicitly includes
ontologies, and ontologies are used by agents at run-time to facilitate the operation of

MAS (Yuan 1999; Guarino 1998).

The scope of MOBMAS does not include support for the actual process of developing
ontologies. The methodology assumes that ontologies used by MAS and integrated in
MAS model definitions are developed by a separate ontology engineering effort, which
is conducted by domain experts, ontology engineers or the MAS developer himself.
Numerous methodologies are currently available for this purpose, e.g. IDEF5
(Knowledge Based Systems Inc 1994), METHONTOLOGY (Fernandez et al. 1997) and
Griininger and Fox” methodology (1995). MOBMAS focuses instead on:

o the use of ontologies in the MAS analysis and design process; and

¢ the inclusion of ontologies in MAS model definitions.

The scope of MOBMAS is also limited to the Analysis and Design phases of the system
development lifecycle (SDLC), which traditionally contains four phases, Requirements
Engineering, Analysis, Design and Implementation (Eliason 1990; Dennis and Wixom
2003). MOBMAS process starts from a set of system functionality (which is identified
by a separate Requirements Engineering effort) and ends with a design of a MAS
system. Even though the Implementation phase is not covered, MOBMAS addresses
various important implementation-related issues such as deployment configuration and

selection of agent architectures.



1.4. SIGNIFICANCE OF THE RESEARCH

The research effort of this thesis, embodied in MOBMAS, contributes to state of the art
of AOSE in three essential ways. Firstly, it provides developers with a framework to
handle interoperability issues in a heterogeneous environment at design time. Secondly,
it explicitly integrates the use of ontology for knowledge representation with its actual
design and development, giving developers a solid framework for promoting reuse of
software design. Thirdly, it combines all key concerns of AOSE practitioners into one

methodological framework.

The first two contributions are inter-related. It is by the explicit and extensive support
for ontology-based MAS development that MOBMAS accommodates interoperability
concerns in heterogeneous environments. Systems designed with MOBMAS can be
formed from loosely coupled components connected through ontological mappings.

They are inherently flexible and their actual design and architecture are reusable across

different areas of applications and in different settings. The explicit support of

MOBMAS for ontology-based MAS development is as follows:

o [n the MAS development process, just as ontology analysis has been employed to
facilitate the process of constructing and validating knowledge-based systems
(Chandrasekaran et al. 1999; Uschold and Gruninger 1996), MOBMAS makes use
of ontology to facilitate the process of constructing and validating its MAS analysis
and design models. Specifically, ontologies are used to help identify and validate
the functional requirements of the target MAS, actions of agent classes and
exchanged messages between agents. MOBMAS also shows how the MAS
development process can, in return, assist in the development of ontologies.
Specifically, the investigation of a system’s functional requirements, agent goals,
plans, reflexive rules, actions and exchanged messages helps to identify and

validate the concepts to be included in ontologies; and

o In MAS development model definitions, MOBMAS dedicates one of its “model
kinds™' for the representation of ontologies, namely “Ontology Model Kind”. This

model kind captures all of the ontologies that are necessary for agents in the target

! The term “model kind” is used to refer to a specific class of models (Standards Australia 2004). The
models themselves will be built by the developer during the development process.



MAS to operate. Agents’ knowledge is then modelled in terms of these ontologies.
The modelling of agent behaviour and agent interactions is also based upon
ontologies: concepts in the ontologies are used to formulate agents’ goals, plans,
reflexive rules, actions and content of communication messages. MOBMAS also
models the conceptualisation of non-agent resources and the mappings between

these conceptualisations and the domain ontologies shared amongst agents.

By using ontology in the MAS development process and including ontology in the MAS
model definitions as described above, MOBMAS 1is able to enhance its MAS
development process and MAS design product with many important ontology-related
strengths. These strengths include those that have been widely acknowledged in the
ontology literature (e.g. efficient system analysis, structured and reusable agent
knowledge modelling, semantically-consistent agent communication and facilitated
agent reasoning), and those that are newly uncovered by MOBMAS (e.g. support for
verification and validation, maintainability, extendibility and reliability). These
ontology-related strengths are either not provided, or provided to a lesser extent, by the

existing AOSE methodologies due to their lack of support for ontology.

With respect to the second contribution of this thesis, MOBMAS offers support for
many important methodological requirements of AOSE, which are suggested by
practitioners and researchers in the field and the existing MAS development
methodologies (e.g. support for agent internal design steps, agent interaction design
steps, MAS organisation modelling steps, diverse agent-related properties and
modelling concepts). The support provided by MOBMAS was based upon the reuse,
enhancement and unification of the existing AOSE methodologies’ strengths, as well as
the proposal of new techniques and model definitions where the existing support is

weak.

Ultimately, the proposal of a comprehensive, unified, ontology-based AOSE
methodology for the analysis and design of MASs helps to foster the widespread
deployment of agent-based systems by industry, hence contributing to the commercial

success of agent technology.



1.4.1. Application Domains of MOBMAS

With its explicit and extensive support for ontology throughout the MAS analysis and
design processes, MOBMAS is particularly suitable to the development of the following
types of agent systems.

e Heterogeneous systems: These are systems that contain heterogeneous agents (in
term of their internal knowledge structures) and/or heterogeneous non-agent
resources that are wrapped around by the agents. An example of this type of
application is an information gathering system, where each “Searcher” agent
pertains to a different structure of beliefs; for instance, one “Searcher” agent may
possess beliefs on medicine, while another on travel. An information gathering
system normally encompasses heterogeneous knowledge sources such as relational
databases, search engines and/or web pages, each of which has a different internal
information structure. MOBMAS facilitates the design and run-time operation of
these heterogeneous systems by explicitly conceptualising the knowledge of each
system component (either agents and/or non-agent resources) by ontologies,
thereafter enabling the interoperability of these components via the explicit
specification of ontological mappings.

o Systems that involve legacy components: Legacy systems exist quite commonly in
manufacturing and process control applications, where functionally-essential
software components are technologically obsolete, but cannot readily be replaced or
modified due to the costs and/or the time required (Wooldridge and Jennings, 1998).
In an agent system, these legacy components can be used by being wrapped with an
agent layer that enables them to interoperate with other components via a uniform
communication interface (Jennings and Wooldridge, 1995). Accordingly, an agent
system containing legacy systems is basically a heterogeneous MAS formed from
loosely-coupled heterogeneous components. MOBMAS is thus particularly suitable
to its development due to the reasons listed in the previous paragraph.

o Open systems: An open MAS is one which allows for dynamic addition and/or
removal of system components at run-time (Sycara 1998b). Common applications
where MASs need to reside in an open environment are information gathering
applications (as “Searcher” agents can be frequently added or removed) and e-
commerce applications, such as those mimicking a market place (as “Seller” and

“Buyer” agents, for instance, can frequently enter or leave the system). MOBMAS



facilitates the design and run-time operation of these open systems in various ways.
Firstly, by supporting heterogeneity via ontological mappings, MOBMAS removes
the interoperability concerns that arise when adding new heterogeneous agents into
an existing MAS. The methodology also offers an option to conceptualize the agent
interaction protocols during the design time. This explicit conceptualization of the
interaction protocols will allow any new agents to join the pre-existing conversations

at run-time, and allow the interaction protocols to change over time during run-time.

While being particularly advantageous to the above types of applications, MOBMAS is

also suitable to the development of any typical agent systems. In comparison with the

existing popular AOSE methodologies, MOBMAS is capable of reducing more

development costs for the analysis and design of MASs. This is because:

MOBMAS makes it easy to reuse MAS design components. The core design models
of MOBMAS are composed in terms of ontologies, for example, agent internal
knowledge model, agent behaviour model and agent interaction model. As such, the
developer can adapt the past MAS design models to a new application by simply
changing the ontologies involved. In addition, MOBMAS implements the idea of
using ontologies to decouple the modelling of agent’s domain knowledge from
agent’s behavioural/problem-solving knowledge, thereby supporting the reuse of
these two knowledge components across agents.

MOBMAS provides extensive support for verification and validation during the
MAS development processes, thus increasing the likelihood of a correct system. In
particular, MOBMAS recommends the developer to exploit application ontologies to
verify and validate the completeness and correctness of various core MAS analysis
and design models. Since ontologies are often constructed by a separate
development team (e.g. domain experts or knowledge engineers), they can serve as a
reliable tool for verification and validation.

MOBMAS facilitates the maintenance of a MAS system design. This is because the
specification of the MAS’ application domains, tasks and resources are formally
documented in ontologies, and the core MAS design models such as agent internal
knowledge model, agent behaviour model and agent interaction model are

consistently defined in term of these ontologies.



MOBMAS makes it easy to extend an existing MAS design. When the MAS needs
to cover new domains, tasks or resources, the agents can easily extend their

knowledge by adding new ontologies into their knowledge models.

1.5. RESEARCH DESIGN

To achieve the research objective, three core research activities were performed.

1. Research Activity 1 — Identify the methodological requirements of MOBMAS

This activity aimed to identify and validate the methodological requirements of

MOBMAS in terms of the features that MOBMAS should support, sfeps that

MOBMAS development process should include, and modelling concepts that

MOBMAS model kinds should represent. Note that the desirable steps identified by this

activity are not meant to be the “exact” steps that MOBMAS must specify. MOBMAS

can define its steps differently from these desirable steps. However, the actual steps of

MOBMAS must correspond to, or cover, these desirable steps.

Research Activity 1 was carried out in four research steps.

Step 1 — Identify the “potential” methodological requirements of MOBMAS:

The potential features were identified by investigating a number of evaluation
frameworks for AOSE methodologies and conventional system development
methodologies (including object-oriented (OO) methodologies). The potential steps
and modelling concepts were discovered by examining the existing AOSE
methodologies.

Step 2 — Conduct a survey on practitioners and researchers in the field of AOSE to
validate the identified potential features, steps and modelling concepts.

Step 3 — Perform a detailed feature analysis on the existing AOSE methodologies to
further validate the identified features, steps and modelling concepts, and arrive at
the “actual” methodological requirements for MOBMAS.

Step 4 — Identify “ontology-related steps” from amongst the required AOSE steps of
MOBMAS, so as to enable MOBMAS to offer all of the widely-recognised benefits
of ontology to MAS development and MAS operation as found in the literature

review.



2. Research Activity 2 — Develop MOBMAS

This research activity specified the development process, techniques and model kinds
for MOBMAS so as to support the required features, steps and modelling concepts
identified in Research Activity 1. MOBMAS process, techniques and model kinds were
developed by reusing and enhancing the techniques and model definitions offered by
the existing AOSE methodologies where appropriate, and developing new techniques

and model definitions where necessary.

3. Research Activity 3 — Evaluate and refine MOBMAS

MOBMAS was evaluated and progressively refined through three sequential research
steps.

e Step 1 — Collect expert reviews on the preliminary version of MOBMAS.

e Step 2 — Use the refined methodology on a test application.

e Step 3 — Perform a feature analysis on the final version of MOBMAS.

The aim of expert reviews was to gather experts’ evaluation of MOBMAS based on the
experts’ non-empirical investigation of the methodology. The use of MOBMAS on a
test application then gathered external developers’ evaluation of MOBMAS based on
their empirical usage of the methodology. Lastly, the feature analysis was conducted to
verify MOBMAS’ ability to achieve its objective (which is, to provide support for
ontology-based MAS development and the other important AOSE methodological
requirements2; cf. Section 1.3), to compare MOBMAS with the existing AOSE
methodologies, and to clarify MOBMAS’ ontology-related capabilities.

1.6. ORGANISATION OF THE DISSERTATION

This dissertation is presented in eight chapters.

e Chapter 1 — “Introduction”: provides an overview of the research’s motivations,
objective, significance and design.

e Chapter 2 — “Background of Agents and Ontology”: presents background
information on the two realms underlying the research, Agent Technology and

Ontology. Definitions of concepts “Agent”, “Multi-Agent System” and “Ontology”

% Through the justification of MOBMAS’ support for its methodological requirements, this research was
able to justify that MOBMAS’ actual steps and modelling concepts in fact correspond to, or cover, the
desirable steps and modelling concepts which were specified as part of the methodological requirements.

10



are provided, together with discussion on the potentials of the agent technology and
MAS, as well as the benefits of ontology to MAS development and MAS operation.
e Chapter 3 — “Review of Existing MAS Development Methodologies”: provides
an account of the existing AOSE methodologies for MAS analysis and design, and
discusses their general limitations.
e Chapter 4 — “Research Design”: reiterates the research objective (from Section
1.3) and describes the details of the three research activities performed to achieve it.
e Chapter 5 — “Methodological Requirements of MOBMAS”: documents the
identification of MOBMAS’ required features, steps and modelling concepts (i.e.
Research Activity 1; cf. Section 1.5). The chapter also presents suggestions on how
and where MOBMAS may obtain techniques and model definitions to support each
of its methodological requirements.
e Chapter 6 — “Documentation of MOBMAS”: presents the full documentation of
MOBMAS. The chapter consists of seven sections.
= Section 6.1 — “Overview of MOBMAS”: presents an overall description of
MOBMAS conceptual framework, development process and model kinds.

= Sections 6.2 to 6.6: each documents each of the five activities of MOBMAS:
“Analysis”, “MAS Organisation Design”, “Agent Internal Design”, “Agent
Interaction Design” and “Architecture Design”.

= Section 6.7: presents a summary of the chapter.

e Chapter 7 — “Evaluation and Refinement of MOBMAS”: documents the
refinement and evaluation of MOBMAS as a result of the expert reviews on
MOBMAS, the use of MOBMAS on an application, and a feature analysis of
MOBMAS (i.e. Research Activity 3; cf. Section 1.5).

e Chapter 8 — “Conclusions”: concludes the dissertation with discussion of the

research’s contributions, limitations and suggestions for future research.

1.7. SUMMARY

This chapter has presented an overview of the research. It highlights the research’s
objective, motivations, significance and design. These issues will be elaborated further
in Chapter 4. In the subsequent chapter, Chapter 2, background information about the
Agent paradigm and Ontology is presented.

11



CHAPTER 2

BACKGROUND OF AGENTS AND
ONTOLOGY

2.1. INTRODUCTION

With the research focus being “ontology-based MASs”, this research spans two major
realms: Agent Technology (particularly MAS) and Onfology. This chapter provides
background information on each realm. Section 2.2 firstly defines “Agent” and “MAS”,
highlights the motivations for agents and MASs, and points out the limitations of the
Agent paradigm. Section 2.3 subsequently defines “Ontology”, discusses the benefits of
ontology to MAS development and MAS operation, and provides an overview of the

ontology’s typology and representation languages.

2.2. AGENT TECHNOLOGY AND MAS

2.2.1. Definition of Agent

Generally defined, a “software agent” is an entity or a piece of software that acts on
behalf of its user to accomplish a task (Mountzia 1996). Nevertheless, the exact nature
of agency has attracted much discussion and controversy (Mountzia 1996; Wooldridge
1999; Eurescom 2001a). A variety of definitions have been proposed, each offering a
varied opinion as to what constitutes an agent (Franklin and Graesser 1996; Wooldridge
and Jennings 1998; Eurescom 2001a). As noted by Wooldridge (1999), a universal
definition of “software agent” may be impossible, since attributes characterizing agency
may vary across domains. Above all, such a prescriptive universal definition is not
really important, because “the notion of an agent is meant to be a tool for analysing
systems, not an absolute characterisation that divides the world into agents and non-

agents” (Russell and Peter 1995, p33).

12



This research adopts the definition proposed by Wooldridge (1999, p29). This definition
has received much recognition from researchers in the field.
“An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design

objectives.”

The definition emphasizes two major attributes of agency: interaction with the
environment and autonomy. Interaction with the environment refers to the ability to
perceive the environment and act upon it, while autonomy can be understood as the
ability to have complete control over one’s state and behaviour. Being autonomous, an
agent is capable of decoupling the process of receiving a request message from another
agent from the process of executing actions upon receiving the message (Fisher et al.

1997).

The above definition of agent covers a wide spectrum of computational entities, from
Microsoft Tip Wizards, software daemons and simple control systems (such as
thermostats) to very large expert systems (Jennings and Wooldridge 1995; Wooldridge
1999). This research, however, is interested particularly in “intelligent agents”, which
are, as defined by Wooldridge (1999, p32)
“.. agents that are capable of flexible autonomous action, where flexibility
means three things:
e reactivity: intelligent agents are able to perceive their environment and
respond in a timely fashion to changes that occur in it;
e proactiveness: intelligent agents are able to exhibit goal-directed behaviour
by taking the initiative; and
e social ability: intelligent agents are capable of interacting with other agents

(and possibly humans).”
Even though intelligent agents may assume other attributes such as mobility,

adaptability and personality, the above attributes sensibly characterise the core notion of

intelligent agency.

13



2.2.2. Definition of MAS

A MAS is a computational system, or a loosely coupled network, in which two or more
agents interact or work together to perform a set of tasks or to satisfy a set of goals
(Lesser 1996). Each agent is considered as a locus of problem-solving activity which

operates asynchronously with respect to other agents (Lesser 1996).

A MAS typically exhibits the following major characteristics (Sycara 1998b).

e FEach agent has incomplete information or capabilities or resources for achieving the
global goal and thus has a limited viewpoint.

e There is no global control over the whole system.

e Data is decentralised.

e Computation is asynchronous.

2.2.3. Motivations for Agents and MASs

Agents are believed to represent the next advance in software engineering. They offer a
notably more powerful and natural abstraction for modelling and developing systems
than conventional abstractions such as procedural abstraction, abstract data types and
objects (Wooldridge et al. 1999). The concept of agents as autonomous software
components, capable of flexibly interacting with each other to satisfy their objectives, is
very natural to software engineers (Wooldridge and Ciancarini 2000). For example, in
an electronic commerce application, it is natural to model participants in a trade
transaction as agents which buy and sell goods on behalf of human users (Wooldridge

and Ciancarini 2000).

The powerfulness of agents and MASs is particularly realised in the engineering of open
systems (Jennings and Wooldridge 1995; Sycara 1998b; Jennings et al. 1998). These
systems are often dynamic in structure. Their system components are usually not known
in advance, highly heterogeneous and capable of changing over time. Thus, the ability
to engage in flexible and robust interactions among the system components is crucial.
Agents exhibit this ability through negotiation and coordination capabilities. These
capabilities are facilitated by the use of “agent communication languages” (ACL) such
as KQML (UMBC Lab for Advanced Information Technology n.d.a) and FIPA-ACL

(FIPA n.d.a). In addition, the core properties of agents — namely, autonomy,

14



proactiveness and reactivity — allow them to deal with dynamic and unpredictable
environments. Agents can continually monitor their environment, revise their goals and
proactively adopt new goals when opportunities arise (Jennings and Wooldridge 1995;

Omicini 2000).

Another important contribution of agents and MASs is in the engineering of distributed
systems (Jennings and Wooldridge 1995; Jennings et al. 1998; Eurescom 2001a; Zhou et
al. 2000; Huhns and Stephens 1999; Wood and DeLoach 2000a). In such systems, it is
difficult to specify a single locus of control because the systems are built out of
distributed components, each of which possibly attempts to achieve conflicting
individual goals (Wood and DeLoach 2000a; Eurescom 2000a). It is therefore natural to
map the distributed entities onto autonomous problem-solving agents, which negotiate
and coordinate autonomously and flexibly to resolve conflicts and achieve the global
goals (Jennings and Wooldridge 1995; Wooldridge and Ciancarini 2000). In addition,
the proactiveness of agents makes it possible to abstract away from the control issue,
thereby dealing with the decentralisation of control (Omicini 2000). If the system
incorporates distributed resources, agents can be used to “wrap” around these resources
to create “active resources”. Tasks can then be performed directly at the remote resource
sites, hence limiting the need for communication across the network and reducing

network traffic (Horlait 2003; Huhns and Stephens 1999).

In addition, agents offer a natural way to incorporate legacy systems into modern
MASSs, hence supporting heterogeneity and interoperability (Jennings and Wooldridge
1995; Jennings et al. 1998; Eurescom 2000a). Legacy systems exist quite commonly in
manufacturing and process control applications. They are functionally essential software
components that are technologically obsolete but cannot readily be replaced or modified
due to cost or time (Wooldridge and Jennings 1998; Jennings and Wooldridge 1995).
The agent paradigm solves this problem by “agentifying” the legacy components,
wrapping these components with an agent layer that enables them to interconnect and
interoperate with other system components via a uniform communication interface

(Jennings and Wooldridge 1995; Jennings et al. 1998; Eurescom 2000a).

Agents also provide the benefits of the conventional OO paradigm, namely modularity,

concurrent execution, reliability and reusability. When a problem is complex or

15



unpredictable, the most effective way to address it is to develop a number of modular
agents, each of which specializes at solving a particular aspect of the problem (Jennings
and Wooldridge 1995; Sycara 1998b). A MAS, however, represents more than a
modular object-based system. As earlier discussed, agents can interact and coordinate in
an autonomous, flexible and context-dependent manner so as to ensure that the tasks are
properly managed (Jennings and Wooldridge 1995; Sycara 1998b). Concurrent
execution is inherently provided by a MAS, since each agent is assumed to have at least
one thread of control (Wooldridge 1999). Reliability is also encouraged, as agents can
cooperate and dynamically take up the responsibilities of other agents that fail (Sycara
1998b). Finally, reusability is supported by reusing the design or coding of a similar
agent in a past MAS development experience (Mountzia 1996).

Nowadays, with the availability of numerous agent architectures, agent-oriented
programming languages and agent/MAS implementation platforms, the adoption of
agent technology in the commercial environment has been greatly facilitated. Regarding
agent architectures, a well-known architectural model is the Belief-Desire-Intention
(BDI) architecture proposed by Rao and Georgeff (1991; 1995). A BDI agent is
composed of three data structures: beliefs (i.e. the agent’s knowledge of the world),
desires (i.e. the agent’s goals, objectives or allocated tasks) and intentions (i.e. the
desires that the agent is committed to achieving at a certain point in time). This agent
architecture has been adopted by many agent implementation platforms such as PRS
(Myers 1997), JACK (Agent Oriented Software 2004) and dMARS (d'Inverno et al
1997), and many agent-oriented methodologies such as PROMETHEUS (Winikoff and
Padgham 2004), Kinny and Georgeft’s methodology (1996) and TROPOS (Castro et al.
2001). Regarding agent-oriented programming languages, various languages have been
developed, including Agents Kernal Language (Franzén et al. 1992), Telescript
(General Magic Inc. 1995), Agent Tcl (Gray, 1995), Obliq (Cardelli 1994) and Java.
Regarding agent implementation platforms, a large number of platforms are currently
available, for example, JACK (Agent Oriented Software 2004), JADE (Telecom Italia
Lab 2004), AgentBuilder (Acronymics Inc. 2004), MADKIT (MADKIT 2002), ZEUS
(British Telecommunications 2002) and Voyager (Glass 1998).

16



2.2.4. Limitations of Agents and MASs

Although the agent paradigm offers many exciting opportunities, it should not be
oversold. For many applications, the added sophistication of agents is not needed
(Wooldridge and Jennings 1998; Eurescom 2001a). For example, a software entity that
engages in a relatively small amount of reasoning and simple communications can

sensibly be modelled as an object rather than an agent.

Classes of problems for which intelligent agents and MASs are appropriate typically
involve 1) distributed control, 2) complex communications, 3) autonomous behaviour,
4) high flexibility and adaptiveness, 5) interoperability, and 6) concurrent achievement
of multiple, possibly conflicting, goals (Eurescom 2001a). A MAS solution may not be
suitable to domains in which global constraints have to be maintained, deadlocks or
livelocks must be avoided, globally optimal decisions have to be made, or the risk is too

high to give agents absolute trust and delegation (Jennings and Wooldridge 1998).

2.3. ONTOLOGY

2.3.1. Definition of Ontology

Ontology is a very old concept that has generally been confined to the philosophical
sphere in the past, since the time of Aristotle (Fensel 2001). However since the 1990s,
ontology has become increasingly attractive to various computing areas such as
knowledge engineering, knowledge management, natural language processing,
information retrieval and integration, cooperative information systems and agent-based

system design (Gamper et al. 1999; Guarino 1998; Fensel 2001).

In the philosophical sense, “ontology” is defined as a systematic account of being or
existence, from the Greek “ontos” (i.e. being) (Khan 2000; Gruber 1993a). It refers to a
study of things that exist and attempts to answer the question of “what is being”

(Chandrasekaran et al. 1999; Guarino and Giaretta 1995).

In the context of computing, ontology is confined to the specification of worldview with
respect to a domain of interest (Yuan 1999). A prominent definition of ontology is given

by Fensel (2001, pll): “An ontology is a formal, explicit specification of a shared

17



conceptualisation”. “Conceptualisation” refers to an abstract model of some
phenomenon in the world. It defines the relevant concepts or entities that exist in the
universe of discourse and the relations that hold among them (Gruber 1993a). For

example, the conceptualisation of a pile of blocks is (Genesereth and Nilsson 1987)
({a,b,c,d,e}, {on, above, clear, table})
where {a,b,c,d,e} is the universe of discourse (consisting of 5 blocks); and

{on, above, clear, table} is a set of relevant relations among these blocks.

Although not explicitly stated, this definition relies on the infentional notion of
“conceptualisation” rather than extensional notion. The intentional notion means that
the conceptualisation only defines the meta-information for describing the semantics of
concepts and relations. It does not reflect particular states of affair as the extensional
conceptualisation does. For instance, in the above example of block conceptualisation,
the meaning of relation “on” (which specifies whether a block is on top of another
block) should remain the same even if the blocks are arranged differently (i.e. when the
state of affair changes) (Guariano and Giaretta 1995). As a result, it can be said that
ontology only provides the vocabulary with which to represent the body of knowledge.
The knowledge itself does not constitute ontology, but is a collection of factual
situations represented using the vocabulary provided by ontology (van Heijst et al.

1997; Chandrasekaran et al. 1999).

The “shared” characteristic of an ontology implies that ontology should capture
consensual knowledge, i.e. it is not restricted to some individual but accepted by a
group. “Explicit”” means that ontology should be explicitly defined. In the context of
MAS, this means that ontologies used by agents need to be explicitly stated and not
remain implicit within the agent codes (O’Brien and Nicol 1998). Finally, ‘“‘formal”
refers to the fact that an ontology should be machine-readable. Different degrees of
formality are possible. Ontologies like WordNet provide a thesaurus for natural
language terms explained in natural language. On the other end of the spectrum is CYC

which provides formal axioms for knowledge (Fensel 2001).

2.3.2. Motivations for Ontologies in MAS

The literature is currently rich with discussion of ontologies’ importance (Uschold and

Gruninger 1996), such as in the areas of knowledge engineering (Shave 1997),

18



information retrieval (Ding 2001) and database design (Sugumaran and Storey 2001).
This research focuses on the importance of ontologies in the context of MAS. Within
this context, ontologies have been widely recognised for their significant benefits to
interoperability, reusability, MAS development activities and MAS operation
(Falasconi et al. 1996; Malucelli and Oliveira 2004; Yuan 1999; Knoblock 1994). These
benefits are actually inter-related with each other, as will be mentioned throughout the

discussion.

2.3.2.1. Benefits of ontologies to interoperability

Interoperability refers to the ability of heterogeneous components to interact and work

with each other to achieve shared or individual goals (Finkelstein 1998). Interoperability

involves not only communication between the heterogeneous components (c.f. Section
2.3.2.4), but also the ability of these components to use the exchanged information®

(IEEE 1990). In MAS, interoperability issues may arise between heterogeneous agents

or between heterogeneous non-agent resources® (such as knowledge sources and legacy

application systems). Two prominent interoperability issues are (Wache et al. 2001;

Sheth and Larson 1990; Tout 2001):

o Semantic heterogeneity issue: occurring when the knowledge base of each agent, or
the information/application of each resource, uses a different vocabulary to express
the same information (e.g. “Price” versus “Cost”) and/or uses the same vocabulary to
express different information (e.g. concept “Employee” in one agent/resource means
anyone currently on payroll but in another agent/resource means anyone currently
receiving benefits, thus including retirees). Another example of semantic
heterogeneity is the scaling conflict, where the same concept refers to the different
scales or references of measurement (e.g. concept “Price” may be measured in dollar
in one agent/resource but in euro in another); and

o Structural heterogeneity issue: occurring when the knowledge base of each agent, or
the information/application of each resource, uses a different conceptual schema to
represent its data. For example, concept “Customer-Name” is represented as an object

in one agent/resource but as an attribute in another.

* Note that communication only results in the exchange of information between components.

* From here on, the term “resource” is used to mean non-agent software components that are incorporated
into a MAS to provide agents with information and/or services (e.g. databases, web servers and legacy
processing systems).

19



Both of these heterogeneity issues can be addressed by the use of ontologies (Malucelli
and Oliveira 2004; Tout 2001; Shave 1997). Specifically, when the knowledge bases of
heterogeneous agents and the information/applications of heterogeneous resources are
explicitly conceptualised by ontologies, the structural and semantic interoperability
between these agents and resources can be achieved by mapping between these
ontologies. Such mechanism is known as “ontological mapping”, i.e. specifying the
semantic correspondences between the concepts of one ontology with those of another
(Madhavan 2002). Some example semantic correspondences are “equivalent”,

“subsumes” and “intersects” (Parent and Spaccapietra 1998).

There are two major ways to map between ontologies: either to map the ontologies

against each other (Figure 2.1a), or to map them against a common ontology (Figure

2.1b). The second approach is more efficient than the first because (Wache et al. 2001;

DiLeo et al. 2002; Uschold and Gruninger 1996):

e it minimises the number of mappings between the ontologies. If there are n
ontologies, the direct-mapping approach will require (n-1)! pair-wise mappings,
while the use of a common ontology as an inter-lingua will result in only #» mapping
linkages’;

e it minimises the maintenance required when an agent or resource changes its
conceptualisation. With the direct-mapping approach, all ontological mappings
between the changed ontology and all other ontologies need to be updated, while
with the inter-lingua approach, only the mappings between the changed ontology
and the common ontology need to be updated; and

e it facilitates the sharing of knowledge when each heterogeneous resource is wrapped
by a different wrapper agent (Figure 2.2). In this case, the wrapper agents can easily
share and interoperate their resources by, firstly, translating the resources’ outputs
from the resource-ontology’s vocabulary into the common-ontology’s vocabulary,
thereafter communicating the outputs with each other using the common ontology’s

vocabulary.

* That is, pair-wise mapping linkages between the common ontology and each other ontology.

20



[ common ontology ]

H R A A
v i

resource i v A
OﬂtOlOgy resource resource resource

ontology ontology ontology
(a) (b)

Figure 2.1 — Approaches for ontological mapping (Wache et al. 2001)

resource resource
ontology ontology

Wrapper Agent B

I = P

3 resource Wrapper [ common ontology ] Wrapper:
- ontology| 7 Agent A AgentC ™.

Figure 2.2 — Sharing of knowledge between wrapper agents

It should be noted that, by supporting interoperability between system components,
ontologies are able to promote reusability (c.f. Section 2.3.2.2). In particular, legacy
agents and/or resources can be reused and added to the current MAS without causing

any interoperability problems with the existing agents and resources.

2.3.2.2. Benefits of ontologies to reusability

The capability of ontologies to enhance reuse has earlier been acknowledged and
exploited by the Knowledge Engineering community in the development of knowledge-
based systems (i.e. single-agent systems) (Gruber 1993b). An ontology was employed
to capture domain knowledge of a system, while the system’s problem solving
knowledge, which specifies the domain-independent reasoning steps to solve the
problem, was stored separately in a Problem Solving Method. Consequently, each
knowledge-based system was designed as being composed of two components: a
Problem-Solving Method and an ontology® (Benjamins 1995; Chandrasekaran et al.
1999; Fensel et al. 1997; Fensel 1997). This modularity in knowledge modelling, which

was made possible by ontologies, enables the reuse of Problem Solving Methods across

® This ontology contains all the domain knowledge required by the Problem Solving Method.

21



different problem domains, and the reuse of domain knowledge across different

problems (Uschold and Gruninger 1996; Mukherjee et al. 2000; Falasconi et al. 1996).

In the context of MAS development, the above ontology-based mechanism of reuse
could still be applied, since each agent in a MAS is basically a knowledge-based
system. As conjectured by this thesis, each agent can be modelled as being composed of
two major knowledge components: the behavioural knowledge component, which
captures the problem solving knowledge of an agent in the form of plans, reflexive rules
and/or actions that guide the agent’s behaviour in achieving its goals, and the (local)
domain knowledge’ component, which contains the ontologies defining the domain-
related knowledge requirements of the agent’s behaviour. Given this approach of agent
knowledge modelling, an agent’s behavioural/problem-solving knowledge can be
reused across agents with similar behaviour/goals in different domains, and its domain-

related knowledge can be reused across agents within the same domain area®.

Another factor that enables ontologies to enhance reusability is its readability. Software
reuse is typically promoted by the readability of software design and/or codes (Richards
2000). Ontologies enhance readability by offering a structured, explicit, human-readable
mechanism for representing knowledge. They help the system developer to easily

comprehend, inspect and reuse this knowledge for future applications.

In addition, when an existing MAS needs to be extended with heterogeneous add-in
agents and/or resources, ontologies makes it easy for the current agents to interoperate
with those newly added components (c.f. Section 2.3.2.1), thereby enabling the reuse of

these components.

2.3.2.3. Benefits of ontologies to MAS development activities

Two major activities of MAS development that can be greatly facilitated by the use of

ontologies are system analysis and agent knowledge modelling.

7 The term “local” is used to refer to the fact that the domain-related knowledge of each individual agent
in a MAS is normally only a portion of the domain knowledge that MAS covers as a whole.

8 In this case, the reused ontology may need to be adapted to fit the knowledge requirements of the
individual behaviour of each agent.

22



e System analysis involves the formulation of the problem to be solved (e.g.

elicitation of system goals) and/or the representation of the application’s domain

knowledge (e.g. Car domain, Education domain) (Girardi et al. 2004).

With regard to the problem formulation, the availability of an ontology which
holds explicit, comprehensive knowledge about the target domain will greatly
promote the developer’s understanding of the application, thereby facilitating his
elicitation of the system goals and responsibilities. In fact, a weak ontological
analysis often leads to an incomplete or inaccurate understanding of the
application, thereby leading to an incoherent system (Shave 1997). This
importance of ontologies has been realised and exploited by the Knowledge
Engineering community in the engineering of knowledge-based systems (Shave
1997). The first step in developing an effective knowledge-based system has
been recommended to be an effective ontological analysis (Chandrasekaran et al.
1999). Moreover, when the target application covers multiple domains, the
mappings between domain ontologies will help the developer to grasp the
associations amongst these domains. These associations are particularly
important if the development project involves multiple developers working on
different domains (Uschold and Gruninger 1996).

With regard to the representation of the application’s domain knowledge,
ontologies offer a structured, explicit, human-readable mechanism for
representing domain knowledge. These characteristics promote the readability of
an ontology, hence making it a reuse-enhancing representation mechanism, as

previously mentioned in Section 2.3.2.2.

Given the above benefits of ontologies to system analysis, various methodological

frameworks for developing MASs and knowledge-based systems have exploited

ontologies to facilitate their problem-elicitation process (e.g. “GRAMO” — Girardi
and de Faria 2004) and domain knowledge modelling (e.g. “GRAMO” — Girardi and
de Faria 2004, and “CommonKADS” — Schreiber et al. 1994). In fact, a metamodel

of MAS modelling concepts recently proposed by Beydoun et al. (2005) also

advocates the use of ontologies to model application domain for a given MAS

system.

23



Agent knowledge modelling refers to the specification of local knowledge of each
agent in a MAS, including problem-solving knowledge and local domain-related
knowledge. Just as for application’s domain knowledge, an ontology can be used as
an effective representation mechanism for agents’ local domain-related knowledge
(which is typically a portion of the application’s domain knowledge) (Mukherjee et
al. 2000; Tamma and Bench-Capon 2001). Different (parts of) ontologies can be
assigned to different agents to represent the agents’ different views of the world
(Tamma and Bench-Capon 2001; Falasconi et al. 1996). In addition, as previously
discussed in Section 2.3.2.2, ontologies offer a mechanism for decoupling the
modelling of agent domain-related knowledge from its problem-solving knowledge,
hence promoting the reuse of agent knowledge modules. Various methodologies for
developing single-agent knowledge-based systems have implemented this modelling
mechanism, e.g. KAMET II (Cairo and Alvariz 2004) and CommonKADS
(Schreiber et al. 1994). It should be noted that, since the local domain-related
knowledge of each agent is extracted from the application’s domain knowledge, the
use of ontologies to represent the application’s domain knowledge during system
analysis would facilitate the use of ontologies to represent agents’ local knowledge

during agent knowledge modelling.

2.3.2.4. Benefits of ontologies to MAS operation

Ontologies are beneficial to two major aspects of MAS operation: communication and

agent reasoning.

Communication in a MAS may occur between agents, between agents and non-

agent resources, and between agents and human users.

— Regarding inter-agent communication, even though sharing a common ACL will
allow agents to exchange messages (thanks to the common communication
syntax), it does not ensure that the communicating agents will interpret the
exchanged messages in a uniform and consistent manner, i.e. to share the same
understanding of the semantics of the messages (Weiss 1999; Uschold and
Gruninger 1996; Falasconi et al. 1996). Successful agent communication
requires “ontological commitment” of the agents, i.e. an agreement between

agents to share an ontology during communication (Gruber 1993a). This shared

24



ontology provides the agents with a set of common vocabulary for formulating
and interpreting the content of the exchanged messages. For example, if agent A
communicates with agent B using the following message (written in FIPA-ACL),

inform

:sender AgentA

:receiver AgentB

:language KIF

:ontology CarDomainOntology

:content (> (price car X) (price car Y))
then both agents need to commit to the Car Domain Ontology (stated in the field
“:ontology”) where concepts “price” and “car” are defined. This means that the
local knowledge of each agent should contain the common ontology that is used
for communication. This requirement indicates the inter-dependency between
the ontology’s role in agent communication at run-time and the modelling of

agent knowledge at design-time (c.f. Section 2.3.2.3).

Regarding agent-resource communication, non-agent resources are normally
accessed by agents via “wrappers”, i.e. specialised agents that provide interface
to the resources (Jennings and Wooldridge 1995; FIPA 2001a). Client agents can
relay ACL queries and commands to the wrapper agents, which in turn translate

and invoke them onto the underlying resources (Figure 2.3).

