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Abstract. This paper adopts a Model Based Security (MBS) approach to 

identify security requirements during the early stages of multi-agent system 

development. Our adopted MBS approach is underpinned by a metamodel 

independent of any specific methodology. It allows for security considerations 

to be embedded within any situated agent methodology which then prescribes 

security considerations within its work products. Using a standard model-driven 

engineering (MDE) approach, these work products are initially constructed as 

high abstraction models and then transformed into more precise models until 

code-specific models can be produced. A multi-agent system case study is used 

to illustrate the applicability of the proposed security-aware metamodel. 
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1. Introduction 

In the context of conceptual modelling and model-driven software engineering, 

(software) agents can be defined as conceptual entities that exhibit autonomy, 

situatedness and interactivity. They are situated in an environment in which they are 

able to sense and respond to changes. Agents have been found useful in model-based 

development of open, distributed and heterogeneous systems. However, as has been 

argued in the literature [23], for agent technology to be widely recognized, the 

security issues that surround agents must be resolved.  



Research efforts, so far, have mainly focussed on  solving  individual security 

problems of multi-agent systems (MAS), such as attacks by an agent on another agent, 

attacks from a platform on an agent, and/or attacks from an agent on a platform [14]. 

Security is not yet considered as part of the development process of a MAS. This is 

partly because existing methodologies, modelling languages and methods for the 

development of MASs do not generally incorporate abstractions and processes that 

support the consideration of security issues.  Rather security is often considered only 

after the design of the system has been finalised, which leads to various security 

vulnerabilities [19].  

In this paper, we produce a methodology-independent security (meta) model that 

can be used in the construction of any situated methodology [7] as required by the 

context of the MAS development project. It is aligned with Model Based Security 

(MBS) as proposed in [16] as a means of supporting the consideration of security 

from the early stages of the information system development process. Initially, high 

abstraction models are constructed and transformed, following a standard model-

driven engineering (MDE) approach, into more precise models until code-specific 

models can be produced. We believe this approach, combining agents and security in 

an MDE context, can be successfully employed in the overall development of a multi-

agent software system. Towards this, this paper provides the foundations for the 

construction of the models in the form of an agent-oriented modelling language that 

incorporates security considerations.   

We present a MAS metamodel that defines security concepts along with agent 

development concepts. Our MAS metamodel described in this paper has the capacity 

to model the security requirements of any given MAS independently of the process 

used to create it. It is based on the FAML (FAME1 Agent-oriented Modelling 

Language) generic metamodel [1] and previous work on security-aware agent 

metamodels [2]. The chosen security concepts are designated into two sets: run-time 

concepts and design-time concepts. Each set has two scopes: system-related or agent 

internals-related scope. Our work is part of a greater effort to develop secure multi-

agent systems, based on the application of model-based security and a conceptual 

modelling approach to address security requirements of multi-agent systems, as 

suggested in recent work e.g. [10, 19]. This allows developers to account for security 

of a MAS early during the development of the system rather than as a costly 

afterthought.   

The rest of this paper is organized as follows: Section 2 describes related work. 

Section 3 briefly outlines the FAML metamodel and the analytic process used to 

identify the required security modelling units (classes in the metamodel).  Section 4 

articulates the MAS-specific security concerns of any MAS and associates these with 

basic modelling primitives.  Section 5 incorporates these primitives into our 

metamodel and extends the metamodel to accommodate all security concerns 

identified in Section 4. Section 6 illustrates the semantics of the modelling units of our 

metamodel on a P2P community sharing application illustrating our model driven 

                                                           
1 FAME (Framework for Agent-oriented Method Engineering) is the project name under which 

FAML has been developed. 



approach to develop a securitised MAS. Finally, Section 7 concludes with a 

discussion of future work. 

2. Modelling and Developing Secure Agent-Oriented Systems 

The term agent derives from the present particle of the Latin verb agere, which 

means to drive, act, lead or do [5]. Although there is no standard definition of what 

a software agent is, it is widely agreed that, in broad terms, an agent demonstrates 

the following properties: (i) Autonomy. Agents operate without the direct 

intervention of humans or others, and have some kind of control over their actions 

and internal state; (ii) Social ability. Agents interact with other agents (and possibly 

humans) via some kind of agent communication language; (iii) Reactivity. Agents 

perceive their environment, (which may be the physical world, such as a user via a 

graphical user interface, a collection of other agents, the Internet, or perhaps all of 

these combined), and respond in a timely fashion to changes that occur in it; (iv) 

Pro-activeness. Agents do not simply act in response to their environment; they are 

able to exhibit goal-directed behaviour by taking the initiative.  

Work within the agent research community has led towards the development of 

agent-oriented software engineering (AOSE) paradigm. AOSE introduces an 

alternative approach in analysing and designing complex distributed computerised 

systems [13, 15, 36], according to which a complex computerised system is viewed 

as a  multi-agent system (MAS) [13] in which a collection of autonomous software 

agents (subsystems) interact with each other in order to satisfy their design 

objectives. Therefore, when developing a MAS, this can be viewed as a society, 

similar to a human society, consisting of entities that possess characteristics similar 

to humans such as mobility, intelligence and the capability of communicating [13]. 

To assist the development of multi-agent systems, a number of methodologies (see 

for instance Tropos, GAIA, MaSE) and their associated process-focused 

metamodels, as well as modelling languages (see for instance AgentUML, AML) 

have been proposed. In this paper, we focus on metamodels for the atomic 

paradigmatic element (here, agents) and its associated work products and do not 

discuss any further process- or method-focussed metamodels such as the OMG’s 

SPEM or the International Standard ISO/IEC 24744.    

Although security has been identified as an important issue [23] for the 

widespread use of agent technology, most of the methodologies and modelling 

languages either ignore the security aspects related to MAS development or only 

provide partial treatment of security concerns. We briefly review here the literature 

that considers the security issues for multi-agent systems.  

Liu et al. [18] identify security requirements during the development of multi-

agent systems, in which security requirements are analysed as relationships 

amongst strategic actors, such as users, stakeholders and potential attackers. These 

authors propose three different kinds of analysis techniques: agent-oriented, goal-

oriented and scenario-based analysis. Agent-oriented analysis is used to model 

potential threats and security measures, whereas goal-oriented analysis is employed 



for the development of a catalogue to support the identification of the different 

security relationships within the system. Finally, scenario-based analysis is 

considered as an elaboration of the other two kinds of analysis. 

Secure Tropos [21] is an extension to Tropos [6] and is the first methodology to 

consider security issues during the development of multi-agent systems, extending 

Tropos with security-related concepts and introducing a security-related process 

that allows developers to identify the security requirements of a multi-agent system, 

to transform these requirements into a design and to test the developed system 

against a number of potential security attacks [21]. Huget [12] proposed a new 

agent-oriented methodology, called Nemo, and claims it tackles security. From the 

current description of the methodology, security seems to be considered only 

superficially with security not considered as a specific model but included within 

the other models of the methodology.  The developer even states “security has to be 

intertwined more deeply within models” [12]. Therefore, more evidence is required 

to satisfy the developer’s claim that the methodology tackles security. 

To the best of our knowledge, there has been, to date, little or no effort to 

provide a model-based security approach for multi-agent systems. Although a 

number of works support the concept of model-based security for software systems 

(e.g. [16, 22]); these works do not adequately support the development of multi-

agent systems since they omit important agent-oriented concepts and abstractions.  

Hence, developers find no help when considering security during the development 

of MAS  and the common approach towards the inclusion of security within an 

agent-oriented system is to identify security requirements after the definition of a 

system [23]. This typically means that security enforcement mechanisms have to be 

retrofitted into a pre-existing design. This approach leads to serious design 

challenges that usually translate into the emergence of agent-based systems 

afflicted with security vulnerabilities [4, 23].  

Work has commenced on agent-oriented modelling languages that could support 

a model-based approach for the development of multi-agent systems. The Agent 

Unified Modelling Language (AUML) [25] is an extension of the well-known 

UML aiming to model agent systems. Its support for agent-oriented concepts is 

heterogeneous although there are some extensions that accommodate the distinctive 

characteristics of agent systems such as autonomy and mobility. However, AUML 

does not consider security issues.  

3. The FAME Agent-oriented Modelling Language 

Within the overall framework of the FAME (Framework for Agent-oriented 

Method Engineering) project, we have identified the need to include a modelling 

language. Such a modelling language defines concepts from which can be instantiated 

modelling elements from which a model (a design) can be constructed. The design can 

then be hand-coded or used as the input to model-based (or model-driven) information 

systems development, as in MDE (model-driven engineering) or a specific flavour of 

MDE like OMG’s Model-Driven Architecture (MDA) [17, 27]. This modelling 



language was developed as a generic approach by the study of a large number of 

specialized and highly focussed (sometimes linked to a single methodology) 

modelling suites, some of which included a metamodel description. The resulting 

FAML (FAME Modelling Language) is essentially a metamodel, depicted typically 

using UML [27, 28]. The 4-step, iterative research methodology we adopted to ensure 

quality and genericity of this model is detailed in [1] and the results summarized in 

this section. 

It was soon realized that a single interconnected metamodel would be unusable in 

practice and that, instead, we identified two dimensions along which a more rational 

metamodelling result could be portrayed. Firstly, in agent-oriented software 

modelling, there is a rough discrimination between design time and run time – in an 

MDE context this reflects to some extent the difference between the PIM (platform 

independent model) and the PSM (platform specific model) [26]. Secondly, there are 

two viewpoints that can be termed agent internal and system focussed. This leads to 

four distinct diagrammatic groupings (Fig. 1). These four definitional views, as 

published in [1] are shown in Figs. 2-5. 

**** Figs. 1-5 about here **** 

Fig. 2 shows the classes of the metamodel that are directly related to the description 

of design-time system-related classes. These are concerned with features that can only 

be perceived by looking at the whole system at design time. Fig. 3 shows the classes 

related to the environment in which agents “live”, that is, run-time environment-

related classes. Fig. 4 shows the classes related to the agent internals at design time 

and Fig. 5 shows the classes related to agent internals at run-time, classes that can only 

be perceived by considering the internals of agents at run-time. The ontological 

definitions for design-time and run-time concepts are given in Tables 1 and 2 

respectively. 

**** Table 1-2 about here **** 

The combination of these four diagrams, which is the FAML definition, was 

evaluated in [1] by comparison with TAO [33] and Islander [8]. However, none of 

these approaches (FAML, TAO, Islander) deal with security issues. Consequently, we 

have introduced security concerns into the existing FAML metamodel as described 

below. 

4. Security Requirements of a MAS  

In this section, we analyse the security requirement of multi agent systems to extend 

FAML to support modelling of security concerns. The extension of FAML consists of 

two sets of modelling classes (metaclasses): One set to model the security 

requirements of a multi-agent system (MAS) identified by the developer during the 

design stage; and another to model  security actions satisfying the security 

requirements. These modelling classes will be added to the four views of the FAML 

metamodel shown in Figs. 2-5 to produce the new version shown in Figs 6-9. Our 



security-aware MAS metamodel (Figs 6-9) enables developers to consider security 

vulnerabilities of individual agents at all stages in a model-driven development 

project. We argue that security requirements of a multi-agent system can be generally 

categorized into two types: System Security Requirements (SSRs) and Agent Specific 

Security Requirements (ASSRs). SSRs are used to model security requirements that 

apply to the system as a whole, i.e. that all the agents of the system must satisfy, whilst 

ASSRs are used to model security requirements that only apply to individual agents.    

The analysis in this section runs along two dimensions: the dimension of increasing 

complexity of security risk (see Section 4.1) and the dimension of inherent attributes 

of agents in a MAS. The latter dimension includes the agent inherent attributes: 

autonomy, mobility and cooperation (see Sections 4.2-4.3). Modelling unit sets 

associated with these attributes may overlap.  

4.1. Agent-specific vulnerability levels 

 The first dimension of analysis, the security context complexity, ranges from a 

single agent on a single machine to a fully mobile MAS with agents capable of 

roaming the net using dynamic multi-hop routing. Although a grey scale, we can 

characterize an agent that carries its code, data and its state of execution (i.e. program 

counter and CPU registers) as a strongly mobile agent and an agent that only carries 

code and data as being weakly mobile. We start our analysis in the least risky 

environment (a single agent on a single machine) although we aim to extend this later 

in order to overcome its limitations in increasingly risky settings until we have a 

complete security model that can represent all security requirements and solutions for 

the riskiest setting.  