] Native language
Client ACL messages Wrapper queries/commands
agent < =|| Resource
g agent

Figure 2.3 — Agent-resource communication

Ontologies can be used to conceptualise the resources’ internal data and/or
application, thereby allowing the wrapper agents to determine which vocabulary
they should use to formulate input queries/commands to the resources and
interpret outputs, without having to access the resource’s internal structure
(Gruber 1993a). For example, if the ontology of a Car Supplier database
resource shows that a “Car” entity in the database has attributes “Car-Brand”,
“Price”, “Transmission” and “Power-Steering”, the wrapper agent can use these

ontological concepts to compose queries to the database server, for instance,

25



Select * from Carlnfo where Car-Brand = “Toyota”, Price < $50,000,

Transmission = “auto”, Power-Steering = “yes”

— Regarding human-agent communication, ontologies can be used to facilitate the
formulation of user queries and the representation of queries’ results. When a
query/command needs to be formulated, the human user can consult the ontology
committed by the agent receiving the query and use the vocabulary defined in
that ontology as query terms (Figure 2.4) (Mahalingam and Huhns 1997; Yuan
1999). A query composed this way will be directly understood by the queried
agent without any need for further query processing. When the results of the
query are found, they can be represented using the same ontology as that
previously used for query formulation. This allows the human user to receive a
single representation scheme of the results, even if the results have been gathered
from heterogeneous resources with different local representation schemes (Yuan

1999).

Car Query Input Screen

Please specify your pref on car properties

Car properties: Transmission

Desired value = I

Autormatic:
I ahual

Figure 2.4 — User query formulation using concepts from ontology
Note: Concepts “Cost”, “Door”, “Make”, “Steering”, “Transmission” and “Warrantee” are
defined in the Car Domain Ontology committed by the Car Seller agent. Concepts “Automatic ”

and “Manual ” must have been defined as properties or sub-classes of concept “Transmission ”.

e Agent reasoning at run-time operationalises the problem-solving knowledge of the
agent, and uses the domain-related knowledge held by the agent as inputs
(Benjamins et al. 1996). If the domain-related knowledge has been modelled as an
ontology during agent knowledge modelling at design time, with all relevant domain
concepts and relationships being explicitly defined (c.f. Section 2.3.2.3), the agent
reasoning process can easily utilize this knowledge and make the most out of it.
Followings are a few examples of how ontology-based knowledge can facilitate
agent reasoning:

— The taxonomy of concepts in an ontology can help agents to process a user query

by decomposing it into sub-queries. For example, if the user query is “Find the

26



make of all cars”, the taxonomy of concepts in the Car Domain Ontology (Figure
2.5) indicates that the Search agent can solve the query by firstly searching for
the make of all Sport Cars, Family Cars and Four Wheel Drive, thereafter
combining the results. In some cases, the agents can trace up the specialisation
hierarchy to provide more generic or additional outputs to the user query if

necessary (e.g. finding the make of all motor vehicles apart from cars).

Motor vehicle

/l\‘

Car Ute Van

gl

Sport car Family car  Four wheel drive

Figure 2.5 — Example fragment of Car Domain Ontology

Mappings between ontologies may help agents to make useful inferences. For
example, in Figure 2.6, given the mapping between the concept “Car audio
system” in the Car Domain Ontology and the concept “Car audio” in the
Entertainment System Ontology, the Car Seller agent can recommend the user
consider buying various Car Audio products when a user submits a car purchase
request. Semantic mappings between different ontologies also help agents to
perform translation services (e.g. between Car terminology in French and Car

terminology in English).

/

KCar Domain Ontology

Wheel —@Car — Car accessory<]—|:sy3tem AllldiO Vidleo

Sport car Four wheel drive [~

/ Entertainment Syst%
Car air conditionir& éé

Car audio\&ﬂ@“t system system
system é é

. "Car audio Home audio
Family car

/ Entertainment System

ntology /

Figure 2.6 — Example ontological mappings between Car Domain Ontology and Entertainment System

Ontology

Mappings between ontologies of heterogeneous resources and a common
ontology may help agents to determine the appropriate resources to use without
having to access each resource’s internal data (Knoblock et al. 1994; Singh

2000). For example, suppose a wrapper agent has access to several Car suppliers’

27



databases, and the agent is interested in finding out which suppliers offer a car
guarantee upon sale of cars. Instead of examining the internal data of each
database, the agent can find the answer by simply identifying the databases
whose local ontology maintains a semantic mapping with the concept “warranty”

in the common Car Domain Ontology.

— Axioms, rules and assertions that specify constraints on concepts and relations
(if any) may help agents to reason. For example, a Car Seller agent should know
that “Door” of a “Family Car” is never less than 3, and “Cost” of a car must never

be lower than “Purchase-Price”.

2.3.3. Typology of Ontology

A common taxonomy for classifying ontology is by their level of generality (Guarino
1997; Falasconi et al 1996; Fensel 2001; van Heijst et al. 1997; Gamper et al. 1999):
Generic ontologies, Domain ontologies, Task ontologies and Application ontologies

(Figure 2.7).

| Generic ontology |

Domain ontology | | Task ontology

| Application ontology |

Figure 2.7 — Types of ontology (Guarino 1997)

¢ Generic ontologies define very general concepts about the world such as “Time”,
“Matter”, “Object”, “Event”, “Action”, “Process” and “Component”. These concepts are
independent of domains and tasks and thus can be reused across applications. For
example, CYC (Lenat and Guha 1990) is a generic ontology that provides thousands
of concepts and millions of axioms and rules for formalising commonsense

knowledge for reasoning.

e Domain ontologies define concepts that are specific to particular domains. For

example, a Car Domain Ontology defines concepts such as “Make”, “Steering” and

28



“Transmission”, while a Medicine Domain Ontology specifies concepts such as
“Disease”, “Symptom” and “Medication”. Domain ontologies may be reused across
applications that belong to the same domain. For example, the Unified Medical
Language System ontology offers numerous biomedical and health-related concepts
that can be reused across biomedical systems (Humphreys and Lindberg 1993).

Domain ontologies can be developed by refining Generic ontologies.

Task ontologies define domain-independent concepts that are related to generic
tasks (e.g. negotiation task, diagnosis task) or problem-solving methods (e.g.
propose-and revise method, board-game method). For instance, a Negotiation Task
Ontology may define concepts such as “Offer” and “Utility rating”, while a Propose-
and-Revise Task Ontology may capture concepts such as “Fix”, “Constraints” and
“Input variable” (Gennari et al. 1994; Studer et al. 1996). Task ontologies can be
reused in similar tasks across different applications. Task ontologies can be also

developed by refining Generic ontologies.

Application ontologies: define concepts that are specific to an application. Since
each application is typically characterised by both a particular domain(s) and a
particular task(s), Application ontologies are basically a synthesis of Domain
ontologies and Task ontologies that have been specialised to model the application’s
specific knowledge needs. For example, an Application ontology of a Car Selling
MAS may define concept “Car-price-offer”, which is the specialisation of concept
“Car-price” from a Car Domain Ontology and concept “Offer” from a Negotiation
Task Ontology. Application ontologies normally cannot be reused across
applications, because each different application normally engages in a different

combination of domains and tasks.

2.3.4. Ontology Representation Languages

To date, various textual and graphical modelling languages have been proposed for the

representation of ontologies. Section 2.3.4.1 describes some well-known textual

languages, while Section 2.3.4.2 reports on graphical languages.

29



2.3.4.1. Textual representation languages

Textual languages are those that specify ontologies using linear, logic-based

expressions. Existing textual ontology languages adopt the following major schemes of

knowledge representation.

First-order predicate logic: Symbols of first-order predicate logic allow the
representation of constants (i.e. specific concepts), variables (i.e. unspecified
concepts), predicates and functions (i.e. relations between concepts) and formula
(i.e. meaningful expressions combining concepts) (Lenat and Guha 1990). CycL
(Lenat and Guha 1990) and KIF (Genesereth and Fikes 1992) are two well-known
ontology languages which are based on first-order predicate logic. Below is an

example fragment of ontology specified in CycL.
(genls Dog Mammal)
(#$thereExistAtMost 1 ?TAIL
(#$and
(#$anatomicalParts Dog ?TAIL)
(#$isa ?TAIL #3Tail)))
(Dog is a Mammal. Tail is an anatomical Part of a Dog. Each Dog should have

at most one Tail).

Description logic: Knowledge in Description Logic is represented in a hierarchical
structure of concepts (Baader et al. 2003). Concepts can be defined by simply
naming them and specifying where they fit in the hierarchy. The most important
relationships between concepts are subsumption relationship (where one concept is
the generalisation/specialisation of another) and conjunction relationship (where one
concept is the joined specialisation of other concepts). KL-ONE (Brachman and
Schomolze 1985) and CLASSIC (Borgida et al. 1989) are examples of ontology
languages based on description logic. An illustration of KL-ONE ontology fragment
is presented below.

Human < Anything

Student < Human

Researcher < Human

PhD-Student < Student

PhD-Student < Researcher
Male-student = (and Man Student)

30



Frame-based paradigm: A frame is a single place in which properties and axioms
of a class (i.e. an entity) are specified (Bechhofer et al. 2001). Relations between
classes are expressed by stating dependencies or restrictions between classes. Two
examples of frame-based ontology languages are Ontolingua (Gruber 1993b) and
Frame-Logic (Kifer et al. 1995). An illustration of Ontolingua is presented below,
where a class “author” is defined. Relations “author.name” and “‘author.documents”
are specified as “slots” in the frame “author”. The relation “value-cardinality” is used

to express constraints on the slots.
(define-class AUTHOR (?author)
:def (and (person ?author)
(= (value-cardinality ?author AUTHOR.NAME) 1)
(>= (value-cardinality ?author AUTHOR.DOCUMENTS) 1)))

Web-enabled languages: In the late 1990s, the idea of a Semantic Web where
information on the Web is presented in a machine-readable form (Berners-Lee et al.
2001) has called for the development of ontology languages that are compatible with
current Web standards. Two examples of web ontology languages are XOL (Karp et
al. 1999) and DAML+OIL (Horrocks and van Harmelen 2001). XOL is built upon
frame-based approach and XML syntax, while DAMLA+OIL unifies description
logic, frame-based language and RDF. The following example of XOL ontology

fragment defines a class “person” with property “last-name” and “age”.

<class>
<name>person</name>

</class>

<slot>
<name>last-name</name>
<domain>person</domain>
<value-type>string</value-type>

</slot>

<slot>
<name>age</name>
<domain>person</domain>
<value-type>integer</value-type>

</slot>

31



2.3.4.2. Graphical representation languages

The use of graphical languages to represent ontology is compelling for many reasons.

They are easier to use during the process of ontology engineering than structured
textual language, because of the intuitiveness of the visual structures of the language
(Knowledge Based Systems Inc 1994)

They can easily be communicated with domain experts and users (Falbo et al. 2002;
Cranefield et al. 2001).

They provide a natural medium for representing relational structures, where
concepts are modelled as nodes and relations between concepts as arcs (Kankaanpad

1999).

Some graphical languages for representing ontology are UML (Cranefield and Purvis
1999; Cranefield et al. 2001; Bergenti and Poggi 2001; Bergenti and Poggi 2002),
IDEF5 Schematic Language (Knowledge Based Systems Inc 1994) and LINGO (Falbo
et al. 1998; Falbo et al. 2002).

UML: UML is a modelling language for OO analysis and design. However, it has
been applied to the representation of ontologies. With UML, each ontology is
modelled as a class diagram, where classes represent entities and relationships
symbolize relations between entities (Figure 2.8). A class is characterised by its
name and attributes, and each attribute is defined by its name and type.
Operations/methods are not necessary for classes because ontologies only capture
the conceptual structure of the entities (Bergenti and Poggi 2002). Relationships
between entities can be generalisation, aggregation or association. The semantics
and notation of each type of relationship are the same as in OO modelling. The ends
of the association relationships may be labelled with “role names™ of the relating
classes. Associations that embrace attributes will be modelled by an “association
class”. Object Constraint Language (OCL) can be used to represent constraints on
classes, attributes and relationships. These constraints are specified as nofes in the

UML class diagram.

32



[~ Track and lem numbersare
-~ consecutive starting at 1

| <<invariant>> ' - Movements in ftem are subset of LN
| seif track.number->includesAlll | - those in realisation and aren't repeated
Sequence(!..seif rack->size} } | <<invariant>> i
<<invarlant>> . salf realisation.work movement-> |
self item number->inciudesAll( includesAllself. movements)

| Sequence{l..salf.itom->size) ) and self. movements->size =

| self. movements.asSet()->size

/ Y A
pen K- i | ftemONCD |
title : String ) i [——— :‘nuMmu Sequence(integer) |
catalogueNum : String =" _ | startingTrack : Integer |
e fordored j ) |

o \ 1l 1.4

[\

.II \\

|I \ 1= /1..~

| \
titte | 1.1 {ordered) f{ordered}

1 R A i
Labsl | Track 1

[name :String | | number - integer |

Figure 2.8 — Example of ontology representation in UML (Cranefield and Purvis 1999)

IDEF5 Schematic Language: IDEFS5 is a tool for creating and editing ontologies. It
offers two languages for representing ontology: IDEF5 Schematic Language which
provides graphical notation and IDEFS5 Elaboration Language which provides first-

order logic formalism.

IDEF5 Schematic Language models ontological concepts as kinds (which is
equivalent to classes in UML) and relationships between concepts as relations or
transitions. Relations have the same semantics as in UML, while transitions refer to
a special kind of relationship where the concept at one end of the relationship may
be transformed into the concept at the other end. The process involved in each
transition may be captured as a “process” entity attached to the transition (e.g.
process “Dry” in Figure 2.9). Axioms and rules constraining the concepts, relations,

transitions and processes can be recorded using IDEFS Elaboration Language.

Jo-adAgng
Jo-adAiqng

Figure 2.9 — Example of ontology representation in IDEF5 Schematic Language (Knowledge Based
Systems Inc 1994)

33



e LINGO: The modelling primitives of LINGO are concepts and relations. Potential

types of relations are generalisation, composition and association (with the same

semantics as UML relationships). Axioms and rules about concepts and relations

can be specified using first-order logic assertions accompanying the diagram.

composition
-

generalisation

VY Activity Input
’'y [
Ty i
Construction Management Quality
Activity Activity Assurance
Activity

Figure 2.10 — Example of ontology representation in LINGO (Falbo et al. 1998)

2.4. SUMMARY

This chapter has defined the terms “Agent”, “Multi Agent System” and “Ontology”. It

also discussed the potentials of Agent Technology and MAS, and the benefits of

ontology to MAS development and MAS operation.

In the next chapter, Chapter 3, a review of the existing AOSE methodologies for MAS

development is documented. That chapter includes the identification of the limitations

of these methodologies with regard to their support for MAS analysis and design, and

their support for ontology-based MAS development. Limitations on the latter directly

cause these methodologies to not being able to fully realise the benefits of ontology to

MAS development and MAS operation which are listed in this chapter (Section 2.3.2.2).

34



CHAPTER 33

REVIEW OF EXISTING MAS
DEVELOPMENT METHODOLOGIES

3.1. INTRODUCTION

This chapter reviews the AOSE methodologies that have been proposed in the literature
for the analysis and design of MAS. It firstly describes each methodology in Section
3.2, thereafter identifying the general limitations of these methodologies in Section 3.3.
The limitations include those relating to the generic MAS analysis and design activities
(Section 3.3.1), and those relating particularly to the support for ontology-based MAS
development (Section 3.3.2). A more detailed evaluation of these AOSE methodologies

would be documented in Chapter 5.

From here on, the phrase “MAS development methodology” is used interchangeably
with the phrase “AOSE methodology” to mean an AOSE methodology that covers the

analysis and design activities of MAS development.

3.2. DESCRIPTION OF EXISTING MAS
DEVELOPMENT METHODOLOGIES

Even though research in AOSE is still less developed than other conventional software
engineering paradigms such as OO paradigm, work has increased in this area in recent
years. A number of AOSE methodologies have been proposed to assist in the analysis
and design of MASs. These methodologies vary significantly in their scope, approach,

process steps, modelling concepts and modelling notation.
In total, sixteen AOSE methodologies are reviewed in this chapter. These
methodologies were identified from an extensive search of the literature and selected for

investigation based on the following criteria.

35



The chosen methodology has been applied or tested on case studies or industrial
projects.

The chosen methodology has been referenced by other researchers in the field.

The chosen methodology satisfies the definition of a “software engineering
methodology”. As defined by Henderson-Sellers et al. (1998), a software
engineering methodology is one that provides the following key elements:

- asoftware engineering process to conduct the development;

- techniques to assist the process; and

- definition of work products.

Only AOSE methodological frameworks that provide all three elements were

selected for study in the thesis.

In the following sections, a brief description of each selected methodology is presented.

3.2.1. MASE

MASE, “MultiAgent System Engineering” (Wood 2000; Wood and DeLoach 2000a;

Wood and DeLoach 2000b; DeLoach 2005), takes an initial system specification and

produces a set of formal design documents for a MAS. It is based upon the preceding

research work in AOSE (such as Kendall and Zhao 1998 and Kinny ef al. 1996) and

conventional OO modelling techniques (such as OMT and UML). An overview of

MASE is provided in Figure 3.1.

Capturing
Goals
Applying Use ?
o
Cases =
@,
@
Refining Roles
Y
h
Creating Agent
Classes

Constructing
Conversations

Agant Assembling
Architecture Agent Classes

Deployment
Diagrams

-
<+—— ufiisag

System Design

Figure 3.1 — Overview of MASE (Wood and DeLoach 2000a)

36



The development process of MASE consists of Analysis and Design phases. The

Analysis Phase involves three steps.

L.

2.

“Capturing goals” step firstly identifies goals of the target system and organises
them into a Goal Hierarchy Diagram.

“Applying use cases” step produces Use Cases from the system requirements and
elaborates them into Sequence Diagrams.

“Refining roles” step identifies roles from system goals and actors, thereby
developing a Role Model. This model shows all the roles in the system, their
corresponding goals and the communication paths between roles (Figure 3.2). The
developer may further elaborate the Role Model by defining tasks to be performed
by each role and communications between tasks. A Concurrent Task Diagram,
which is basically a state transition diagram, can be developed to provide a detailed

definition of each task.

Slatus Reporter
121,122,
1221

Commander Task Controller
Interface 1.1,1.1.4,1.1.2,
1,1.2,1.3,1.34 1.3.3

Registrar
Analyst\ntectace 141,141,

131,132,134 14.1.2

Figure 3.2 — MASE Role Model (Wood and DeLoach 2000a)

The Design Phase of MASE transforms the preceding Analysis models into constructs

necessary for the actual implementation of the MAS system. The phase consists of four

steps.

1.

“Creating agent classes” step identifies agent classes for the target system by
applying one-to-one mappings between roles and agents. Multiple roles, however,
can be combined into a single agent class if the size and frequency of inter-role
communications are high. An Agent Class Diagram is produced to show the
identified agent classes, their corresponding roles and conversation paths between

agent classes (Figure 3.3).

37



4.

“Constructing conversations” step defines coordination protocols between agents.
Each conversation is described by two Communication Class Diagrams, each
specifying the state transitions of each agent participant during the conversation
(Figure 3.4).

“Assembling agent classes” step identifies and constructs the internal components of
each agent class. The developer can either reuse a pre-defined agent architecture and
internal components, or retrieve pre-defined components and assemble them into a
user-defined architecture, or define both internal components and agent architecture
from scratch.

“System design” step instantiates agent classes with actual agent instances and
allocates these instances to nodes. A Deployment Diagram is developed to show the
number, types, locations and communication paths between agent instances (Figure

3.5).

m RefineSearch
Analyst Intarfacs |
R
SenaProcessedmel S
InifiateTasking
Cmdr TaskCl ReqRtawData lssi
Commander ReaStatusReport Status Reporter MissionGrl
Interface Task Centroller M
T
GetCapailises AssignDs GatData
L
Register DSinterface
—n—wﬂm Data source
interface

Figure 3.3 — MASE Agent Class Diagram (Wood and DeLoach 2000a)

N .
AdataRequest(units, target) dataRequest(units, target)

store
data = getData(units, target)

validation
valid = validate(units, target)

addData(data)

[timeout(t)]]"cancel() y

sorry”dataRequest(units, target)
dataRequest [NOT valid]

(units, target ~sorry() cancel()

A

wait }
cancel()

Figure 3.4 - MASE Communication Class Diagram for initiator (left) and responder (right) (Wood and
DeLoach 2000a)

38



UAVZ: : SAT1: SATZ: it
CSinterface DSinterface DSinterface ;,i:g
UAVT 2 SATS
DSinterface |3 Dsinterface |2

N E- o
i ]
MC-UAY: ! Contreller A MC-SAT: 4
MissionCtrl N y Registrar 1 MissionCrrl ik
1 I
\ \
1
i 1
i )
: i
i '
: Controller V
: TaskCtrl !
: [
g Controller '
JTFCC - ke JTFIZ:
Crmdr Analyst

Figure 3.5 — MASE Deployment Diagram (Wood and DeLoach 2000a)

In a recent publication (DiLeo et al. 2002), MASE has been expanded to provide
support for ontology-based MAS development. Ontology is introduced as a mechanism
to model the application domain. An additional step — “Building ontology” — has
accordingly been added to the Analysis phase (Figure 3.6). This step constructs the
domain ontology by identifying the scope of the ontology, collecting data about the
domain, forming the initial ontology, and finally refining, validating and maturing the
ontology into a complete version. Once the domain ontology is constructed, parameters
passed between agents during the execution of tasks or during conversations are
specified in accordance with the ontology. Specifically, the data type of each exchanged

parameter is defined using the concepts defined in the ontology.

Step “Assembling agent classes” of MASE has also been extended to support the
specification of ontology for individual agents. This specification is needed if the agent
requires a knowledge model that is different from the other agents and/or from the
overall domain ontology. The developer should determine the mappings between these

individual agents’ ontologies in order to interoperate between the heterogeneous agents.

39



Capluring
Goals

Uss Canna
Applying Use

Cases
Seguence
‘

Building Ontology

s|af|euy

Refining Roles

Creating Agent
Classes

Caonstructing
Convarsations

ubissag

Aszambling
Agent Classes

System Design

Y

Figure 3.6 — Overview of extended version of MASE (DiLeo et al. 2002)

3.2.2. MASSIVE

MASSIVE (Lind 1999; Lind 2000a) follows an “iterative view engineering process” for
MAS development, which is a product-centred development process that combines
Round-trip engineering and Iterative Enhancement (Figure 3.7). In the first cycle of the
development process, the developer firstly produces a preliminary version of the
development product (1), which is composed of seven different “views” of the system.
These views are then implemented (2) and refined if errors occur during implementation
(3). The initial implementation is then tested and/or enhanced (4), which may result in
enhancements to the views (5). If enhancements cannot be integrated into the views
(e.g. because they are incompatible with some basic requirements of the views), the
implementation must be changed (6). After this step, the next cycle is executed until the

entire system is fully implemented.

40



fail

YN
Ill'l/’ g /F.é)_ mnsmlc-l_hh_ H\

enhance ;l e model implementation
1 analyze (5) -

\o/ T~

Figure 3.7 — MASSIVE Iterative View Engineering process (Lind 2000a)

| enhance

Each of the seven views of MASSIVE describes a particular aspect of the target system

which is conceptually linked to other views. These views are briefly discussed below.

Task View specifies the tasks to be fulfilled by the target system. It is developed
through iterative functional decomposition of the problem domain (Figure 3.8). Leaf

nodes of the task hierarchy represent atomic activities which are to be used for roles

identification.

Manage Manage
Customers Stock
Manage Take Order
Address Order Supply
Change
Address
Delete
Customer

Figure 3.8 — MASSIVE Task View (Lind 1999)

Environment View models MAS’s environment from both the perspective of the
developer and the perspective of the system. Regarding the developer’s perspective,
the environment should be characterised in term of its organisational context (i.e.
accessible or inaccessible, deterministic or non-deterministic, episodic or non-
episodic, static or dynamic) and runtime context (e.g. programming model,

programming language and communication mode). Regarding the system’s

41



perspective, the developer should determine the input/output mechanism used by the

agents to interact with the environment (e.g. sensot/effector).

Role View identifies roles for the target system and assigns roles to agents. To
identify roles, leaf-node tasks in Task View are clustered in such a way as to
maximize intra-cluster coherence while satisfying the physical resource constraints
of the operational environment of the target system. MASSIVE does not provide any

guidelines on how to assign roles to agents.

Interaction View characterises the general nature of agent interactions in the target
application, thereafter using this characterisation to choose an appropriate
interaction scheme for the system (e.g. information exchange scheme, market-based
scheme or blackboard interaction scheme). The developer should also identify any
interaction protocols that are necessary for the system (e.g. Contract Net or

Simulated Trading).

Society View characterises the society of agents in MAS according to various
dimensions, including type (i.e. open or closed), structure (i.e. flat or hierarchical),
consistency (i.e. homogeneous or heterogeneous) and temporal context (i.e. static or
dynamic). MASSIVE offers guidelines on how to design the social structure for the

agent society given the characterisation.

Architectural View specifies the system architecture and agent architecture. The
modelling of system architecture should include the modelling of system entities
(e.g. conventional objects besides agents), agent management tasks/facilities,
database design and external components/devices. Regarding agent architecture, the
developer is recommended to identify specific architectural requirements and select

from the existing architectures before trying to develop a new one from scratch.

System View deals with design issues that affect the MAS system as a whole (e.g.

user interface design, exception handling and performance engineering).

42



3.2.3. SODA

SODA, “Societies in Open and Distributed Agent spaces” (Omicini 2000), proposes a

number of abstractions and techniques for the modelling of agent societies and

environments. It does not aim to provide support for agent internal design, but rather

focuses on inter-agent design. SODA’s development process is structured into Analysis

and Design phases.

The Analysis Phase is concerned with constructing three models.

Role Model identifies and defines all roles in the target system. SODA derives roles
from system tasks. Each task can either be assigned to a single role or a group of
coordinating roles. In the latter case, the task is named a “social task” and each role
in the group is called a “social” role. Each role and each role-group is defined in
terms of their individual and/or social tasks, permissions to resources (which are
identified in Resource Model) and interaction protocols and rules (which are defined

in Interaction Model).

Resource Model defines all abstract resources provided by the environment to the
target MAS. Each resource is described in terms of its services, access modes (i.e.
the different ways in which the services can be exploited by agents) and permissions

granted to roles and role-groups.

Interaction Model defines interaction protocols for roles and for resources, as well
as interaction rules for role-groups. An interaction protocol specifies the information
required/provided by a role to accomplish its tasks, or by a resource to invoke its
services. An interaction rule for a role-group governs the interactions among social

roles and resources so as to make the group accomplish its social task.

The Design Phase of SODA is concerned with transforming the preceding Analysis

models into design abstractions that can be mapped one-to-one onto the actual

components of the implemented MAS system. These design abstractions are captured in

three related models.

Agent Model defines agent classes in the system. Each agent class is composed of a

set of roles (both individual and social) and accordingly characterised by its

43



individual/social tasks, permissions to resources and interaction protocols associated
with its roles. Agent classes can be further described by cardinality, location and

source (i.e. from inside or outside the system).

o Society Model describes agent societies in a MAS. Each society is formed by agents
whose roles belong to a role-group. The developer must choose the most suitable
“coordination model” for the target system, for example, one that provides
abstractions expressive enough to model the society’s interaction rules such as those
surveyed in Papadopoulos and Arbab (1998). Interaction rules can be derived from
the Interaction Model and embodied as coordination rules in the selected

coordination model.

o  Environment Model identifies “infrastructure classes” of the MAS environment by
mapping from resources in the Resource Model. Each infrastructure class is given a
location, owner and cardinality. A topological model of the MAS environment can
be developed based on the developer’s choice, such as the TuCSoN model

(Cremonini et al. 1999).

3.2.4. GAIA

This widely referenced methodology aims to guide the developer from a statement of
requirements to a design that is sufficiently detailed that it can be implemented directly
(Wooldridge et al. 1999; Wooldridge et al. 2000). GAIA has been recently extended to
include new organisational abstractions that enable it to support the development of

“open” MASs (Zambonelli et al. 2003).

The Analysis Phase of GAIA firstly investigates the potential existence of multiple
sub-organisations within the target system. If multiple sub-organisations co-exist, they

are analysed and designed as autonomous interacting MASs.

The Environment Model is then constructed to describe the MAS environment in terms
of abstract computational resources (e.g. variables or tuples that the agents can
read/access). Each resource is characterised by the types of actions that agents can

perform on it.

44



A preliminary definition of roles is subsequently produced in the Preliminary Role
Model. Roles may be identified from the system’s real-world organisation (e.g. real-
world offices or departments) or from the “basic skills” that are required by the
organisation to achieve its goals. GAIA models each role in terms of responsibilities and
permissions to resources (Figure 3.9). Responsibilities represent the role’s functionality
and are classified into two types: “safety” or “liveness”. Safety responsibilities are
typically predicates, specifying the acceptable state of affairs that should be maintained
across all states of execution. Liveness responsibilities, on the other hand, specify the
state of affairs that an agent must bring about (i.e. “something will be done”). Each

liveness responsibility is defined as a set of activities and interaction protocols.

Role Schema: CUSTOMERHANDLER
Description:
Receives quote request from the customer and oversees process to ensure appropriate quote is returned.
Protocols and Activities:
AwaitCall, ProduceQuote, InformCustomer
Permissions:

reads supplied customerDetails // customer contact information
supplied customerRequirements // what customer wants
quote
Responsibilities
Liveness:

CUSTOMERHANDLER = (AwaitCall.GenerateQuote)®
GENERATEQUOTE = (ProduceQuote.InformCustomer)
Safety:
e ftrue

Figure 3.9 — GAIA Role Model (Zambonelli et al. 2003)

A Preliminary Interaction Model is also developed. In GAIA, a protocol is viewed as an
institutionalised pattern of interaction. Each protocol definition only describes the
interaction’s purpose, initiator roles, responder roles, inputs, outputs and processing

(Figure 3.10). It is abstracted away from any particular sequence of messages.

ReturnCosting

customerRequirements
CustomerHandler,
NetworkDeveloper
QuoteManager

quote

generate cost solution

Figure 3.10 — GAIA Interaction Model (Wooldridge et al. 2000)
(Protocol ReturnCosting is initiated by role NetworkDeveloper and involves

roles CustomerHandler and QuoteManager. The protocol takes as input

customerRequirements and produces quote.)

The last step of the Analysis phase defines the organisational rules for the target
system. “Liveness” organisational rules specify how the dynamics of the MAS
organisation should evolve over time, while “safety” organisational rules define time-

independent global invariants of the organisation.

45



The Design Phase of GAIA transforms the above Analysis models into sufficiently
low-level abstractions, so that traditional design techniques (such as OO techniques)
may be applied. The phase starts with the selection of an organisational structure for
the target system. The developer should choose a structure that provides the most
appropriate topology and authority relationship. Once the organisational structure is
defined, the Preliminary Role and Interaction Models can be refined and elaborated into

Complete Role and Interaction Models.

Other design models to be developed are Agent Model, Service Model and

Acquaintance Model.

o Agent Model identifies agents from roles by applying a one-to-one mapping between
roles and agent classes. A simple hierarchy (or hierarchies) can be used to model the
agent class structure, where root nodes correspond to roles and other nodes
correspond to agent classes. The Agent Model also shows the instantiation of each

agent class (Figure 3.11).

CustomerAgent ~ CustomerSenviceDivsonAgent  VefCustomerdgent - NebworkDesignerdgent  LagalAdvisorAgent
It 1 ‘ 310 1 .10 )15

Customer ~ CustomerHandler ~ QuoteManager ~ CusiomerVetier ~ NehworkDeesigner LegalAdrisor

Figure 3.11 — GAIA Agent Model (Wooldridge et al. 2000)

o Service Model identifies services offered by each agent and properties of these
services (i.e. inputs, outputs, pre-conditions and post-conditions). Services can be
derived from roles’ responsibilities, particularly liveliness responsibilities), and

interaction protocols.

o Acquaintance Model specifies communication links between agent classes (Figure
3.12). The goal is not to specify what messages are sent and when, but to identify
any potential communication bottlenecks between agents and to evaluate if the

system is internally loosely coupled.

46



CustomerAgent

CustomerServiceDivisionAgent
A
¥

VetCustomerAgent  NetworkDesignAgent =< LegalAdvisorAgent

Figure 3.12 — GAIA Acquaintance Model (Wooldridge et al. 2000)

3.2.5. MESSAGE

MESSAGE (Eurescom 2001b) adopts the Rational Unified Process lifecycle and
extends UML to support the modelling of concepts such as “organisation”, “role”,
“goal” and “task”. MESSAGE development process covers the Analysis and Design

phases.

The Analysis Phase is concerned with constructing five models.

e Organisation Model describes the structural and acquaintance relationships between
the target system and its environments (Figure 3.13), and the acquaintance
relationships between agents/roles and resources making the system (Figure 3.14).

o Goal/Task Model specifies the decomposition structure of goals of the target system.
A Workflow diagram may be developed for each goal to specify what tasks are
needed to achieve the goal and which roles are responsible for which tasks.

e Agent/Role Model describes the individual agents/roles in terms of their goals,
resources and tasks.

o Domain Model shows domain-specific entities and relations that are relevant to the
target application (Figure 3.15). This model is basically equivalent to a domain
ontology.

e Interaction Model specifies, for each interaction between agents/roles, the initiator,
collaborators, motivation and information supplied/achieved by each participant

(Figure 3.16).

These five Analysis models are developed in a step-wise refinement manner, with the
subsequent refinement cycles elaborating and expanding the models developed in the
previous cycle. MESSAGE proposes three major approaches for this refinement,

namely organisation-centred, agent-centred and goal/task refinement approaches.

47



Figure 3.13 — MESSAGE Organisation Model — Structural Relationships (left) and Acquaintance

Booking
Database

Retrieves travel Stores bookings
arrangements

Travel Booking
Database Datab

Sends

[

Travel
Catalog

Relationships (right) (Eurescom 2001b)

Airline
Booking

Database

(Eurescom 2001b)

TravelRequirement

matches

TravelArrangement

+transfers 1.

TransferRequirement
String from

malches

int cost

+transfers 1.0

TransferArrangement

String to
TimeRange when

Flight

+theFlight

+egs | 1.."

FlightOccurrence

int number

String from

String to

Time departureTime
Time arrivalTime

String airlineCompany

Date when

Figure 3.15 — MESSAGE Domain Model (Eurescom 2001b)

Figure 3.14 —- MESSAGE Organisation Model - Agent/Role and Resources Acquaintance Relationships

48



Initiator Collaborator

<<participation>>
< TSP
1 _ =3 Assistant

Travelling
Request

\'\\ "~y  Travel - s
.. 1 |Requirement | 1 -

-
s [Travel 7] *
' Arrangement]

Figure 3.16 — MESSAGE Interaction Model (Eurescom 2001b)

The Design Phase of MESSAGE transforms the above Analysis models into
computational entities that can be implemented on an agent platform. The phase is

structured into High-Level Design and Low-Level Design.

During High-Level Design, the roles identified in the Analysis phase are assigned to
agents. If agents have been identified during Analysis, they should be re-examined to
check if they are indeed appropriate to be implemented as agents (some agents during
Analysis may be implemented as simple classes or resources). Interactions identified in
the Analysis phase should also be elaborated with interaction protocols and UML state-

charts.

For Low-Level Design, MESSAGE proposes two approaches for mapping high-level
design concepts to specific computational elements: Organisation Driven approach and
Agent-Platform Driven approach. The former uses the Organisation Model to derive the
MAS architecture, agent architecture, agent knowledge and resources. The latter is more
platform-oriented and considers that each agent can be implemented as a simple class. A

detailed description of each approach is provided in Eurescom (2001b).

3.2.6. Methodology for BDI Agents (BDIM)

As mentioned in Section 2.2.3, BDI is a prominent architectural model for agents. Each
BDI agent is composed of beliefs (i.e. the agent’s knowledge of the world), desires (i.e.
the agent’s motivations such as goals, objectives or allocated tasks) and infentions (i.e.

the desires that the agent is committed to achieving at a certain point in time) (Rao and

49



Georgeft 1995). The BDIM methodology (Kinny and Georgeff 1996; Kinny et al. 1996)

is specifically targeted at MASs that are based upon the BDI paradigm.

In BDIM, models are classified into two levels of abstraction: external and internal.

External models describe the target MAS from the system-level point of view, while

Internal models define each agent class in terms of its internal components.

Accordingly, the development process of BDIM is organised into two groups of steps:

those for developing External models and those for developing Internal models.

For the External models, a four-step process is proposed.

1.

Identify major roles in the system and produce a draft Agent Model. This model
captures the inheritance and aggregation relationships among abstract and concrete
agent classes, as well as the instantiation of each concrete agent class (Figure 3.17).
During this step, agent classes are expected to be quite abstract, not assuming any
particular granularity of agency.

Identify responsibilities and associated services of each role. Each agent class
should be accordingly decomposed to the service level.

Specify, for each service, interactions that may occur between roles/agents, thereby
producing an Interaction Model. The model should describe the responsibilities and
services of each agent class, the associated interactions and the control relationships
between agent classes. BDIM however does not impose any modelling notation for
its Interaction Model.

Refine the Agent Model to introduce any new abstract and/or concrete agent classes
if necessary (for example, agent classes that offer some common services may be

modelled as specialisations of an abstract agent class).

50



Wind Data (&) Profile (&) Flight Plan (&) Radar Data (A

T -+ 1 7
| I ]
Predictor (A) Planner (&) Monitor (&)

— 1 1
o

Generic Aircraft (A)

A

| | |

Wind Model @ B737 B747 A320 Coordinator @

f Windmodel ] (B_?"?T?\ ( B747 ] ( A320 J ( Coordinator )
N N/

Figure 3.17 — BDIM Agent Model (Kinny et al. 1996)

The construction of Internal models for each agent class begins from the third step of

the above process and involves two steps of its own.

1.

Identify goals of each agent class and analyse the means for achieving these goals.
This step generates a Goal Model and Plan Model for each agent class. Agent’s
goals can be derived from the services identified in step 2 of the External models’
development process. The Goal Model consists of a Goal Set and one or more Goal
States. Each goal is specified by goal formula signatures, e.g. achieve(!), verify(?)
and test($). The Plan Model contains a Plan Set, which consists of a set of Plan
Diagrams (Figure 3.18).

Model the agent’s beliefs by analysing the contexts in which goals are achieved and
the conditions that control the execution of plans’ actions (including input and
output data requirements). Agent’s beliefs are captured in the Belief Model, which
contains one Belief Set and one or more Belief States. The Belief Set (Figure 3.19)
conceptualises the potential beliefs of the agent, while Belief States are particular

instances of the Belief Set.

51



Plan Name

Plan Graph

T activation event [activation condition] | activation action

4 I

Plan Graph
[ activity formula ]7 event [condition)] | action
@ event / action event [condition) [condition] | action

- _/

any [abort condition) | abort action

fail / fail action

%,

pass / pass action

®

Figure 3.18 — BDIM Plan Diagram (Kinny et al. 1996)

Pressure vessel @
type Pressure = Real
type Quantity = Real
Valve @ Quantity quantity {opt}
Recul ® type Position = {op, bp, cl} Pressure pressure {opt}
Position positi Boolean leaking = false
type Status = {ok, f-op, f-ci} - Prassure p-lower-limit {static}
Stalus status = ok action open() Pressure p-upper-limit {static}
action close()
Helium tank regulator Helium tank valve Helium tank Helium tank leg
1 associated-regulator I ‘ connects (L T
b

Derived Predicates and Functions

status(Regulator, Status) Status status(Regulator)
position(Valve, Position) Position position(Valve)
quantity(Pressure-vessel, Quantity)

pressure(Pressure-vessel, Pressure)

leaking{Pressure-vessel, Boolean) Boolean leaking(Pressure-vessel))

p-lower-limit{Pressure-vessel, Pressure) Pressure p-lower-limit{Pressure-vessel)

p-upper-limit{Pressure-vessel, Pressure) Pressure p-upper-limit{Pressure-vessel)
iated-reg {Helium-tank-valve, Helium-tank-regulator)

connects(Helium-tank-valve, Helium-tank, Helium-tank-leg)

Figure 3.19 — BDIM Belief Set (Kinny and Georgeff 1996)




3.2.7. INGENIAS

INGENIAS (Pavon and Gomez-Sanz 2003; Pavon et al. 2005) is built upon
MESSAGE/UML. It reconstructs and extends MESSAGE to include a new model
(Environment Model), provide support for the BDI agent architecture and provide tools

for documenting the system and for automatic code generation.

The development process of INGENIAS adopts the Unified Software Development
Process lifecycle. It contains around seventy steps that are distributed among the
lifecycle phases and workflows. Figure 3.20 summarizes the outputs to be obtained in

each phase and workflow of the INGENIAS development lifecycle.

PHASES
Inception Elaboration Construction
Analysis |0 Generate use cases and identify 0 Refineduse cases 0 Refinements on
actions of these use cases with 0 Agent models that detail elements of the | existing models to cover
interaction models. systemarchitecture. use cases
o Sketcha systemarchitecture withan |o Workflows and tasks in organization
organization model. models
o Generate enviroment models to 0 Models of tasks and goals to highlight
represent results fromrequirement ocontrol constraints (main goals, goal
g gathering stage decomposition)
o) o Refinements of environment model to
= include new environment elements
X
g Design |0 Generate prototypes perhaps with | o Refinements in workflows 0 Generate new models
S rapid application development tool such | o  Interaction models that show how tasks
as ZEUS o Agent Tool. are executed. 0 Social relationships
0 Models of tasks and goals that reflect | that perfect organization
dependencies and needs identified in behaviour.
workflows and how system goals are
achieved
0 Agent nodels to showrequired mental
state patterns

Figure 3.20 — Outputs of each phase and workflow of INGENIAS development process (Pavon et al.
2005)

The Analysis and Design workflows of INGENIAS aim to incrementally construct five
work products: Agent, Interaction, Goals/Tasks, Organisation and Environment Models.
During the Analysis Workflow, the information to be included in each model is
described below.

e Agent Model defines the prospective agents in terms of their roles, goals, tasks and

requirements (e.g. intelligence or learnability).

53



Interaction Model captures significant interaction paths within the system and the
information to be passed between interacting parties.

Goal/Task Model shows the initial goals of the target system, tasks for achieving
these goals, decomposition of goals and tasks, success/failure conditions of goals
and pre-/post-conditions of tasks.

Organisation Model shows the structure of the target MAS organisation via system
components such as groups, agents, roles, resources and applications (Figure 3.21).
Tasks described in Goal/Task Model should also be included in the Organisation
Model to show their executors (i.e. agents or roles), their inter-connections (i.e.
workflows) and their required resources. Social dependencies among agents, roles
and/or groups should also be defined (e.g. subordination or -client-server
dependencies).

Environment Model specifies resources and applications that exist in the
environment, and the perception mechanisms used by agents to perceive the outputs
of these applications. Example perception mechanisms are sampling and

notification.

The Design Workflow of INGENIAS refines and extends each of the above five

models. The Agent Model is updated to include the detailed definition of each agent’s

mental states (i.e. beliefs, goals and plans), mental state manager and processor. The

Interaction Model is elaborated to specify the exchanged elements (e.g. tuples, messages

or remote procedure calls) and the order of their execution (e.g. iteration, concurrency

and branching). The Goal/Task Model, Organisation Model and Environment Model are

also incrementally refined from Analysis to Design.

INGENIAS also includes an Implementation workflow to generate code modules for

the design specifications. The workflow involves incrementally generating prototypes

for the specifications using the INGENIAS Development Kit and reusing templates and
algorithms provided by the INGENIAS Development Kit.

54



ObtainBenefits

SellBooks Juul Maller enterorise > Q
O T <<oTPursues»> % ~=<GTPursues=» SellBoaksThr

oughlintarnet
JuulDatabase
ESales .
T T =N
. e —

-~ ==0HasGroup==

proprigtary ==0HasWF=>
/ ObtainEl.ooh_:s Crganizationhia
==0Hashember== FraomEditarial

Loaistics ProvideList L
g* \b " - OfBooks -
) BuyRepresentative < \ L
SalesRepresentative Lat—— Fo )

i ] l — =

L
StockManager
LManager ==0HasMember== g
Deliverar

]

Figure 3.21 — INGENIAS Organisation Model (Pavon et al. 2005)

3.2.8. Methodology with High-Level and Intermediate
Levels (HLIM)

HLIM (Elammari and Lalonde 1999) starts from a high-level view of the system and
drills down to intermediate, implementable definitions of system design. Its

development process is structured into two phases: Discovery and Definition.

In the Discovery Phase, a High-level Model is developed to capture the overall
structure and behaviour of the system. The model is composed of a set of Use Case
Maps (UCMs), each of which shows “paths” that trace a scenario from a start point to
an end point, connecting the responsibilities of participating agents (Figure 3.22). The
concept of “role” is used in UCMs to represent organisational places where agents may
dynamically enter. Initial agents can be identified by examining the nouns of the
application description. These nouns should be essential, autonomous and active in

nature.

55



PDManager ProdDevelopment Division
° req. dev. process req. eval req.
request a’eniea‘l——J

HelpDesk Enterprise
retire att.

Developers HDA ttendants

F— = =

developer aﬂocat‘edl f + -::;
k===

Figure 3.22 — HLIM Use Case Map (Elammari and Lalonde 1999)

The Definition Phase of HLIM then uses the High-level Model to produce four

Intermediate Models.

o [nternal Agent Model defines each agent in terms of goals, beliefs, tasks and plans
(Figure 3.23). Agent’s goals can be derived from the path segments traversing the
agent in respective UCMs. Agent’s beliefs correspond to the path’s pre-conditions
and post-conditions, while agent’s tasks are derived from responsibilities along the

path. A plan is represented by a combination of a particular goal, corresponding task

allocate emp.

and beliefs.
Goal Precondition Postcondition Task Comment
1 | nitiate call request |User off-hook Request sent to Goal(process off-hook) |Caller in main

answerer or call denied

Goal(originate call)

UCM

Goal(notify caller)
2 | Process call request | There is an incoming call |Incoming call processed |Goal(terminate call) Answerer in
Goal(notify answerer) |main UCM
3 Originate call Number is collected Request sent to send_request Default plug-in
answerer for OC stub
4 |Originate call Number is collected Request sent to check_list OCS plug-in
answerer or call denied |send_request for OC stub
notify_refuse
5 | Terminate call There is an incoming call |Caller and/or answerer  |ring Defaultplug-in

are notified notify_caller for TC stub
6 | Terminate call CF is on. Caller notified of anew |forward_req CF plug-in for
There is an incoming call |destination TC stub

Figure 3.23 — HLIM Internal Agent Model (Elammari and Lalonde 1999)

o Agent Relationship Model captures inter-agent relationships, which can be derived

from path segments connecting two agents in UCMs. The model is composed of a

Dependency Diagram and a Jurisdictional Diagram. The former captures goal

56



dependencies,

task dependencies,

resource

dependencies

and negotiation

dependencies among agents, while the latter depicts the organisational structure of

agents in terms of their authority status (Figure 3.24).

Agent Agent

Management
agenls

Fudl):mlupmnﬂ

l HelpDesk ]

delegation of

acquisitions of
tasks and policies  duthorities

AN

Actar
Agents

I-‘I)M.mng:rl | Develaper Hl

| ]

HDAendint |“

Figure 3.24 — HLIM Dependency Diagram (left) and Jurisdictional Diagram (Elammari and Lalonde

1999)

o Conversational Model uses tabular schemata to specify, for each agent, the

messages it communicates with other agents (Figure 3.25). The model can be

derived from Internal Agent Model and Agent Relationship Model.

Receive Send Comment
1 Prop(:connectFrom a :connectTo b) | Originating
2 Prop(:connectFrom a :connectTob) |OCS
3 |Prop(:connectFrom a :connectTob) |ACCEPT | REJECT Terminating
4 Prop(:connectFrom a :connectTob)  |CProp(:connectFrom a :connectTo f) |CF
5 |CProp(:connectFrom a :connectTo f) |Prop(:connectFrom a :connectTo f)  |Originating

Figure 3.25 — HLIM Conversational Model (Elammari and Lalonde 1999)

e Contract Model specifies the contracts between different agents regarding the

services they provide to each other. Each contract is defined in terms of the

authorizations and obligations of the participating agents, and is represented using a

textual schema.

3.2.9. Methodology for Enterprise Integration (MEI)

MEI (Kendall et al. 1995) is targeted at enterprise integration applications. It is based

upon the IDEF approach in workflow modelling, CIMOSA framework in enterprise

modelling and use-case approach in OO software engineering. MEI develops MAS by
mapping various elements of the Use Case Model, IDEF/CIMOSA Functional Model

and IDEF Information Model onto the design of agents, agent internal components and

agent interactions.

57



In the development process of MEIL the developer is required to firstly describe the
target application in terms of use cases and IDEF/CIMOSA models. The subsequent
MAS development activities are not structured in any specific temporal order. MEI
simply offers a set of mappings that can be applied on use cases and IDEF/CIMOSA
models in order to derive the MAS system design. The mappings are summarized in

Table 3.26.

Table 3.26 — Summary of mappings from Use Case Model and IDEF/CIMOSA Models to MAS design in
MEI (Kendall et al. 1995)
IDEF/CIMOSA Models
Resource or mechanism
Enterprise function with control

Use case MAS
Active, proactive actor

Use case and use case extension

Agent
Agent’s Goal and Plan

output
Functional input into enterprise | - Input from actors - Beliefs
function - Input from domain objects via - Input from coexisting objects

control objects
- Domain object input
Control object output targeted for
actors or domain objects

via sensor/agents

Output to coexisting objects
via effector /agents

Functional output from
enterprise function

Input from actors or entity
objects. It determines which use
case extension, if any, is followed

- Input from coexisting objects
via sensor/agents

- Can be represented as plan’s
invocation condition

- Goal/ subgoal

- Can be transmitted to
coexisting objects via
effector/agents

Control input to enterprise
function

Control output from enterprise
function

Control object output targeted for
actors or domain objects

- More than one resource per
function

- Information exchange
between resources

- More than one actor per use case

- Use case event trace

- Use case abstraction and
specialisation (inheritance)

- Agent collaboration
- Coordination protocol

Information model

Domain objects

Beliefs and coexisting objects

As can be noted from the above table, MEI adopts a BDI-like model of agency. Each
agent is composed of goals, plans, beliefs and intentions, and is connected to sensor and
effector objects (Figure 3.27). The sensor watches the external environment while the
effector brings about the changes desired by the agent. A passive object is used to hold
the agent’s beliefs.

58



Sensor Object

L

Agent

Beliefs
051 ect

Y

Effector Object

\

data -
Intentions

/

Object

Object

[oma

Figure 3.27 — MEI agent structure (Kendall et al. 1995)

For each agent, its goals and plans can be depicted as a tree structure, where goals are

root nodes and plans are leaves. Each plan can be further defined by a state diagram.

Coordination protocols can also be described using state diagrams. The specification of

sensors and effectors for each agent is modelled using IDEF-like notation (Figure 3.28).

Parts

Material -
— g | Special Order

Sensors

— Part Size

—=  Part Quality

—= | Part Due Date

Matenal
— M Availability

- Mnr_r:ri al
Size

Strategic Knowledge Contral Output from Costing

)

'

'

E ffectors

Set Selection Policy

™ Part Selection Filter
—®  Sheet Selection Filter

— Paich Rejector
|— o Sheet Rejector

gent

Selection

Figure 3.28 — MEI sensors and effectors specification (Kendall et al. 1995)

3.2.10. PROMETHEUS

PROMETHEUS (Padgham and Winikoff 2002a; Padgham and Winikoff 2002b;
Winikoff and Padgham 2004) is well suited to the development of BDI-based MASs.

The development process of PROMETHEUS is structured into three phases: System

Specification, Architectural Design and Detailed Design (Figure 3.29).

59



agent
acquaintance

final design

T anifact

 — intermadiate

design lool
#*---% crosscheck

—* derivas

Figure 3.29 — Overview of PROMETHEUS (Padgham and Winikoff 2002a)

The System Specification Phase focuses on identifying the basic functionality, external

interfaces and use case scenarios of the target MAS.

Functionality describes what the system should do in a broad sense and is specified
informally using textual Functionality Descriptors.

External interfaces refer to incoming raw data from the environment and outgoing
effects on the environment (i.e. percepts and actions respectively).

Use case scenarios provide a holistic view of MAS functionality. Each activity in
use cases should be annotated with the name of the associated functionality, thereby
allowing the developer to perform consistency checking with the Functionality

Descriptors.

The Architectural Design Phase uses outputs of the System Specification phase to

identify agents, events, interactions among agents and shared data objects.

Agent identification is carried out by assigning functionality to agents, in such a way
as to promote strong intra-agent coherence and weak inter-agent coupling. High-
level information about each agent (e.g. agent type, cardinality, incorporated
functionality and communicating partners) should be captured in a textual Agent
Descriptor.

Events to be dealt with by each agent are identified from two sources: percepts from
the environment and incoming messages from other agents.

Interactions between agents are modelled using Interaction Diagrams and
Interaction Protocols (Figure 3.30). Interaction Protocols are similar to Interaction
Diagrams, except that they capture all potential interactions and elaborate the

interactions in more detail.

60



e Data objects shared among agents need to be identified if they exist. A System
Overview Diagram can be produced to tie together the identified agents, events and

shared data objects (Figure 3.31).

Il_.ls«enr lShup ass.‘ |Warehousa l. | Cashlari @

Request book
Price+availability
Response |, Response | : Credit check request
Buy book ! . —‘
Delivery options? || Card details request .
Delivery info. Datary lode, : Card details
Delivery choice | Credit check request ' Approval
|Petals request e ctals raquast
Card details T o
" card details Rejection
Appraval
Thanks | Order

Figure 3.30 - PROMETHEUS Interaction Diagram (left) and Interaction Protocol (right) (Padgham and
Winikoff 2002a)

S.A. = shap assistant

W.M. = warshousa manager
C.R. = cuslomer relalions
Ca = cashier

Figure 3.31 - PROMETHEUS System Overview Diagram (Padgham and Winikoff 2002a)

The Detailed Design Phase of PROMETHEUS is concerned with agent internal design,
namely the design of agent capabilities, plans, events and data. Capabilities can be
thought of as “modules” of functionalities handled by an agent. They may be derived
from the functionalities identified in the System Specification phase. An Agent
Overview Diagram can be produced to describe the top-level capabilities of an agent
(Figure 3.32), while a Capability Diagram models each capability in terms of plans,
events and data (Figure 3.33). Each plan can be described by a textual Plan Descriptor,
which specifies the triggering event, plan steps and output events and messages of the
plan. Each event is described by a textual Event Descriptor which documents the
purpose of the event and any data carried by the event. Finally, a textual Data
Descriptor is used to specify the fields and methods of any classes employed for data

storage within the system.

61



|
Delivery
capability

Figure 3.32 - PROMETHEUS Agent Overview Diagram (Padgham and Winikoff 2002a)

/|

——
Confirm
courier
Arrange
courier

Figure 3.33 — PROMETHEUS Capability Diagram (Padgham and Winikoff 2002a)

delivery
request

Airmail

air pickup
best
courier

Seamail

National mail

4=
get courier|

book
shuttle

book sent

3.2.11. PASSI

PASSI, “a Process for Agent Societies Specification and Implementation” (Burrafato
and Cossentino 2002; Cossentino and Potts 2002; Cossentino 2002), offers a step-by-
step requirement-to-code process for MAS development. It consists of twelve steps,

grouped according to their outputs (Figure 3.34).

Initial

Hqulr‘m ents

New Requirements

| Syst. Req. Model !

Ag Impl Model | Code Madel

» [*l';"::;;::';J H J. |

[[m H s ) | Gt r l st l
3 t 1
e [

Figure 3.34 — Overview of PASSI (Burrafato and Cossentino 2002)
The first four steps produce a System Requirement Model. This model provides an

anthropomorphic representation of the system requirements in terms of functionality

and agency. It is constructed by:

62



e developing a hierarchical series of use case diagrams to describe the system
functionality in the “Domain description” step;

e packaging these use cases into agent in the “Agent identification” step (Figure 3.35);

e exploring the roles of each agent by examining role-specific agent interaction
scenarios in the “Role identification” step; and

e specifying tasks for each agent in the “Task specification” step. This step simply
summarizes what an agent is capable of doing and ignores information about roles

that the agent plays while carrying out the tasks.

—— ) Chel\-ll -qumu icatn>> i

C | |

<

" | | ou PImnmn To
<<communicate>> O ol o
| . < icate>> “WI‘“"UI\GIO
| <<commin =
NSM Courses Web Sever | 10009 NSM Neacs Updatad — O
A i i i i suw .
|
C <<corpmunicate> : ‘-: — O |
Predict Students Neods Pravids Bocks %, | | Mogotiste Purchase. -M.onw
] < =

Figure 3.35 — PASSI Agent Identification Diagram (Burrafato and Cossentino 2002)

The subsequent three steps develop an Agent Society Model to specify the interactions

and dependencies among agents.

e “Ontology description” step employs class diagrams and Object Constraint
Language (OCL) to specify concepts and entities that define the domain’s
knowledge (i.e. domain ontologies; Figure 3.36). It also determines which domain
ontology governs each agent interaction protocol (Figure 3.37).

e “Role description” step describes the roles played by each agent, tasks performed by
each role, changes between roles, and interactions and dependencies among roles
(Figure 3.38).

e “Protocol description” step defines each agent interaction protocol. PASSI

recommends standard FIPA protocols.

63



PuchaneDstads
[Ontclogy : Fuschase)
: RDF

Language |
_annl:ﬂlnu

+Boska Provide ChainanyNos Mt

delnry_detaifs : Detary |

Stk TePwchata
[Fraiocel ; Frapare
| ES—

<<hgentr> |
Purchase Advsar
<eAgentz>
Consutant : PurchaseAdusor 1 Purchaser
dleTask() Hoptinhr : P .
GueryOnHistory() e Task()
I W i
| Quer | i Megatiate)
| )
[ROLE CHANGE| [ROLE GHANGE]
g “OrderPlacer : Purchaser
Recorder: Purchasahduisor e |oumonnon ot - dieTask()
Notity EndOfPurchase() fenice] ReceneOrderingRecuest()
WieTask() UpdatePurchaseHistory() Ovded(}
ReceheRecoeding Request() T —
1 Thelveryiatiication
cahghat
Stoge LI

DelivaryNotifer : Storell |

Figure 3.38 — PASSI Roles Description Diagram (Burrafato and Cossentino 2002)

The next two steps of PASSI produce an Agent Implementation Model. The model

defines the target MAS in terms of architecture and behaviour.

o “Agent structure definition” step specifies the overall architecture of the system and

the internal structure of each agent. The former shows the agents making up the

system and their tasks (Figure 3.39), while the latter reveals the attributes and

64



methods of each agent, as well as the attributes and methods of each agent’s task
(Figure 3.40).
e “Agent behaviour definition” step specifies the flow of events between and within

the agents as method invocations and message exchanges.

<cAgentr>
\ge
<cAgent>> [ deTaski) Purchasar
Puochaseonter] | StartPuchase) toTaskpy
R tBooks() | AskForasiss(
Starthegotiation() (NegoGate()
NEM Courses Web Serer hd sunprwirau RecabaOrderingRequesi()}
- m e Moty EndOPurchase) | o el
PurchaseAdusor |UpdatePurchaseiston )
| o Tamke) = T =
| RecalvAdicaRaquest]) Agant>
| GueryOnHistory() Storwlll %
|Updatetstary() ity Dl
Supplier

Figure 3.39 — PASSI MAS Structure Definition Diagram (Burrafato and Cossentino 2002)

<<Agants> <<Taer | w<Taske <<Tuk>r,
PurchaseManage ReceivePurchase Request StanPurchase e
urchataifarmation |_coune_inks : Courte ————————| [ Lcouna_infa : Caurte L
tine StatPurhase) racehwd_adice : Stocks e
ragotiatingConditiont 0 tart Task _our_raguest © Stock
. AskF P AskForhdviced) iheir_best_offer : Stock
Cata neA Rk 0 —————
S AGENT_TYPE : String = *Purchase b —
[EACENLYPE (940" Putvbns Woooaar’ staTask
PurchatesManager() mandia TheiBeatOfen)
regisirationFaded) —
registrationRefused)) =<Task=> == W e Tagks>
registrationSuccedod() MheTask <<Tasian StartOudering
huidowmg — Toak | vtock_to_purchase: Sock|
e e Task eI
[stariTasky 1 StanGrdering)
g - startTask()
Y T w V\ <
A chaeHistory <<Task>> oceive DebweryHotifica
F::g-nl”_. UpdatePurchaseHistol ReceiwD Motification
 FPA-O8) |_purchass_te_recend : Purchase Not#yEndOPurchase _delhary_delais : Dulivery
MR o urchase)
stadTask stanTask() starTaskg)

Figure 3.40 — PASSI Agent Structure Definition Diagram (Burrafato and Cossentino 2002)

The Code Model is subsequently constructed to specify the target MAS at the code
level. It is developed by reusing the predefined patterns of agents and tasks (i.e. “Code
reuse” step), and by generating the source code for the target system (i.e. “Code

completion” step).

Lastly, the Deployment Model is built through step “Deployment configuration”. It
specifies the allocation of agents to processing units and any constraints on the

migration and mobility of agents.

3.2.12. ADELFE

ADELFE (Bernon et al 2002a; Bernon et al 2002b; Institut de Recherche en
Informatique de Toulouse n.d.) is a methodology dedicated to adaptive MASs, which

are MASs that can adapt themselves to unpredictable, evolutionary and open

65



environments. At the core of ADELFE is the AMAS theory, which postulates that the

global behaviour of a MAS emerges from the collective behaviour of the different

agents composing it. Agents designed by ADELFE are equipped with an ability to deal

with cooperation failures known as “non cooperative situations”.

The development process of ADELFE covers four phases. The Requirement Phase is

concerned with:

defining the target system through a set of keywords;

clarifying the functionality of the system via use cases; and

describing the system’s environment in terms of actors (i.e. active and passive
entities that interact with the system), system context (i.e. description of data flows
between these active/passive entities and the system) and environment
characteristics (i.e. whether the environment is dynamic, accessible, non-

deterministic, and/or continuous).

Output of these steps is stored in Keyword Set Document, Requirement Set Document

and Environment Definition Document respectively.

The Analysis Phase then identifies agents and applying the AMAS theory to the target

application. It consists of five major steps.

1.

2.

“Domain analysis and architecture study” step analyses use cases in order to
develop a Preliminary Class Diagram that shows entities composing the system
(Figure 3.41).

“Adequacy of AMAS theory” step helps the developer to decide if the AMAS theory
is indeed appropriate to the target system, since this kind of modelling is useless to
certain applications.

“Agent identification” step determines which system entities are suitable to be
implemented as agents, thereby producing a Refined Class Diagram (Figure 3.42).
The consideration should take into account the entities’ characteristics such as
autonomy, proactiveness and negotiation capabilities.

“Adequacy of the AMAS Theory at the local level” step identifies which agents need
to be adaptive. It then applies the AMAS theory to each of them by decomposing the
agent into a system of sub-agents that interact flexibly with each other to provide the

adaptive behaviour for the composing agent.

66



5. “Study of interactions” step develops a set of sequence diagrams and activity
diagrams to describe the interactions among entities within the system.

Outputs of the above Analysis steps are stored in a Software Architecture Document.

attribute s courses oCCUes Rooms
Teacher ] manager
P 1 1
manages cohstraints defines constraints
1 1 ! !
Courses < Constraints :
manager Constraint —<:.> manager Gritl 1’— cell PR Room
1 manages constraints 1 spiits time siots
gitributes courses Students QCclpies
froup 1

Figure 3.41 — ADELFE Preliminary Class Diagram (Institut de Recherche en Informatique de Toulouse

n.d.)
[~ 1
Beooking
PPN Agent Constraint Grid - Cell
« agent » 110
1 = - 1
1 1 1 |1 ?.
Course Rt:rf:strhﬂv. Constraint Room Reoom
Manager 1 = :ggent» 11 Manager 11 - 1 Manager

Figure 3.42 — ADELFE Refined Class Diagram (Institut de Recherche en Informatique de Toulouse n.d.)

The Design Phase of ADELFE deals with the detailed design of system architecture,
agent internal structure and non-cooperative situations. Overall architecture of the
system is modelled in terms of packages, classes (of agents and objects) and
relationships between them. The architecture of each agent is designed as a composition
of “representations” (i.e. the agent’s beliefs about the environment and itself),
“aptitudes” (i.e. the agent’s capabilities on its knowledge), “skills” (i.e. capabilities that
the agent brings to its collective), “interaction language” (i.e. protocols used by the
agent) and “non-cooperative situations” (i.e. rules for dealing with unusual cooperative
situations that the agent may face with) (Figure 3.43). ADEFLE describes each non-
cooperative situation in terms of its name, conditions for its detection, the state in which
the agent is when detecting the situation, and actions that the agent may perform to
remove the situation (Figure 3.44). All outputs of the Detailed Design phase are stored

in a Detailed Design Document.

The Implementation phase of ADELFE reuses activities from the conventional

Rational Unified Process lifecycle.

67



|- ______BookingAgent =~ |
| Representations
= constraints « pariners
* bookState + recentiyMetAgents
+  partnershipState = RAFather
. ints | = curentCell
Skills
+  movelnTheGrid * managePartnership
ag -
manageBooking
=« bookARoom = cancelPartnership
cancelBooking * negotiatePartnership
e o i o - S o
Interaction

Figure 3.43 — ADELFE Agent Internal Structure (Bernon et al. 2002a)

Booking Confiict
State

[ Any

Descriph
The BA is in a cell that is interesting to book but this cell is already
booked

‘Conditions
The BA is in a cell AND this latter is already booked AND yet the cell
would be suitable if not booked

Actions
IF the cost of the new booking is less than the older one THEN the BA.
books the cell ELSE the BA moves elsewhere

Figure 3.44 — ADELFE Non-Cooperative Situation (Bernon et al. 2002a)

3.2.13. COMOMAS

COMOMAS (Glaser 1996; Glaser 1997a; Glaser 1997b) is built upon CommonKADS —
a methodology for developing knowledge-based systems (Schreiber et al. 1994).
CommonKADS proposes a set of seven models for specifying various types of
knowledge required by a knowledge-based system: Organisation, Task, Expertise,
Decomposition Expertise, Design, Communication and Agent Models. COMOMAS
adapts CommonKADS to the development of MAS by including MAS-specific
knowledge structures, taking into account the reactive, cognitive, cooperative and social

competencies of autonomous agents.

The development process of COMOMAS consists of five steps (Figure 3.45).

Requirements Analysis
Design Medel l

influences

+——— Competence Analysis

Functional Analysis ——
influences influences Experiise Model

Task Modal

Agent
Composition

mﬂuenoy ‘\lm‘luences

Social Analysis Cocperative Analysis
System Modal Cooperation Model

Figure 3.45 — COMOMAS steps and models (Glaser 1997a)

68



“Functional analysis” step identifies the tasks that need to be solved by the target
MAS. A task hierarchy, along with each task’s details (i.e. input, output and control
flow between tasks) is specified to form the Task Model.

“Requirement analysis” step identifies non-functional design requirements of the
system (e.g. efficiency and robustness), rankings of the requirements and
interdependencies between the requirements. This information is captured in the
Design Model.

“Competence analysis” step identifies different types of knowledge that are required
for agents to achieve the specified tasks. They include “task knowledge” (i.e.
knowledge of previously accomplished tasks), “problem-solving knowledge” (e.g.
strategies and methods for achieving particular tasks) and “reactive knowledge” (i.e.
reactive responses to stimuli). Competence analysis produces the Expertise Model,
which can be formalized using Conceptual Modelling Language (Figure 3.46).

EXPERTISE-MODEL Transport-application;
domain-knowledge
inference-knowledge
TASK-ENOWLEDGE

TASK plan-navigation-path ... END TASK [plan-navigation-path;]
TASK localize-robot ... END TASK[localize-rcbot;]

TASK avoid-obstacles ... END TASK [aveid-obstacles;] .

TASK place-robot ... END TASK [place-robot;]

TASK load-box ... END TASK [load-box;]

TASK unload-box ... END TASK [unload-box;] .

TASK wander-around ... END TASK [wander-around]; .

TASK move-towards ... END TASE [ move-towards;] .

END TASK-KNOWLEDGE .
psm-knowledge
reactive-knowledge

EED EXPERTISE-MODEL [Transport-application;] .

Figure 3.46 — COMOMAS Expertise Model (Glaser 1997a)

“Cooperative analysis” step defines cooperation protocols, cooperation methods
(e.g. data sharing or message passing), conflict situations and negotiation strategies
for agents to resolve these conflicts. The results are captured in the Cooperation
Model.

“Social analysis™ step identifies social competencies required by agents to act more
smoothly during cooperation. In particular, it identifies agents’ roles, agents’
commitments to goals, and dependencies between agents in terms of goals and data.

The results are stored in System Model.

Knowledge structures derived from the above five conceptual models are then used to

compose each agent via an Agent Model (Figure 3.47). The developer can identify

69



agents by clustering the identified competencies while ensuring that the specified non-

functional design requirements are satisfied.

QOrganisation Inlernal Architecture
Methods \ \ / Control Km:twladge

[ Roles Social Knowledge Agent Model Control Methods
| Beliefs / — \

| Commitments / /

" Reactive Knowledge
s ey |

klntantlons Cognitive Knowledge

anm\ra and
L tasks * component

Figure 3.47 — COMOMAS Agent Model (Glaser 1997a)

3.2.14. MAS-CommonKADS

Like COMOMAS, MAS-CommonKADS (Iglesias et al. 1996; Iglesias et al. 1998) is

also based on CommonKADS (Schreiber et al. 1994). However, the methodology also

takes advantage of various OO techniques such as use case analysis and CRC cards.

The development process of MAS-CommonKADS covers the conceptualisation phase

through to a detailed MAS design that can be directly implemented. The

Conceptualisation Phase obtains a preliminary description of the problem domain via

use cases and Message Sequence Charts.

The Analysis Phase then investigates the system requirements via five CommonKADS-

based models. These models are developed in a cyclic risk-driven manner.

Agent Model identifies agents from the analysis of use cases, problem statements,
CRC cards and heuristics. Textual schemas can be used to describe each agent in
terms of name, type, role, position, services, goals, skills, reasoning capabilities and
permissions.

Task Model specifies all the tasks that need to be fulfilled by the target system. It
consists of a task hierarchy and a textual description of each task (e.g. name, inputs,
outputs, task structure, frequency of application and required capabilities of
performers).

Coordination Model describes the dynamic relationships between agents. It is
constructed via two activities: 1) defining the possible communication channels

between agents by examining prototypical scenarios, and 2) analysing each inter-

70



agent conversation to determine its complexity and coordination protocols. Various
OO diagrams can be used to represent this model, including Message Sequence
Charts and Event Flow Diagrams for modelling communications between agents
(Figure 3.48 ), High Level Message Sequence Charts for modelling coordination
protocols, and State Transition Diagrams for modelling the processing of

interactions (Figure 3.49).

mac DETERMINE FLIGHTS AND PREDICTIONS askféd.ad destination]  askiflights]
Secretary Airing clark Pradictsr . -
| —* | Secreta Predicior
- — User i'.‘_b.-m- =y < =
" | gl telllprediction
 |ask(8d, ad, destnation) somylonuse] |
* !_t-_ll_mm | I telifflight]
| womy{cause) | askfdd ad destination] | |somyfcause]
' = v
‘ IMim Gloﬂ\i

Figure 3.48 — MAS-CommonKADS Message Sequence Chart (left) and Event Flow Diagram (right)
(Iglesias et al. 1998)

mse PROPOSITION EE

AGCEPT ) COUNTERP) (REJECTED)
-
e &=

@)
a_aea taled >
A

Figure 3.49 — MAS-CommonKADS High Level Message Sequence Chart (left) and State Transition
Diagram (right) (Iglesias et al. 1998)

Expertise Model defines the knowledge required by each agent to achieve its goals.
This knowledge includes domain knowledge (i.e. domain ontology), inference
knowledge (i.e. inferences to be made on domain knowledge), task knowledge (i.e.
order or structure of inferences to achieve a task) and problem-solving knowledge
(i.e. methods for carrying out each inference). These types of knowledge are
captured respectively in Domain Knowledge Ontology (Figure 3.50), Inferences
Diagrams (Figure 3.51), Task Knowledge Specification and Problem Solving
Method Template.

formula
parameter

Figure 3.50 - MAS-CommonKADS Domain Knowledge Ontology (Schreiber et al. 1994)

output

71



Figure 3.51 — MAS-CommonKADS Inferences Diagram (Iglesias et al. 1998)

o Organisation Model extends CommonKADS’ Organisation Model to show

static/structural relationships between agents (Figure 3.52).
(BaseAgenty

,—Aﬁ_

/Prediclor ecretary

Figure 3.52 — MAS-CommonKADS Organisation Model (Iglesias et al. 1998)

The Design Phase of MAS-CommonKADS consists of three major activities.

o Agent Design determines the most suitable architecture for each agent. It
subsequently maps the agent’s logical modules onto the selected architecture.

e Agent Network Design defines the infrastructure of the target MAS, including
network facilities (e.g. yellow-pages service), knowledge facilities (e.g. ontology
servers) and coordination facilities (e.g. protocol servers).

e Platform Design selects the most suitable software and hardware for MAS
implementation.

All design specifications are captured in a Design Model.

3.2.15. CASSIOPEIA

CASSIOPEIA (Collinot et al. 1996; Collinot and Drogoul 1998) aims to support the
development of collective problem-solving MASs, where agents work together to fulfil
a specific collective task. The methodology proceeds from the collective task to the

design of MAS along three steps.

1. “Definition of Domain-Dependent Roles” step identifies all the roles that are
required to achieve the collective task, by grouping together the elementary

behaviour needed to fulfil the task. Agents are subsequently defined as sets of roles.

72



Each agent may assign a particular role to act as its "active" role at a given time
while other roles are “idle”. For example, in the application of soccer playing robots,
every “Player” agent can take on four roles "Shooter", "Placer", "Blocker" and

"Defender", however only one of these roles can be active at a given time.

2. “Definition of Relational Roles” step specifies the organisational structure of MAS
via relational roles. If an agent is dependent on another agent (due to dependencies
between their domain-dependent roles), the former agent will play the relational role
of an “influencing agent”, while the latter plays the relational role of an “influenced
agent”. A Coupling Graph can be developed to reveal the dependencies among
agents and their domain-dependent roles (Figure 3.53). This step also defines
“influence signs” between agents (i.e. interaction messages) and “relational

behaviour” performed by each agent to handle these influence signs.

Agent A Agent B

X_®

‘ conditioning ‘ simultaneous facilitatic d1: Defending depends on the other robots” defense strategy
. o d2: Shooting can help oneself or another agent to shoot
[::] coordination . sequential facilitation d3: Shooting depends on the position of oneself or opponent
d4: Defending may allow to catch the ball of the opponent
d5: Blocking can help oneself or another agent to shoot the ball

Figure 3.53 — CASSIOPEIA Coupling Graph (Collinot and Drogoul 1998)

3. “Definition of Organisation Roles” step addresses the dynamics of MAS
organisation by assigning the organisational roles of “group initiator” and “group
participant” to different agents. This step also specifies the ‘“organisational
behaviour” of each agent when playing its organisational role (i.e. group formation
behaviour, commitment behaviour and group dissolution behaviour). The “influence
signs” generated by this behaviour should also be defined (e.g. commitment signs

and dissolution signs).

73



3.2.16. TROPOS

TROPOS (Castro et al. 2001; Castro et al. 2002; Bresciani et al. 2004) is based upon the
i* organisational modelling framework proposed by Yu (1995). It employs the concepts
of “actor”, “goal” and “dependency” to represent system requirements, MAS
architecture and MAS detailed design. The development process of TROPOS is

structured into four phases.

o The Early Requirements Phase investigates the intentions of system stakeholders
via two models. Strategic Dependency Model shows the relevant stakeholders,
represented as actors, and their inter-dependencies, including goal/soft-goal
dependencies, task dependencies and resource dependencies (Figure 3.54). Strategic
Rationale Model then elaborates how the stakeholders’ dependencies can be fulfilled

through means-end analysis (Figure 3.55).

Media ltems

Media
Producer

Run
Shop
OrderBy
Intarnat
im Handle Orderey ‘
Cuslemor

Ordars

i Select
Orderin Items
1 Manage Parson
\ Training w Inventary

Determine
\ g."t. Amount
Media . ustomear
fres Enhance Consult
Supplier g Seoll Stock Catalogus Gatalogue
Media l
Items

Continuing

Business
Continuing

Supply

Figure 3.55 — TROPOS Strategic Rationale Model in Early Requirement phase (Castro et al. 2001)

W Telecom Communication
@ Cry Services Modi@ Tnaenat
o a
"

-
—"

74



The Late Requirements Phase identifies functional and non-functional
requirements of the target system by extending the Strategic Dependency Model and
Strategic Rationale Model. Firstly, the target MAS is introduced as a new actor in
the Strategic Dependency Model which contributes to the fulfilment of the
stakeholders’ goals (Figure 3.56). Means-end analysis is then performed on this
system actor to produce a new Strategic Rationale Model (Figure 3.57). If necessary,
the system actor can be decomposed into several sub-actors, resulting in a refined

Strategic Dependency Model and Strategic Rationale Model.