In total, we identified five different levels of vulnerabilities as shown in Table 3. 

The agent vulnerability level and, consequently, the need for protection such as 

encryption, increases as we move from Level 0 to Level 4.  In the case of Level 2, data 

are transported (for message passing) while, for Levels 3 and 4, both data and code 

may be transported (for remote evaluation), thus allowing application level attacks. 

Level 4 is considered more vulnerable than Level 3 due to the additional complexity 

of the agent also carrying its state of execution (i.e. program counter and CPU 

registers). Within Levels 3 and 4, the mobility of the MAS is important. For instance 

the level of distribution may range from a single hop, to multiple fixed hops, to 

dynamic multiple hops. As the number of hops and the degree of freedom increases, it 

becomes more complex to ensure safe transportation when intermediate co-operation 

is not guaranteed (hostile hosts may be encountered – this is not the case for 

distributed systems). The scale of vulnerabilities, as shown in Table 3, delineates the 

research issues at each level of complexity and can be used as a research roadmap to 

fulfil MAS-specific security requirements of the most complex forms of MAS. 

 

**** Table 3 about here **** 



Agent security requirements for communication channels are equivalent to the 

normal requirements for confidentiality, integrity, authentication and availability 

required by a typical software application [4]. Security of communication channels is 

not included in the MAS-specific security requirements. Our security framework 

strives for authenticated communication between agents (including mobile agents), 

where any receiving agent can ascertain the identity of the sender and can choose to 

block an agent if it does not want to interact with it. Moreover, any agent can 

deny/offer access to its owned resources (including its internal state) at any time it 

wishes. Resources that need to be protected can be local (owned by a single agent) or 

global (owned by many agents), be distributed or reside on a single device.  

4.2. Co-operation, autonomy and security of agents 

A MAS can offer new services and functionality created from a combination of 

specialized services of individual agents. Typically, this requires co-operation 

between agents in order to make MASs adaptive and versatile when encountering 

unforeseen problems. It is therefore important to be able to maintain co-operation 

between agents by ensuring that interactions that exist between agents specifically in 

order to share resources are kept secure. Restricting access can hinder functionality 

and is not always a viable option. To simplify our analysis, in this section we assume 

that the agent’s resources are localized with the agent and that any resource is owned 

by only one agent.  

Co-operation between agents in a MAS requires mutual agreement between agents 

to share resources and, in some instances, to share access to their internal states [35]. 

The broader the mutually agreed access to resources and internal states is, the richer 

the potential functionality of the system. It is essential for agents to be able to trust 

other agents in order to provide a broad spectrum of interactions. In order to 

implement a mutual agreement to share access to resources and internal states between 

agents, i.e. to co-operate, it is critical for agents to discern changes in their states or 

resource arising both from a legitimate access and from changes arising from 

malicious intrusion. A way to achieve this is for each message to be uniquely 

associated with an agent identity and time-stamped. We include agent_identity as a 

basic modelling unit to describe an agent uniquely. This identity can be a function of 

the system to which an agent belongs; although in the case of open systems we note 

that this would not be important.  This serves as a fingerprint of any agent created in 

any MAS. A higher level security concept, signature, can be implemented using 

agent_identity. A signature should be known by trusted parties and producible by the 

relevant identity [32]. The extended metamodel will also describe the relation between 

agents and their resources through ownership and usage relationships.  

To maintain its autonomy, an agent should be resilient and able to recover from an 

interaction that gives access to unauthorized resources. In other words, maintaining 

some state description of its past interactions is required. Each agent should have an 

interaction_history log to allow for recovery. This log is only accessible to the agent. 

This concept along with ownership secures the internal state of agent. An agent within 



the system can then co-operate to reinstate its state as well as the state of the MAS if 

and when needed. Mediated systems e.g. [9] use a system interaction history, but this 

requires centralized access, which we avoid since it places limits on the mobility of 

agents. Our decentralized framework can model a mediated solution by having a 

single agent designated to mediate and to interact with all other agents. The 

interactions log of the ‘mediator-designate’ will then be a log of all interactions within 

the system, as in [9].   

4.3. Mobility and security of agents 

Mobility allows agents to replace remote procedure calls, saving on bandwidth and 

allowing computations not otherwise possible. In comparison with traditional 

distributed systems, mobility allows additional functionality for a MAS but also incurs 

additional security requirements. Mobility of agents varies, as noted in Table 3. For 

weakly mobile agents, discerning intrusion is easier, since the agent starts execution 

from scratch when it reaches its host. The essential problem with mobile agents is 

compounded by the fact that the host may require access to agent execution states 

[37]. Hence, if the host is malicious, intrusion recovery is needed.  

Assuming that an agent is transmitted safely along a channel, threats to the 

resources of an agent (mobile or non-mobile) come from interacting with, inter alia, 

other agents, the host or users themselves. For example, there may be one or more 

mobile malicious agents designed to steal or corrupt data in the environment of the 

agent under consideration; the host that controls its execution could mistake the 

identity of the agent or it may simply be a malicious luring host; or unauthorized users 

might attempt to corrupt or steal an agent’s data, or might attempt to infiltrate the 

functionality of the MAS. 

A mobile agent system will support several networking protocols, which will allow 

it to transmit itself over a network. This could expose an agent to additional sources of 

threat through interacting with less trusted sources, the extent of the vulnerability of a 

mobile agent depending on the freedom it has with respect to its mobility. Mobility 

can be single hop (from host to another without any intermediate hosts) versus 

multiple hop (one or many intermediate hosts) or fixed (travel path is fixed and 

statically decided) versus dynamic (path is decided by agent as it travels – it is said to 

be roaming). Mobility requires the location modelling unit so that an agent is able to 

reason about its movements. Combined with its interaction_history (history of hops as 

well for mobile agents), it can reinstate itself into a safer location if it is under attack.   

 In the next section, we integrate all modelling concepts identified in this section 

into the existing FAML metamodel (Figs. 2-5).  

5. Proposed Metamodel 

This section presents the new version of FAML which accounts for security 

requirements. The new security concepts added to FAML are first presented (Table 4). 



As these concepts are added, some existing FAML concepts are changed and some 

new non-security concepts are added (Table 5). The new ‘securitised’ FAML is 

presented in Figs. 6-9 

As noted in the previous section, MAS-specific security requirements are of two 

kinds. The first kind refers to general security requirements that are not specific to one 

particular agent in the system. These requirements need to be accommodated by all 

agents. The second kind impacts individual agents within the system in different ways 

as mandated by the application. In Section 4, the focus was on the first kind and, more 

specifically, those that are engendered by the inherent characteristics of agents and 

MASs. This has resulted in the identification of a set of new modelling units to be 

integrated into the FAML metamodel. These are shown in Table 4 while their 

associations and attributes are shown in Figs. 6-9. As in the original FAML, we 

continue to differentiate between security requirements that are modelled by the 

software developer during the design stage and security actions that are performed by 

the multi-agent system during run-time in order to satisfy the security requirements. 

This allows for the development of a security-aware platform-independent design, 

providing part of a PIM for MDA. The realization of a working security-aware multi-

agent system for a specific platform generated from a FAML instantiated MAS 

development methodology provides further support for a MDE development 

approach. 

 

*** Table 4 here  

At the system level, at design time, we view security requirements as part of the 

early design specification of the system. To support this, we introduce into the FAML 

metamodel the concept of security requirement, which we define as a security-related 

desirable property of the MAS that constrains its functional requirement(s). We 

distinguish between two classes of security requirements. Firstly, we identify system 

security requirements that relate to the integrity of the whole MAS. In other words, 

these are security requirements that must be fulfilled by all the agents of the system 

either individually by each agent of the system or through agent co-operation.  We call 

these System Security Requirements and it is this aspect that has been our focus in this 

paper. We also add Agent-specific Security Requirements to denote security 

requirements that apply to an individual agent. Such security requirements, which are 

usually complementary to the system security requirements, define security-related 

properties that individual agents have to satisfy. Usually, in every multi-agent system 

there is an analogy/balance between system-specific and agent-specific security 

requirements. A high number of system security requirements imply a low number of 

agent-specific security requirements and vice versa.  

A number of classes related to security and mobility were introduced into the 

metamodel. This resulted in a number of modifications in a number of classes of the 

original FAML metamodel. The modified or new (non-security) concepts are shown in 

Table 5 which provides a definition of new FAML and redefined classes. Associations 

and attributes of these concepts are shown in Figs. 6-9. For example, the new 

definition of the AgentDefinition now includes two new attributes (AgentIdentity and 

AgentType) and two more associations (Has and IsImposed) (see Fig. 8)..  

 



*** Table 5 here *** 

 

The extended FAML metamodel, including new concepts in Tables 4-5, is shown 

in four diagrams (Figs. 6-9) depicting the integration of security modelling units 

within the existing views: design-time system-related, runtime system-related 

(environment), design-time agent-internals and runtime agent-internals.  

**** Fig. 6 about here **** 

In FAML, the security framework is underpinned by recognizing and modelling the 

status of access to resources during development. The security requirements are 

modelled as a specialization of the Non-Functional Requirements. The security 

requirements are further specialized into system-specific security requirements (SSRs) 

and agent-specific security requirements (ASSRs) (see also Section 4). These security 

requirements add additional security goals and security tasks to the system goals and 

system tasks respectively (Fig. 6). To effectively implement its security requirement, 

we propose that a MAS views part of its resources as private, in order to protect and 

share only reservedly, and public in order to share more freely. Thus, in the proposed 

security extension, the modelling units Private Resource and Public Resource are 

added (Fig. 7). Private resources are agent-specific e.g. an agent’s history log of hops 

as well as interactions with other mobile agents (Interaction_History).   

**** Fig.  7 about here **** 

In the agent definition-level at run-time, each agent assumes responsibility for its 

security. This is modelled with Recover Action Specification (Fig. 8).  An example 

recovery action may be what the agent does to use the interaction log in order to 

reinstate its state and perhaps to assist in the reinstating of the MAS if an interaction 

has incorrectly given access to resources. This is a refinement of a more general 

modelling unit, Security Action Specification.  FAML is extended with modelling 

units to express mobility behaviour of agents with the metaclasses Relocate Action 

Specification and Location Specification. Relocating is a restricted action that requires 

access to secured resources of the agents (i.e. only the agent can relocate itself). 

**** Fig. 8 about here **** 

At runtime, central to agent security is authentication, together with recovery for 

when authentication fails. Therefore at the agent-runtime scope (shown in Fig. 9), 

FAML is extended with the metamodel classes that represent the various kinds of 

resources and their access (the same as agent-design time taxonomy of resources). In 

addition, it is extended to permit modelling of restricted actions. 

**** Fig. 9 about here **** 

As derived from the above discussion, the language does not differentiate between 

different types of requirements and/or security solutions. Neither differentiates the 

source of the requirements. This means that security requirements identified through 

security policies and security requirements identified through other means (for cases 

where a security policy is not present) are effectively treated the same. If there are 



specific security policies, then the rules of the policies (depending on their type) 

initially are modelled with the aid of the design model (environment) as either system-

wide or agent specific security requirements. Then, by employing the agent model 

(design), security constraints are derived. This process mainly depends on the 

methodology employed. For example, in secure Tropos security constraints model 

security requirements so the mapping is straightforward. Then, on the run time 

models, security actions are defined to represent possible security solutions for the 

identified security requirements. For instance, if the security policy of an organisation 

defines system-wide authorisation-related rules, these will be initially modelled as 

security requirements; security constraints will then be identified that enforce these 

requirements and security actions will be derived that provide security solutions that 

meet such security constraints and therefore the security requirements. 

6. Illustration of the Metamodel on a MAS Application 

As a practical illustration of security concepts in FAML, we consider a community-

based search MAS application that we designed in [34]. This is a very complex 

application that involves most concepts of FAML. However, we will only give 

examples of the security-related concepts. We first describe the application and then 

show how FAML assists in identifying and modelling security issues. 