The Architectural Design Phase selects a suitable organisational structure for the
target MAS by evaluating the quality attributes of the candidate organisational
structures against the system’s soft-goals. TROPOS offers a catalogue of
organisational styles that can be selected and reused. The selected organisational
pattern may result in changes in the Strategic Dependency Model and Strategic
Rationale Model, with actors/sub-actors being added, removed or changed. The final

set of system actors/sub-actors serves as candidates for agents.

The Detailed Design Phase deals with agent interactions and agent internal design.
Agent interactions are modelled using UML sequence diagrams and/or collaboration
diagrams. Agent internal structure is defined in accordance with the BDI model.
Specifically, “plans” are used as a mechanism for agents to achieve goals, perform
tasks or respond to an event. Agent’s beliefs are made up of resource entities owned
by the agent. A Class Diagram and Plan Diagrams are developed for each agent to

describe its internal structure and plans (Figure 3.58 and Figure 3.59 respectively).

75



Availability

St Med Find U
h nd User
L= Process New Needs
On-line
Monsy
Place Order I‘ ransactlon
Security

7/

Internet
Services

Bank Cpy

Communication|
rvices

Continuing
Business
st
upplier
Media Items PP

Continuing
Supply

Update
Catalogue

Figure 3.57 — TROPOS Strategic Rationale Model in Late Requirement phase (Castro et al. 2001)

NE.? A'?:mr];ﬂg Internat

Handled

Media
Supplier

Find User
New Needs

76



<<i* actor>> " Ao
CartForm ShoppingCart .
CustomerProfiler - - ppng <<i* actor>>
<<Text>> itemCount : integer itemCount : integer &
<<Text>> qty[0.."] : integer tax : curre On-line
<<Text>> currentTotal : currency taxRate : float Catalogue
0.r <<Checkbox>> selectitem(0. ] otNeight s Sge I
b il 24 ﬁgﬁml shiﬁein Cost : currency 0.r
CustomerProfileCard aam e, qty[0.."] : integer =
- ::gﬂggﬂnt::gmm subTotals[0.."] : currency Medialtern
customerid : long ) n iteCount{) notification() -
customerName : string <<Button>>Recalculate calculateTotals() id: long
firstName :string getCart() f itemMNbr : string
middieName : string ildkernT: computeWeight() itemTitle : string
address : string DUt mT o) getLineltem() _inform() itemBarCode : OLE
e writeTableRow() InilializeReport( ) N -
tel: .';'Il.l‘ll‘lgt . updateltems() ~Flans - itemPicture : OLE
bt loadCartForm() initialize  refuse category :string
jon * st updateCartForm() selectitem propose genre : string
profession : string lICartF ded iption : strin
salary : inleger kiiCanForml) heck I aditor sting.
marilalStatus : string A0S o cancel  confimm publisher : string
familyComp[0..1] : integer (—% logout failure date : date
intemetPref[0..10] : boclean | 1 ltemLine 0. veri ge d unitPrice : curency
entertPref[0..10]:string <0—,<> ng'ér:ﬂnréféﬁ weight : single
hobbies|0..5] : string i lon - L
comments : string = a 0.* IltemDetail 1
creditcard# : integer qh" b |n§egber_m . I T 1
prevPurchase([0.."] [0.."]) allowsSubs :boolean
I:sln weight() ‘ DVD ‘ Book ‘ Video ‘...‘ CD | ‘CDFOI'I'I—‘
prevPurchPrice([0..*] [0..7]]) cost()
: integer

Figure 3.58 — TROPOS Agent Class Diagram (Castro et al. 2002)

Checkout
IPress heckout button [checkout button 1 art. )
[Mandatory fields filied]
IverifyCC CC# vali Press confi tton
Fields & Credit Card }:onﬂrmﬁ! ?ggn%? Item
Checking Checking Registering

[Not
fi=5] fcancell] | ltems
—— g fIoC notvatd] | |=3) & Ledsanemy_|Reostered
fields filled] * [i<5| "li=3n B

Fields Updated Updated
| i | CC# Stock Records
U?gg{?ng [ Corracr.ingJ . ..-[ Updating J

registered nenU | Records updated

@ succeeded/ shoppingcart. logout(

Final Amounts
Calculating

calculated

Di;gr:g:@ Customer Profil
it asked | Updatin
/ shoppingCart logoulty ,rapo o ,..] 1() Bg’odﬁaa’d il [aiready reg| J
3 fall IshoppingCart.logout() C: | butto d] OR
e T i T LT —

Figure 3.59 — TROPOS Plan Diagram (Castro et al. 2002)

3.3. GENERAL LIMITATIONS OF EXISTING
MAS DEVELOPMENT
METHODOLOGIES

Section 3.2 has described each of the sixteen AOSE methodologies for MAS
development which were selected from the literature. Each methodology makes a
valuable contribution to the area of AOSE, by offering a different set of steps,
techniques and model definitions for the analysis and design of MAS. However, as will
be revealed in this section, each existing AOSE methodology discloses a number of

general limitations. Section 3.3.1 identifies the limitations relating to the general

71



analysis and design activities of MAS, while Section 3.3.2 exclusively discusses the
limitations regarding the support for ontology-based MAS development. The latter
directly causes the existing AOSE methodologies to not being able to fully realise the
benefits of ontologies to interoperability, reusability, MAS development activities and
MAS operation (cf. Section 2.3.2), as would be shown in Section 3.3.2. A more detailed
evaluation of the existing AOSE methodologies was conducted at a later stage by the

research and is presented in Chapter 5.

3.3.1. Limitations Regarding MAS Analysis and Design

MASE is weak in agent internal design. Although it provides guidelines on how an
agent may be assembled’, it does not address how the internal components used to
assemble agents can be identified (if reused) or developed (if defined from scratch),
such as goal, belief, plan or reflexive rule components. The methodology is also weak in
MAS organisation design, since it does not investigate the authority relationships

amongst agents or roles in the system.

MASSIVE improves on MASE by paying extensive attention to the design of MAS
overall architecture and organisation. Nevertheless, it is very weak in agent internal
design. Apart from the Role View which specifies roles played by each agent and the
Architectural View which selects agent architecture, MASSIVE does not offer any
steps, techniques and model definitions for the specification of agent’s mental
constructs such as beliefs, goals, capabilities, plans, reflexive rules and/or actions. In
addition, MASSIVE does not provide any modelling notation for the representation of
its model kinds except for Task View. The methodology merely presents guidelines on

what to be modelled and not #ow these can be represented.

Like MASSIVE, SODA lacks support for the internal design of agents. It only
addresses the specification of agents’ high-level behaviour such as roles and tasks. The

specification of agent internal architecture and mental constructs such as beliefs, goals

° That is, by either reusing a pre-defined agent architecture and internal components, or retrieving pre-
defined internal components and assemble them into a user-defined architecture, or developing both
internal components and agent architecture from scratch.

78



and plans is not covered. In addition, SODA does not present any notation for

representing its model kinds.

Similar to MASSIVE and SODA, GAIA lacks support for agent internal design. Its
Agent Model only specifies roles for each agent, without defining agent internal
architecture and mental constructs (e.g. agent’s beliefs, goals, plans and actions).
GAIA’s support for agent interaction design is also limited. The Acquaintance Model
simply identifies the communication pathways between agents and the Interaction
Model merely shows the “institutionalised patterns” of interactions. No detailed design
of agent communication is given (e.g. the potential sequences in which messages are

exchanged or the contents of exchanged messages).

MESSAGE is weak in the usability of its process steps, particularly in the Design phase
where many steps are not supported by comprehensive techniques. For example, the
identification of agents (from roles) is to be based merely on the developer’s intuition
and experience. The need for elaborating interaction protocols is mentioned, but no

techniques are provided for the specification of message sequences and contents.

INGENIAS is also weak in usability due to the complexity of its model definitions and
development process. The Organisation Model, for example, endeavours to capture a
large number of concepts within its content, including “agent”, “group”, “workflow”,
“task™, “role”, “goal”, “application” and “resource”. Using an unfamiliar notation, the
clarity and ease of understanding of the developed model is degraded even further. The
development process of INGENIAS is not easy to follow, since the transition between

the construction of different models within each workflow is not clear.

BDIM is weak in its support for agent interaction modelling. The methodology does not
provide any techniques for the specification of interaction protocols. It also does not
offer any modelling notation for the representation of agent interactions. The modelling
of MAS organisation in terms of roles’/agents’ acquaintances and authority

relationships is also overlooked.

HLIM is weak in terms of its modelling capability. The modelling notation used by

HLIM for many of its model kinds is found to be inefficient. For example, the use of

79



simple textual tables in Internal Agent Model and conversation to specify agent beliefs
and interaction protocols is not adequately powerful. These tables cannot express
information such as relationships between beliefs or alternative, concurrent or

conditional exchanges of messages.

MEI focuses merely on the discovery of agents and agent internal design, without
paying attention to the modelling of MAS organisation. The modelling capability of
MEI is also weak, since no explicit, formal modelling notation is recommended for the
representation of its model kinds (except for agent plans and coordination protocols

which are suggested to be represented by state diagrams).

PROMETHELUS is limited in its support for agent internal design. It exclusively targets
plan-based, BDI-like agents via the specification of plans, without addressing the
internal design for other styles of agents such as purely reflexive agents or hybrid
agents. The methodology is also weak in MAS organisation design, since it does not

investigate the authority relationships amongst agents or roles in the system.

PASSI is weak in its support for agent internal behavioural design. The methodology
suggests defining agent behaviour via event flows and method invocations, which is
more suited to object behaviour than agent behaviour. Planning agents, for example,
require the specification of plans, while reflexive agents require the modelling of

reactive policies (Wooldridge and Jennings 1994; Vidal et al. 2001).

ADELFE offers exclusive support to the development of adaptive MASs. While this is
a strength, it is also a weakness because if a MAS does not need to be adaptive,
ADELFE may be inappropriate or inapplicable. For example, the internal model of an
agent as designed by ADELFE'? is not applicable to all types of agents, such as purely
reflexive agents'' or purely planning agents'?. The methodology is also weak in agent
interaction design, since even though it mentions this activity, there are no techniques to

support the specification of interaction protocols.

CEINT3

" ADELFE models each agent as being made up of “representations”, “aptitudes”, “skills”, “interaction
languages” and “non-cooperative situations”.

! Purely reactive agents do not need “representations” and “aptitudes”.

12 ADELFE agents do not have “plans” in their internal structure.

80



COMOMAS is weak in its support for agent interaction design. Although a
Cooperation Model is developed, no detailed techniques are provided on how message

contents are specified.

MAS-CommonKADS fails to offer adequate support for the development of Agent
Model. It is unclear how the developer can determine various properties for each agent
as required by the Agent Model, such as role, position, offered services, goals, skills,
general capabilities norms, preferences and permissions. If these properties are to be
derived from other model kinds of MAS-CommonKADS, the interconnections between

the model kinds are not highlighted by the methodology.

CASSIOPEIA does not provide any support for agent internal design. The
methodology also does not specify any explicit, formal set of model kinds, except for

the Coupling Graph which captures agents’ roles and agents’ dependencies.

Finally, TROPOS lacks structured and detailed techniques for its Detailed Design
phase. In particular, it is unclear how agent interaction protocols can be derived and

how agent plans can be constructed.

3.3.2. Limitations Regarding Support for Ontology-
Based MAS Development

As discussed in Section 2.3.2, ontologies are widely acknowledged in the literature for

their significant benefits to:

e interoperability;

e reusability;

e MAS development activities, namely system analysis and agent knowledge
modelling; and

e MAS operation, specifically communication and agent reasoning.

Nevertheless, a majority of the existing AOSE methodologies do not recognise and
implement these ontology’s benefits, including MASSIVE, SODA, GAIA, BDIM,
INGENIAS, HLIM, MEI, PROMETHEUS, ADELFE, COMOMAS, CASSIOPEIA and

81



TROPOS. These methodologies neither mention the use of ontologies in their MAS
development process, nor integrate ontologies into their MAS model definitions. Of the
16 investigated AOSE methodologies, only four were found to show some

consideration for ontologies: MAS-CommonKADS, MESSAGE, MASE and PASSI.

In MAS-CommonKADS, ontologies are used to represent the knowledge of the
application’s domain and the agents’ local domain-related knowledge. Accordingly,
MAS-CommonKADS illustrates the use of ontologies for knowledge representation in
system analysis and agent knowledge modelling respectively (c.f. Section 2.3.2.3).
However, MAS-CommonKADS does not recognise the essential role of ontologies in
agent communication. In particular, it overlooks the importance of ontology-sharing by
communicating agents, and the need for the exchanged messages to be formulated in
term of shared ontological concepts (c.f. Section 2.3.2.4). It is also unclear whether, and
how, MAS-CommonKADS can enable agent reasoning at run-time to utilize agents’
ontology-based knowledge, since no reference to ontologies is made during the
specification of agents’ problem-solving knowledge (which operationalises the agent
reasoning at run-time; c.f. Section 2.3.2.4). Moreover, MAS-CommonKADS
completely overlooks the capability of ontologies to support interoperability. The
methodology does not consider the possibility of agents possessing heterogeneous
ontologies, or of MAS incorporating heterogeneous non-agent resources, and how the
heterogeneity issues between these components can be solved (c.f. Section 2.3.2.1). As
a result, MAS-CommonKADS’ support for reusability is also limited, since the
methodology cannot show how legacy (heterogeneous) system components can be

reused (c.f. Section 2.3.2.2).

Similar to MAS-CommonKADS, MESSAGE uses ontologies as the representation
mechanism for modelling application’s domain knowledge and agents’ local domain-
related knowledge. Thus, it exercises the use of ontologies to support system analysis
and agent knowledge modelling (c.f. Section 2.3.2.3). However, unlike MAS-
CommonKADS, MESSAGE makes it possible for agent reasoning to utilize ontology-
based knowledge at run-time. The specification of agents’ behavioural knowledge at
design time in MESSAGE refers to the domain-related knowledge of agents (which is
modelled in ontologies) as providing the context for, and the input information to, the

agents’ behavioural knowledge (c.f. Section 2.3.2.4). Nevertheless, MESSAGE does not

82



recognise the importance of ontologies in agent communication. It neglects the
requirement of ontology-sharing between the communicating components, and the need
for formulating exchanged messages using the shared ontological concepts (c.f. Section
2.3.2.4). MESSAGE also does not exploit ontologies to support interoperability. The
potential existence of heterogeneous MAS components and how these components can
be interoperated are not discussed (c.f. Section 2.3.2.1). As a result, MESSAGE cannot
illustrate the role of ontologies in promoting the reuse of legacy (heterogeneous) system

components (c.f. Section 2.3.2.2).

The extended version of MASE (DiLeo et al. 2002) exploits ontologies to facilitate
system analysis and agent knowledge modelling, by using ontologies as the
representation mechanism for application’s domain knowledge and agents’ local
domain-related knowledge (c.f. Section 2.3.2.3). MASE outperforms MESSAGE and
MAS-CommonKADS in that it recognises the essential role of ontologies in agent
communication. In particular, it requires the developer to formulate the exchanged
messages in term of the concepts obtained from an ontology shared between the
communicating agents, through the “datatyping” of the exchanged parameters with
these concepts. MASE also exploits ontologies to support interoperability. It considers
the case of agents committing to heterogeneous ontologies (e.g. when the agents wrap
around heterogeneous information sources) and highlights the need for ontological
mappings between these local ontologies (c.f. Section 2.3.2.1). MASE’ support for
reusability is thus enhanced, since it allows the legacy (heterogeneous) system
components to be reused (c.f. Section 2.3.2.2). However, the benefits of ontologies to
agent reasoning cannot be realised in MASE, since MASE does not address how
agents’ behavioural knowledge (such as agents’ plans and actions) relates to agents’
ontology-based knowledge. Without an explicit indication of this relationship, MASE
cannot illustrate whether, and how, the agent reasoning process can utilize the ontology-

based domain knowledge (c.f. Section 2.3.2.4).

In PASSI, ontologies are used in system analysis and agent knowledge modelling to
represent the application’s domain knowledge and agents’ local domain-related
knowledge (c.f. Section 2.3.2.3). The importance of ontologies to agent communication
is also acknowledged by PASSI. The developer is required to identify, for each agent

conversation, the ontology that needs to be shared by the communicating agents, and to

83



define the exchanged messages in term of the shared ontological concepts (c.f. Section
2.3.2.4). However, PASSI fails to provide clear support for the use of ontology-based
knowledge by agent reasoning at run-time, since no reference to ontologies is made
during the specification of agents’ problem-solving knowledge (c.f. Section 2.3.2.4).
PASSI also does not exploit ontologies to support interoperability, as it overlooks the
existence of heterogeneous system components in a MAS and the need for ontological
mappings between them (c.f. Section 2.3.2.1). As a result, PASSI’s support for
reusability is limited, because it cannot show how (heterogeneous) legacy components

can be reused (c.f. Section 2.3.2.2).

In summary, even though the above four AOSE methodologies exercise the use of
ontologies in their MAS development process and product, they do not comprehensively
acknowledge and implement all of the diverse roles of ontologies in MASs, namely
those identified in Section 2.3.2. More specifically, although all four methodologies
exploit ontologies to facilitate their system analysis and agent knowledge modelling
activities, none of them — by itself — can illustrate the use of ontologies to support
interoperability, reusability, agent communication and agent reasoning altogether. This
limitation prompts for the development of a methodology which acknowledges all of the
significant benefits of ontologies to MAS, and which integrates the use of ontology into

every applicable AOSE step and model definition to realise these benefits.

3.4. SUMMARY

This chapter has provided a review of the sixteen existing AOSE methodologies for
MAS analysis and design. It describes each methodology and highlights the general
limitations of each method. These limitations include those relating to the general
analysis and design activities of MAS, and those relating particularly to the support for
ontology-based MAS development. The next chapter, Chapter 4, puts forward the
objective of this PhD research in response to the limitations of the existing AOSE

methodologies.

84



CHAPTER 4
RESEARCH DESIGN

4.1. INTRODUCTION

This chapter provides a detailed description of the design of this research. It firstly
specifies the research’s objective in Section 4.2, thereafter presenting an outline of the
research activities in Section 4.3. Sections 4.4, 4.5 and 4.6 then describe each research

activity in terms of its aims, associated steps and research methods.

4.2. RESEARCH OBJECTIVE

As seen in Chapter 3, a number of methodologies have been published for the analysis
and design of MAS. Each methodology offers a valuable contribution to the field of
AOSE via its unique development process, techniques and model definitions.
Nevertheless, from a preliminary evaluation as shown in Section 3.3, each methodology
exposes a number of general limitations. One particular limitation is the weak support
for ontology-based MAS development. Despite of the important benefits that ontology
can offer to interoperability, reusability, MAS development activities and MAS
operation (cf. Section 2.3.2), most methodologies neither mention the use of ontologies
in their MAS development process, nor integrate ontologies in their MAS model
definitions. Although four methodologies show some consideration for ontology, they
do not investigate all of the diverse potential uses of ontology and implement them (cf.
Section 3.3.2). In addition, each methodology was also found to provide limited support
for at least one of the following areas of MAS development: agent internal design, agent

interaction design and MAS organisation design (cf. Section 3.3.1).

Acknowledging the above limitations of the existing AOSE methodologies, this

research sets its objective as follows.

85



“Contribute to the field of AOSE by proposing a comprehensive ontology-based AOSE
methodology for the analysis and design of MASs. This methodology aims to provide
support for ontology-based MAS development and various other AOSE methodological
requirements which are important to an AOSE methodology but which may not be well-
supported by the existing methodologies. The proposed AOSE methodology is named
“MOBMAS”, which stands for “Methodology for Ontology-Based Multi-Agent

Systems”.

MOBMAS does not aim to support the process of ontology engineering itself. This
process is assumed to be a separate analysis effort conducted by domain experts,
ontology engineers or the MAS developer himself. Ontologies can be developed using
specialised ontology-engineering methodologies such as IDEF5 (Knowledge Based
Systems Inc 1994), Griininger and Fox (1995) and METHONTOLOGY (Fernandez et
al. 1997). MOBMAS focuses instead on:

o the use of ontologies in the MAS analysis and design process; and

o the inclusion of ontologies in MAS model definitions.

The MAS resulted from using MOBMAS are called onfology-based MASs, since their
design specification explicitly includes ontologies, and ontologies can be used by agents

at run-time to facilitate the operation of MAS (Yuan 1999; Guarino 1998).

The scope of MOBMAS is limited to the Analysis and Design phases of the system
development lifecycle (SDLC), which traditionally contains four phases, Requirements
Engineering, Analysis, Design and Implementation (Eliason 1990; Dennis and Wixom
2003). MOBMAS process starts from a set of system functionality requirements (which
is identified by a separate Requirements Engineering effort not included as part of
MOBMAS) and ends with a design of a MAS system. Even though the Implementation
phase is not covered, MOBMAS addresses various important implementation-related

issues such as deployment configuration and selection of agent architecture.

It should be noted that, acknowledging the strengths of the existing AOSE
methodologies, this research did not develop an AOSE methodology totally from

86



scratch, but reused and enhanced the work of the existing methods where appropriate’”.

Nevertheless, the research did not aim to simply merge existing AOSE methodologies

per-se into one comprehensive methodology. Rather, it arrived at a comprehensive

AOSE methodology by:

e making a pioneering effort in identifying the methodological requirements of a
“standard” AOSE development methodology, by consulting the existing MAS
methodologies as well as the opinions of practitioners and researchers in the field;
and

e developing a comprehensive AOSE methodology that supports the identified
requirements, by combining the strengths of the existing methods, as well as

proposing new techniques and model definitions where the existing support is weak.

4.3. RESEARCH ACTIVITIES

The work of this research can be classified as design science — one of the two core
paradigms that characterise much of the research in the Information Systems discipline:
“behavioural science” and “design science” (Hevner et al. 2004; March and Smith
1995). The behavioural science research paradigm seeks to develop and verify theories
that explain or predict human/organizational behaviour surrounding the development
and use of information systems. Meanwhile, the design science paradigm — where this
research fits — seeks to create innovative artifacts through which the development and
use of information can be effectively and efficiently accomplished. In general, the
artifacts to be produced by a design science research can be of four types: methods (i.e.
sets of steps, guidelines or algorithms), models (i.e. abstractions and representations),
constructs (vocabularies and symbols) and implementation (i.e. prototype systems)
(March and Smith 1995; Hevner et al. 2004). This PhD research aims to create two of
these artifacts: method and models. The method to be developed is the MOBMAS
methodology, while the generated models are the set of models accompanying the

MOBMAS methodology (i.e. those produced by MOBMAS steps).

As identified by March and Smith (1995), a typical design science research should

comprise of two basic processes: build and evaluate. Build refers to the construction of

'3 That is, where the existing techniques and/or model definitions are evaluated to be good, with respect to
a particular methodological requirement.
87



the artifacts — in this case, the MOBMAS methodology and models. The evaluation
process refers to the use of appropriate evaluation methods to assess the artifacts’
performance. In compliance with this principle, this PhD research has been designed to
include activities that fulfil these two required processes. Specifically, it consists of
three research activities: the first two activities carry out the build process, while the

third activity executes the evaluation process.

1. Research Activity 1 — Identify the methodological requirements of MOBMAS

As defined by Henderson-Sellers et al. (1998), a software engineering methodology is
one that provides the following elements:

e asoftware engineering process to conduct the system development;

e techniques to assist the process; and

o definition of work products.

The “process” element itself should contain activities and steps'* (Henderson-Sellers et
al. 1998; Firesmith and Henderson-Sellers 2002). “Activities” are large-scale
descriptions of what needs to be done, such as “requirements engineering” activity,
“design” activity, “implementation” activity and “testing” activity. If the process is a
waterfall process, these activities might be referred to as “phases”. “Steps”, on the other
hand, are smaller-scale “jobs to be done” associated with each activity in the process.
Steps are then linked with techniques, which provide the way to carry out the steps, i.e.

the “how” (Figure 4.1).

Software engineering process

uses P

Technique
l.n 1.n

Step

EENNT 99 ¢,

Figure 4.1 — Associations between “process”, “activity”, “step” and “technique” (represented in UML)

4 Henderson-Sellers et al. (1998) and Firesmith and Henderson-Sellers (2002) use the term “task” instead
of “step”. However, since the term “task” will be used frequently in Chapter 6 — “Documentation of
MOBMAS” to refer to software functionality, the term “step” is used as a substitute.

88



Regarding the definition of work products, since MOBMAS covers Analysis and
Design activities, its work products should consist of models of MAS analysis and

design.

As a result, the required methodological elements of MOBMAS are (Figure 4.2):

e a software engineering process that contain activities and associated steps to conduct
the system development;

o techniques to assist the process steps; and

o definition of model kinds. Note that the term “model kind” is used rather than
“models” because the methodology only provides a definition of the specific classes
of models (Standards Australia 2004). The models themselves refer to actual

deliverables produced by the developer during the development process.

MOBMAS

¢

|

Process Techniques Model kinds
specification

Figure 4.2 — Components of MOBMAS (represented in UML)

In order to define the above elements for MOBMAS, it is necessary to determine the
features, steps and modelling concepts that are desirable to be supported by
MOBMAS process, techniques and model kinds. These desirable features, steps and
modelling concepts are referred to as “methodological requirements” of MOBMAS.
Research Activity 1 was concerned with identifying these methodological requirements.
It should be noted that, the steps that are specified as MOBMAS’ methodological
requirements are nof meant to be the “exact” steps that MOBMAS must provide.
MOBMAS can define its steps differently from these desirable steps. However, the

actual MOBMAS’ steps are required to correspond to, or cover, the desirable steps.

In Research Activity 1, apart from identifying the required features, steps and modelling
concepts for MOBMAS, it was also necessary to identify the desirable “ontology-
related steps” from amongst these required steps, so as to allow MOBMAS to support

ontology-based MAS development. These ontology-related steps should enable

89



MOBMAS to offer all of the widely-recognised benefits of ontology to MAS

development and MAS operation as listed in Section 2.3.2.

2. Research Activity 2 — Develop MOBMAS

This research activity defined the development process, techniques and model kinds
for MOBMAS so as to support the desirable features, steps and modelling concepts that
were identified by Research Activity 1. MOBMAS process, techniques and model kinds
were developed by reusing and enhancing the techniques and model definitions offered
by the existing AOSE methodologies where appropriate, and developing new techniques
and model definitions for MOBMAS where necessary.

3. Research Activity 3 — Evaluate and refine MOBMAS

MOBMAS was evaluated and progressively refined by collecting expert reviews,
having external developers use the methodology on a test application, and performing a
feature analysis on the methodology. The expert reviews gathered professional
evaluation of MOBMAS based on the experts’ non-empirical investigation of the
methodology. The use of MOBMAS on a test application then sought external
developers’ evaluation of MOBMAS based on their empirical usage of the
methodology. Lastly, the feature analysis was conducted to verify MOBMAS’ ability to
achieve its objective (which is, to provide support for ontology-based MAS
development and the other important AOSE methodological requirements that were
identified in Research Activity 1'°; cf. Section 4.2), to compare MOBMAS with the
existing AOSE methodologies, and to clarify MOBMAS’ ontology-related capabilities.

'S Through the justification of MOBMAS’ support for its methodological requirements, this research was

able to justify that MOBMAS’ actual steps and modelling concepts in fact correspond to, or cover, the

desirable steps and modelling concepts which were specified as part of the methodological requirements.
90



4.4. RESEARCH ACTIVITY 1 - IDENTIFY
METHODOLOGICAL REQUIREMENTS
OF MOBMAS

This section and the subsequent two sections (Sections 4.5 and 4.6) elaborate on the
design of each research activity listed in Section 4.3. Research Activity 1 — “Identify the
methodological requirements of MOBMAS” — is described in this section.

Research Activity 1 was conducted in four steps.

4.4.1. Step 1 — Identify “Potential” Requirements of
MOBMAS

The objective of this step was to determine a list of features, steps and modelling
concepts that were potentially desirable to the system development process, techniques
and model kinds of MOBMAS. These features, steps and modelling concepts were
subsequently validated into “actual” requirements of MOBMAS during Steps 2 and 3 of
Research Activity 1 (cf. Sections 4.4.2 and 4.4.3).

In order to identify the potentially desirable features for MOBMAS, this research
investigated a number of existing evaluation frameworks for assessing:
e AOSE methodologies; and

e conventional system development methodologies, including OO methodologies.

The evaluation frameworks for AOSE methodologies contain evaluation criteria that
relate to important agent-oriented and MAS-specific features, while the evaluation
frameworks for conventional methodologies help to reveal important generic system
engineering features, which may have been overlooked by AOSE evaluation

frameworks.

The potentially desirable steps and modelling concepts of MOBMAS were identified
by investigating the existing AOSE methodologies (which are described in Chapter 3).

91



Each existing methodology offers a different set of steps for the MAS development

process and a different set of model kinds for a variety of AOSE modelling concepts.

4.4.2. Step 2 — Conduct a Survey on Practitioners and

Researchers in the Field of AOSE

The survey was performed to achieve the following two objectives.

To validate the identified potential requirements of MOBMAS: The survey
asked the respondents to rafe each feature, step and modelling concept identified in
Step 1 in terms of how important the feature, step or concept is to a “standard”
AOSE methodology (on a scale of “Very high”, “High”, “Medium”, “Low” and
“Very low”). The survey respondents were also asked to rank order these features,
steps and modelling concepts in a decreasing order of importance. The “rating of
importance” and “order rank”'® of each feature, step or concept would later be
combined with the outputs of Step 3 in order to determine the “actual” requirements

for MOBMAS (Figure 4.3).

Potential requirements of MOBMAS
(identified in Step 1)

—

“Rating of importance” and “Order Number of existing AOSE methodologies
rank” of each potential requirement that support each potential requirement
(obtained in Step 2) (obtained in Step 3)

T~

Actual requirements of MOBMAS
(identified in Step 3)

Figure 4.3 — Determination of “actual” requirements of MOBMAS
To obtain professional recommendations on various issues that are useful to the
development of MOBMAS: A segment of the survey collected professional
suggestions on various issues that pertain to the construction of a “standard” AOSE

methodology, such as suggestions on the desirable MAS development lifecycle,

'® Note that both “rating of importance” and “order rank” were collected for the potential requirements
because if only one of these statistics was collected, it would not reflect a comprehensive indication of the
requirements’ importance. For example, a set of steps may be given the same “rating of importance” but
distinct order ranks (i.e. they are not truly equally important); or, a top-ranked step may have an overall
“Low” rating of importance.

92



desirable agent identification approach and desirable level of commitment to an

agent architecture by an AOSE methodology.

4.4.3. Step 3 — Perform a Feature Analysis on Existing

AOSE Methodologies

This step was performed after the completion of the survey in order to achieve the

following two objectives.

To further validate the identified potential requirements of MOBMAS and

determine the “actual” requirements of MOBMAS: The feature analysis

investigated all sixteen existing AOSE methodologies (described in Chapter 3) to

determine how many methodologies offer support for each feature, step and

modelling concept identified in Step 1. This finding was then combined with the

“ratings of importance” and “order ranks” obtained from the survey in Step 2 in

order to determine the “actual” requirements of MOBMAS (Figure 4.3).

Specifically, a potential requirement was qualified to be an actual requirement if:

- it was supported by a majority of the existing AOSE methodologies (i.e. 9 or
more out of 16); OR

- it was given a High to Very High “rating of importance” in the survey; OR

- it was given a Medium “rating of importance” in the survey AND its “order
rank™ is not the least important with respect to other requirements within the
same category.

All other potential requirements were excluded from list of actual requirements of

MOBMAS.

It should be noted that, all the steps that were specified as MOBMAS’ “actual”
requirements were not meant to be the “exact” steps that MOBMAS must provide.
MOBMAS can define its steps differently from these desirable steps. However, the
actual MOBMAS’ steps were required to correspond to, or cover, the desirable

steps.

93



e To identify and evaluate the techniques and model definitions provided by each
existing AOSE methodology: This identification and evaluation helped the
research to:

- identify a pool of existing techniques and model definitions that may be reused
or enhanced by MOBMAS to support its required features, steps and modelling
concepts; and

- identify which features, steps and modelling concepts of MOBMAS need to be
supported by new techniques and model definitions (i.e. those that are currently
not efficiently supported by the existing AOSE methodologies, either in terms of
the small number of supporting methodologies, or the insufficiency of the
available techniques and model definitions).

This information was used as inputs to the development of MOBMAS in Research

Activity 2.

4.4.4. Step 4 — Identify Ontology-Related Steps From
Amongst the Required MOBMAS’ Steps

After the methodological requirements of MOBMAS were determined in Step 3, Step 4
was performed to identify which of the required steps should be “ontology-related” (i.e.
which steps should use ontologies in their techniques and/or integrate ontologies into
their model definitions), so as to enable MOBMAS to realise all of the widely-
acknowledged benefits of ontologies to MASs, namely those previously identified in
Section 2.3.2:

e support for interoperability;

e cnhancement of reusability;

e support for MAS development activities, namely system analysis and agent

knowledge modelling; and

e support for MAS operation, specifically communication and agent reasoning.

Each of these benefits was investigated to identify the desirable ontology-related steps.
In particular, if a benefit was found to be realised through the use of ontology in an
AOSE step(s), this step(s) was flagged as a desirable ontology-related step. By doing so,
this research was able to ensure that MOBMAS, with its support for these ontology-

related steps, can realise all of the diverse benefits of ontology to MASs.
94



4.5. RESEARCH ACTIVITY 2 - DEVELOP
MOBMAS

Given the methodological requirements of MOBMAS as identified by Research
Activity 1 (cf. Section 4.4), Research Activity 2 was carried out to develop the
MOBMAS methodology. This activity constructed MOBMAS by defining the system
development process, techniques and model kinds to support the required features,
steps and modelling concepts Note that MOBMAS’ actual steps and modelling concepts
were not required to be identical to those identified by Research Activity 1. However,

the former was required to correspond to, or cover, the latter.

The process, techniques and model kinds of MOBMAS were developed by:
o reusing and enhancing the existing techniques and model definitions offered by the
available AOSE methodologies where appropriate; and

e developing new techniques and model definitions where necessary.

MOBMAS considered reusing an existing technique or model definition if that
technique or model definition was given a positive or high assessment'’ by the feature
analysis in Step 3 of Research Activity 1 regarding its support for a particular

requirement.

MOBMAS enhanced the existing work by refining, adapting, elaborating, extending

and/or integrating various existing techniques and modelling notation to improve their

usability and applicability. With regard to integration, the integration of techniques or

model definitions may result in:

- asynthesised, internally consistent technique or model kind; or

- a set of separate techniques or model kinds, each of which best suits a different
situation. In this case, MOBMAS provides guidelines on how to select the most

appropriate technique or model kind to use in a particular situation.

'7 The type of assessment depends on whether the corresponding evaluation criterion is a yes/no question
or a high/medium/low rating question.
95



Again, findings of the feature analysis in Step 3 of Research Activity 1 served as a
useful input. Evaluation of the existing techniques and model definitions helped to
identify those that could be enhanced. Another valuable resource was the outputs of the
survey in Step 2 of Research Activity 1. Recommendations given by survey respondents
on the various issues relating to AOSE methodology construction helped to provide

1deas for enhancement.

The need for new techniques and model definitions for MOBMAS arose when there
was a lack of existing techniques or model definitions for supporting a particular
requirement, and/or when the existing techniques or model definitions were low in
usability. New techniques and model definitions were developed for MOBMAS by
consulting the work in the respective literature (e.g. literature on ontology, agent
planning and agent coordination mechanisms). In addition, outputs of the survey in Step
2 of Research Activity 1 were also used. Ideas were obtained from the open-ended
recommendations given by survey respondents on issues relating to AOSE methodology
construction. The feature analysis in Step 3 of Research Activity 1 also helped to
identify those features, steps and modelling concepts that needed to be better supported

by new techniques and model definitions.

During Research Activity 2, particular attention was given to the “ontology-related
steps” identified in Step 4 of Research Activity 1 (cf. Section 4.4.4). These steps
required the use of ontologies in their techniques and/or the inclusion of ontologies in
their model definitions. In addition, since the existing AOSE methodologies either do
not provide support for ontology-based MAS development, or are insufficient in their
support, MOBMAS needed to make a lot of enhancement to the existing techniques and
model definitions, as well as develop many new techniques and model definitions, in

order to support the ontology-related steps.

96



4.6. RESEARCH ACTIVITY 3 - EVALUATE
AND REFINE MOBMAS

After MOBMAS was constructed by Research Activity 2 (cf. Section 4.5), it was

evaluated and refined progressively by Research Activity 3 in three sequential steps.

4.6.1. Step 1 — Obtain Expert Reviews

A non-empirical review of MOBMAS was collected from two experts in the field of

AOSE and ontology. The objective of the expert reviews was to:

e obtain experts’ opinions on the strengths and areas for improvement of MOBMAS;
and

e obtain experts’ suggestions on how to improve these areas.

The two expert reviews were obtained in an independent and sequential manner. The
review from the first expert was used to refine MOBMAS before the second expert was
asked to review the refined version. All refinements made to MOBMAS as a result of
each expert review were discussed with the relevant expert to ensure that he/she was

satisfied with the changes made.

4.6.2. Step 2 — Use MOBMAS on a Test Application

After being non-empirically reviewed and refined, MOBMAS underwent empirical

evaluation and refinement by being used on a specific application by two external

developers. These developers were requested to provide, based on their usage of

MOBMAS:

e opinions on the strengths and areas for improvement of MOBMAS,;

e suggestions on how to improve these areas;

o rating of the “ease of understanding” and “ease of following” of each step of the
MOBMAS development process (on a High-Medium-Low scale); and

o rating of the “ease of understanding” of each model kind of MOBMAS (on a High-

Medium-Low scale).

97



The two developers applied and evaluated MOBMAS in an independent and sequential
manner. The evaluation from the first developer was used to refine MOBMAS before
the second developer was asked to apply and evaluate the refined version. All
refinements made to MOBMAS as a result of each usage were discussed with the
relevant developer in order to ensure that he was satisfied. In addition, the refinements
made given the second developer’s feedback were also discussed with the first

developer in order to ensure that no conflicts of opinions occurred.

Apart from the evaluation of MOBMAS, the developers were also asked to produce a
set of analysis and design models to demonstrate their use of MOBMAS on the test

application.

4.6.3. Step 3 — Perform a Feature Analysis on
MOBMAS

The feature analysis was performed on the final version of MOBMAS to:

o verify whether MOBMAS, as the final product, is able to achieve its objective,
which is, to provide support for ontology-based MAS development and various
other important AOSE methodological requirements which were identified in
Research Activity 1 (cf. Section 4.2). It should be noted that, through the
justification of MOBMAS’ support for its methodological requirements, this
research was able to justify that MOBMAS’ actual steps and modelling concepts in
fact correspond to, or cover, the desirable steps and modelling concepts which were
specified as part of the methodological requirements;

e document the origin of MOBMAS techniques and model definitions (i.e. which
techniques and model definitions have been reused and enhanced from the existing
AOSE methodologies, and which have been newly developed); and

e compare MOBMAS with the existing AOSE methodologies in terms of various
specific evaluation criteria. The comparison also highlighted the strengths of
MOBMAS that resulted from its comprehensive support for ontology-based MAS
development, and which are not provided (or provided to a lesser extent) by the

existing methodologies due to their lack or low level of support for ontology.