6.1 P2P MAS application 

Syntax-based search engines produce a very large number of hits most of which are 

irrelevant. They also overlook relevant webpages. Community-based search engines 

offer a promising alternative. The search engine keeps a decentralized track of users’ 

common interests and history of queries to produce more accurate search results. Each 

human user is represented by an agent in the computer network to act on his/her 

behalf. This agent locates files and responds to queries from other similar agents. The 

collection of all these agents together with agents assisting them in their tasks form the 

P2P community-based-searching MAS. An agent representing the human user has 

access to a knowledge base containing electronic files that the user is willing to share 

with other users. Each file is identified by its title and type (e.g. HTML, pdf, music or 

video). As agents interact on behalf of their users, communities of interest begin to 

emerge. Agents develop an awareness of the communities to which users belong and 

use this awareness to fulfil their users’ search requests efficiently and effectively, by 

interacting with the agents in the communities most likely to be able to serve their 

requests. 

As human users pose a query to request files, the P2P MAS locates sites of other 

users where files matching the queries may reside, based on the querying behaviour of 

the users at those sites. The system mediates between human users, who are 

continuously represented by their local agents. An agent of another like-minded user 

may choose to respond to a query by providing details about the files it can supply, or 



by refusing the query. When all responses are received by the agent making the query, 

the agent combines and refines the results to compose a list of candidate files that 

satisfy the query. This is akin to a response from a web search engine but is shorter 

and more directly related to the query. The agent initiating the query can then select 

which file(s) it wants to download to its human user and it initiates a file transfer 

process with the agent who controls access to that file. Following a successful transfer, 

the knowledge base located where a particular query was made is updated to contain 

the received file(s) and to reflect the source of the file. For all agents involved in 

processing that query, their knowledge base is also updated with additional 

information reflecting the interests of the agent that initiated the query and further 

information about interests of other agents involved in the response. This information 

is used in future queries. In other words, as agents interact, they develop awareness of 

both the files possessed by their peers and which peers may be interested in the files 

that they themselves have.  

At each node in the network, each user-agent keeps a record of its history of 

information sharing. The history contains two records: one of the past queries that it 

made on behalf of the human user and its respective responders, and one of the past 

queries received and their respective agent senders (acting on behalf of other human 

users). The former needs to be updated every time the user-agent receives a results list 

from the system, while the latter requires updating every time the user-agent replies to 

a query sent by the system. The history is used to produce short lists of candidate 

nodes for future queries, by calculating the similarity between the current query and a 

past query e.g. as suggested in [20]. If no nodes can be short-listed, or if no candidate 

user-agents provide the required service, the agent-user broadcasts the query to a 

wider circle of user-agents in the community to identify new candidate providers. In a 

fully evolved P2P system, agents may use their knowledge about other users’ interests 

to request/negotiate for information from their peers when they do not know who has 

the files of interest. Any new providers are eventually added to the history, thereby 

expanding the user-agent’s contact circle. The strategy of information sharing can be 

applied to any domain. The system is tuned to a domain using an external ontology 

describing the domain [3]. A fully deployed P2P community-based search system 

would have access to a suite of ontologies corresponding to various domains. As users 

use various ontologies to express their search, communities emerge. Details of how a 

community emerges or connects to another community (using a global ontology) are 

omitted here as they are not relevant for our description of security-related concepts. 

6.2 FAML security concept examples in the P2P MAS application 

In what follows, we illustrate the security aspects of FAML using the P2P 

application. FAML guides the identification of the P2P MAS security requirements. 

Accordingly, FAML’s structure determines how they are identified and addressed 

according to its four views (shown in Figure 1): design-time system-related, runtime 

system-related (environment), design-time agent-internals and runtime agent-internals 

views. We first propose a set of the design-time system-related security concepts 



(Figure 6). For each subsequent view (Figures 7, 8 and 9), we give example concepts 

refining the design-time security concepts. 

6.2.1. Design-time system concerns in the P2P application 

Security requirements can either be System Security Requirements or Agent 

Specific Requirements (see Figure 6). From the application description, we identify 

Agent Specific Security Requirements (ASSR): 

1. An agent guards the history of queries it receives and sends. 

2. An agent is able to guard its own identity. 

3. An agent can prove its own identity. 

4. An agent guards the identity of communities to which it belongs. 

5. An agent guards resources (files) it owns for the purpose of sharing. 

6. If an agent is a community gate keeper, it guards the membership to the 

community. 

 

The above six requirements suggest the following System Security Requirements  

(SSR) of the P2P community-based searching system.  

On the receiver side: 

7.  A sender agent’s identity is authenticated before processing a search request. 

8. A file is accepted from identified and authenticated senders who confirm and 

authenticate their identity at the start and at the conclusion of a transfer.  

9. A sender agent’s identity is confirmed before responding to a history query. 

On the sender side: 

10. Every search query sent is authenticated. 

11. A file is transferred to identified and authenticated receivers who confirm 

and authenticate their identity at the start and at the end of a successful transfer.  

12. Every history query that is sent is authenticated. 

 

Requirements 7, 8 and 9 on the receiver side are equivalent to requirements 10, 11 and 

12 on the sender side respectively.  

 

The preceding 12 Security Requirements satisfy the following Security Goals (Figure 

6) which we identify as follows: 

1. An agent shares a file only when an explicit request is made by a known 

trusted agent or a member a known community. This goal satisfies 

requirements 8 and 11.  

2. An agent shares data from its interaction history only when an explicit 

request is made by a known trusted peer or a member of a known community. 

This goal satisfies requirement 1. 

3. An agent is the sole entity with access to its interaction history. This goal 

satisfies requirements 9, 12 and 1. 

4. An agent is the sole entity that can search its files. This goal satisfies 

requirements 7, 10 and 5. 

5. An agent has a unique identity identifier that can be securely transmitted to 

other agents if the agent decides to do so. This identifier can be changed only 

by the agent. This goal satisfies requirements 2 and 3. 



6. An agent keeps track of communities to which it belongs. This goal satisfies 

requirement 4. 

7. An agent can make an authentic request to community gate keepers regarding 

peer memberships. This goal satisfies requirement 4. 

8. An agent can make an authentic request to community gate keepers to join a 

given community. This goal satisfies requirement 6. 