98



4.7. SUMMARY

This chapter has stipulated the objective of this research and described the design of the

three research activities that were performed to achieve this objective, namely:

e Research Activity 1: Identify the methodological requirements of MOBMAS — a
“Methodology for Ontology-Based Multi-Agent Systems”;

e Research Activity 2: Develop MOBMAS; and

e Research Activity 3: Evaluate and refine MOBMAS.

In Chapters 5, 6 and 7, the performance and outcome of each activity are sequentially

documented.

99



CHAPTER 5

METHODOLOGICAL REQUIREMENTS
OF MOBMAS

S5.1. INTRODUCTION

This chapter reports on the execution and outcome of the first research activity of the

research’s plan presented in Chapter 4 — “Identify the methodological requirements of

MOBMAS” (cf. Section 4.3). The phrase “methodological requirements” refers to the

features, steps and modelling concepts that are desirable to be supported by

MOBMAS process, techniques and model kinds. Their identification was conducted

systematically through four research steps (cf. Section 4.4):

o Step I — Identify the “potential” requirements of MOBMAS:

This step aimed to determine a list of features, steps and modelling concepts that
were potentially desirable to the system development process, techniques and model
kinds of MOBMAS;

o Step 2 — Conduct a survey on practitioners and researchers in the field of AOSE:
This step worked towards validating the potential requirements of MOBMAS, by
gathering professional opinions on these requirements’ rating and order ranking of
importance. Step 2 also obtained professional recommendations on various issues
that were useful to the development of MOBMAS;

o Step 3 — Perform a feature analysis on the existing AOSE methodologies:

This step aimed to further validate the potential requirements of MOBMAS, by
analysing the existing AOSE methodologies. This analysis was combined with the
professional opinions obtained from Step 2 to determine the “actual” methodological
requirements for MOBMAS. Step 3 also identified and evaluated the techniques and
model definitions provided by each existing AOSE methodology for supporting each

methodological requirement; and

100



o Step 4 — Identify ontology-related steps from amongst the required MOBMAS'’ steps:
This step aimed to identify which of the required steps of MOBMAS should be
related to ontology, so as to enable MOBMAS to offer all of the widely-recognised
benefits of ontology to MAS development and MAS operation. These benefits have
been listed in Section 2.3.2, and include those relating to the analysis of application
domain, agent knowledge modelling, reusability, communication between MAS
components, interoperability between heterogeneous components, and agent

reasoning.

The execution and outcome of each research step are documented in Sections 5.2, 5.3,

5.4 and 5.5 respectively.

5.2. IDENTIFICATION OF POTENTIAL
REQUIREMENTS OF MOBMAS

Step 1 of Research Activity 1 was concerned with identifying the features, steps and
modelling concepts that were potentially desirable to MOBMAS process, techniques

and model kinds.

5.2.1. Identification of Potential Features

Features potentially important to MOBMAS were identified by investigating the
existing evaluation frameworks, namely:

o those for evaluating AOSE methodologies; and

e those for evaluating conventional system development methodologies, including OO

methodologies.

The former contain evaluation criteria that relate to important agent-oriented and MAS-
specific features, while the latter helped to identify important generic system
engineering features which may have been overlooked by AOSE evaluation

frameworks.

101



5.2.1.1. Evaluation frameworks for AOSE methodologies

A search of the literature revealed a limited number of evaluation frameworks for

AOSE methodologies. This research investigated all of the identified frameworks.

Shehory and Sturm’s Framework (2001): Shehory and Sturm’s evaluation criteria
assess both generic software engineering features and specific agent-oriented
features of an AOSE methodology. However, this research discarded a number of
features that relate to system implementation issues because these are outside the
scope of MOBMAS (cf. Section 4.2). Some other features were found desirable to
MOBMAS, but they were not specified in the list of MOBMAS’ potential features
because they can be indirectly supported via other features or modelling concepts.
For example, feature “Modelling of communication richness” evaluated by Shehory
and Sturm (Table 5.1) is equivalent to the modelling of Agent Interaction concepts
such as “Agent acquaintance”, “Interaction protocol” and “Content of exchanged
messages”. Since these concepts would later be included in the “potential modelling
concepts” of MOBMAS (cf. Section 5.2.3), this feature was not restated in this

section to avoid redundancy in MOBMAS requirements.

Table 5.1 displays the selection of evaluation features from Shehory and Sturm’s

framework and the reasons for discarding the others.

Table 5.1 — Selection of features from Shehory and Sturm’s framework (2001)

Evaluation Criteria Selected for the identification of potential features for MOBMAS?
Preciseness of models v
Accessibility of models v
Expressiveness of models v
Support for modularity v
Complexity Management v
Support for executability . X

Outside the scope of research
Support for refinability v
Support for analysability v
Support for openness v
Modelling of autonomy v
v
Modelling of complexity Assessed via criteria “Expressiveness of models”, “Support for modularity” and
“Complexity management” of this framework

Modelling of adaptability v
. o v

Modelling of distribution Assessed via the modelling of “Agent instance deployment” concept (cf. Section 5.2.3.4)

Modelling of communication
richness Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

102



e O’Malley and DelL.oach’s Framework (2001): This framework evaluates both the
technical features and management features of an AOSE methodology. Since the
management issues are outside the scope of this research, criteria relating to them

were excluded from the investigation (Table 5.2).

Table 5.2 — Selection of features from O’Malley and DeLoach’s framework (2001)

Evaluation Criteria Selected for the identification of potential features for
MOBMAS?
Cost of acquiring the methodology . X
Outside the scope of research
X

Cost of acquiring support tools .
Outside the scope of research

Effects on organisational business X
practices Outside the scope of research

Compliance with standards . x
Outside the scope of research

Traceability of changes v

X

Legacy system integration

Not applicable to all applications
Availability of reusable components v

v
Support for distribution Assessed via the modelling of “Agent instance deployment” concept (cf. Section
52.3.4)
Support for dynamic system v
structure
v

Support for interaction . .
PP Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

Support for scalability

Support for agility and robustness v

e Cernuzzi and Rossi’s Framework (2002): Cernuzzi and Rossi proposed a step-by-
step process for evaluating MAS development methodologies, supplemented by a
set of evaluation criteria. All of these criteria were studied to identify the potential

features for MOBMAS (Table 5.3).

Table 5.3 - Selection of features from Cernuzzi and Rossi’s framework (2002)

Evaluation Criteria Selected for the identification of potential features for
MOBMAS?
Modelling of autonomy v
Modelling of reactivity v
Modelling of proactiveness v
Modelling of mental constructs v
(beliefs, goals) Assessed via the modelling of “Agent Interaction” concepts (cf. Section 5.2.3.3)

Modelling of agent interaction

attributes Assessed via the modelling of “Agent Interaction” concepts and “Overall

System Design” concepts (cf. Sections 5.2.3.3 and 5.2.3.4)

Support for modularity

Support for abstraction

Modelling of system view

ANRNANAN

Communication support

e Sabas et al.’s Framework (2002): Sabas et al. presented a framework called

MUCCMAS for the comparative analysis of AOSE methodologies. MUCCMAS
103



offers a set of well-organised multi-dimensional evaluation criteria, many of which
were selected for investigation (Table 5.4). The discarded criteria were those that
focus on implementation-related issues (thus are outside the scope of MOBMAS), or
those that do not relate to specific AOSE features, but merely aim to compare the
different methodologies in terms of their applicability (e.g. target application,

programming paradigm and agent types).

Table 5.4 - Selection of features from Sabas et al.’s framework (2002)

Evaluation Criteria Selected for the identification of potential features for
MOBMAS?
Specification of process phases v
Specification of development models v
Specification of development approach v
Degree of user implication X
Outside the scope of research
Support for models reuse v
Availability of software support x
Outside the scope of research
Support for system division v
Support for formalism v
Support for derivation v
Models quality X
Too generic, unclear what “quality” embraces
Supported agent nature X
Does not infer any feature but merely aims to compare methodologies in terms of their
applicability
Supported agent type X
Does not infer any feature but merely aims to compare methodologies in terms of their
applicability

Support for various agent attributes

Modelling of organisation image v

Assessed via the modelling of “Role” concept and “Organisational structure” concept
(cf. Sections 5.2.3.1 and 5.2.3.4)

Modelling of environment nature

Assessed via the modelling of “Environment resource/facility” concept (cf.
Section 5.2.3.4)

Supported types of communication x
Does not infer any feature but merely aims to compare methodologies in terms of their
applicability
Supported communication mode X
Does not infer any feature but merely aims to compare methodologies in terms of
their applicability
Supported communication language X
Does not infer any feature but merely aims to compare methodologies in terms of
their applicability
Supported processing mode X
Outside the scope of research
Supported human-machine interface X
type Outside the scope of research
Supported programming paradigm x

Outside the scope of research
Environment of development x

Outside the scope of research
Supported application type x

Does not infer any feature but merely compares methodologies their applicability

104



5.2.1.2. Evaluation frameworks for conventional development
methodologies

Considering the large number of evaluation frameworks for conventional system
development methodologies, including OO methodologies, this research limited itself to
only a number of well-known frameworks, namely Wood et al.’s framework (1988),
NIMSAD (Jayaratna 1994), IFIP WG 8.1 (Olle et al. 1983) and The Object Agency’s
framework (The Object Agency Inc 1995).

e Wood et al.’s Framework (1988): This framework offers a large number of
evaluation criteria, many of which are too application-specific or too technical (e.g.
“Can stimulus/response relationships be represented in a time-dependent manner?”
or “Does the methodology provide a representation that clearly draws a boundary
around the system and separates it from its environment”). The relatively general
criteria selected for investigation by this research are listed in Table 5.5'%.

Table 5.5 - Selection of features from Wood et al.’s framework (1988)

Selected evaluation criteria for the identification of potential features for
MOBMAS

Support for reuse

Completeness of representations
Consistency of representations
Complexity of representations
Ambiguity of representations
Abstraction of representations
Support for exception handling
Support for robustness

e NIMSAD (Jayaratna 1994): NIMSAD evaluates an Information Systems
development methodology by determining whether, and how, the methodology
supports different components of a proposed “standard” development framework.
Three components of this “standard” framework are “methodology context”,
“methodology user” and “problem-solving process”. Only evaluation questions
pertaining to the “problem-solving process” component are relevant to this research,
since they evaluate a methodology’s development process and techniques, not the

implementation context of the methodology. Among “problem-solving process”

'® This figure, and figures 5.6, 5.7 and 5.8, do not document all of the evaluation criteria/questions
provided by the corresponding frameworks because the number of criteria/questions provided by each
framework is very large. In addition, the major reasons for discarding the unselected criteria have already
been stated in the text and therefore are not repeated in the figures.

105



evaluation questions, many were discarded because they do not relate to any specific
system engineering features, but instead assist in the in-depth understanding of a
particular methodology, such as “What level of expressions does the methodology
advocate” or “What criteria does the methodology offer for defining the problems ”.

Table 5.6 presents the criteria that were ultimately selected.

Table 5.6 - Selection of features from NIMSAD framework (1994)
Selected evaluation criteria for the identification of potential features for
MOBMAS

. What modelling notions and techniques does the methodology offer for expressing situation
characteristics?

. Does the expression provide sufficient information to help gain a feel for the situation of
concern?

. ‘What context information is captured or expressed?

e What steps or techniques does the methodology offer in the formulation of solutions?

o IFIP WG 8.1 (Olle et al. 1983): The IFIP Working Groups presented eight feature
analysis studies of Information Systems development methodologies. Two of these
frameworks were disregarded because they did not propose any specific desirable
software engineering features, but merely aimed to compare the different
methodologies in terms of their scope and applicability, namely Olive’s study'’
(1983) and Falkenberg et al.’s study® (1983). Nissen’s study (1983) was also
discarded because it focuses on the implementation aspect of a methodology?!,
which is not in this research’s scope of interest. Of the remaining five frameworks,
many criteria/questions were disregarded because they either pertain to
implementation aspects (e.g. “Training” and “Methodology transferability” criteria
in Bodart et al.’s study, 1983) or they are too application-specific (e.g. “What types
of decisions — identification, functional, technico-economic, organisational,
management — are considered in the methodology ” in Bodart et al.’s study, 1983; or
“Whether the design of databases in the methodology is data-oriented or processing-
oriented” in livari and Kerola’s study, 1983). Table 5.7 presents the selected

evaluation criteria/questions from each investigated feature analysis study.

% Olive’s study (1983) compares methodologies according to their supported abstraction levels (namely,
external, conceptual, logical, architectural and physical levels) and the target types of information systems
(e.g. database system or decision support information system).
» Falkenberg et al.’s study (1983) compares methodologies with respect to their coverage of the
development lifecycle and the level of support for each lifecycle phase.
21 Nissen’s study (1983) evaluates a methodology in terms of how well the documentation produced by
the methodology can be used to support different groups of interested people (e.g. designers, managers,
computer-operator personnel and end-user).

106



Table 5.7 - Selection of features from IFIP WG 8.1 frameworks (1983)

Framework

Selected evaluation criteria for the identification of potential features
for MOBMAS

Brandt’s study (1983)

Development process (i.e. the phases or development steps proposed in the methodology)
Model (including concepts, degree of formalism and abstraction)

Representation means (i.e. graphical elements, use of formal languages, forms etc)

Iteration and Tests (involving iterative routines and procedures for validation and
verification)

Wasserman et al.’s study | Coverage of SDLC (i.e. What phases of the software development process are covered by the
(1983) methodology)
Support for top-down and bottom-up development
Usability of the methodology (Is the methodology easy to use?)
Support for validation and verification (what is the explicit means by which the completed
system is validated against the original requirements; for each work product, what is the
method used to assure the quality of the product).
Support for problem analysis and understanding (i.e. problem-solving steps, problem-solving
and modelling techniques)
Support for communication among interested parties (i.e. modelling notation and concepts
supported by the methodology’s models)
livari & Kerola’s study | Which are the main components of the conceptual structure
(1983) Does the conceptual structure allow/support descriptions at different levels of abstraction,

different levels of detail?

Does the conceptual structure cover the interaction between the data system and its user?
Are descriptions made using the specified languages unambiguous?

Are descriptions made using the specified languages understandable?

Kung’s study (1983)

Understandability of the conceptual model (i.e. readability, unambiguity, clarity and
intuitivity)

Expressiveness of the conceptual model (i.e. whether the modelling concepts and constructs
are powerful enough to express everything that is needed to be specified, and have good
resolution of detail)

Consistency of the conceptual model

Bodart et al.’s study (1983)

Concepts (whether the concepts allow a complete modelling of all the organisation’s aspects)
Life cycle steps (including the set of models and formalisms involved)
Step content

e The Object Agency’s Framework (The Object Agency Inc 1995): This framework

offers a well-organised set of evaluation questions, assessing an OO methodology in

terms of diverse system engineering features. Evaluation criteria relating to OO

concepts modelling were disregarded because they are not relevant to agent-oriented

development. Several evaluation criteria on method marketability and pragmatics

were also not considered because they focus on implementation aspects, thus lying

outside the scope of the research. Most of the selected evaluation criteria pertain to

modelling notation and system development process (Table 5.8).

Table 5.8 - Selection of features from the Object Agency’s framework (The Object Agency Inc 1995)

Category of Selected evaluation criteria for the identification of potential features
evaluation criteria for MOBMAS
Notation What are the components of the method’s notation?

What static concepts is the notation capable of expressing?

What dynamic concepts is the notation capable of expressing?

Are explicit rules presented for defining the notation symbols?

Does there exist explicit logic for transforming models into other models, or partially creating
a model from information present in another?

Does the notation provide a partitioning mechanism?

107



Category of Selected evaluation criteria for the identification of potential features
evaluation criteria for MOBMAS

Process What are the process steps for the development process within the methodology?

What deliverables are generated from the development process?

What aspects of the lifecycle are covered by the approach?

Are the process steps well-defined?

Are there heuristics available for the process steps?

Does the process provide for verification?

What development lifecycle best describes the methodology?

Pragmatics What scope of effort is the method suited for?

Is the method targeted at a specific type of software domain?
Support  for  Software | Reusability

Engineering

5.2.1.3. Potential features of MOBMAS

Many evaluation criteria selected from the existing evaluation frameworks actually
relate to the same or overlapping methodological features. Thus, the features extracted
from these frameworks needed to be combined and synthesized into a coherent list. This

list was then organised into four categories, each of which is described below.

One particular feature, namely “Support for ontology-based MAS development” (cf.
Section 5.2.1.3.d), had not been considered in any existing evaluation frameworks.
However it was included in the list of MOBMAS’ potential features because this

research is particularly interested in ontology-based MAS development.

5.2.1.3.a. Potential features for MOBMAS development process

This category contains six features that are potentially important to MOBMAS

development process.

1. “Specification of a system development lifecycle”: such as waterfall or iterative.

2. “Support for verification and validation™: such as rules for verifying and validating
the correctness of the developed models.

3. “Specification of steps for the development process”.

4. “Specification of model kinds and/or notational components® to be generated from
each process step”.

5. “Specification of techniques and heuristics for performing each process step and for

producing each model kind”.

2 Models are differentiated from notational components in that models are conceptual constructs that
underlie the graphical or textual depictions, which are notational components (e.g. diagrams, tabular

schemas).
108



6. “Support for refinability”: that is, whether the methodology provides a clear path for
refining the models through gradual stages to reach an implementation or at least for
clearly connecting the implementation level to the design specifications.

5.2.1.3.b. Potential features for MOBMAS model definitions

The following eight features are potentially important to MOBMAS model kinds and

notational components.

L.

“High degree of completeness/expressiveness”: that is, the model kinds are capable
of representing the system from different perspectives, capturing all necessary
aspects such as static and dynamic aspects, system-level and agent-level aspects.
“High degree of formalisation/preciseness”: that is, the syntax and semantics of the
model kinds and notational components are clearly defined.

“Provision of guidelines/logics for model derivation”: for transforming one model
kind into other model kinds, or partially creating a model kind from information
present in another model kind.

“Guarantee of consistency”: between the levels of abstractions within each model
kind and between different model kinds.

“Support for modularity”’: that is, the model kinds are able to promote modularity in
the design and representation of agents and the system.

“Manageable number of concepts in each model kind and each notational
component”.

“Model kinds expressed at various levels of abstraction and detail”.

“Support for reuse”.

5.2.1.3.c Potential agent properties to be captured/represented in

MOBMAS model Kinds

This category contains eight agent properties that are potentially important to be

represented by MOBMAS model kinds.

1.

“Autonomy”: the ability to act without direct intervention of humans or others, and
to control one’s own state and behaviour.

“Adaptability”: the ability to learn and improve with experience.

“Cooperative behaviour”: the ability to work together with other agents to achieve a
common goal.

“Inferential capability”: the ability to reason and act on abstract task specifications.
109



5. “Knowledge-level communication ability”: the ability to communicate with other
agents with language more resembling human-like speech acts than typical symbol-
level program-to-program protocols.

6. “Personality”: the ability to manifest attributes of a “believable” human character.

7. “Reactivity”: the ability to selectively sense and act in a timely manner.

8. “Deliberative behaviour’: the ability to decide in a deliberation, i.e. proactiveness.

5.2.1.3.d. Potential features for MOBMAS as a whole

This category presents six high-level, supplementary features that are potentially

important to MOBMAS as a whole.

1. “Support for open systems”. which are systems that allow for dynamic
addition/removal of agents.

2. “Support for dynamic systems”: which are systems that allow for dynamic changes
in agent behaviour and system structure.

3. “Support for agility and robustness”: that is, the methodology captures normal
processing and exception processing, provides techniques to analyse system
performance for all configurations, and/or provides techniques to detect and recover
from failures.

4. “Support for heterogeneous systems”: that is, the methodology supports the
use/incorporation of (heterogeneous) non-agent software components in the system.

5. “Support for mobile agents”: for example, the methodology models which, when
and how agents should be mobile.

6. “Support for ontology-based MAS development”: that is, support for the use and

inclusion of ontologies in MAS development process and MAS model definitions.

5.2.2. Identification of Potential Steps

Steps that are potentially desirable to MOBMAS development process were identified
by investigating the existing AOSE methodologies, namely the sixteen methodologies
documented in Chapter 3. Each methodology offers a different collection of steps for
the MAS development process. Only Analysis and Design steps were investigated by
the research. Implementation-related steps such as “Develop prototypes” of ADELFE or
“Reuse code” of PASSI were not considered because they are outside the scope of

MOBMAS (cf. Section 4.2). Steps that are too specific to a particular methodology were

110



also discarded, such as “Verify adequacy of AMAS theory” of ADELFE?* or “Develop
IDEF/CIMOSA models for the target system” of MEI**.

After retrieving steps from the existing AOSE methodologies, these steps were
synthesized and combined into a coherent superset. The synthesis process paid careful
attention to the possibility of different methodologies using different terminology to

refer to the same step. Table 5.9 presents the synthesized steps and their origins.

Table 5.9 — Identification of steps from the existing AOSE methodologies

Steps

INGENIAS
BDIM

PASSI

MAS-
COMMONKADS

1. Identify system
functionality

{ | MASSIVE

« | SODA

| GAIA

| MESSAGE

<« | CASSIOPEIA
| COMOMAS
« | TROPOS

«

A | & | PROMETHEUS
A | \ | ADELFE

{| N\ | MEIL

2. Specify use case
scenarios

<

3. Identify roles

AR

AR

AR

ANRNEANIERN

AR

§§ 8| & | HLIM
«

«

A

AR

4. Identify agent classes

5. Model domain
conceptualisation

6. Specify acquaintances
between agent classes

<
<
AN
«
«

7. Define interaction
protocols

«

SN XINY S| S| MASE

AN N AN ANANE NI RN

8. Define content of
exchanged messages

<
AN NI LR NI AN
<

9. Specify agent
communication language

10.Specify agent
architecture

AN
AN
AN
AN
AN

11.Define agent
informational constructs (i.e. v
beliefs)

«
<
<
AN N N AN AN Y BN A NN
«
AN
<
«

DN NY IR NE I N NE RN

12.Define agent behaviour al
constructs (e.g. goals, plans, v v | v v | v
actions, services)

AN

13.Specify system
architecture

AN

14.Specify organisational
structure/inter-agent
authority relationships

15.Model MAS environment

AN
AN
AN N IR NE RN

16.Specify agent-
environment interaction
mechanism

NI N N IR N
AN
<
AN

AN NI N BN
L
AN

17.Specify agent inheritance v v v
and aggregation

«

18.Instantiate agent classes v v | v v v v

19.Specify agent instances v v
deployment

 This step is only applicable to ADELFE, which employs the theory of “AMAS” for the development of
adaptive MAS systems (cf. section 4.2.12)
* This step is only applicable to enterprise integration applications (cf. section 4.2.9).

111



MOBMAS?’ potential steps were organised into four categories.

5.2.2.1. Potential Problem Domain Analysis steps

This category contains five steps that are potentially important to the understanding of
the target application.

1. “Identify system functionality”

2. “Specify use case scenarios”

3. “Identify roles *

4. “Identify agent classes”

5

“Model domain conceptualisation”

5.2.2.2. Potential Agent Interaction Design steps

This category contains four steps that are potentially important to the design of agent

interactions.

—

“Specify acquaintances between agent classes”
2. “Define interaction protocols”

3. “Define content of exchanged messages”

4

“Specify agent communication language”

5.2.2.3. Potential Agent Internal Design steps

This category presents three steps that are potentially important to the internal design of
agents.

1. “Specify agent architecture”

2. “Define agent informational constructs” (i.e. beliefs)

3. “Define agent behavioural constructs” (e.g. goals, plans, actions, services)

5.2.2.4. Potential Overall System Design steps

The seven steps presented in this category are potentially important to the design of

MAS overall structure and deployment.

1. “Specify system architecture” (i.e. overview of all system components and their
connections)

2. “Specify organisational structure/inter-agent authority relationships”

3. “Model MAS environment” (e.g. resources, facilities)

112



N ks

“Instantiate agent classes”

“Specify agent instances deployment”

“Specify agent inheritance and aggregation”

“Specify agent-environment interaction mechanism” (e.g. sensors and effectors)

5.2.3. Identification of Potential Modelling Concepts

As for the potential steps, potentially desirable modelling concepts of MOBMAS were

also identified from the existing AOSE methodologies, namely those documented in

Chapter 3. Each methodology offers a set of model kinds and/or notational components

(i.e. diagrams and textual schemas) that capture different AOSE modelling concepts.

The concepts retrieved from the existing methodologies were then synthesized and

combined into a coherent superset. This synthesis paid careful attention to the

possibility of different methodologies using different terminology to refer to the same

concept. Table 5.10 presents the identified modelling concepts and their origin.

Table 5.10 - Identification of modelling concepts from the existing AOSE methodologies

Concepts

MASE

MASSIVE

SODA

MESSAGE

INGENIAS

BDIM

CASSIOPEIA

CommonKADS

MAS-
TROPOS

System functionality

<

< GAIA

«

| COMOMAS

«

Use case scenario

| {| MEI

{|<| PROMETHEUS

{|{| ADELFE

AN

Role

<

AN

NENRN HLIM

Domain conceptualisation

Agent-role assignment

ASRYAYRS AN

ANRNAN

Agent’s goal/task

Agent’s belief/knowledge

ANRN

AN

AN

Agent’s plan/reasoning rule/problem
solving method

AN

SN

L

Agent’s capability/service

ANERNERNAN

S TASAK KA Y] PassT

«

Agent’s percept/ event

Agent architecture

Agent acquaintance

AR ANAN

ANRN

AR

Interaction protocol

Content of exchanged messages

ASRYRYAY

ANRAN

ANRYRNENENANANER IR NAN

ANASRYRYRN

ANASRYRNRN

AVRNANRN

System architecture

«

Organisational structure/inter-agent
authority relationships

AN

L

Environment resources, facilities

ANERNEANRNANAN

ANERSE AR AR

AN

Agent aggregation relationship

AR

Agent inheritance relationship

Agent instantiation

ANRNRN

AR YASANERNIANENENANENENANER N NENANAN

Agent instances deployment

113




MOBMAS?’ potential modelling concepts were organised into four categories.

5.2.3.1. Potential Problem Domain concepts

This category contains four modelling concepts that are potentially important to the
description of the target problem domain.

1. “System functionality”

2. “Use case scenario”
3. “Role”
4

“Domain conceptualisation”

5.2.3.2. Potential Agent concepts

The seven concepts contained in this category are potentially important to the modelling
of agents.

1. “Agent-role assignment”

“Agent goal/task”

“Agent belief/knowledge”

“Agent plan/reasoning rule/problem solving method”

“Agent capability/service”

“Agent percept/event” (i.e. event that triggers the agent’s actions)

A o

“Agent architecture”

5.2.3.3. Potential Agent Interaction concepts

Three concepts in this category are potentially important to the modelling of agent
interactions.

1. “Agent acquaintance” (i.e. interaction pathways between agents)

2. “Interaction protocol”

3. “Content of exchanged messages”

5.2.3.4. Potential Overall System Design concepts

This category presents seven concepts that are potentially important to the modelling of
MAS overall structure and deployment design.
1. “System architecture”

2. “Organisational structure/inter-agent authority relationships”

114



“Environment resource/facility”
“Agent aggregation relationship”
“Agent inheritance relationship”

“Agent instantiation”

N kW

“Agent instance deployment”

5.3. SURVEY

After the potential methodological requirements of MOBMAS were identified by Step 1
of Research Activity 1 as reported in Section 5.2, Step 2 — “Conduct a survey on
practitioners and researchers in the field of AOSE” was conducted to help validate
these potential requirements. The survey also obtained professional recommendations

on various issues that were useful to the development of MOBMAS (cf. Section 4.4.2).

This section documents the procedure, questionnaire, testing process and results of this

survey.

5.3.1. Survey Procedure

The survey consisted of a questionnaire, which was posted online due to the dispersed
location of prospective respondents, the ease of disseminating the survey and the cost-
effectiveness of survey execution. The questionnaire was also completed online so that
automatic checking of the survey’s responses could be performed (e.g. checking
whether the compulsory questions were all answered and whether the responses were
valid and consistent). Online completion also allowed the responses to be automatically

recorded into an electronic database.

The survey website was hosted on a web server at the School of Information Systems,
Technology and Management at The University of New South Wales. The survey
questionnaire was designed using IBM Lotus Domino Developer software, while the
survey results were stored in an IBM Lotus Notes database. To prevent public access,

the site was password-protected.

The target population consisted of system analysts, system designers/developers, project
managers and researchers/academia whose area of interest and practice is AOSE (in

115



general) and MAS development (in particular). This population was accessed via
UMBC AgentNews newsletter (UMBC Lab for Advanced Information Technology
n.d.b) and UMBC Agents-Digest mailing list (UMBC Lab for Advanced Information
Technology n.d.c). These two media are the prominent and prestigious information

resources and “meeting points” of the agent community.

The survey period was 1.5 months. During this period, advertisements were sent twice
to UMBC AgentNews newsletter and UMBC Agents-Digest mailing list, with a 3-week
interval between the first and second advertisements. The re-posting of advertisements
helped to reach the prospective respondents who might have overlooked the first call for

participation.

Information conveyed in the advertisements included (Appendix A):

o the research objective;

e activities involved in the survey, including the estimated time to complete the
survey questionnaire;

e required expertise from the respondents (i.e. knowledge and/or experience in
AOSE);

e Dbenefits to the respondents, such as feedback of the survey’s findings if desired;

o the facts that participation was completely voluntary and the respondents could
remain anonymous if desired; and

e password to access the online survey questionnaire.

The respondents were not obliged to complete the survey questionnaire in one go. They
could pause the survey at any point after saving their work. In such cases, they were
given an ID Number which allowed them to return to their partially completed

questionnaire as many times as needed until the survey was finished.
Near the end of the survey period, a reminder was sent to UMBC AgentNews newsletter

and UMBC Agents-Digest mailing list to remind the respondents who had partially

completed the survey questionnaire to finish it.

116



5.3.2. Survey Questionnaire

The questionnaire consists of five parts (Appendix B), taking approximately 30-40

minutes to complete.

Part 1 collected demographic and professional background of the respondents. Specific

information gathered was:

e name, organisation and email address of each respondent (optional but required if
the respondent wished to receive feedback on the survey’s findings);

o field of work (e.g. system analyst, system developer/developer, project manager,
programmer or researcher);

o level of theoretical knowledge and industrial experience with MAS in general and
with MAS development in particular; and

e characteristics of MAS development projects in which the respondent had been
involved (e.g. level of complexity, number of agents, application area and name of

the adopted methodology, if any).

Part 2 gathered the respondents’ opinions on a list of features with regard to how

important these features are to a “standard” AOSE methodology. This list of features

was obtained from Section 5.2 and contained (cf. Section 5.2.1):

1. features that are potentially desirable to an AOSE process;

2. features that are potentially desirable to AOSE model definitions;

3. agent properties that are potentially desirable to be captured/represented by AOSE
model kinds; and

4. features that are potentially desirable to a MAS development methodology as a

whole.

The respondents were requested to rate the importance of each feature on a scale of
“Very high”, “High”, “Medium”, “Low” and “Very low”. They were also asked to
order rank the features within each category in a decreasing order of importance, from
rank “1” (the most important) to rank » (the least important) where » was the total
number of features in the category. Some features might be ranked equally if they could

not be differentiated.

117



The respondents were invited to provide suggestions on any features that they believed
should be supported by an AOSE methodology but were not listed in this part of the

survey.

Part 3 gathered the respondents’ opinions on a list of steps with respect to how
important these steps are to a “standard” AOSE process. These steps were obtained
from Section 5.2 and categorized into (cf. Section 5.2.2):

1. Problem Domain Analysis steps;

2. Agent Interaction Design steps;

3. Agent Internal Design steps; and

4. Opverall System Design steps.

Again, the respondents were asked to rate the importance of the specified steps on a
scale of “Very high”, “High”, “Medium”, “Low” and “Very low”, and to order rank the
steps in each category from “most important” (i.e. rank “1”) to “least important” (i.e.
rank »). Steps could be ranked equally if they could not be differentiated. The
respondents were also invited to suggest any steps that they believed should be provided

by a “standard” MAS development process but were not included in the survey.

Part 4 sought the respondents’ opinions on a list of modelling concepts with respect to
how important they are to be captured/represented by the model kinds of a “standard”
AOSE methodology. This list of concepts was obtained from Section 5.2 and
categorised into (cf. Section 5.2.3):

1. Problem Domain concepts;

2. Agent concepts;

3. Agent Interaction concepts; and

4

Overall System Design concepts.

As in the preceding two survey parts, the respondents were requested to rate the
importance of each concept on a scale of “Very high”, “High”, “Medium”, “Low” and
“Very low”, and to order rank the concepts in each category from “the most important”
to “the least important”. Some concepts might be ranked equally if they could not be
differentiated. Suggestions were also collected on any modelling concepts that are

important to the “standard” AOSE model kinds but were not included in the survey.
118



Part 5 of the survey obtained the respondents’ recommendations on various issues that

were relevant to the construction of a MAS development methodology, namely:

o the type of software development lifecycle that best suits an AOSE process;

e the importance of committing to a specific agent architecture (e.g. BDI) by an
AOSE methodology; and

e the desirable approach for MAS development (e.g. role-oriented or non-role-

oriented).

Each question in this section was accompanied by a request for the respondents’

rationale for their answer.

5.3.3. Survey Testing

The survey was pilot-tested by three academic staffs, whose area of research is agent
technology. The aim of this pilot-test was to evaluate and refine the content, layout and

usability of the online survey questionnaire.

In the preliminary version, the survey questionnaire only requested the respondents to
“rate the importance” of the specified features, steps and modelling concepts (i.e.
without “order ranking”). However, the pilot-testers strongly recommended including
“order ranking” as part of the survey requirements. Reason for their recommendation
was because the listed features, steps and modelling concepts may all be given equal
importance ratings, thus concealing their differentiation in terms of prioritization. The
explicit ranking order of features, steps and concepts would allow the survey to

accurately capture the respondents’ prioritization of the features, steps and concepts.

With regard to the questionnaire’s layout and usability, a number of suggestions for

improvement were made, namely:

e allowing for the respondents to move back and forth between the different parts of
the survey questionnaire;

e providing detailed explanation on some certain features, steps and modelling
concepts in the form of popup windows;

¢ indicating the number of questionnaire parts yet to be completed;

119



e highlighting keywords in the instructions and questions to improve ease of
understanding;

e checking the respondents’ completion of the compulsory fields before allowing
them to move to the subsequent questionnaire part; and

LT3

e checking and fixing potential errors in the respondents’ “order ranking” of features,
steps and modelling concepts. Two types of ranking errors that needed to be
prevented are:
“Internal coherence” error: which occurs when multiple features are order-
ranked equally but the next lower-ranked features do not have their ranks shifted
accordingly. For example, if features A, B and C are order-ranked equally at rank
“1”, the next less important feature D should be ordered at rank “4”; and
- “External consistency” error: which occurs when the “order ranks” of features
are inconsistent with their “ratings of importance”, or vice versa. For example, if
feature A is given a “Very high” importance rating and feature B a “Medium”
rating, the order rank of feature A should be correspondingly more important
than the order rank of feature B.
The detection of these errors was recommended to be performed when the
respondents attempt to move from one part of the survey to the next, or when they
save the (partially) completed survey. An “internal coherence” error should be
automatically fixed by the online survey software. That is, the software should
automatically adjust the order rankings in a way to preserve the intended ranking
order but eliminate the incoherence problem. On the other hand, if an “external
consistency” error is detected, the respondents should be warned of the error (by

means of alert messages) and requested to fix the problem themselves.

All of the suggested improvements were implemented into the final version of the

survey software.

5.3.4. Statistical Analysis and Results

In total, 41 respondents completed the survey. After processing and collation into a
single data set, the survey data was input into a SPSS statistical package for analysis.
Each of the following sections presents the statistical analysis of each part of the survey

(cf. Section 5.3.2).

120



5.3.4.1. Part 1 — Demographic and professional characteristics
of respondents

Information collected from this part of the survey produced eleven variables which
pertain to the respondents’ demographic and professional characteristics.

1. “Field of work”

“Involvement in MAS development projects” (Yes or No)

“Size of past MAS projects”

“Level of complexity of past MAS projects”

“Application areas of past MAS projects”

“Adoption of AOSE methodologies in past MAS projects”

“Involvement in Ontology-Based MAS development projects” (Yes or No)
“Theoretical knowledge of MAS” (e.g. knowledge about MAS characteristics)
“Theoretical knowledge of MAS development” (i.e. knowledge about MAS analysis

A e I U S

and design)
10. “Industrial experience with MAS” (e.g. past use of MAS)
11. “Industrial experience with MAS development” (i.e. experience with MAS analysis

and design)

Descriptive statistics of the first seven variables are presented in Appendix C. This
section focuses on the last four variables, which jointly reflect the respondents’
expertise on MAS in general and MAS development in particular. These four variables,
referred to as “expertise variables”, were given particular attention because they
allowed the research to investigate the impact of respondents’ expertise on the “rating of
importance” and “order ranking” of features, steps and modelling concepts in Parts 2, 3

and 4 of the survey.

Response scores given to each expertise variable were obtained via a 7-point Likert
scale, ranging from “1” (i.e. “Low”) to “7” (i.e. “Extensive”). The distribution of the
four variables showed that medians of both “Theoretical knowledge of MAS” and
“Theoretical knowledge of MAS development” were “5”, while the medians of both
“Industrial experience with MAS” and “Industrial experience with MAS development”

were “3” (Figure 5.11).

121



Frequency
Frequency

Median = 5
Q1=3
Q3=55

Median =5
Q1=4
Q3=6

10 20 30 40 50 60 7.0

Theoretical knowledge of MAS Theoretical knowledge of MAS development

Frequency
Frequency

Median = 3
Q1=2
Q3=5

Industrial experience with MAS Industrial experience with MAS development

Figure 5.11 — Distribution of four expertise variables

Wilcoxin Signed-Ranked Tests™ between pairs of these four variables further revealed
that, at a significance level of 5%:
e there is no significant difference between
—  “Theoretical knowledge of MAS” and “Theoretical knowledge of MAS
development” (p = 0.15); and
—  “Industrial experience with MAS” and “Industrial experience with MAS
development” (p = 0.311); but
o there is a significant difference between
“Theoretical knowledge of MAS” and “Industrial experience with MAS” (p =
0.002); and
“Theoretical knowledge of MAS development” and “Industrial experience with

MAS development” (p = 0.001).

» Wilcoxin Signed-Ranked Test was chosen because it is a well-known test for two-related-sample
comparisons concerning continuous ordinal data (Leach 1979). The samples in this case were related
because the response scores given to the different expertise variables were collected from the same set of
respondents. The Wilcoxin Signed-Ranked Test assumed that each respondent’s data was independent

from the data of other respondents, which was reliably true for the survey data.
122



These findings were not surprising, considering the fact that a large proportion of the
respondents worked in the field of research/academia (cf. Appendix C). They were thus
expected to be more familiar with theoretical aspects than practical aspects of MAS and

MAS development.

To analyse the impact of respondents’ expertise on “rating of importance” and “order
ranking” of features, steps and modelling concepts during Parts 2, 3 and 4 of the survey,
the respondents were classified into two subject-groups, “High Expertise” and “Low
Expertise”, with respect to each expertise variable (Table 5.12). A respondent was
viewed as having “Low Expertise” if his response score was less than 4 and “High

Expertise” if it was in the range 4-7.

Table 5.12 — Number of respondents in each subject group

Expertise Variable Number of respondents
“Low Expertise” “High Expertise”
response score <= 4 response score > 4
“Theoretical knowledge of MAS” 18 23
“Theoretical knowledge of MAS development” 20 21
“Industrial experience of MAS” 13 28
“Industrial experience of MAS development” 13 28

5.3.4.2. Part 2 — Rating and order ranking of Features

Part 2 of the survey requested the respondents to rate the importance of each specified
feature on a scale of “Very High”, “High”, “Medium”, “Low” and “Very Low”. The
respondents were also asked to order rank the features in each category®® in a
decreasing order of importance, from rank “1” (the most important) to rank » (the least
important) where » was the total number of features in the category. Equal ranks were

allowed for features that could not be differentiated.

“Ratings of importance” and “order ranks” of all features are shown in Table 5.14. With
regard to “rating of importance”, each feature’s rating was calculated as the median of
the rating scores given by the 41 respondents. The range of rating scores is also

presented in Table 5.14.

With regard to the “order ranking” of features in each category, the research firstly

calculated the mean rank of each feature (which is the mean value of the ranking scores

% The features were organised into four categories (cf. Section 5.2.2).
123



given to the feature by the 41 respondents). The mean rank value was then used to sort
the features in each category in a decreasing order of importance. The smaller the mean

rank, the more important a feature is in relation with others in the category.

In order to determine if the order ranks of the different features in a particular category

are indeed reliably different from each other, two tests were performed.

e A Friedman Test was firstly carried out between the multiple groups of responses,
each of which contains the ranking scores given to each feature in the category by
the 41 respondents’’. The test helped to detect whether there is an overall
significant difference between all the features in the category regarding their
ranking scores.

e Ifthe Friedman Test produced a significant result at a significant level of 5%, a
pair-wise Sign Tests™ was performed to compare between each pair of features.

The aim was to identify which features were ranked reliably higher than which

other features at a significance level of 5%.

After applying these two tests, the ranking order of the features was refined. While the
preliminary ordering (using mean ranks) was preserved, features that were not ranked
significantly different from each other were grouped inside a dashed-line box, as
presented in Table 5.14. The arrow points from the most important feature to the least

important.

Figure 5.13 illustrates how the ranking order results in Table 5.14 can be interpreted. In
Figure 5.13a, feature A is ranked significantly more important than features B, C and D,
which are equivalently ranked among themselves. Figure 5.13b means that feature A is

ranked as the most important and D as the least important. Features B and C are ranked

*7 Friedman Test was chosen because it is well-known test for multiple-related-sample comparison (Leach
1979). The samples in this case were related because each sample contains ranking scores that were
obtained from the same group of respondents.

% Sign Test was chosen because it is equivalent to the Friedman Test when only two samples are
involved (Leach 1979). The procedure for pair-wise comparison was borrowed from Leach (1979): a Sign
Test was first carried out between the feature with the smallest mean rank and the feature with the largest
mean rank. If a significant difference was detected, the feature with the smallest mean rank would be
compared with the feature with the second largest mean rank, and so on until a non-significant result was
obtained. Next, the feature with the second smallest mean rank was compared with the feature with the
largest mean rank, followed by the feature with the second largest mean rank, and so on until a non-
significant result was obtained.

124



significantly less important than A but more important than D. B and C are equivalently
ranked. Figure 5.13c presents a more complicated ranking order. Feature A is ranked
significantly more important than D, with B and C being ranked somewhere in between.

However, features B and C are not reliably ranked differently from either A or D.

Most important
A
S
C
D
Least zmportantv
(a) (b) (©)
Figure 5.13 — Examples of ranking order results
Table 5.14 — “Rating of importance” and “order rank” of features
Median Range of Mean Rank
Features desirable to an AOSE process Rating of Rating of
Importance* Importance*
1. Specification of model kinds and/or VH [M; VH] 3.34
notational components
2. Specification of steps for the development VH [M; VH] 3.46
process
3. Specification of techniques and heuristics VH [L; VH] 3.78
for performing each process step and
producing each model kind
4. Support for verification and validation VH [L; VH] 3.95
5. Support for refinability VH [VL; VH] 4.26
6. Specification of a system development VH [VL; VH] v 4.43
lifeeyele | T T Y e
Features desirable to AOSE model Me.dlan Ralfge of Mean Rank
- Rating of Rating of
definitions
Importance Importance
1. Guarantee of consistency VH [L; VH] 352
2. Model kinds expressed at various level of VH [M; VH] 3.78
abstraction and detail
3. Support for reuse VH [L; VH] 3.80
4. High degree of VH [M; VH] 3.81
completeness/expressiveness
5. Manageable number of concepts in each VH [VL; VH] 4.06
model kind and each notational component
6. Support for modularity VH [L; VH] 4.23
7. High degree of formalisation/preciseness VH [VL; VH] 4.41
8. Provision of guidelines/logics for model
derivation VH [VL; VH] v i 449




Agent properties desirable to be li\;[ ficllllal;f E:;ﬁe (:;. Mean Rank
captured/represented in AOSE model kinds Import%mce Impor tgance
1. Autonomy VH [M; VH]
2. Cooperative behaviour VH [M; VH]
3. Deliberative behaviour VH [L; VH]
4. Knowledge-level communication ability VH [L; VH]
5. Inferential capability VH [VL; VH]
6. Reactivity VH [M; VH]
7. Adaptability VH [L; VH]
8. Personality M [VL; VH] v
Features desirable to a MAS development li\;[ gi?l;f RR:EEE (:)ff Mean Rank
methodology as a whole Importance Importance
. Support for dynamic systems VH [VL; VH] 334
2. Support for open systems VH [L; VH] 3.78;
3. Support for ontology-based MAS VH [M; VH] 3.87
development
. Support for heterogeneous systems H [VL; VH] 4.95
5. Support for agility and robustness M [VL; VH] 6.26
Support for mobile agents M [VL; VH] v 671
* VH: Very High H: High M: Medium L: Low VL: Very Low

I3

The research also investigated the impact of expertise on the respondents’ “rating of
importance” and “order ranking” of the features. As described in Section 5.3.4.1,
respondents were classified into two subject-groups, “High Expertise” and “Low
Expertise”, with respect to each expertise variable (“Theoretical knowledge of MAS”,
“Theoretical knowledge of MAS development”, “Industrial experience with MAS” and
“Industrial experience with MAS development”). Mann-Whitney Tests were performed
to compare between the two subject-groups in each expertise variable with regard to the

“rating of importance” and “order ranking” of each feature.

Followings are features that were found affected by the respondents’ expertise in their

rating and/or order ranking (significance level = 5%).

e “Specification of a system development lifecycle”: This feature was given a higher
“rating of importance” and a more important “order rank” by the respondents who
had “Low Expertise” in “Theoretical knowledge of MAS” compared to those who
had “High Expertise” (one-tailed p = 0.02 for rating and p = 0.018 for order
ranking).

o “Support for reuse”: This feature was order ranked as more important by

respondents with “High Expertise” in “Industrial experience with MAS” compared

to those with “Low Expertise” (one-tailed p = 0.052).
126



“Knowledge-level communication ability”: This feature was order ranked as more
important by respondents with “High Expertise” in “Industrial experience with
MAS” and in “Industrial experience with MAS development” compared to those with
“Low Expertise” in these two variables (one-tailed p = 0.028 and 0.006
respectively).

“Support for ontology-based MAS development”: This feature was order ranked
as more important by respondents with “High Expertise” in “Industrial experience

with MAS” compared to those with “Low Expertise” (one-tailed p = 0.014).

The respondents were also invited to provide suggestions on any other features that they

believed should be supported by a “standard” MAS development methodology.

However, no suggestions were made.

5.3.4.3. Part 3 — Rating and order ranking of Steps

Statistical analysis performed on the “ratings of importance” and “order rankings” of

steps is the same as the analysis of features (cf. Section 5.3.4.2). The results are

displayed in Table 5.15.

Table 5.15 — “Rating of importance” and “order rank” of steps

Median Range of Rating of
. . Rating of Importance*
Problem Domain Analysis steps Mean Rank
Importance
*
1. Identify system functionality VH [L; VH] 2.05
2. Identify agent classes VH [M; VH]
3. Model domain conceptualisation VH [L; VH] .61
4. Identify roles H [M; VH] 3.68
5. Specify use case scenarios M [VL; H] 3.72
Median Range of Rating of
Agent Interaction Design steps Rating of Importance Mean Rank
Importance

1. Define interaction protocols VH [M; VH]
2. Specify acquaintances between agent VH [L; VH]

classes
3. Define content of exchanged VH [L; VH] 2.51

messages
4. Specify agent communication M [VL; VH] 3.75

language

127



Median Range of Rating of

Agent Internal Design steps Rating of Importance Mean Rank
Importance
1. Define agent informational constructs VH [M; VH] 1.78
2. Define agent behavioural constructs VH [M; VH] {210
3. Specify agent architecture VH [L; VH] 2.34_§
Median Range of Rating of
Overall System Design steps Rating of Importance Mean Rank
Importance
1. Specify system architecture VH [M; VH] - 1.90
2. Specify organisational structure/inter- VH [L; VH] 2.05
agent authority relationships | | | | 77
3. Model MAS environment VH [M; VH] 2.90
4. Specify agent-environment interaction H [L; VH] "3.90°
mechanism
5. Instantiate agent classes H [VL; VH]
6. Specify agent instances deployment H [VL; VH] ]
7. Specify agent inheritance and M [VL; VH] v
aggregation
* VH: Very High H: High M: Medium L: Low VL: Very Low

Respondents’ expertise was found to affect the “rating of importance” and “order rank”

of two steps.

o “Define content of exchanged messages”: This step was order ranked as more
important by respondents with “High Expertise” in “Theoretical knowledge of MAS”
compared to those with “Low Expertise” (one-tailed p = 0.04).

e “Specify agent inheritance and aggregation”: This step was given a higher “rating
of importance” by respondents with “Low Expertise” in “Industrial experience with

MAS development” compared to those with “High Expertise” (one-tailed p = 0.028).

Although the respondents were invited to provide suggestions on any other steps that

are desirable to a “standard” MAS development process, no suggestions were made.

5.3.4.4. Part 4 — Rating and order ranking of Modelling
Concepts

The “rating of importance” and “order rank” of concepts were determined using the
same statistical methods as those performed on features (cf. Section 5.3.4.2). The results

are displayed in Table 5.16.

128



Table 5.16 — “Rating of importance” and “order rank” of modelling concepts

Median Range of
Problem Domain concepts Rating of Rating of Mean Rank
Importance* Importance*
1. System functionality VH [L; VH]
2. Role VH [M; VH]
3. Domain conceptualisation H [L; VH] {
4. Use case scenario M [VL; H] 3.73
Median Range of
Agent concepts Rating of Rating of Mean Rank
Importance Importance
1. Agent belief/knowledge VH [M; VH]
2. Agent goal/task VH [L; VH]
3. Agent-role assignment VH [M; VH]
4. Agent action/service VH [VL; VH]
5. Agent plan/reasoning rule/problem VH [L; VH]
solving method
6. Agent architecture H [L; VH] 6.05
7. Agent percept/event M [L; VH] v 6.52
Median Range of
Agent Interaction concepts Rating of Rating of Mean Rank
Importance Importance
1. Interaction protocol VH [M; VH] LT3
2. Content of exchanged messages VH [VL; VH] 2.22
3. Agent acquaintance VH [M; VH] 2.49;
Median Range of
Overall System Design concepts Rating of Rating of Mean Rank
Importance Importance
1. System architecture VH [M; VH]
2. Organisational structure/inter-agent VH [M; VH]
authority relationships
3. Environment resource/facility VH [VL; VH]
4. Agent instance deployment H [VL; VH]
5. Agent instantiation H [VL; VH]
6. Agent aggregation relationship M [VL; VH]
7. Agent inheritance relationship M [VL; VH] v
* VH: Very High H: High M: Medium L: Low VL: Very Low

The respondents were invited to provide suggestions on any other modelling concepts

that may be important to model definitions of a “standard” MAS development

methodology. However, no suggestions were made.

129



5.3.4.5. Part 5 — Recommendations on AOSE methodological
issues

Part 5 of the survey obtained the respondents’ suggestions and comments on various
issues that pertained to the construction of a MAS development methodology. The

collected recommendations are presented and discussed below.

Issue 1: MAS development SDLC

When asked the open-ended question “If an AOSE methodology must incorporate a
SDLC, which SDLC do you think it should be?”, a majority of the respondents
suggested a SDLC model that is iterative and incremental (Figure 5.17). A few other
SDLC models were identified from the open-ended answers of the respondents. Four

respondents suggested more than one SDLC model.

30
25
20
15 1
10
5 J

I
]

]
]

T 5
[o% ['4
D)

Iterative
incremental
Evolutionary
prototyping

Extreme
programming
Entirely new

SDLC
No
suggestions

Figure 5.17 — Survey respondents’ suggestions on MAS development SDLC

The reasons cited for the suitability of the “lterative and incremental SDLC” to the

development of MAS were synthesized as follows.

e [teration is crucial to the development of non-trivial systems. Such systems cannot
be built at one shot, but part by part, step by step, and functionality by functionality.

e [terative and incremental cycle is the best way to prevent risks and facilitate
maintenance.

e “Tteration” allows refinements to be made in an organised, predictable way.
“Increments” allow for short delivery cycles and enhance project visibility.

o New agents may appear while others are made obsolete as the system continuously

evolves. System functionality also needs to be refined or enhanced.

130



e MAS:s are generally more evolvable and dynamic than most other system models. It
is therefore not desirable (or feasible) to define up-front everything the system is

meant to do.

The reasons collected for the other SDLC models were as follows.
o Spiral:
- Artificial intelligence is an empirical domain of science, and spiral SDLC is well
suited to hypothesis verification.
-  MAS will typically be used for multiple generations of a product. This is
essentially the learning model that is fostered by the spiral development model.
e Evolutionary prototyping:
- Agent technology allows dynamic/evolving systems and naturally these systems
should be developed similarly.
-  MAS development should deploy the power of distributed development and
gradual system expansion instead of centralised heavyweight design effort.
- MAS development should be open-ended with scope for dealing with
unanticipated goals and discoveries.
e FExtreme programming:
- The development of agent systems requires iterative, frequent tests.
e Rational Unified Process:
- The Rational Unified Process (i.e. iteration with shifting emphasis) is fairly
generic and realistic.

- Itis well supported, well documented and well known.

Issue 2: Commitment to agent architecture
When asked “Please indicate the importance of an AOSE methodology to commit to a
particular agent architecture (e.g. BDI architecture)”, a large proportion of the

respondents (17 out of 41) rated the importance as “Medium” (Figure 5.18).

131



Veryhigh  Wery low
ATEx 000K

Lo

High
2687

Medium
41463

Figure 5.18 — Survey respondents’ suggestions on the importance of a MAS development methodology to

commit to an agent architecture

Qualitative analysis of the respondents’ comments on this question revealed various

reasons for, and against, the need to commit to an agent architecture by a MAS

development methodology. The respondents’ comments also included various

suggestions on the matter.

° “FO}"”'

It is not the goal of a MAS development methodology to be universal.

It is necessary for a MAS development methodology to aim for a particular
implementation platform (or at least “style”) to provide useful guidelines in
relation to implementation.

Many different architectures/implementation models are called “agent”. Thus a

clear commitment to a (set of) agent architectural model is needed.

o  “Against:

Any kind of agent development toolkit and architecture should be appropriate to
be used for implementing the produced design models.

The selection of target agent architecture should be a strategic decision made
outside the development cycle of any specific MAS development project.

MASs should be able to integrate and coordinate agents of many kinds.

Any extension of functionality of an evolving MAS could involve a new agent
architecture.

Flexibility is a very important factor of a system development methodology.

Diverse architectural models would make a methodology rich.

132



o  “Suggestion™:

- Analysis and architectural design of MAS should be architecture independent.
However the detailed, internal design of each agent should use modular agent-
oriented components/features that are specific to a particular agent architecture.

- A MAS development methodology can be “componentised”. That is, the choice
of agent architecture only affects parts of the methodology. Changing from one
architecture style/model to another would only require adapting a part of the
methodology.

- A MAS development methodology may provide ready-made architectural styles

that can be reused by its users.

Issue 3: Approach for agent identification

The survey presented two major approaches for MAS development:

® Role-oriented approach: where “role” is employed as a major modelling concept
and is used, for example, for the identification of agents; and

e Non-role-oriented approach: where “role” is not used anywhere in the MAS
development process. Agents, for example, can be identified from other constructs

such as use case scenarios, task specifications and workflow models.

Most respondents selected the first approach as the desirable method for MAS
development (30 out of 41; Figure 5.19).

27

O &nalysis of roles
B Analysis of other constructs

Tin

Figure 5.19 — Survey respondents’ suggestions on the approaches to agent identification

The provided reasons for the role-oriented approach are listed below.

e Role provides an easy, natural way to map system aspects such as tasks,
responsibilities and organisational positions onto agents.

e Agents are autonomous entities. Modelling agents as players/implementers of roles
promote this autonomy.

e Using roles allows for modularity and extendibility in agent design.

133



e Role provides flexibility in design, since each agent may take on multiple roles,

move from one role to another, or take on new roles.

Respondents who advocated the non-role-oriented approach presented the following

reasons for their response.

e Other conventional constructs such as use case scenarios are more familiar to most
developers. They thus help OO developers to adapt and familiarize to agent-oriented
development.

e Agent-oriented development share many similarities with the conventional
development paradigms such as OO. It should thus make use of (or be built upon)
the conventional analysis and design constructs such as use case scenarios and

workflow models.

5.4. FEATURE ANALYSIS OF EXISTING MAS
DEVELOPMENT METHODOLOGIES

Following the survey on practitioners and researchers (Section 5.3), Step 3 of Research
Activity 1 — “Perform a feature analysis on the existing AOSE methodologies” — was
performed. Its aim was to further validate the potential methodological requirements of
MOBMAS, and to identify and evaluate the techniques and model definitions provided
by the existing AOSE methodologies for supporting these requirements (cf. Section
4.43).

This section firstly presents the evaluation framework of the feature analysis (Section
5.4.1) and the feature analysis’ findings (Section 5.4.2). Based on these findings, the
research then determined the “actual” methodological requirements of MOBMAS
(Section 5.4.3) and identified a pool of techniques and model definitions that may be
reused or enhanced by MOBMAS, as well as the methodological requirements that

need to be supported by new techniques and/or model definitions (Section 5.4.4).

134



5.4.1. Evaluation Framework

A feature analysis requires an “evaluation framework” which defines a set of evaluation
criteria to serve as yardsticks for assessing a methodology from different aspects (Siau
and Rossi 1998). This research’s evaluation framework was built directly upon the list
of potential requirements of MOBMAS (i.e. the list of features, steps and modelling
concepts identified in Section 5.2). Each criterion assesses whether an existing AOSE
methodology provides support for a particular feature, step or modelling concept, and/or
how the support is provided (i.e. the techniques and model definitions used by the

existing methodology to support the feature, step or modelling concept).

Apart from these criteria, a small number of other criteria were included into the
evaluation framework to assess the ease of understanding and usability of the
development process, techniques and model definitions of the existing AOSE
methodologies. One new criterion was also defined to explore the approach towards
MAS development of the existing AOSE methodologies (namely, role-oriented approach
or non-role-oriented approach). The final structure of the evaluation framework is

shown in Figure 5.20.

| Evaluation framework |

Evaluation criteria on Evaluation criterion on Evaluation criterion on
features steps modelling concepts

Figure 5.20 — Evaluation framework

e Evaluation criteria on features (Table 5.21): include 36 criteria that evaluate the
support of an AOSE methodology for:
— features relating to AOSE process;
— features relating to AOSE model definitions;
— agent properties; and
— features relating to the methodology as a whole.

These features and agent properties are obtained from Section 5.2.1.

e Evaluation criterion on steps (Table 5.22): includes one criterion that examines
whether an AOSE methodology provides support for:

— particular Problem Domain Analysis steps;

135



— particular Agent Interaction Design steps;
— particular Agent Internal Design steps; and
— particular Overall System Design steps.

These steps are obtained from Section 5.2.2.

e Evaluation criterion on modelling concepts (Table 5.23): includes one criterion
that determines whether an AOSE methodology provides support for:
— particular Problem Domain concepts;
— particular Agent concepts;
— particular Agent Interaction concepts; and
— particular Overall System Design concepts.

These modelling concepts are obtained from Section 5.2.3.

Each criterion is accompanied by an evaluation question, as presented in column
“Evaluation Questions” of Tables 5.24, 5.25 and 5.26. Criteria marked with asterisk (*)
are those that do not correspond directly to any potential requirements of MOBMAS,
but were included to assess the usability of the methodology or to investigate the

methodology’s approaches towards MAS development as mentioned previously.

Even though developed particularly for this research, the above evaluation framework is
applicable to the evaluation of any AOSE methodology. It has been published in Tran et
al. (2003) and applied to the comparative analysis of various AOSE methodologies
(Tran et al. 2004; Tran and Low 2005).

Table 5.21 — Evaluation criteria on features

Evaluation Criteria \ Evaluation Questions
Evaluation criteria on features relating to AOSE process

1. Specification of a system What development lifecycle best describes the methodology (e.g.
development lifecycle waterfall or iterative)?

2. Support for verification Does the development process of the methodology contain rules to
and validation allow for the verification and validation of the correctness of the

developed models?

3. Specification of steps for Does the development process of the methodology define specific
the development process steps for MAS development?

4. Specification of model What model kinds (and/or notational components) are generated from
kinds and/or notational each step?
components

5. Definition of inputs and Are inputs and outputs to each process step defined?
outputs for steps*

6. Specification of techniques | a. What are the techniques used to perform each process step?
and heuristics b. What are the techniques used to produce each model kind or

notational component (i.e. modelling techniques)?

136



7. Ease of understanding of
techniques*

Are the techniques easy to understand?

8. Usability of techniques*

Are the techniques easy to follow

9. Provision of examples for
techniques*

Are examples of the techniques provided?

10.Ease of understanding of
the development process™

Do the steps result in a development process that is easy to
understand?

11.Usability of the
development process*

Do the steps result in a development process that is easy to follow?

12.Support for refinability

Do the process steps provide a clear path for refining models through
gradual stages to reach an implementation, or at least for clearly
connecting the implementation level to the design specification?

13.Approach for MAS
development*

Does the methodology employ the abstraction of “role” in MAS
analysis and design?

Evaluation criteria on feature

relating to AOSE model definitions

1. Completeness/
expressiveness

Are the model kinds of the methodology capable of representing the
system from different perspectives, capturing all necessary aspects
such as static and dynamic aspects, system-level and agent-level
aspects?

2. Formalisation/preciseness

a. Are syntax and semantics of the model kinds and notational
components clearly defined?

b. Are examples of the model kinds and notational components
presented?

3. Provision of
guidelines/logics for model
derivation

Do explicit process and guidelines exist for transforming model kinds
into other model kinds or for partially creating a model kind from
information present in another model kind?

4. Guarantee of consistency

a. Are there rules and guidelines to ensure consistency between the
levels of abstractions within each model kind (i.e. internal
consistency), and between different model kinds?

b. Are model kinds represented in a manner that allows for
consistency checking between them?

5. Support for modularity

Do the methodology and its model kinds promote modularity in the
design of agents and the system?

6. Management of complexity

Are there a manageable number of concepts expressed in each model
kind/notational component?

7. Levels of abstraction

Does the methodology allow for producing models at various levels
of detail and/or abstraction?

8. Support for reuse

Does the methodology provide, or make it possible to use, a library
of reusable models?

9. Ease of understanding of
model definitions*

Are the model kinds and notational components clear and easy to
understand?

Evaluation criteria on agent properties

1. Autonomy

Can the model kinds support and represent the autonomous feature of
agents (i.e. the ability to act without direct intervention of humans or
others, and to control their own states and behaviour)?

2. Adaptability

Can the model kinds support and represent the adaptability feature of
agents (i.e. the ability to learn and improve with experience)?

3. Cooperative behaviour

Can the model kinds support and represent the cooperative behaviour
of agents (i.e. the ability to work together with other agents to
achieve a common goal)?

4. Inferential capability

Can the model kinds support and represent the inferential capability
feature of agents (i.e. the ability to reason and act on abstract task
specifications)?

5. Knowledge-level
communication ability

Can the model kinds support and represent a “knowledge-level”
communication ability (i.e. the ability to communicate with other
agents with language resembling human-like speech acts)?

6. Personality

Can the model kinds support and represent the personality of agents
(i.e. the ability to manifest attributes of a “believable” human
character)?

137



7. Reactivity

Can the model kinds support and represent the reactivity of agents?
(i.e. the ability to selectively sense and act in a timely manner)

8. Deliberative behaviour

Can the model kinds support and represent the deliberative behaviour
of agents (i.e. the ability to decide in a deliberation, or
proactiveness)?

Evaluation criteria on features

relating to methodology as a whole

1. Support for open systems

Does the methodology provide support for open systems (open
systems are those that allow for dynamic addition/removal of
agents)?

2. Support for dynamic
systems

Does the methodology provide support for dynamic structure (i.e. the
methodology allows for dynamic reconfiguration of the system, e.g.
change of roles of agents or change or organisational structure of
MAS)?

3. Support for agility and
robustness

Does the methodology provide support for agility and robustness
(e.g. the methodology captures normal processing and exception
processing, provides techniques to analyse system performance for
all configurations, or provides techniques to detect and recover from
failures)?

4. Support for heterogeneous
systems

Does the methodology provide support for the use/incorporation of
(heterogeneous) non-agent software components in the system?

5. Support for mobile agents

Does the methodology provide support for the use/integration of
mobile agents in a MAS (e.g. the methodology models
which/when/how agent should be mobile)?

6. Support for ontology-based
MAS development

Does the methodology provide support for the use and specification
of ontology in a MAS (i.e. Ontology-Based MAS)?

Table 5.22 — Evaluation criterion on steps

Evaluation Criterion

Evaluation Question

Support for steps

Which of the following steps are supported by the development
process of the methodology?

Problem Domain Analysis steps
1. Identify system functionality

2. Specify use case scenarios

3. Identify roles

4. Identify agent classes

5. Model domain conceptualisation

Agent Interaction Design steps

1. Specify acquaintances between agent classes
2. Define interaction protocols

3. Define content of exchanged messages

4. Specify agent communication language

Agent Internal Design steps

1. Specify agent architecture

2. Define agent informational constructs (i.e. beliefs)

3. Define agent behavioural constructs (e.g. goals, plans, actions,
services)

Overall System Design steps

1. Specify system architecture (i.e. overview of all system
components and their connections)

. Specify organisational structure/inter-agent authority relationships

. Model MAS environment (e.g. resources, facilities)

. Specify agent-environment interaction mechanism

. Specify agent inheritance and aggregation

. Instantiate agent classes

. Specify agent instances deployment

NN b

138



Table 5.23 — Evaluation criterion on modelling concepts

Evaluation Criterion Evaluation Question
Support for modelling Which of the following concepts are captured/represented by the
concepts model kinds of the methodology?

Problem Domain concepts
1. System functionality

2. Use case scenario

3. Role

4. Domain conceptualisation

Agent concepts

1. Agent-role assignment

. Agent goal/task

. Agent belief/knowledge

. Agent plan/reasoning rule/problem solving method
. Agent capability/service

. Agent percept/event

. Agent architecture

RURe Y I NS I )

Agent Interaction concepts

1. Agent acquaintance

2. Interaction protocol

3. Content of exchanged messages

Overall System Design concepts

. System architecture

. Organisational structure/inter-agent authority relationships
. Environment resource/facility

. Agent aggregation relationship

. Agent inheritance relationship

. Agent instantiation

. Agent instance deployment

NN bW =

5.4.2. Feature Analysis of Existing MAS Development
Methodologies

In this section, the sixteen AOSE methodologies described in Chapter 3 are evaluated
using the evaluation framework presented in Section 5.4.1. The analysis of ten of these
methodologies has been published in Tran et al. (2004) and Tran and Low (2005),
namely MASE, GAIA, MESSAGE, INGENIAS, BDIM, PROMETHEUS, PASSI,
ADELFE, MAS-CommonKADS and TROPOS.

5.4.2.1. Evaluation of support for Features

% Evaluation of support for features relating to AOSE process
Of the fourteen evaluation criteria in this category (cf. Table 5.21), the following six
criteria are discussed in Section 5.4.2.2 alongside criterion “Support for steps”,

because these criteria needed to use the list of steps in Table 5.22 as yardsticks:

139



“Specification of model kinds and/or notational components”, “Definition of inputs

and outputs for steps”, “Specification of techniques and heuristics”, “Ease of

understanding of techniques”, “Usability of techniques” and “Provision of examples

for techniques”. Evaluation of the remaining eight criteria is presented in Table 5.24.

Most of the evaluation results are self-explanatory, except for the following three

criteria whose assessment is further clarified below.

“Usability of the development process”: This research rated a methodology as
“Medium” or “Low” if the methodology disregards many steps in the
construction of MAS? and/or fails to provide sufficient techniques to guide the
performance of its steps and/or the construction of its model kinds.

“Approach for MAS development”: This research classified an AOSE
methodology as Non-Role-Oriented (“NRO”) if the methodology does not
involve the use of abstraction “role” anywhere in its MAS development process.
A Role-Oriented methodology (“RO”), on the other hand, employs “role” as a

major modelling concept.

% Evaluation of support for features relating to AOSE model definitions

Nine evaluation criteria were used to conduct this evaluation (cf. Table 5.21). Again,

the evaluation results are self-explanatory (Table 5.25). It should be noted that:

regarding criterion “Completeness/expressiveness”, a methodology was rated
“High” if it offers a comprehensive set of model kinds and notational
components to represent the target system from both static and dynamic aspects,
and to capture a large variety of concepts’’;

regarding criterion “Support for modularity”, a methodology was evaluated
“Yes” if it models agents as an encapsulation of either roles, goals,
tasks/responsibilities, knowledge modules and/or capabilities; and

regarding criterion “Support for reuse”, a methodology was rated “Yes” if it
explicitly provides a library of reusable modelling components (such as role
patterns, protocol templates, knowledge modules and/or behavioural patterns), or

at least discusses the possibility of reusing certain modelling components. A

%% That is, the steps listed in Table 5.22.
30 That is, the concepts listed in Table 5.23.

140



methodology was rated “Possibly” if it does not explicitly address the issue of

reuse, nevertheless allows the developer to reuse modelling components.

+« Evaluation of support for agent properties

Nine agent properties were investigated in total (cf. Table 5.21). The assessment of

methodological support for these properties is presented in Table 5.26. Some notable

findings are presented below.

All sixteen methodologies were found to support “autonomy” via the modelling
of agents as entities with purpose (represented as roles, goals, tasks and/or
capabilities) and/or entities with internal control (represented as knowledge,
plans, inference rules and/or problem solving methods).

Two methodologies were found to touch on the issue of agent adaptability:
MESSAGE recommends selecting a cognitive agent architecture if the agent
needs to learn, and INGENIAS mentions the need to specify “learning” as a
characteristic of an agent if applicable. It should be noted that while ADELFE
supports adaptability at the system level, it does not address the issue of
adaptability at the agent level.

A majority of the existing methodologies (11 out of 16) were found to support
“inferential capability” via the specification of agent beliefs/knowledge, plans,
aptitudes, methods, agent control process and/or agent behavioural
knowledge/expertise.

A majority of the methodologies (11 out of 16) support “reactivity” through the
explicit modelling of “events” that incur during agent interactions and/or agent
internal processing. These methodologies also explicitly model reactive
behaviour for agents. Five other methodologies were found to “possibly "’ support
reactivity because, even though they do not explicitly discuss the modelling of
events and agent reactive behaviour, these elements may have been embedded in
the specification of agent interaction protocols, agent dependencies and agent
responsibilities/plans/competence.

Most of the methodologies (15) were found supportive of “deliberative
behaviour” via the modelling of agents as entities with purposes (represented as
agent goals, tasks and/or capabilities). Eleven methodologies also specify how

agents fulfil these purposes, either via agent plans (BDIM, HLIM, MEI,

141



TROPOS and PROMETHEUS), methods/capabilities (PASSI and ADELFE),
control procedures/rules (INGENIAS) or knowledge/expertise (COMOMAS,
MAS-CommonKADS and MESSAGE).

+ Evaluation of support for features relating to the methodology as a whole

There are six high-level, supplementary features that pertain to the MAS

development methodology as a whole (cf. Table 5.21). Evaluation of these features’

support is presented in Table 5.27. Notable findings are discussed below.

“Open systems” were supported by only three methodologies, SODA, GAIA and
ADELFE, via the modelling of resources and services offered by MAS
environment (SODA and GAIA), specification of organisational rules to govern
agent interactions and behaviour (SODA and GAIA) and modelling of potential
“non-cooperative situations” between agents (ADELFE). MASSIVE “possibly ”
supports open systems since it mentions the characterisation of openness of the
target agent society.

“Dynamic systems” were supported by only four methodologies: MASSIVE,
HLIM and PASSI model the dynamic assignment of roles to agents;
CASSIOPEIA defines the behaviour of agents in dynamically forming, joining
and dissolving agent groups. MASE “possibly” support dynamic systems
because it acknowledges that agents can change roles dynamically, although it
does not deal with this issue in any detail.

“Agility and robustness” were supported by only five methodologies. ADELFE
and MASSIVE identify potential failure situations of the system and specify the
mechanisms to deal with them. PROMETHEUS, MASE and MAS-
CommonKADS identify exceptional situations in interaction protocols and use
cases; however they do not specify any exception handling mechanisms.
“Support for heterogeneous systems” was provided by five methodologies. Four
of them (INGENIAS, PROMETHEUS, GAIA and MASSIVE) mention the
existence of non-agent objects and application systems in MAS, but do not
discuss how the heterogeneous components of MAS can be supported. MASE
does not consider non-agent system components, but addresses the

interoperability between heterogeneous agents.

142



“Mobile agents” is only supported by PASSI which models agent movement in

its Deployment Configuration Diagram.

“Support for ontology-based MAS development” was provided by only four

PASSI and MAS-CommonKADS).

MESSAGE,

(MASE,

Detailed discussion of their ontology support has been presented in Section

methodologies
3.3.2.