 

As shown in Figure 6, according to FAML, Security Goals are achieved by Security 

Tasks. The above 8 security goals are achieved by one or more of the following 

Tasks:  

1. Confirm an agent’s identity against known peers. 

2. Confirm an agent’s community membership. 

3. Maintain a list of community memberships. 

4. Retrieve historical data. 

5. Update interaction history. 

6. Transmit own identity. 

7. Request to become member of a community. 

8. Nominate to become a community gate keeper. 

9. Request identity of community gate keeper. 

10. Broadcast new members to corresponding communities (by gate keeper). 

 

The preceding 12 security requirements, 8 security goals and 10 security tasks form 

the set of system-related security classes at design time. In the rest of this section, we 

show examples of the security-related concepts for the remaining three views of the 

securitised FAML (as illustrated in Figures 7, 8 and 9). 

 

 6.2.2. Run-time environment concerns in the P2P application 

Agent specific Security Requirements define Security Constraints at the environment 

level view (agent-external, runtime) shown in Figure 7. For example, consider Agent 

Specific Security Requirements 1, that an “agent guards the history of queries it 

receives and sends”. This Agent Specific Requirement gives rise to the following 

Security Constraints: 

• Queries involving private resources are authenticated. 

• Community membership is known and shared. 

The Environment-level view (agent-external, runtime) shown in Figure 7 indicates 

that Security Tasks have Security Action Specifications. For example, security Task 2 

suggests the following Security Action Specification:  

• Check a given identity against a known list of identities of agents. If the 

check is successful then perform a history query.  

Another example of Security Action Specification is shown in Section 6.3.  

An example of Private Resource Specification (in Figure 7) is:   

• History of queries is a private resource specified as a database design storing 

all information about past queries. Every agent has such a database that it 

uses to guide its search queries and it shares this database with other trusted 

agents. 



6.2.3. Agent internal scope in the P2P application 

Examples of an Agent Private Resource in the FAML view of agent internals at design 

time (Figure 8) include:  

• History of queries. 

• History of agents contacted and details of contact. 

• Files to be shared. 

These Private Resources are used by an agent in the FAML view of agent-internals at 

runtime (Figure 9).  

Other examples in the FAML view of agent internals at design time are: 

• Recover Action at runtime is derived from the execution of the recovery 

action depending on the prevailing environment conditions applicable. For 

example the recovery in the case of a failed identity check (described in 

Action Specification 1 shown in Section 6.2.2) is different from the recovery 

in the case of failed file transfer (shown in Section 6.3).   

• Location Specification: For example host locality and communities’ 

membership details. 

6.3. P2P application case study discussion 

In our FAML-driven security analysis in Section 6.2, if a concept appears in more 

than one view, we gave examples of the first occurrence. Whilst we have presented the 

case study in a top-down fashion (from system-related security model units at design 

time to agent model units at runtime), it is important to note that this may not capture 

all the security-related components because there are non-security Tasks (at the 

system level view) that may involve Security Actions at the agent level view. For 

example if a file transfer is interrupted, the following more elaborate example of a 

Security Action Specification applies:  

• Recovery from wrongly authenticated file transfer: 

o If transfer is not complete, abort file transfer and undertake a minor 

clean-up operation of partially transferred data. 

o If transfer is already finished, undertake a major clean-up operation of 

file, checking for any malicious code included in the file and in any other 

file involving any agents in the security breach. 

o Trace any side-effects including any pending requests, any modifications 

required to history, any modifications to security knowledge base. 

o Check for any past bad file from same source. 

  

Within the same view, a non-security Task may also require an agent specific 

requirement. For example, at the System level view, community portal agents are 

appointed based on a request they make and confirmation by sufficient number of peer 

agents. The data stored in the history of interactions will form the basis of an agent 

volunteering and the subsequent peer confirmations. This is not security-related 

requirement, however, since it does involve security-related Tasks because an agent 

needs to make an authentic request to peers it has interacted with in order to form a 

community. 



  When the full model has been derived by analysis of all 20 security requirements in 

this P2P case study, and the independent analysis and verification of all security 

modelling units (at the other views in FAML) have been undertaken, the resultant 

model then forms the input to the model-based software development project. Since 

each element in the security-based agent model/design is conformant to an element in 

the MAS metamodel, it is defined unambiguously and precisely. Thus such a security-

based design is an ideal input to an MDE style of application development (a 

description of the basic ideas underlying MDE can be found in e.g. [17]). 

7. Discussion, Conclusions and Future Work 

In this paper, we have presented work that provides the foundation towards a 

model-based security approach for the development of secure multi-agent systems. In 

particular, we have extended the FAME Modelling Language (FAML) and we have 

defined a metamodel that supports the development of security models for agent-

oriented systems. The original FAML metamodel [1] did not accommodate the 

security requirements of the system nor allow description of security solutions such as 

the ones discussed in this paper. The security extensions to FAML described in this 

paper will allow software developers to describe security solutions and produce 

secured work products as the system is developed.   

Our extensions maintain FAML’s methodology-independence in the sense that it 

can be used to document work products (e.g. designs) created from any one of the 

“branded” agent-oriented methodologies, such as Prometheus [29], or those created as 

part of a situational method engineered from method fragments, as in the agent 

extensions to the OPEN Process Framework (see e.g. [11]). In both cases, the work 

products documented using the proposed FAML extensions for security are amenable 

to act as input to a method-driven engineering lifecycle from which, after appropriate 

rule-based transformations, code can be generated [30]. 

In extending our work with FAML to represent secured MAS work products, we 

preserve the original structure of a 2x2 matrix (Fig. 1) covering the various 

perspectives of the work products involved in developing a MAS. In our security-

enhanced framework, managing the MAS-specific security requirements is 

decentralized and is relegated to the individual agents forming the system.  In theory, 

all the security requirements of a multi-agent system fall into one of two categories, 

i.e. either system-wide security requirements (SSRs) or agent-specific security 

requirements (ASSRs). Therefore, although the metamodel does not provide specific 

units corresponding to specific security requirements/solutions, such as authorisation 

or authentication, it does provide developers with the basic units that can be used to 

model even complex security requirements/solutions. The definition of a metamodel 

that provides specific units for security requirements/solutions would be almost 

impossible and certainly impractical – impossible since an inevitable limitation would 

be to prove in a concrete way that the abstracted notions in the metamodel are 

sufficient for modelling all possible security requirements arising from MAS 

applications (similar to the impossibility of proving that an information system is 



100% secure); and impractical since it would not allow adaptation to different 

methodologies, thus restricting the developer.  Our security modelling framework is 

decentralised and more general than mediated security solutions such as [31].  It is 

also different from the works of [12, 16, 18, 21, 22], discussed in Section 2, in that we 

focus on the simultaneous treatment of three important properties of a software agent: 

autonomy, mobility and co-operation. Although these properties are important for 

many agent systems, particularly those in situations where security is paramount, the 

above approaches do not consider all of them. For instance, the work by Liu et al., and 

Mouratidis et al., fail to consider mobility whereas Nemo neglects mobility and 

autonomy. 