Table 5.24 — Evaluation of support for features relating to AOSE process

OAN SO wnIpa ySig SOA SOA [BIUSWAIOUT PUEB JAIIEIN] SOdOYL
oy SOA wnipajy ySiH SOA ON payoads 10N VIAdOISSVD
sourjopins3 g Savyuowwo)
OUN SOX WNIPIA ySiyg SOX 180> OU 11q POUOHUSI $50001d UQALIP-3SLI OI[0AD) 5
OdN SOA wnIpop ysiH SOX ON payoads J0N SYINOINOD
OdN SOA USiH USIH SOK SOA §500014 PaLIUN [euonEy A1 T1IAV
(QuowAojdap pue Surpod
oy SO ysig ysig SO SOA 10] 1dooxa) soseyd e ISSVd
UIYIIM PUB SSOIOB QATJRION]
OIN SOA USiH USIH SOA SOA soseyd [[e ssoroe oanera) | SAAHLANOUL
OdN EEIS LELS USIH BN ON payroads 10N G 1A
saseyd oy
oY EEIN USiH USIH SOX ON S50108 PR UIpIA SARGISI] II'TH
od SOA MO0 ysSiyg SOA ON paryoads JoN WIag
o a ar © o ssa001d juowdorosap
oy A YsTH YotH A A aremyyos paryiun SVINAONI
) wnipa S s Juoweourue §500014 PayIu() [eUOnE
oY A IPOIN YolH A aImny se pauonUA d PeIIU[) Jeuoney ADVSSHIN
soseyd uoamiaq
o4 SOX WP yS1g SOK ON [enuonbes  jnq  oseyd
OB UIYIM  QATIRId)] VIvD
oY ON MO ySIH BN ON payyroads 10N vaos
o wnine - © o ss9001d SureauIsuy
od A IPAIN UstH A A MIIA SATEIN HAISSVIA
ol SOA ysig ysig SOX SOA soseyd [[e ss010e dAIIRIN] ASVIA
ssd20ad $5320.14 "Adp Y ssdd0ad AN
‘AP SVIA Ayiqeunjaa| AP oY) | jo Surpuejsidpun [‘Adp dy) Joy sdays uonepifeA » (*A9p) judwdofaAdp
a0y yoeoaddy  [a0j jaoddng|jo Aypiqesn Jo asey Jo uonedyIdg |uonedyLIdA 10y 3aoddng | wdYsAs € Jo uonedyads

143



SOX -

SOk q

Table 5.25 — Evaluation of support for features relating to AOSE model definitions

q

yStg Ajqissod SOX SOX SOA sop B SOK 4B e ysSig SOdOYU L
VN9 SOX 'q

YSiH Ajqissoq ON SOA SOA oN ® VN ySiy e WnIpa VIAdOISSVD

- 5 o . © SOk °q S9A 'q - Savuowrio)

wnIpajy SOX A PA A ON B ON wnipapy e YstH -SVIA
S9X q SOAq

ysyg K1qissod ON SOA SO X oN '® SOX 4B e YSiH SVINOINOD
SOAq S9Aq

ySrg Ajqissog SOX SOX SOA sox B SOX uBi e eSS HAT1aav
SO q SOA 9

uStH oA °N oX oA SO B s ySiy e UsIH ISSVd
S9X q SOAq

LELSE A1qrssoq EEIS SoX LIS soA 8 SOk 4B e LELSE SNAHLANOAd
SOX q SOAq

wnIpajy A1qrssoq EEN SOA SOA oN ® SOA Mo e wnipajy THIN
SOAq SOAq

yStg Ajqissog SOX SOX SOX SoA & SOK ySiy e YSIiH WI'TH

ySIH SOX SO SOX SO mwm M SOX QMW M WNIPIA WIas
SOX q SOAq

wnipajy Ajqissod EEIN ON SOA soA B SOX 4B e YSIH SVINAONI
S9X q SOAq

uBIH Aassod SOA A S04 oN e oA wge | PN ADVSSAN
SOX q SOAq

ySiH SOX SO SO SO soA SOX W e wnIpaj VIVO
S9A 'q SOA "q

YStH Alqissog ON Sox S9A soA SOK wnpap e wnipay vaos
SOX q SOAq

St s s so s s wnipa

YS1iH A A A A oN ® A ysiy e PN HAISSVIA
SOX q SOAq

ysiH S9K S9A SOA SOX oA 2 SOK B e ysty ASVIA

SuonIUIIP Ppow UON)RALIIP
Jo Surpuejsiopun asnau uondeIsqe Ayxopduod Ayreng AQu9)sISU0d [opouw 10§ sd130] ssauasiaad $SAUIAISSIAAX
Jo aseyq 10§ ya0ddng JO S]PAYTT  |Jo juduwrdSeuey | J10j jaoddng JO dd)ueiens) |/SIUIAPING JO UOISIACLJ [ /UON)BZI[BULIO /ssoudyajduo))

144



Table 5.26 — Evaluation of support for agent properties

SO SOK oN SOX SOX SO ON SOX SOdOYU L
ON A1qrssog ON ON ON SO X ON SOA VIAdOISSVD

Saviuowwoy
SOA SOX ON SO SOX SN ON SOX |@<2
SO SOX ON ON SOX SO ON SOX SVINOINOD
SOA SOX ON SOA SOA SOA ON SOk 4 THAV
SOA SOX ON SOX SOX SOA ON SOA ISSVd
SOA SOA ON SOA SOX SOX ON SOA SNAHLANOId
SO A1qrssod ON ON SOX SOX ON SO AN
SO SOA ON SO SO SO ON SOA I'TH
SO SOK oN SOX SOA SO ON SOX NIdd
SOA SOA ON SOA SOX SOK SOK SOA SVINAOINI
S9A SO& oN S3k LN S2A ON oA AOVSSAIN
SOA A1qissoq ON ON ON EEN ON SOA VIVOD
SOA A1qissoq ON ON ON SOX ON SOA vaos
ox Alqissod oN oN ON RN oA oA AAISSVIN
SO SOA ON SO K1qissog SOA ON SO ASVIA

Linqe
INOIARYIq uoNBIUNUWWO0 Aynqeded ANoIARYdq
dAneRqIPA K)ADIRIY Kyjeuos.aag [9A9[-98pamouy] [enudIJu dapesadoo) Amqeydepy Awouoyny

145



Table 5.27 — Evaluation of support for features relating to the methodology as a whole

ON ON ON ON ON ON SOdOodL
ON ON ON ON SOX ON VIAdOISSYVD

Saviuowwoy
SOA ON ON SO ON ON -SVIN
ON ON ON ON ON ON SVINOINOD
ON ON ON SOA ON SOA aAT1aav
SO SOX ON ON SOX ON ISSVd
ON ON SOK SOK ON ON SAHHLANOYd
ON ON ON ON ON ON AN
ON ON ON ON SOA ON I'TH
ON ON ON ON ON ON NIdd
ON ON SOK ON ON ON SVINIONI
SO ON ON ON ON ON ADVSSAIN
ON ON SOA ON ON SOA VIVD
ON ON ON ON ON SOA vaos
ON ON SOX SOA SO Ajqissod AAISSVIN
SAA ON SOA SOA A1qrssog ON ASVIN

judwdofaAdp SWI)SAS
SVIA paseq sjudde SN03UIZ0.19)9Y $SaUISNqo.1 SWI)SAS SUIA)SAS
-K3o0j03u0 10y yaoddng| dpqow a0j jroddng 10§ ya0ddng 2 K1pise a0y 3a0ddng | orwreudp a0y 3aoddng |  uado 10§ 3ar0oddng

146



5.4.2.2. Evaluation of support for Steps

In this section, the sixteen methodologies are evaluated according to criterion “Support

for steps” (cf. Table 5.22), together with six other criteria that pertain to the AOSE

process and had not been discussed in section 5.4.2.1, namely:

“Specification of model kinds and/or notational components”;
“Definition of inputs and outputs of steps”;

“Specification of techniques and heuristics”;

“Ease of understanding of techniques”;

“Usability of techniques”; and

“Provision of examples for techniques”.

All of these criteria used the list of steps in Table 5.22 as yardsticks. Evaluation findings

of each methodology are presented in Appendix D. Table 5.28 provides a bird-eye view

of the methodologies’ support for steps by showing only the assessment of criterion

“Usability of techniques”. Usability was evaluated as either high (“H”), medium (“M”)
or Low (“L”).

147



19. Specify agent instances deployment

18. Instantiate agent classes

17. Specify agent inheritance & aggregation

16. Specify agent-environment interaction mechanism

H

15. Model MAS environment

M

14. Specify organisational structure/inter-agent authority
relationships

13. Specify system architecture

M| H|H | M

H

H|H|H

12. Define agent behavioural constructs

11. Define agent informational constructs

10. Specify agent architecture

H|H|H|H

H|{M|H|H

9. Specify agent communication language

M| H | H

8. Define content of exchanged messages

H

L

7. Define interaction protocols

H

6. Specify acquaintances between agent classes

M

MIM|{M|M|H|H|M|H

W

. Model domain conceptualisation

ks

Identify agent classes

M

w

. Identify roles

M|M|M|M|H

35

. Specify use case scenarios

—

. Identify system functionality

H|H|H|H|H]|H

H

L

M

H

H|H | M| H

H|{H | MM

H|{H| H|{M M|H|H]|H

H

M

H

Table 5.28 — Evaluation of “Usability of techniques”

MASE

MASSIVE

SODA

GAIA

MESSAGE

INGENIAS

BDIM

HLIM

MEI

PROME-

THEUS

PASSI

ADELFE

COMOMAS

MAS-
COMMONA | H | H

KDS

CASSIO-
PEIA

TROPOS

148



Concepts

ing

In this section, the sixteen AOSE methodologies are evaluated according to criterion

f support for Modelli

wono

5.4.2.3. Evaluat

“Support for modelling concepts” (cf. Table 5.23). This criterion used the list of

modelling concepts in Table 5.23 as yardsticks. Evaluation results are presented in

Tables 8.29a and b. If a methodology was found to support a particular modelling

concept, the name of the model kind or notational component capturing the concept is

displayed. If a concept appears in many different model kinds or notational components

of the methodology, only the model kind/notational component that represents the

concept as the principal modelling element is shown.

juawAordop douejsur Uy ‘|7

[opow uonesiuesI0

uonenuelsul Juady 0z

[opow uonesiuesIQ

diysuoneor souejLoyuI Juosy ‘6|

[opow uonestuesio

JUSWNOOP
2IMOA)IYIIE PafIeIa

drysuonerer uonedaisse Juady ‘g1

[opow us1saq
‘[opowr uonesiuediQ

JUSWNOOP UONIULIP
JUSWIUOIIAUF

K1[108]/001N0SAI JUSWUOIIAUY /|

omawely sjuowambox
b
[euonOUNJ-UON

[opow uonesiuesI0

[opow wdsAS

sdrysuonear Ajuoy)ne jude
-I9)UI/IMONNS  [eUOnesIUeSI) 9]

[opow uonesiuesio

JuAWNOOP
QINIYOIE PIIEId

QINPOANIYIIE WIISAS “§ |

weISerp uoneIoqe[j0)/
weiSerp oouonbag

[apow UO1BUIPI00)

JUWNOOP
oFenJue| uonoeloiuy

sogessowr pagueyoXa Jo JUAUOD) ‘|

Table 5.29a — Evaluation of support for modelling concepts (part a)

wieiderp aouanba! SpOW UO1RUIPIOO; lopott JUSUINO0P 090301d wonoEIU] *
HsEp S 1op HeuLpiood aaneradoo) oFenJue| uonoeisiuy 10903 L el
weieIp uoneioqe[o)/ ydei3d JuAWNd0P .
weiderp aouanbag Burjdnopy [opou uoneupI00) QIMIIIYOIL AIBMIOS sogenmEnboz usdy ¢
QmjoaNyoIe opour uSIso JusuInaop QIO IYoIE JUASY
el 1ad 1op sea 2IMPA)IYIIE pafIeIa AL DY "L
[9pOoW UOHBUIPIOO)) JO .
wesSerp wonIsuEs Sy Juand/idessad yuedy 01
[opow uonestuesiQ JuWNOOP .
‘[opow Juady QIMOA)IYDIE PIfIEId SRSy MERR
wesSerp uelg Jopot asiadxy poyow SurA[os wojqord/ant
Suruoseal/ueld juady ‘g
3 3 d: m_%.oE juswunoop o8pajmou/Jarfaq Juddy °
wesderp sse[o Juddy [opowr asnradxg sy ‘[opouwt ampYaIE P PI[MOUY/JAI[oq JUASY /[
asntadxg
weiSerp 1010 opow JudF pow JudF e se)/[eoS Juady
1p 1010V [opou JudsY [opour JudsY aInjoaNyaIe pafteng sey/I JUI5Y "9
w_mm”_wu Jopow Juasy JuowuIsse 9[oIudY ‘g
Jopour astadxg uonesijenydaouod urewo( ‘4
ydeis AT
Surgdnopy 10 °¢
0SB0 0S[) [opow ased as) OLIBUDIS dSLD 3S() T
weiseip Aypeuonouny woisAg
opeuoney ‘weiderp J010y [opour yse], [opour yse], [opow 2582 38} Jijeuonouny WasAs *|
VIdd- Sav>uowwoy SVIA
SOdOY L q471aav
OISSYD -“SVIA “ONOD

149



Table 5.29b — Evaluation of support for modelling concepts (part b)

Jopour wegerp R
[opow Juawkojdacy Sy Jowordaq JuswAodop souejsul JuFY ‘[
103d119S3p [opowt opour Juos [opowt weselp B
sse[o Juady Juady P v Juady Juowkorda uonenue)sul Juasy ‘07
[opow diysuonefax
Juasy QouRILIYUI JUATY ‘6
[opowr diysuonear
9po 93!
Juady [opout sy uonedoI3se Juady ‘g1
weigerp Jopour [opowr [opour A1[108]/90In0S31
[OPOU JUSWUOTAUT
MITAIOAO WANSAS uonesiuesio [EJUSUILOIIAUF 20IN0saY JUSWUONAUY /|
[opour . [opowt sdiysuonefax
drysuorefor [opou uonesiuesIo :O_MMH—_“m_O amonns MI1A K1o100S AKyuoyine Jusge-I9)ur/eInionts
sy o [euonesiuesIo [euonesiuesio 9|
[opout weigerp weigerp JSN
uonejuawoajdun MIIAIDAO [opouw uonesiuesI0 2IMOAIYOIE - AINJ0ANIYdIL Eoum%m ST
1 1 I hest g JEININIYOIY :
Juady woIskg waskg
Jopour 1000301 Jopow Jopow Jopow weiSerp sseo sogessowr
uopguausaydusy » weiSep UOTIESIOATIO, UONIRIAN] 1opott tonorIoI UOTIRION] UOTEOTUNUIIO, 31 a
Josy uonorIoN] i o it noeIou neot 8] PaSueyoOXa JO JUNUOD) b
[090301d [opout [opowt [opour [opowt MIIA WeIselp sse[d B
[opour £101908 JUdSY [opow uonoeINU] § : 1000301d TOTORIOM] "¢
uonorIAU uoneuIpI00) UOIBSIDAUO)) uonorIdUL uonorIAU uonorIdUL uonorIdUL UuonBIIUNWWO)) -
[opowt welgerp [opowt [opout [opowt [opour [opowt MIIA wergerp B
: [opow uonorIU] : : Qouejurenboe Juady ‘71
juowannbar waysAg uonorIU[ UOIBSIDAUOD) uonorIAU[ uonesiuesI0) doururenboy uonorIAU[ uonoeIAU| sse[o Juady 5
(B weidelp R wergelp
uonrudwodu MIIAIDAO [eamoaory ampanyore QIM)O9IYIE JUASY [ |
Juady Juady sse[o Juady
10)d115sap MIIA B
Jdootog JusuoIAUg JuoAd/doorad 1ualy 01
wergerp [opowr q
[opout £191008 JUaSY fmaeden ety [opow 3IIAIRS 201A10s/K)111qRdED JUASY 6
opour
UonEmswodm 103d11050p weiderp m_uuoE Jopou uelg [opows JusBy weiderp poyour FurA[os Eu_noa\%.:
oSy ueld s uelg juage [eusou] Q1S yseL Suruosea1/uerd Jusly ‘g
[opowt KSojopoyiawr ut
uonejuawaduwi Joidtiosop lopowt fepout pauonuaw jou Inq ‘sa3e)s mwﬁoﬁaogu:oﬁ Eow< L
: : eleq JudSe [eurdjuy Jorpg : b
Juagy [EIUSWE UT POPIOIAI 9q UED)
1pout 10111059p uieBerp 1opout Spout [eo! opou JudF se)/[e03 Juagy
Judwarmbar wsAg sse[o Juady ue|J-[eon Juage [eurd)u] op 1eoH [ppounjuasy ASeyT i V9
opout £19100s 1UdT opow JuaF oA opout JuaF 1opout MOIA IO weiseIp uswuSisse d[o1-juady
op 91008 JUATY [opou JudsY S0y Sy [opour Judsy sy 1A 210 sse[o JuaBY ¥ i [01-3U5Y °G
[opou £191908 Sy MIIA UrRWo(] AojoyuQ uopesiiendeouod urewo(y
1opout [opour 9O UOTOBIAIU] “[opOtLt [opour
£121008 Ju0BY ‘[opowr S [opour o[y [opou o[y MOIA O[Oy weISerp o[y 910y ‘¢
Juowoimbar wasAS [oA9] YSTH uonesiuesiQ ‘[opowr Juasy J0YHuBy
fopout 101dHOSIp lopowt Seip os 3 OLIBUAOS ASED AS[) *
Juowoxmbox wasKs aseo 9501 [opou ased as) 1oAd1 UBIH weISerp ases os) wesSerp ased osn) L Jol4
[opour 103d11053p [OPOJA uonduNn [opour Topour werdelp N
Judwonnbar woyskg Ayeuonoun,g VSOWID/AAdI [oA9] ySIH [oPOUIISEL % [°0D JseL/[eon lopou 2108 lopo 210 MO ISEL 9[01 papuLIX AEuonou AuISASET
SNAHL aov
ISSvd TN I'TH NIad SVINAONI VIVD vaos HAISSVIA ASVIA
JINOUd SSAIN

150



5.4.3. Actual Requirements of MOBMAS

In this section, the feature analysis findings were combined with the results of the

survey in Section 5.3 to determine the “actual” requirements of MOBMAS (cf. Figure

4.3). Specifically, a potential requirement was determined to be an actual requirement of

MOBMAS if:

e it was supported by a majority of the existing AOSE methodologies (i.e. 9 or more
out of 16): A methodology is considered supportive of a feature, step or modelling
concept if it was evaluated “Yes” or “High” for the respective evaluation criterion
(depending on whether the criterion is a yes/no question or a high/medium/low
rating question); OR

e it was given a High to Very High “rating of importance” in the survey; OR

e it was given a Medium “rating of importance” in the survey AND its “order rank” is

not the least important with respect to other requirements within the same category.

All potential requirements that did not match these criteria were excluded from the list

of actual requirements of MOBMAS.

Tables 5.33, 5.34 and 5.35 below extend Tables 5.14, 5.15 and 5.16 in Section 5.3 to
show the “Number of existing methodologies that support [each] feature/step/modelling
concept” and the selection of MOBMAS actual requirements from the list of potential
requirements. Actual requirements are displayed in normal font while discarded

potential requirements are displayed in

151



Table 5.30 — Selection of MOBMAS’ “actual” features

Median Mean Number of existing
Features desirable to MOBMAS Rating of Rank methodologies that
development process Importance support the feature
(out of 16)
1. Specification of model kinds and/or Very high 3.34 16
notational components
2. Specification of steps for the development Very high 3.46 16
process Very high 3.78 16
3. Specification of techniques and heuristics for
performing each process step and producing
each model kind
4. Support for verification and validation Very high 3.95 7
5. Support for refinability Very high 4.26 15
6. Specification of a system development Very high 4.43 11
Median Mean Number of existing
Features desirable to MOBMAS model Rating of Rank methodologies that
definitions Importance support the feature
(out of 16)
1. Guarantee of consistency Very high 352" 9
2. Model kinds expressed at various level of Very high 3.78 12
abstraction and detail
3. Support for reuse Very high 3.80 6
4. High degree of completeness/expressiveness Very high 3.81 9
5. Manageable number of concepts in each Very high 4.06 15
model kind and each notational component
6. Support for modularity Very high 4.23 16
7. High degree of formalisation/preciseness Very high 4.41 13
8. Provision of guidelines/logics for model Very high 4.49 14
derivation A A
Agent properties desirable to be liw e.dlan Mean Number of efx1stmg
captured/represented by MOBMAS model ating of Rank LT B G P
Kinds Importance support the feature
(out of 16)
1. Autonomy Very high 16
2. Cooperative behaviour Very high 16
3. Deliberative behaviour Very high 15
4. Knowledge-level communication ability Very high 10
5. Inferential capability Very high 11
6. Reactivity Very high 10
7. Adaptability Very high 2
8. Personality Medium 0
Median Number of existing
Features desirable to MOBMAS as a whole LI Rank LGRS B
Importance support the feature
(out of 16)
1. Support for dynamic systems Very high 3.34: 5
2. Support for open systems Very high 3.78. 3
3. Support for ontology-based MAS Very high 3.87 4
development
4. Support for heterogeneous systems High 5
5. Support for agility and robustness Medium 6
6. Support for mobile agents Medium 1

152



Table 5.31 — Selection of MOBMAS’ “actual” steps

] Number of existing
Median q
q q . Mean methodologies that
Problem Domain Analysis steps Rating of
Rank support the step (out
Importance
of 16)
1. Identify system functionality Very high 15
2. Identify agent classes Very high 16
3. Model domain conceptualisation Very high 4
4. Identify roles High 3.68 10
5. Specify use case scenarios Medium 3.72 7
Median Number of e'X1stmg
q q q Mean methodologies that
Agent Interaction Design steps Rating of
Rank support the step (out
Importance
of 16)
1. Define interaction protocols Very high 102 15
2. Specify acquaintances between agent classes Very high (1,54 16
3. Define content of exchanged messages Very high 2.51 10
4. Specify agent communication language Medium 3.75 3
Median Number of e'X1stmg
. . Mean methodologies that
Agent Internal Design steps Rating of
Rank support the step (out
Importance
of 16)
1. Define agent informational constructs Very high 178 12
2. Define agent behavioural constructs Very high 210 6
3. Specify agent architecture Very high 2,34/ 11
Median Number of e;xnstmg
g . Mean methodologies that
Overall System Design steps Rating of
Rank support the step (out
Importance
of 16)
1. Specify system architecture Very high 1.90° 8
2. Specify organisational structure/inter-agent Very high 2,05 8
authority relationships | | | 777
3. Model MAS environment Very high 290 9
4. Specify agent-environment interaction High 3.90: 6
mechanism
5. Instantiate agent classes High 4.23 7
6. Specify agent instances deployment High .4.89: 3
7. Specify agent inheritance and aggregation Medium v 5095 4

153



Table 5.32 — Selection of MOBMAS’ “actual” modelling concepts

Number of
Median Mean existing
Problem Domain concepts Rating of Rank methodologies that
Importance support the
concept (out of 16)
1. System functionality Very high 14
2. Role Very high 9
3. Domain conceptualisation ngh 4ea Ol 4
4. Use case scenario Very high 3.73 7
Number of
Median Mean existing
Agent concepts Rating of Rank methodologies that
Importance support the
concept (out of 16)
1. Agent belief/knowledge Very high 8
2. Agent goal/task Very high 10
3. Agent-role assignment Very high 9
4. Agent plan/reasoning rule/problem Very high 9
solving method High 8
5. Agent architecture | || . i
6. Agent capability/service Medium 605 6
7. Agent percept/event Medium v 16.52} 3
Number of
Median Mean existing
Agent Interaction concepts Rating of Rank methodologies that
Importance support the
concept (out of 16)
1. Interaction protocol Very high A3, 14
2. Content of exchanged messages Very high i2.22: 10
3. Agent acquaintance Very high i2.49; 14
Number of
Median Mean existing
Overall System Design concepts Rating of Rank methodologies that
Importance support the
concept (out of 16)
1. System architecture Very high 1.75§ 7
2. Organisational structure/inter-agent Very high :1.90: 7
authority relationships
3. Environment resource/facility Very high 7
4. Agent instance deployment High 3
5. Agent instantiation High 6
6. Agent aggregation relationship Medium 4
7. Agent inheritance relationship Medium 2

154



5.4.4. Potential Sources of Techniques and Model
Definitions for Supporting MOBMAS’ Actual

Requirements

The feature analysis enabled the research to identify and evaluate the techniques and
model definitions provided by the existing methodologies to support each particular
feature, step or modelling concept. This identification and evaluation helped the

research to:

o Identify a pool of existing techniques and model definitions that may be reused or
enhanced by MOBMAS: In Tables 5.33, 5.34 and 5.35, the potential AOSE
methodologies from which MOBMAS may acquire techniques and/or model
definitions are presented.

- The listed methodologies for features (Table 5.33) are those that were evaluated
“Yes” or “High” for the corresponding evaluation criterion.

- The listed methodologies for steps (Table 5.34) are those that received a “High”
rating for criterion “Usability of techniques”.

- The listed methodologies for modelling concepts (Table 5.35) are those that

provide at least one model kind or notational component to capture the concept.

It should be noted that if a methodology listed for a step or modelling concept was

rated “No”, “Medium” or “Low” in any of the following criteria, the techniques or

model definitions selected from that methodology would likely need to be enhanced:
“Ease of understanding of the development process”;

- “Usability of the development process”;

- “Ease of understanding of techniques”;

- “Provision of examples for techniques”; and

- “Ease of understanding of model definitions”.

o Identify MOBMAS requirements that need to be supported by new techniques and/or
model definitions. These are the features, steps and modelling concepts that are

currently given limited support by the existing methodologies. In Tables 5.33, 5.34

155



and 5.35, these requirements are indicated by the phrase “New support required”.

Justification for the need for new support is presented in the parentheses.

Apart from the existing AOSE methodologies, MOBMAS also defined its techniques

and model kinds by consulting the professional recommendations given by survey

respondents in Section 5.3.4.5. In Tables 8.15, 8.16 and 8.17, the requirements marked

with (S) are those that can be supported by examining these recommendations.

Table 5.33 - MOBMAS?’ required features and sources of potential techniques and/or model definitions
for supporting these features

Required features of MOBMAS
development process

Potential sources of techniques and model definitions

1.

Specification of a system
development lifecycle (S)

MASE, MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,

TROPOS
2. Support for verification and MASE, MASSIVE, INGENIAS, PROMETHEUS, PASSI,
 validaton ADELFE, TROPOS
3. Specification of steps for the See Table 5.34
| developmentprocess
4. Spemﬁcatlop of model kinds See Table 5.35
| and/or notational components
5. Specification of techniques and
heuristics for performlng each See Table 5.34
process step and producing each
6. Support for refinability All methodologies except for SODA
Required features of MOBMAS Potential sources of techniques and model definitions
model definitions
1. High degree of MASE, INGENIAS, HLIM, PROMETHEUS, PASSI,
| completeness/expressiveness ADELFE, COMOMAS, MAS-CommonKADS, TROPOS
2. High degree of All methodologies except SODA, MEI and

_formalisation/preciseness
. Provision of guidelines/logics for
__model derivation

. Guarantee of consistency
. Support for modularity

. Manageable number of concepts -

in each model kind and each
notational component

. Model kinds expres'se'd at

various level of abstraction and

detall

. Support for reuse

MAS-CommonKADS

All methodologies except CASSIOPEIA and
MAS-CommonKADS

MASE, SODA, GAIA, INGENIAS, HLIM, PROMETHEUS,
PASSI, ADELFE, TROPOS

All methodologies

All methodologies except SODA and INGENIAS

All methodologies except SODA, PASSI, CASSIOPEIA and
COMOMAS

MASE, MASSIVE, GAIA, BDIM, PASSI, MAS-
CommonKADS

156



Agent properties required to be
captured/represented by

Potential sources of techniques and model definitions

4.

7.

MOBMAS model kinds

1. Autonomy All methodologies
|2 Adaptability MASSIVE, INGENIAS
3. Cooperative behaviour All methodologies

Inferential capability

‘Knowledge-level

communication ability

‘Reactivity

Deliberative behaviour

MESSAGE, INGENIAS, BDIM, HLIM, MEI, PROMETHEUS,
PASSI, ADELFE, COMOMAS, MAS-CommonKADS, TROPOS

MASE, MESSAGE, INGENIAS, BDLIM, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,
TROPOS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of
exchanged messages)

PROMETHEUS , MASE, MESSAGE, INGENIAS, BDIM,
HLIM, PASSI, ADELFE, TROPOS, COMOMAS, MAS-
CommonKADS

All methodologies except CASSIOPEIA

Required features of MOBMAS
as a whole

Potential sources of techniques and model definitions

1.
2.

3.

Support for open systems
Support for dynamic systems
Support for heterogeneous
systems

Support for ontology-based

MAS development

SODA, GAIA, ADELFE

MASSIVE, HLIM, PASSI, CASSIOPEIA

INGENIAS, PROMETHEUS, GAIA and MASSIVE
+ New support required (existing methodologies do not
conceptualise the content/knowledge of non-agent software
components, thus failing to explicitly support the interoperability
between agents and these components, or between these
components themselves)

MASE, MESSAGE, PASSI, MAS-CommonKADS
+ New support required (cf. Section 3.3.2)

Table 5.34 - MOBMAS?’ required steps and sources of potential techniques for supporting these steps

Problem Domain Analysis steps

Potential sources of techniques for performing steps

2.

Identify system functionality

Identify roles

. Identify agent classes (S)

Model domain
conceptualisation

All methodologies except SODA, GAIA, BDIM, COMOMAS

MASE, MASSIVE, GAIA, PASSI

MASE, GAIA, INGENIAS, BDIM, MEI, PROMETHEUS,
ADELFE, TROPOS

MASE, PASSI, MESSAGE, MAS-CommonKADS
+ New support required (existing methodologies lack detailed
discussion of this step)

Agent Interaction Design steps

Potential sources of techniques for performing steps

1.

Specify acquaintances

_between agent classes

. Define interaction protocols

. Define content of exchanged

messages

MASE, INGENIAS, MEI, PROMETHEUS, PASSI,
CASIOPEIA, MAS-CommonKADS

All methodologies except BDIM, ADELFE, CASSIOPEIA,
COMOMAS

MASE, PASSI, MAS-CommonKADS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of
exchanged messages)

157



Agent
Internal Design steps

Potential sources of techniques for performing steps

1. Specify agent architecture

2. Define agent informational
constructs

3. Define agent behavioural |

constructs

MASSIVE, MESSAGE, PROMETHEUS, PASSI, ADELFE

~ MESSAGE, INGENIAS, BDIM, HLIM, PROMETHEUS,

ADELFE
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of agent
( beliefs)

PROMETHEUS, BDIM

Overall System Design steps

Potential sources of techniques for performing steps

1. Specify system architecture
(i.e. overview of all system
components & their

_connections)

MESSAGE, INGENIAS, PROMETHEUS, PASSI, ADELFE,
MAS-CommonKADS

2. Specify organisational |

structure/inter-agent

MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM, TROPOS

3. Model MAS environment

4. Specify agent-environment

interaction mechanism

5. Instantiateagentclasses |

6. Specify agent instances
deployment

MASSIVE, INGENIAS, ADELFE, TROPOS
INGENIAS, MEI, PROMETHEUS
_ MASE,GAIABDM
MASE

Table 5.35 - MOBMAS?’ required modelling concepts and sources of potential techniques and/or model
definitions for supporting these concepts

Problem Domain concepts

Potential sources of modelling techniques and model
definitions

2. Role

3. Domain conceptualisation

1. System functionality

All methodologies except BDIM and CASSIOPEIA

PASSI, MASE, SODA, GAIA, MESSAGE, INGENIAS, HLIM

PASSI, MESSAGE, MAS-CommonKADS

Agent concepts

Potential sources of modelling techniques and model
definitions

1. Agent-role assignment

2. Agent goal/task

3. Agent belief/knowledge

5. Agent architecture

MASE, MASSIVE, GAIA, MESSAGE, INGENIAS, PASSI,
CASSIOPEIA, MAS-CommonKADS

INGENIAS, BDIM, HLIM, MEI, PROMETHEUS, PASSI,
ADELFE, COMOMAS, MAS-CommonKADS, TROPOS

BDIM, HLIM, PROMETHEUS, PASSI, ADELFE, COMOMAS,
MAS-CommonKADS
+ New support required (existing methodologies do not
integrate ontologies in the modelling and verification of agent
beliefs)

"4 Agentplan/reasoning
. Tule/problem solving method

MASE, INGENIAS, BDIM, HLIM, MEI, PROMETHEUS,
PASSI. MAS-CommonKADS, TROPOS

MASE, MASSIVE, PROMETHEUS, PASSI, ADELFE, MAS-
CommonKADS

158



A e Potential sources of modelling techniques and model

definitions
1. Agent acquaintance All methodologies except MEI and COMOMAS
2. Interaction protocol All methodologies except CASSIOPEIA and BDIM

MASE, MESSAGE, INGENIAS, BDIM, HLIM,
PROMETHEUS, PASSI, ADELFE, MAS-CommonKADS,
3. Content of exchanged TROPOS

messages + New support required (existing methodologies do not
integrate ontologies in the modelling and verification of
exchanged messages)
Overall System Design Potential sources of modelling techniques and model
concepts definitions
MASSIVE, INGENIAS, PROMETHEUS, PASSI, ADELFE,
MAS-CommonKADS

1. System architecture

2. Organisational
structure/inter-agent
___authority relationships
3. Environment
_resource/facility

MASSIVE, GAIA, MESSAGE, INGENIAS, HLIM,
COMOMAS, TROPOS

GAIA, MESSAGE, INGENIAS, PROMETHEUS

4. Agent instantiation MASE, GAIA, BDIM, PROMETHEUS, MAS-CommonKADS

5. Agent instance deployment MASE, PASSI

5.5. IDENTIFICATION OF ONTOLOGY-
RELATED STEPS

Step 3 of Research Activity 1 has determined the “actual” methodological requirements
for MOBMAS (Section 5.4; Tables 5.33, 5.34 and 5.35). In this section, the execution
and outputs of Step 4 — “Identify ontology-related steps from amongst the required
MOBMAS’ steps [Table 5.34]” — are documented. These ontology-related steps had to
be identified in such a way as to allow MOBMAS to realise all of the widely-
acknowledged benefits of ontologies to MASs, which are previously identified in
Section 2.3.2. Consequently, each benefit of ontologies needed to be investigated

closely.

+ Ontology’s benefits to interoperability (c.f. Section 2.3.2.1)
Heterogeneous system components can be interoperated through the mappings of the
ontologies conceptualising their respective knowledge/application. With respect to
agents, the local knowledge of each agent should first be explicitly conceptualised
by ontologies. Likewise, with respect to non-agent resources, ontologies should first
be used to explicitly conceptualise the information/application of each resource. The

semantic mappings between agents’ and/or resources’ local ontologies should then
159



be defined to allow for interoperability between them. These requirements can be

implemented by the following AOSE steps.

o  “Model domain conceptualisation”: This step should define all the ontological
mappings between the application’s domain ontologies (where necessary). The
domain ontologies may be mapped against each other, or against a common
ontology (c.f. Section 2.3.2.1). Normally, when there are more than two
ontologies to be mapped amongst themselves, the second approach should be
favoured over the first, given the reasons listed in Section 2.3.2.1. The common
ontology to be used in the second approach may be one of the existing
application domain ontologies itself, or built from scratch as an inter-lingua of

the existing ontologies.

o “Define agent informational constructs”: This step should conceptualise each
agent’s local domain-related knowledge with ontologies. These local ontologies
may be extracted from, or built upon, the application domain ontologies
developed by step “Model domain conceptualisation”. It should be noted that in
this step, the developer normally does not need to define the semantic mappings
between the agents’ local ontologies. This is because these mappings (if
necessary) should have been represented as either the relationships between
concepts within a particular application domain ontology®', or as mappings

between different application domain ontologies™.

o “Model MAS environment”: This step should include the specification of the
ontologies that conceptualise each resource’s information/application. The
semantic mappings between these resources’ local ontologies should be defined.
If each heterogeneous resource is wrapped by a different agent, each resource’s
local ontology would need to be mapped against the corresponding wrapper
agent’s local ontology. The different wrapper agents can then communicate with

each other as would be described later in this section. If otherwise the

3! This case applies if the local ontology of each agent comes from a different portion of the same
application domain ontology.
32 This case applies if the agents’ local ontologies have been derived from distinct, but mapped,
application domain ontologies.

160



heterogeneous resources are wrapped by the same agent, it is most efficient for
each resource’s ontology to be mapped against the agent’s local ontology, which

acts as the common inter-lingua.

% Ontology’s benefits to reusability

As discussed in Section 2.3.2.2, ontologies promote reusability because:

they offer high readability. This capability of ontologies can be exploited by
steps “Model domain conceptualisation” and “Define agent informational
constructs”. By using ontology to model application domains and agents’ local
domain-related knowledge, these steps can improve the readability and
comprehensibility of the resulting domain model and agent domain knowledge

model;

ontologies facilitate the interoperability between heterogeneous agents and

resources. This benefit has been discussed earlier in Section 5.5; and

ontologies make it easy to decouple the modelling of agents’ behavioural
knowledge from the domain-related knowledge, hence promoting the reuse of
these two knowledge modules. This mechanism of reuse can be implemented by
steps “Define agent informational constructs” and “Define agent behavioural
constructs”. The former can focus on defining the ontologies which
conceptualise the domain-related knowledge of each agent, while the latter can
focus on specifying the plans, reflexive rules and/or actions that guide the
agent’s behaviour. The latter should make reference to the ontology-based
domain-related knowledge whenever necessary, e.g. to set the context for the

agent behaviour or to serve as knowledge inputs.

+ Ontology’s benefits to MAS development activities (c.f. Section 2.3.2.3)

With respect to system analysis, the elicitation of problem/system goals can be
facilitated and validated by the ontological analysis effort of knowledge
engineers or domain experts. Ontology can also be used as an effective

representation mechanism for modelling application domains.

161



To realise these benefits, the following AOSE steps should integrate the use of

ontologies into their techniques and/or generated products.
“Identify system functionality”’: The identified system functionality identified
should be verified/validated against the domain ontologies developed by
knowledge engineers.

—  “Model domain conceptualisation”: This step should employ ontology as the

representation mechanism for modelling the target application domains.

With respect to agent knowledge modelling, ontologies provide an effective
representation mechanism for modelling agents’ local domain-related
knowledge. As such, the AOSE step “Define agent informational constructs”
should conceptualise the local domain-related beliefs of each agent through
ontologies. The agents’ local ontologies can be extracted from, or built upon, the
application domain ontologies developed by step “Model domain

conceptualisation”.

+ Ontology’s benefits to MAS operation (c.f. Section 2.3.2.4)

With respect to communication, by sharing an ontology and explicitly defining
the semantics of the exchanged messages in accordance with this shared
ontology, the interacting components in a MAS can communicate in a
semantically consistent manner. This role of ontologies in communication can be
implemented in step “Define content of exchanged messages”. This step should
require the developer to formulate the exchanged messages in terms of the
concepts defined in an ontology shared between the communicating agents.
Being “shared” means that the ontology needs to be included in the local
knowledge of both communicating agents. If the communicating agents do not
yet share a common ontology, such an ontology should be built and added to
each agent’ local knowledge. It should contain concepts that serve as the inter-
lingua between the agents’ local (heterogeneous) ontological concepts. This
ontology may be derived from the application domain ontologies, since the

agents’ local ontologies are themselves extracted from there initially.

162



e With respect to agent reasoning, in order for agent reasoning at run-time to
utilize ontology-based knowledge (as exemplified in Section 2.3.2.4), the agents’
behavioural knowledge should be specified in such a way as to make reference
to the domain-related knowledge modelled in ontologies whenever necessary.
Accordingly, step “Define agent behavioural constructs” should use ontological
concepts whenever appropriate to formulate agents’ plans, reflexive rules and
actions. For example, concepts in an agent’s local ontology may be used to
define the context of the agent’s plans, or to specify the knowledge requirements

of the agent’s actions.

In summary, amongst the AOSE steps that are required to be supported by MOBMAS

(cf. Table 5.34), the following steps should be ontology-related:

. “Identify system functionality”;
. “Model domain conceptualisation”;

. “Define content of exchanged messages”,;

1
2
3
4.
5
6

“Define agent information constructs”

. “Define agent behavioural constructs”; and

. “Model MAS environment”

5.6. SUMMARY

This chapter has reported on the performance and outcome of the four research steps of

Research Activity 1 — “Identify the methodological requirements of MOBMAS”. The

aggregate outputs of this research activity are:

a list of MOBMAS’ methodological requirements, i.e. the features, steps and
modelling concepts that are desirable to be supported by MOBMAS process,
techniques and model definitions;

recommendations of practitioners and researchers on the various issues that were
useful to the development of MOBMAS;

identification of a pool of techniques and model definitions that can be reused or
enhanced by MOBMAS to support its methodological requirements, and
identification of the methodological requirements that need to be supported by new
techniques and/or model definitions; and

a list of desirable ontology-related steps that MOBMAS should support.

163



All of these outputs were used as inputs into Research Activity 2 — “Develop
MOBMAS” (cf. Section 4.3). Section 4.5 has explained how MOBMAS was developed
using these inputs. In the next chapter, Chapter 6, the full MOBMAS methodology is
documented. It should be noted that, the MOBMAS methodology presented in Chapter
6 is in its final version, after various evaluation and refinements have been made by
Research Activity 3 — “Evaluate and Refine MOBMAS”. These evaluation and

refinements are reported in Chapter 7.

164



CHAPTER 6
DOCUMENTATION OF MOBMAS

This chapter presents the full documentation of MOBMAS. It is organised into seven

sections.

e Section 6.1 presents an overview of MOBMAS, particularly MOBMAS’ conceptual
framework, development process and model kinds. This section also describes the
application problems that were used to illustrate MOBMAS throughout its
documentation.

e Sections 6.2 to 6.6 describe the five core activities in the development process of
MOBMAS, namely “Analysis”, “MAS Organisation Design”, “Agent Internal
Design”, “Agent Interaction Design” and “Architecture Design”. Each section
specifies each activity’s associated steps, techniques and model kinds.

e Section 6.7 presents a summary of the chapter.

The MOBMAS methodology documented in this chapter has undergone various
evaluation and refinements that were made by Research Activity 3 — “Evaluate and
Refine MOBMAS” (cf. Section 4.3). These evaluation and refinements are recorded in
Chapter 7.

6.1. OVERVIEW OF MOBMAS

MOBMAS stands for “Methodology for Ontology-Based Multi-Agent Systems”. As
stipulated in the research’s objective (cf. Section 4.2), MOBMAS aims to provide
comprehensive support for ontology-based MAS development and various other

important AOSE methodological requirements which are documented in Chapter 5 (cf.

Section 5.4.3).

Conforming to the definition of a software engineering methodology (Henderson-
Sellers et al. 1998), MOBMAS is composed of (cf. Figure 4.2):
e a software engineering process that contains activities and associated steps to

conduct the system development;
165



o ftechniques to assist the process steps; and

e definition of model kinds>.

An overview of MOBMAS process and model kinds is presented in Sections 6.1.2 and
6.1.3 respectively. MOBMAS techniques are presented later in the documentation of the
methodology from Sections 6.2 to 6.6. But firstly, the conceptual framework of
MOBMAS is documented in Section 6.1.1. This conceptual framework defines the
essential abstractions that underlie MOBMAS development process and model kinds.
Section 6.1.4 finally describes the application problems that were used to illustrate

MOBMAS throughout Sections 6.2 to 6.6.

6.1.1. MOBMAS Conceptual Framework

MOBMAS borrows many abstractions from TAO (“Taming Agents and Objects”) — a
meta-model that extends UML to accommodate the development of large-scale MASs
(Silva and Lucena 2004; Silva et al. 2003). TAO offers a variety of OO and agent-
oriented abstractions, but MOBMAS chose to reuse and refine only those agent-oriented
abstractions that are directly relevant to its process and model kinds. MOBMAS also

introduces some other abstractions that are not included in TAO.

The definitions of MOBMAS’ essential abstractions are presented below. TAO-based

abstractions are marked with TAO reference.

1. Agent class (Silva et al. 2003): a template descriptor for a set of agents with similar
characterisation. Each agent class is associated with a set of roles, agent goals,
events, application ontologies, plan templates, reflexive rules and interaction
pathways with other agent classes (referred to as “inter-agent acquaintances”). The

term “agent” is used to refer to an instance of an agent class.

2. Organisation (Silva et al. 2003): A group of agents which play roles. A MAS is
therefore viewed as an organisation. In MOBMAS, the organisational structure of

MAS is modelled via roles, interaction pathways between roles (referred to as “inter-

3 The term “model kind” is used to refer to the definition of a specific class of models (Standards
Australia 2004). It is different from “model” in that models are actual deliverables produced by the
developer for each model kind during the development process.

166



role acquaintances”) and authority relationships amongst roles (e.g. peer-to-peer or
superior-subordinate relationship). The organisational structure between agent
classes at design time or between agents at run-time can be derived from this role-

based organisational structure, given the role(s) that each agent class or agent plays.

. Resource: a non-agent software system that provides application-specific
information and/or services to agents in MAS, e.g. an information source or a legacy

system.

. Environment (Silva et al. 2003): the habitat of agents. From the perspective of a
particular agent, its environment contains other agents in the system, resources and
infrastructure facilities (which provide system-specific services such as naming

service, agent directory service or message transport service).

. Role (Silva et al. 2003): a definition of a position in the MAS organisation (Ferber
and Gutknecht 1998; Demazeau and Costa 1996). In MOBMAS, each role is
characterised by Reole-Tasks, which are duties that the role is responsible for
fulfilling. The role(s) played by each agent class defines the agent class’ expected
behaviour (because the agent class needs to behave in such a way as to fulfil its
assigned role’s role-tasks) and the agent class’ position in the MAS organisation
(because the position of an agent class is derived from the corresponding role’s
position in the inter-role organisational structure). At run-time, an agent may
dynamically activate, suspend or switch amongst its assigned roles, thereby
exhibiting dynamic behaviour and occupying dynamic positions in the MAS

organisation.

. Agent-goal (Silva et al. 2003): a state of the world that an agent class would like to
achieve or satisfy. Agent goals signify the purpose of existence of an agent class. In
MOBMAS, agent-goals are derived directly from role-tasks. An agent-goal may be
decomposed into sub-agent-goals via AND- or OR-decomposition. AND-
decomposition indicates that an agent-goal is achieved when all of the states
specified in all of its sub-agent-goals are achieved, while OR-decomposition applies
when an agent-goal can be achieved when any of the states specified in its sub-

agent-goals is achieved.
167



7. Event (Silva et al. 2003): a significant occurrence in the environment to which an
agent may react. This reaction may be the activation®® of an agent-goal or a change

in the agent’s course of actions to satisfy an active agent-goal.

8. Agent plan template: a specification of various pieces of information that are useful
to the formulation of plans to accomplish a particular agent-goal. Each agent plan
template specifies, for each agent-goal, a set of sub-agent-goals and/or actions that
may be executed by an agent to achieve the agent-goal, and events that may affect
the agent’s course of actions in achieving the agent-goal®>. At run-time, built-in
planners®® of the agent architecture or implementation platform will formulate the
specific plans for the agent to achieve the agent-goal, by selecting the appropriate
sub-agent-goals and actions to execute from the agent plan template, taking into
account the current state of the environment and the events that happen during the

planning process.

9. Reflexive rule: a (sequence of) “if-then” rule that couples a stimulus’’ and/or a state
of the environment with actions to be executed by an agent to satisfy a particular
agent-goal. Each reflexive rule may specify a whole complete course of actions to
achieve an agent-goal, or specify a partial course of actions that contributes towards

the achievement of the agent-goal.

10. Action (Silva et al. 2003): an atomic unit of work that an agent performs.

11. Belief state: knowledge that an agent holds about a particular state of the world
(Shoham 1993). Specifically, it captures run-time facts about the state of entities that
exist in the agent’s application (i.e. domains and tasks) and the environment (i.e.

resources and other agents).

3 An agent-goal is activated when the agent starts carrying out some processing to achieve/satisfy the
agent-goal. Accordingly, an active agent-goal is one that is being actively pursued or satisfied.
3> These are the major elements of an agent plan template. Other minor elements to be specified include:
identity of the event that activates the target agent-goal (if any), conflict resolution strategy (if required)
and the commitment strategy adopted by the agent during the planning process.
36 «“Planner” refers to a module/layer/subsystem in the agent architecture or implementation platform that
can reason to generate plans on the fly for the agent.
37 A stimulus may be an event or an internal processing trigger generated within the agent.

168



12. Belief conceptualisation: knowledge that an agent holds about the conceptualisation
of the world, particularly the conceptualisation of the entities referred to in Belief

State.

13. Application ontology: a conceptualisation of an application. A detailed definition of
“application ontology” has been provided in Section 2.3.3. In MOBMAS, two sub-
types of application ontology are defined.

e MAS application ontology: a conceptualisation of the application provided by
the target MAS. In particular, it defines the concepts and relations that the agents
need to know, and share, about the MAS application domains and tasks.

e Resource application ontology: a conceptualisation of the application provided
by a resource of the MAS system. In particular:

- if the resource is a processing application system (e.g. a legacy system), the
corresponding Resource Application Ontology defines the concepts and
relations that conceptualise the application domains and tasks/services of the
resource; and

- if the resource is an information source (e.g. a database), the corresponding
Resource Application Ontology defines the concepts and relations that
conceptualise the information stored inside the resource. It may be derived
from the information source’s conceptual schema (Hwang 1999; Guarino
1997).

In MOBMAS, the specification of an agent’s Belief Conceptualisation essentially

comes down to the determination of which (part of*®) MAS Application Ontologies

and/or Resource Application Ontologies the agent should commit.

14. System-task: anything that the target system should or will do. System-tasks
represent the required functionality of the MAS system. A particular system-task
may be decomposed into sub-system-tasks via AND- or OR-decomposition. AND-
decomposition indicates that the accomplishment of a system-task requires the
execution of all of its sub-system-tasks, while OR-decomposition applies when the

system-task can be accomplished by executing any of its sub-system-tasks.

% In many cases, the agent only needs to commit to a fragment of a particular MAS application ontology
or Resource application ontology to do its work.
169



The relationships between MOBMAS abstractions are shown in Figure 6.1.

System-task

1%

N s derived from

accomplishes

is derived
L* x| L from
X holds = tisfi
Belief state |- < : Agent class satisfies B>
1.* A 1
conceptualises
1 1 ivat > l 1.* *
. . . . 1* activates * _
conceptualises | Belief conceptualisation | | Event | —] Agent-goal :
1.* * | |
contains A fulfils
handles N
1>  Reflexive rule
| Application ontology | .
| Action | | Sub-agent-goal |
1.% I |*
MAS Resource
application ontology application ontology | | <@ handles Agent plan ] fulfils P>
- +| template

Figure 6.1 - MOBMAS abstractions and their relationships (represented in UML)

6.1.2. MOBMAS Development Process

The development process of MOBMAS consists of five activities, each of which
focuses on a significant area of MAS development: analysis, agent internal design,
agent interaction design, MAS organisation modelling and architecture specification.

Each activity is composed of a number of steps.

1. Analysis Activity: This activity is concerned with developing a conception for the
future MAS, namely a first-cut identification of the roles that compose the MAS
organisation. The activity also involves capturing “MAS application ontologies” that

conceptualise the application of the target MAS.

170



2. MAS Organisation Design Activity: This activity specifies the organisational
structure for the target MAS and defines a set of agent classes that compose the
system. If the MAS is a heterogeneous system that incorporates non-agent resources,
these resources need to be identified. These resources’ applications also need to also

be conceptualised (i.e. “Resource application ontologies”).

3. Agent Internal Design: This activity deals with the specification of each agent
class’ belief conceptualisation, agent-goals, events, agent plan templates and

reflexive rules.

4. Agent Interaction Design: This activity designs the interactions between agent
classes by, firstly, selecting a suitable interaction mechanism for the target MAS
(e.g. direct interaction via ACL messages or indirect interaction via
tuplespace/tuple-centre), thereafter defining the patterns of data exchanges amongst

agent classes depending on the chosen interaction mechanism.

5. Architecture Design Activity: This activity deals with various architecture-related
issues, namely the identification of agent-environment interface requirements, the
selection of agent architecture, the identification of required infrastructure facilities,

the instantiation of agent classes and the deployment configuration of agents.

Figure 6.1 lists the specific steps in each of the five activities of MOBMAS. It should
be noted that MOBMAS?’ steps cover the desirable AOSE steps that are previously listed
in Table 5.34, even though the former are named differently from the latter””, and some
MOBMAS?’ steps are defined as a combination or decomposition of the desirable AOSE
steps®” so as to form a coherent methodology. The correspondence between MOBMAS’
steps and the desirable AOSE steps would be confirmed in the feature analysis of

MOBMAS in Chapter 7 (particularly Table 7.5).

% For example, MOBMAS’ step “Develop System Task Model” is equivalent to the desirable AOSE step
“Identify system functionality” in Table 5.34.
“ For example, MOBMAS’ step “Develop Agent Interaction Model” encapsulates three desirable AOSE
steps in Table 5.34: “Specify acquaintances between agent classes”, “Define interaction protocols” and
“Define content of exchanged messages”. Meanwhile, the desirable AOSE step “Define agent
behavioural constructs” in Table 5.34 is decomposed into three MOBMAS’ steps: “Specify agent goals”,
“Specify events” and “Develop Agent Behaviour Model”.

171



Each MOBMAS’ step is associated with a model kind as each step allows the
developer to produce or update models of a particular kind. The solid arrows indicate
the flow of steps within and across activities, while the dotted arrows indicate the
potential iterative cycles of steps. Step iteration is particularly necessary if the
information collected in one step results in the refinement/extension of models
previously produced by another step. Note that the arrows only serve as
recommendations. In practice, the developer should be able to trace backward to any
preceding step to refine or extend the corresponding model (e.g. when new requirements
arise). Thus, the development process of MOBMAS is highly iterative and

incremental, either within or across all activities.

172



ANALYSIS MAS ORGANISATION DESIGN
2.
Analyse organisational context R 1.
1. (optional) "| Specify MAS organisational structure
Develop System Task Model [Organisational Context Model| [Role Model Kind]
[System Task Model Kind) Kind)] l
. / 2.
3. » Develop Agent Class Model
»|{ Develop Role Model [Agent Class Model Kind]
[Role Model Kind] l
’ 3
4. Specify resour;:es (optional)
Develop Ontology Model < .
[Ontology Model Kind] * [Resource i\lodel Kind)]
3. 4.
..... Identify ontology management role Extend Ontology Model to 1nclﬂude
[Role Model Kind) Resource apphc'atlon ontologies
(optional)
[Ontology Model Kind)]

AGENT INTERACTION DESIGN

AGENT INTERNAL DESIGN
A 4
1. 1.
Select interaction mechanism >|Specify agent class’ belief conceptualisation|-|-
l [Agent Class Model Kind]
2. !
Develop Agent Interaction Model 2.
[Agent Interaction Model Kind) Specify agent goals
[Agent Class Model Kind) ~ [*"1
ARCHITECTURE DEYIGN . 3.
Specify events
3 ] [Agent Class Model Kind]
Identify agent-environment interface l
requirements 4.
[Architecture Model Kind) "| Develop Agent Behaviour Model
l [Agent Behaviour Model Kind]
2.
Select agent architecture

[Architecture Model Kind)

3.
Specify MAS infrastructure facilities
[Architecture Model Kind]

l

4.
Instantiate agent classes
[Agent Class Model]

l

5.
Develop MAS Deployment Diagram
[Architecture Model Kind)

Figure 6.2 - MOBMAS development process

173



6.1.3. MOBMAS Model Kinds

MOBMAS defines nine model kinds for capturing the outputs of its process steps
(Figure 6.3). During the development time, the developer is required to produce one
model for each model kind. Every model kind is represented by one or more notational
components, which are either graphical diagrams or textual schemas. Some model kinds
and notational components are optional, since the steps generating them are optional (cf.
Figure 6.2). Figure 6.3 shows the dependency and cross-check relationships between the

model kinds.

System Task
Model Kind \
Role Ontology
Model Kind Model Kind
Organisational Context
Model Kind
(optional) v
1 Agent Class =
Model Kind
Resource
Model Kind
(optional)
Agent Behavior
Model Kind
Agent Interaction
/ Model Kind
Architecture —> Derives
Model Kind <> Cross-check

Figure 6.3 — MOBMAS Model Kinds

1. System Task Model Kind: This model kind captures the specification of system
tasks, their hierarchical decomposition and conflicts (if any). This model kind is

depicted by a System Task Diagram.

2. Organisational Context Model Kind (optional): This model kind captures the pre-

existing structure of the organisation which MAS supports, automates or monitors.

174



This structure is defined via organisational units and relationships between units
(namely, acquaintance*' relationships and membership relationships). The notational

component of this model kind is an Organisational Context Chart.

3. Role Model Kind: This model kind defines each role in the MAS organisation (i.e.
role name and role-tasks), acquaintances between roles and authority relationships
that govern inter-role acquaintances (e.g. peer-to-peer relationship or superior-

subordinate relationship). Role Model Kind is depicted by a Role Diagram.

4. Ontology Model Kind: This model kind captures the specification of all MAS
application ontologies and Resource application ontologies needed for the target
system. MOBMAS does not impose a specific modelling language for this model
kind. However, for illustrative purpose, MOBMAS uses UML class diagrams to

depict ontologies. These UML class diagrams are referred to as Ontology Diagrams.

5. Agent Class Model Kind: This model kind captures the definitions of agent classes
composing the target MAS. It is depicted by two notational components.

e Agent Class Diagram: which shows the specification of each agent class,
namely the agent class’ name, instantiation cardinality, roles, belief
conceptualisation, agent-goals and events. A MAS typically requires multiple
Agent Class Diagrams, one for each agent class.

e Agent Relationship Diagram: which shows all agent classes in the target MAS
and the acquaintances between them. Various descriptive information about each
inter-agent acquaintance is also shown (e.g. interaction protocol and application
ontology that govern the interactions between the acquainted agent classes). If
the target MAS incorporates resources, the relationships between “wrapper”

agent classes and their wrapped resources are also displayed.

6. Resource Model Kind (optional): This model kind captures the specification of
resources in the MAS, including the resources’ name, type and corresponding

Resource application ontology. The model kind also specifies the identity of agent

4 Acquaintance refers to interaction pathway.
175



classes that wrap around the resources. The notational component of this model kind

is a Resource Diagram.

7. Agent Behaviour Model Kind: This model kind specifies the behaviour of each
agent class. It is represented by the following notational components.

e Agent Goal Diagram (optional): displays, for a particular agent class, the
decomposition structure of its agent-goals and/or the conflicts amongst these
agent-goals. This diagram is only necessary if the agent class is found to pursue
multiple agent-goals, and these agent-goals are involved in decomposition
relationships or are in conflict with each other.

o Agent Plan Template: documents various pieces of information that are needed
to formulate plans for agents at run-time, including the identity of the agent-goal
that the plan aims to fulfil, the potential sub-agent-goals and/or actions that may
be executed to satisfy the agent-goal, events that activate the agent-goal or affect
the agent’s course of actions to satisfy the agent-goal, conflict resolution
strategies (if required) and commitment strategy adopted by the planning
process. If there exists a tentative course of sub-agent-goals/actions for achieving
the agent-goal, this sequence can be depicted in an Agent Plan Diagram.

o Reflexive Rule Specification: documents a particular reflexive rule of an agent
class. It specifies the agent-goal that the reflexive rule aims to satisfy, a sequence
of actions to (partially) fulfil the agent-goal, and the events, internal processing

triggers and/or conditions that initiate an action or make an action applicable.

8. Agent Interaction Model Kind: This model kind defines the patterns of
interactions amongst agent classes depending on the adopted interaction mechanism.
If the mechanism is direct interaction via ACL messages, the model kind captures
the definitions of interaction protocols between agent classes. These definitions are
depicted by Interaction Protocol Diagrams. If otherwise the adopted interaction
mechanism is indirect interaction via tuplespace/tuple-centres®’, the Agent

Interaction Model Kind specifies the interaction patterns between agent classes and

2 MOBMAS identifies other types of indirect mechanisms, namely stigmergy and spatially founded
mechanisms. However, since these mechanisms are very limited in their applicability, MOBMAS focuses
on the indirect mechanism based on tuplespace/tuple-centre (cf. Section 6.5.1).

176



the tuplespace/tuple-centre. Agent-Ti C* Interaction Diagrams are used as the

notational component for the Agent Interaction Model Kind in this case. Moreover,

if the tuple-centre is used instead of tuplespace, the model kind also captures the

definition of the tuple-centre’s behaviour via Tuple-Centre Behaviour Diagram.

Architecture Model Kind: This model kind captures various architecture-related

specifications. It is represented by four notational components.

Agent-Environment Interface Requirements Specification: documents any
special requirements of the agents’ sensor, effector and communication modules,
so as to support the agents’ perception, effects and communication needs at run-
time.

Agent Architecture Diagram: provides a schematic view of the architecture
adopted by the agent classes in the target MAS. If different agent classes require
different architectures, one Agent Architecture Diagram is required for each
architecture.

Infrastructure Facilities Specification: documents the specifications of core
infrastructure facilities that are necessary to support the target MAS’ operation
(e.g. naming service, message transport service or agent directory service).

MAS Deployment Diagram: shows the deployment configuration of the target
MAS, including the allocation of agents to nodes and the connections between

nodes.

The notation of each notational component of the nine model kinds is presented in

Appendix E.

6.1.4. Illustrative Applications

Throughout the documentation of MOBMAS in Sections 6.2 to 6.6, two applications

were used for illustration purposes:

Product Search application; and

Conference Program Management application.

# TC stands for “tuple-centre”.

177



The Product Search application was used as the primary illustrative example, while the
Conference Program Management application was used only when the former is not
suitable for the demonstration of a particular MOBMAS step, technique or notational

component. The following sections briefly describe each illustrative application.

6.1.4.1. Product search application

This application investigates the use of MAS in searching for product information — a
major activity in e-business. The objective of the system is to assist users in searching
and retrieving information on products from heterogeneous resources, including
information sources provided by the potential suppliers (such as suppliers’ databases
and web servers) and various online search engines. The target domain is limited to Car

Products for illustration purposes.

The user interacts with the system by submitting his search query. Upon receiving a
query, the system extracts keywords from it, searching through the resources to gather

information for the query, and displaying the final answer to the user.

The system also accepts and processes feedback from the user, which may help

improving its future performance.

6.1.4.2. Conference program management application

This application has been used in various past research work in AOSE as case study
(Ciancarini et al. 1998; Zambonelli et al. 2001a; Zambonelli et al. 2003; Ciancarini et al.
1999). Setting up a conference program is a multi-phase process, including submission,
reviewing and final publication phases. For illustrative purposes, this research focuses
on the review phase only. In this phase, the “program committee chair” has to work
with “committee members” to distribute the submitted papers among the members. The
members are assumed to have the authority to choose for themselves the papers they
want to review. The chair does not impose the papers on them. Having collecting the
papers, each committee member is in charge of finding an external referee for each
paper and contacting these reviewers to send them papers. Eventually, the reviews come
back to the respective committee members who determine the acceptance or rejection of

the papers. The authors are then notified of these decisions by the committee chair.

178



6.2. ANALYSIS ACTIVITY

The Analysis activity of MOBMAS takes as inputs a set of system-tasks and develops a
conception for the future MAS, namely a first-cut identification of the roles that
compose the future MAS system. The activity consists of 5 steps, as shown on Figure

6.4 (which is a copy of Figure 6.2 but with the Analysis activity highlighted).

ANALYSIS MAS ORGANISATION DESIGN
2.
Analyse organisational _ 1.
1. context (optional) | Specify MAS organisational structure
Develop System Task Model [Organisational Context [Role Model Kind]
System Task Model Kind Model Ki H
2.
3. ™ Develop Agent Class Model
[Develop Role Model [Agent Class Model Kind]
Role Model Kind
Develop Ontology Model Specify resources (optional)
[Ontology Model Kind) [Resource Model Kind)
5. 4.
Identify ontology management role Extend Ontology Model to include
[Role Model Kind] Resource applu;atmn ontologies
(optional)
[Ontology Model Kind)
AGENT INTERACTION DESIGN AGENTINIERNATIDESIGN
1. L 1.
Select interaction mechanism > Specify agent class’ belief
l conceptualisation
2 !
Develop Agent Interaction Model 2.
[Agent Interaction Model Kind)] Specify agent goals
[Agent Class Model Kind) '
ARCHITECTURE DESIGN . 3
I Specify events
1. [Agent Class Model Kind]
Identify agent-environment interface
requirements 4 :
[Architecture Model Kind) > Develop Agent Behaviour
l Model
2.

Select agent architecture

Architecture Model Kind

3.
Specify MAS infrastructure
facilities
4.

Instantiate agent classes
[Agent Class Model]

5.
Develop MAS Deployment Diagram
[Architecture Model Kind)]

Figure 6.4 — MOBMAS development process
179



6.2.1. Step 1 — Develop System Task Model

The term “system-task” is used to mean anything that the target system should or will
do. It represents the required functionality of the system. For example, system-tasks of
the illustrative Product Search application (cf. Section 6.1.4.1) are “Satisfy user query”

and “Process user feedback” (Figure 6.5).

The identification of system-tasks is not part of MOBMAS. It is presumed to be

conducted by a separate Requirements Engineering effort. Hence, MOBMAS refers the

developer to the vast amount of existing work on Requirements Engineering for more
techniques on system-tasks elicitation, e.g. Kotonya and Sommerville (1998), Macaulay

(1996), Haumer et al. (1998), Duursma (1993), Dardenne et al (1993), Yourdon (1989),

DeMarco (1978), Potts (1999) and Wiegers 2003. The development process of

MOBMAS starts from the identified set of system-tasks to produce a System Task

Model Kind. This model kind aims to capture the following information.

o Identity of system-tasks.

e Conflicts amongst system-tasks (if any): Conflicts exist when different system-tasks
cannot be accomplished together without being compromised (Dardenne et al.
1993). In the illustrative Product Search application, no conflicting system-tasks are
found. However in many other applications such as MASs for library service
management, system-tasks such as “Maintain long borrowing period” and “Maintain
regular availability” are in conflict with each other (Dardenne et al. 1993).

e Functional decomposition of system-tasks (if required): A particular system-task
may be decomposed into smaller-scale, constituent system-tasks which are referred
to as “sub-system-tasks”. Each decomposition may either be:

- AND-decomposition: that is, when the accomplishment of a system-task
requires the execution of al/ of its sub-system-tasks. For example, system-task
“Find answer to user query” can be AND-decomposed into sub-system-tasks
“Extract keywords from user query” and “Gather information from resources” (Figure
6.5); or

- OR-decomposition: that is, when the accomplishment of a system-task involves
the execution of any of its sub-system-tasks. For example, system-task “Identify
appropriate resources” can be OR-decomposed into sub-system-tasks “Identify

appropriate databases ”” and “Identify appropriate web-servers”” (Figure 6.5).
180



For each decomposition, MOBMAS recommends the developer to specify whether

the decomposition is full or partial.

- Full decomposition applies when the accomplishment of a system-task is totally
equivalent to the execution of its sub-system-tasks (either all or any of the sub-
system-tasks, depending on whether the decomposition is an AND or OR
decomposition). For example, system-task “Satisfy user query” is fully
decomposed into sub-system-tasks “Accept user query”, “Find answer to user
query” and “Display result for query” (Figure 6.5) because the successful execution
of these three sub-system-tasks automatically results in the accomplishment of
the system-task “Satisfy user query”.

- Partial decomposition applies when the accomplishment of a system-task is not
totally equivalent to the execution of its sub-system-tasks. In other words, there
are certain actions that need to be performed by the system-task but which are
not accounted for by its sub-system-tasks. For example, system-task “Process
user feedback” is partially decomposed into sub-system-tasks “Receive user
feedback ” and “Display acknowledge” (Figure 6.5) because, apart from receiving
feedback and displaying acknowledgement, system-task “Process user feedback”
also needs to compute feedback rating and refine search algorithms to improve
the system’s future performance.

The identification of full versus partial decomposition will assist the developer in

identifying roles and roles’ tasks later on.

After system-tasks are identified and a (preliminary) System Task Model is constructed,
the developer is strongly recommended to validate the model against the Ontology
Model, whose development is discussed in Step 4 of the Analysis activity (c.f. Section
6.2.4). The MAS Application ontologies specified in the Ontology Model may help to
reveal new system-tasks that have not yet been uncovered, thus assisting in the
refinement of the System Task Model. More discussion on this validation is presented

in Section 6.2.4.1.c.

181



6.2.1.1. Notation of System Task Diagram

System Task Model Kind of MOBMAS is depicted by one or more System Task

Diagrams. The notation for the System Task Diagram is as follows.
C> System-task < > ® < >  System-task conflict

/ \. AND Decomposition / ’\)R Decomposition
T P
/F \AND Decomposition OR Decomposition

A System-Task Diagram for the illustrative Product Search MAS is presented in Figure

6.5. It should be noted that the functional decomposition of system-tasks does not
always have a simple tree structure as in Figure 6.5. Two or more system-tasks may

share the same sub-system-task(s).

< Satisfy user query > < Process user feedback >

T P
< Accept user query> <Find answer to user> Display result Receive user Display
query for query feedback acknowledgement
P
<Extract keywords> < Gather information >
from user query from resources
Identify appropriate
resources
Identify appropriate
web servers

Figure 6.5 — System Task Diagram for Product Search MAS

Retrieve information
from resources

Identify appropriate
databases

6.2.2. Step 2 — Analyse Organisational Context
(Optional)

Even though the analysis of system-tasks generally provide adequate inputs to the
identification of roles later on, an investigation of the existing structure of the MAS’
organisational context (i.e. the structure of the organisation which MAS supports,

automates or monitors) can further assist in the process of role identification. This is so

182



because the organisational structure of MAS may be directly derived from the existing
structure of the MAS’ organisational context (e.g. consider enterprise information

systems and workflow management systems) (Zambonelli et al. 2003).

MOBMAS suggests investigating the structure of the MAS’ organisational context if

this structure satisfies all of the following conditions.

e [t is known and clearly defined.

o It is well-established, not likely to change, and has proven or been accepted to be an
effective way to function. Accordingly, it is desirable for the future MAS to mimic

this existing structure.

For example, consider the illustrative Conference Program Management application (cf.
Section 6.1.4.2). The existing organisational structure of the human conference
committee is composed of a “Program Committee (PC) Chair”, several “PC Members” and
many “Reviewers” (Ciancarini et al. 1998; Zambonelli et al. 2001a; Zambonelli et al.
2003; Ciancarini et al. 1999). Assuming that this structure has always been adopted by
the human conference organisers, and that the organisers do not wish to change the way
their conferences are managed, the developer should investigate this structure for the

development of a software Conference Program Management MAS.

6.2.2.1. Develop Organisational Context Model Kind

The existing structure of the organisational context is captured in an Organisational

Context Model Kind, which contains one notational component, Organisational

Context Chart. Since this MOBMAS step is only recommended to applications where

the structure of the organisational context is known, clear and well-established, it is

generally a straightforward task to develop this model kind. The developer needs to

specify:

o the organisational units: i.e. the positions or individuals or departments that exist in
the organisational context; and

o the relationships between these units, namely “acquaintance” relationships (where
one organisational unit interacts with another) and “membership” relationships

(where one organisational unit is part of another).

183



The developer may identify these elements from various sources, including the business
organisational chart, business process documentation, interviews, questionnaires,
investigation of employee manuals, orientation pamphlets, memos and annual company

reports (Awad 1985).

MOBMAS borrows UML notation for the Organisational Context Chart.

Organisational unit —— Acquaintance relationship

Membership relationship

An Organisational Context Chart for the illustrative Conference Program Management

MAS is presented in Figure 6.6.

Conference program
management organisation

1 | l.n
| Program Comittee%
l.n l.n

1 1.n
| PC Chair | |PC Member|

Figure 6.6 — Organisation Context Chart for the Conference Program Management MAS

6.2.3. Step 3 — Develop Role Model

The notion of “role” in agent-oriented development is analogous to the notion of “role”
in a play or members in a typical company (Wood 2000; Kendall 1999). It refers to the
position of an entity in an organisation and defines what the entity is expected to do in
the organisation (Ferber and Gutknecht 1998; Demazeau and Costa 1996). In
MOBMAS, roles serve as the building blocks for defining agent classes. Each agent
class is associated with one or more roles, which establish the agent class’ expected

behaviour and position in the MAS organisational structure.

MOBMAS specifies all roles in the Role Model Kind, which consists of one notational

component, Role Diagram. Sections 6.2.3.1 and 6.2.3.2 discuss the identification of

184



roles and role-tasks respectively, while Section 6.2.3.3 presents the notation for Role

Diagram.

6.2.3.1. Identify roles

MOBMAS identifies roles from system-tasks and, if Step 2 — “Analyse Organisational
Context” has been carried out, from the existing structure of the MAS’ organisational
context. Section 6.2.3.1.a presents techniques for identifying roles from system-tasks,
while Section 6.2.3.1.b recommends how roles can be identified with the analysis of

MAS’s organisational context.

6.2.3.1.a. Identify roles from system tasks

Generally, each system-task specified in the System Task Model should be assigned to
one role. However, each role can be delegated multiple system-tasks for the sake of
efficiency.

The grouping of multiple system-tasks into one role should be guided by the principle
of strong internal coherence and loose coupling in term of functionality. Each role
should represent a functionally coherent cluster of system-tasks that is sufficiently
different from other clusters (Lind 1999; Padgham and Winikoff 2002). This principle

helps to promote modularity in system design.

Some other heuristics that may indicate the need to delegate multiple system-tasks into

one role are:

e when the system-tasks are likely to interact significantly with each other (e.g. for
inputs/outputs exchanges). Grouping these system-tasks into one role will help to
reduce the amount of interactions amongst roles and ultimately amongst agents; or

e when the system-tasks require the same data (e.g. input information, domain
knowledge). Assigning these system-tasks to one role means that only this one role
needs to acquire, or be equipped with, the required data; or

e when the system-tasks need to access to the same resource (e.g. information sources
or legacy systems). Delegating these system-tasks to one role means that only this

one role needs to implement an interface with the resource.

185



On the other hand, some system-tasks may not be appropriate to be grouped into one

single role, particularly when:

o the system-tasks are executed at different locations at the same point in time. For
example, system-task “Accept user query” and “Retrieve information from resources” are
executed at the user’s site and the remote resources’ site respectively, thus they
should not be performed by the same role; or

o the system-tasks need to satisfy certain security and privacy requirements. For

example, data associated with one system-task should not be available to another.

In the case when a system-task has been fully decomposed into sub-system-tasks (cf.
Section 6.2.1), it does not need to be assigned to any role, because it is presumed to be
accomplished via the execution of the sub-system-tasks. Accordingly, only the sub-
system-tasks need to be assigned to roles. However if a system-task has been partially
decomposed into sub-system-tasks, it must be assigned to a particular role because its

accomplishment is not equivalent to the accomplishment of the sub-system-tasks.

In some cases, a single system-task needs to be assigned to multiple roles. This occurs
when the system-task requires the collective effort of different roles. This type of task is
referred to as a “joint task” (or “social task” in Omicini 2000 and Ciancarini et al.
2000). For example, in the illustrative Conference Program Management application,
one system-task is to “Distribute papers among members” in such a way that each paper is
allocated to a required number of PC members, and each member is assigned a required
number of papers. This system-task should be modelled as a joint task because it is the
shared responsibility of both “PC Chair” and “PC Member” roles (cf. Section 6.1.4.2;
Figure 6.9).

Nevertheless, just because a system-task requires inputs from multiple roles does not
mean that it should be modelled as a joint task. Such a system-task can be assigned to
one single role, which acts as the primary accountable and controlling party for the task
execution. This role will then interact with other roles when necessary for input/output
information. For example, system-task “Find answer to user query” can be assigned to
one role “Searcher”, which interacts with “InfoSource Wrapper” role for information to

fulfil the system-task.

186



Therefore, as a generic guideline, MOBMAS suggests classifying a system-task as a
joint task (thus assigning it to multiple roles) only if the control of the system-task
needs to be equally spread among the participating roles, or equivalently, if all the
participating roles are equally accountable for the accomplishment of the system-task,
such as in the case of system-task “Distribute papers among members” (note that for this
system-task, “PC Members” are given the authority to choose for themselves the papers

they want to review. “PC Chair” does not impose the papers on them**).

Figure 6.7 shows the identification of roles for the illustrative Product Search MAS.

Satisfy user query

Accept user query < Find answer to > < Display result > Receive user > Display
user query for query feedback acknowledgement

<Extract keywords> < Gather information >
from user query from resources
Identify appropriate
resources
Identify appropriate
web servers

{ ) Assigned to “User Interface” role

<:> Assigned to “Searcher” role
<:> Assigned to “InfoSource Wrapper” role

Retrieve information
from resources

Identify appropriate
databases

<:> Assigned to “Feedback Processor” role

<:> Not assigned to any role

Figure 6.7 — Final roles for Product Search MAS

6.2.3.1.b. Identify roles from the structure of MAS’ organisational
context (optional)
If Step 2 — “Analyse Organisational Context” has been performed, the investigation of

the existing structure of MAS’ organisational context can greatly assist in the process of

role identification. Specifically, some preliminary roles can be identified from the

* Even though this assumption does not always hold in real-life conferences, it is made in this thesis for
the purpose of illustration (cf. Section 6.1.3.2).
187



organisational context’s structure, thereafter being verified with the analysis of the

system-tasks as discussed in Section 6.2.3.1.a.

In general, each organisational unit in the MAS’ organisational context can be mapped
onto one role, since the functionality of each organisational unit is often internally
coherent and loosely coupled from the other units (Wooldridge et al. 2000). In cases
when the MAS’ organisational context exhibits a hierarchical structure (i.e. when there
are “membership” relations among the units), the developer can either:

e map each /leaf-node organisational unit to a role; or

e map the whole upper-level unit to a role.

The former is recommended if the leaf-node organisational units are loosely coupled in
term of functionality, while the latter is appropriate if the leaf-node units are strongly
coupled. For example, units “PC Chair”, “PC Member” and “Reviewer” in Figure 6.6 can
each be mapped to a different role since their functionality is loosely coupled from each

other.

It should be noted that the direct mapping between existing organisational units and the
software roles does not necessarily result in an efficient MAS design. This is so
because, firstly, the reasons that may have driven the existing organisation to adopt a
particular structure may not necessarily apply to the MAS organisation, and secondly,
the mere presence of MAS may introduce changes to the existing organisation
(Zambonelli et al. 2003). The developer therefore should always analyse the system-
tasks to validate the set of identified roles (cf. Section 6.2.3.1.a). The existing structure
of the MAS’ organisational context should only serve as an additional resource for the

identification of software roles.

6.2.3.2. Specify role-tasks

“Role-tasks” are tasks that a particular role is responsible for fulfilling. In MOBMAS,
role-tasks can be directly mapped from the system-tasks that the developer delegates to
roles during the process of role identification (cf. Section 6.2.3.1.a). This mapping is

generally one-to-one. For example, role-tasks of “User Interface” role are “Accept user

188



LR N3 LR ENT3

query”’, “Display result for query”,
(cf. Figure 6.7).

Receive user feedback” and “Display acknowledgement”

Given the close inter-connection between roles, role-tasks and system-tasks, the
development of Role Model and System Task Model should be performed in a highly
iterative and spiral manner. In practice, the modelling of a particular role may discover
some role-tasks that have not been identified in the System Task Model, leading to the

revision of the System Task Model.

6.2.3.3. Notation of Role Diagram

The Role Model Kind of MOBMAS is depicted by a Role Diagram, which shows the
specification of each role, acquaintances between roles and authority relationships that

govern inter-role acquaintances.

The specification of each role involves the specification of role name and role-tasks,
both of which have been defined during the process of role identification (cf. Section

6.2.3.1.a).

Acquaintances between roles represent inter-role interaction pathways. Preliminary role

acquaintances can be identified from:

o the relationships between system-tasks that the roles are responsible for: If two
roles are responsible for a system-task and a sub-system-task respectively, or if the
two roles are responsible for sibling system-tasks®, they are likely to interact with
each other; or

e the acquaintance relationships between the existing organisational units of the
MAS’ organi