Work more related to our suggested approach is that of Mouratidis et al. [24] on 

the definition of an architectural description language (ADL) to specify secure multi-

agent systems. In that work, a set of design primitives is proposed and conceptualized 

using the Z specification language to capture a "core" architectural model to build 

secure MAS architectures. However, there are two important differences with our 

approach. First of all, the approach of [24] does not consider mobility and, secondly, 

as stated by the authors of that work, it lacks a suitable set of core abstractions, 

inspired by organizational metaphors, to be used during the design of the secure multi-

agent system architecture. Therefore, we believe that our work complements that work 

by providing that missing set of core abstractions. Finally, our work is also distinct in 

that it is methodology-independent in the same way that in the object-oriented world, 

the use of UML [28] for documenting work products is not restricted to any specific 

methodology. It can be used to enhance the work products of any MAS methodology. 

It is a necessary step towards using Model Based Security for multi-agent system 

development. 

On the other hand, our work is not complete and there are still a few outstanding 

questions that are raised by the introduction of additional agent-related attributes such 

as ownership, e.g. can agents themselves be owned?, and advanced agent mobility, 

such as dynamic routing. Further work is required to complete our set of security 

modelling units taking into account these additional agent attributes. 

We have begun an initial verification of this security-enhanced metamodel of 

FAML by applying it to the analysis of security requirements of a community-based 

peer-to-peer web search engine. This verification will be developed further to fulfil 

the highest levels of complexity in security requirements taking into account roaming 

agents and their dynamic routing requirements. This further verification will likely 

overlap with additional development of the security-enhanced metamodel described 

here. Our future work will also link the development of secure MASs and their related 

access policies with risk management standards (e.g. ISO17799, ISO7498/2) as 

applied at an organizational level. This would guide MAS developers in making 

inevitable trade-off decisions of security versus cost and functionality. Authentication, 

intrusion detection and recovery require more computation and storage of relevant 

features of the involved interactions and resources by each agent. Diverting too many 

resources (e.g. storage, computation) towards security may indirectly limit the 

functionality of the system. Investing in reducing security has a point of diminishing 

returns, most of the benefits being reaped with the first chunk of the cost. When a 

MAS and its agents are modelled with our decentralised security features, it will be 



possible for security managers, using appropriate security policies, to achieve an 

optimum balance between functionality and security and to ensure that such systems 

are capable of protecting themselves and capable of authenticating both their 

incoming and outgoing interactions. In future work, we will guide developers in 

tackling such complex trade-off decisions.  
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Figures 
 
Fig. 1.  The 2x2 matrix that is used to define four typical FAML metalevel diagrams 

Fig. 2. System-related design-time classes. [The diamond notation indicates a generic whole-

part relationship] (after [1]) 

Fig. 3. Run-time, environment-related classes (after [1]) 

Fig. 4. Agent-internals design-time classes (after [1]) 

Fig. 5.  Agent-internals run-time classes (after [1]) 

Fig. 6.  System-level (agent-external, design-time) classes. (Note that the duplication of the 

Role class is only to simplify the layout) (updated from [2]) 

Fig. 7.  Environment-level (agent-external, runtime) classes (updated from [2]) 

Fig. 8.  Agent definition-level (agent-internal, design-time) classes (updated from [2]) 

Fig. 9.  Agent-level classes (agent-internal, runtime) (updated from [2]) 
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Fig. 2. FAML original System-related design-time classes. The diamond notation indicates a generic 

whole-part relationship (after [1]). The concept Role is repeated for layout convenience.  
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Fig. 3. FAML original run-time, environment-related classes (after [1]) 
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Fig. 4. FAML original agent-internals design-time classes (after [1]) 
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Fig. 5. FAML original agent-internals run-time classes (after [1]). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. System-level (agent-external, design-time) classes: (updated from [2]) This diagram shows the 

addition of (System) Goals and Organisation Definition (cf.h Fig. 2). More importantly, it shows the 

inclusion of Security Requirement and its refinement into corresponding security goals and tasks. 
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Fig. 7. Environment-level (agent-external, runtime) classes (updated from [2]): This diagram shows the 

global security concerns at  runtime, including the resources involved and the security constraints. 
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Fig. 8. Agent definition-level (agent-internal, design-time) classes (updated from [2]): This diagram shows 

how system security tasks are refined into various types of specific security actions associated within 

individual agents of the system. 
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Fig. 9. Agent-level classes (agent-internal, runtime) (updated from [2]). Agents action specification 

(from Figure 8) generate the actual actions at run-time. These include security actions which are activated 

due to run-time events. 
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Table 1. Design-time concepts and their definitions (after [1]) 

Term Definition 

Action Specification Specification of an action, including any preconditions and 

postconditions. 

Agent Definition Specification of the initial state of an agent just after it is created. 

Convention Rule that specifies an arrangement of events expected to occur in a 

given environment. 

Environment 

Statement 

A statement about the environment. 

Facet Action 

Specification 

Specification of a facet action in terms of the facet definition it will 

change and the new value it will write to the facet. 

Facet Definition Specification of the structure of a given facet, including its name, data 

type and access mode. 

Functional 

Requirement 

Requirement that provides added value to the users of the system. 

Message Action 

Specification 

Specification of a message action in terms of the message schema and 

parameters to use. 

Message Schema Specification of the structure and semantics of a given kind of 

messages that can occur within the system. 

Non-Functional 

Requirement 

Requirement about any limits, constraints or impositions on the system 

to be built. 

Ontology Structural model of the application domain of a given system. 

Ontology Aggregation Whole/part relationship between two ontology concepts. 

Ontology Concept Concept included in a given ontology. 

Ontology Relationship Relationship between ontology concepts. 

Ontology 

Specialisation 

Supertype/subtype relationship between two or more ontology 

concepts. 

Performance Measure Mechanism to measure how successful the system is at any point in 

time. 

Plan Specification An organised collection of action specifications. 

Requirement Feature that a system must implement. 

Role Specification of a behavioural pattern expected from some agents in a 

given system. 

System Final product of a software development project. 

Task Specification of a piece of behaviour that the system can perform. 

 



 

Table 2. Run-time concepts and their definitions(after [1]) 

Term Definition 

Action Fundamental unit of agent behaviour. 

Agent A highly autonomous, situated, directed and rational entity. 

Belief An environment statement held by an agent and deemed as true in a 

certain timeframe. 

Desire An environment statement held by an agent, which represents a state 

deemed as good in a certain timeframe. 

Environment The world in which an agent is situated. 

Environment History The sequence of events that have occurred between the environment 

start-up and the present instant. 

Environment 

Statement 

A statement about the environment. 

Event Occurrence of something that changes the environment history. 

Facet Scalar property of the environment that is expected by the agents 

contained in it. 

Facet Action Action that results in the change of a given facet. 

Facet Event Event that happens when the value of a facet changes. 

Goal Ultimate desire. 

Intention A committed desire. 

Message Unit of communication between agents, which conforms to a specific 

message schema. 

Message Action Action that results in a message being sent. 

Message Event Event that happens when a message is sent. 

Obligation Behaviour expected from an agent at some future time. 

Plan An organised collection of actions. 

 



Table 3. Context Complexity of MAS 

Vulnerability level Description of Context Complexity Level 

0 A single agent system on a single machine.  

1 MAS running on a single machine– controlling access to 

agents’ resources during co-operation   

2 Distributed MAS (same as MAS if communication is secured) 

3 Weakly mobile agents  

4 Strongly mobile agents  

 



Table 4.  The set of identified security modelling units 

 

Security Term Definition 

Agent Specific  

Security Requirement 

(design-time) 

A security requirement that is true only for a specific agent of the 

system. This is a subclass of Security Requirement.  

DetectAction (run-

time) 

A detect action is an action that results in an agent initiating a 

detection procedure aiming to detect potential security breaches. 

This is a  subclass of SecurityAction. 

DetectAction 

Specification 

(design-time) 

A detect action specification is a specification of an action that an 

agent can take to detect a possible security incident, such as a 

security attack. This is a subclass of SecurityActionSpecification. 

PreventAction (run-

time) 

A prevent action is an action that results in an agent initiating a 

prevention procedure aiming to prevent potential security breaches. 

This is a subclass of SecurityAction. 

PreventAction 

Specification (design-

time) 

A prevent action specification is a specification of an action that an 

agent can take to prevent a security incident, such as a security attack. 

This is a subclass of SecurityActionSpecification. 

RecoverAction (run-

time) 

A recover action is an action that results in an agent initiating a 

recovery procedure after a security incident. This is a ubclass of 

SecurityAction.  

RecoverAction 

Specification (design-

time) 

A recover action specification is a specification of an action that an 

agent can take to recover from a security-related incident. This is a 

subclass of SecurityActionSpecification. 

Security Action (run-

time) 

A security action is an action that results in a security-related action 

been taken. This is a subclass of Action. 

Security Action 

Specification (design-

time) 

A security action specification is a specification of the security action 

in terms of the security action type to use. This is a subclass of 

ActionSpecification.  

Security Constraint 

(design-time) 

A security constraint is a statement (expressed in a logical or informal 

way) used to precisely define the restrictions imposed on an agent 

due to security requirements.  

Security Goal 

(design-time) 

A security goal is a specification of a security-related state that the 

system/agent tries to achieve. This is a sub-class of SystemGoal. 

Security 

KnowledgeBase (run-

time) 

A security knowledge base represents the security knowledge that an 

agent needs to be able to perform security-related actions.   

Security Requirement 

(design-time) 

A security requirement is a desirable security-related requirement that 

the system/agent must demonstrate. This is a subclass of Non-

Functional Requirement. 

Security Task 

(design-time) 

A security task is a specification of a piece of security behaviour that 

a system and/or an agent can perform. This is a subclass of 

SystemTask. 

System Security 

 Requirement 

(design-time) 

A system security requirement is a security requirement that is true 

for all the agents of the multi-agent system. This is a subclass of 

Security Requirement. 

 



Table 5. FAML modified or new concepts, accommodating new security concepts (shown in Table 4). Old 

concepts that are modified are shown in italics, the rest are new concepts. 

Non-Security Term 

 Modified 

Definition 

AgentDefinition (design-time) An agent specification is a specification of the initial state of 

an agent just after it is created. It has three attributes: 

InitialState, AgentIdentity and AgentType (e.g. mobile 

versus static)  

Goal (design-time) A goal is a specification of a state of the environment that 

the system tries to achieve. This is a subclass of 

EnvironmentStatement. 

Location (run-time) Location provides information about places where an agent 

can reside within the system. 

LocationSpecification (design-

time) 

Location specification is information about places where an 

agent can reside within the system. 

NonFunctionalRequirement 

(design-time) 

A non-functional requirement is a requirement about any 

limits, constraints or impositions on the system to be built. 

This is a subclass of Requirement. 

ResourceSpecification 

(design-time) 

A resource specification specifies something that has a 

name, may have reasonable representations and that can 

owned. The ownership of a resource is connected with the 

right to set policy on the resource.  

PlanReseourceSpecification 

(design-time) 

This is a specification of resources that are used in the Plan 

Specification.  

PrivateResourceSpecification 

(design-time) 

This is a specification of those resources that are only visible 

and available to the individual agent.  

RelocateAction (run-time) An agent can relocate to another location based on 

information contained in the interaction log and agent-

location if an interaction gives access to resources when it 

shouldn’t.  

RelocationActionSpecification 

(design-time) 

Relocation action specification is a specification of how an 

agent can move to another location based on information 

contained in the interaction log and agent-location if an 

interaction gives access to resources when it shouldn’t.  
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