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We propose a methodology, based on aspect-oriented modeling (AOM), for incorporating security mech-
anisms in an application. The functionality of the application is described using the primary model and
the attacks are specified using aspects. The attack aspect is composed with the primary model to obtain
the misuse model. The misuse model describes how much the application can be compromised. If the
results are unacceptable, then some security mechanism must be incorporated into the application.
The security mechanism, modeled as security aspect, is composed with the primary model to obtain
the security-treated model. The security-treated model is analyzed to give assurance that it is resilient
to the attack.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Developing secure systems is a non-trivial task. Security stan-
dards such as the ISO Common Criteria [28] and risk management
standards such as the Australian/New Zealand Risk Management
standards [4,5] exist to aid secure systems development. How-
ever, these standards generally address system security in the
broad sense, and often require extensive resources and expertise
to adapt their use to the design of a specific system. These stan-
dards also do not address low-level details, such as, how to verify
that a system is protected from specific kinds of attacks or how to
ensure that a system has a given set of security properties. More
importantly, they do not provide a methodology for designing
secure systems.

Security mechanisms are typically analyzed in isolation as pro-
tocols, and depending on how they are integrated in an application,
they may or may not provide adequate protection. In addition,
there are often multiple mechanisms that could be used to counter
an attack, so choosing a mechanism that best fits design goals may
be confusing. It is also the case that solutions to different security
concerns may actually conflict, rendering some ineffective against
the attack they were supposed to counter. System designers need a
way to verify the efficacy of security mechanisms once they have
been integrated into an application design, prior to implementa-
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tion. They also need the ability to include solutions in combination
and analyze them against various attacks. In this paper, we propose
such a methodology for designing secure applications.

We use aspect-oriented modeling (AOM) techniques [20] in our
approach to designing secure systems. Complex software is not
developed as a monolithic unit but is decomposed into modules
on the basis of functionality. We refer to the models describing
functionality as the primary model. Security concerns are not lim-
ited to one module of the primary model but impacts several of
them. For example, an attack typically affects multiple modules.
Similarly, a security mechanism that thwarts an attack will have
to be incorporated in several modules of the application. The attack
and the security mechanisms are localized in a separate model,
which we call the aspect. Modeling security mechanisms and at-
tack models as aspects has several benefits – it allows designers
to understand the attacks and the mechanisms independently,
which makes it easier to manage and change these models. Design-
ers can use techniques for composing aspects with the primary
model, followed by analysis of the resulting system, to understand
the effect of the attack or the effect of the security mechanism on
the application. Another advantage is that analyzing using differ-
ent attack models or different security aspects is easier since all
a designer must do is to re-compose the primary model with a
new attack model or new security aspect prior to performing a
new analysis.

An aspect in our work is similar to the concept of aspects used
in other AOM or AOP (Aspect-Oriented Programming) approaches
[2,13,14,31,34,57] in that they represent a non-functional concern,
e.g., security, and they are cross cutting and must be integrated at
different places in the primary model. The differences lie in how
ethodology for designing secure applications, Inform. Softw. Tech-

mailto:georg@cs.colostate.edu
mailto:iray@cs.colostate.edu	
mailto:K.Anastasakis@cs.bham.ac.uk 
mailto:B.Bordbar@cs.bham.ac.uk 
mailto:toahchoo@cs.colostate.edu 
mailto:S.H.Houmb@ewi.  
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


2 G. Georg et al. / Information and Software Technology xxx (2008) xxx–xxx

ARTICLE IN PRESS
the aspects are specified, whether they are reusable, and the man-
ner in which the aspects are integrated with the application.

We define two types of aspects: generic aspects and context-spe-
cific aspects. Generic aspects are application-independent and reus-
able. For instance, an attack pattern can be represented as a generic
aspect. Similarly, a security protocol or a security mechanism can
be modeled as a generic aspect. An application developer can cre-
ate his own generic aspect or use an existing one from the library
of generic aspects. Generic aspects can be independently analyzed
to ensure that the properties of the attack or the mechanism have
been adequately captured. Generic aspects must be instantiated in
the context of a given application. The instantiation is referred to
as a context-specific aspect. We use parameterized Unified Model-
ing Language (UML) to represent generic aspects. Context-specific
aspects are represented as UML models. The instantiation occurs
by binding parameters in the generic aspect to elements in the pri-
mary model. Specifying aspects using UML allow our approach to
be used at different levels of abstraction.

To understand the impact of a security attack on the primary
model, it is necessary to compose the context-specific attack aspect
with the primary model. The composition produces the misuse
model. Analysis of the misuse model will help determine whether
the protected resources are compromised by the attack. If the re-
sults are unacceptable, a security mechanism must be integrated
with the primary model. We refer to this model as the security-
treated model. To understand the efficacy of the security mecha-
nism, the security-treated model is composed with the context-
specific attack aspect. The result is the security-treated misuse mod-
el. The security-treated misuse model is analyzed to ensure that
the given attack is mitigated in the security treated model.

Manual analysis is error-prone and tedious. Towards this end,
we investigated how this analysis can be partially automated.
The tools for verifying UML models, such as, OCLE [47] and USE
[25], are useful when we want to check if a specific model instance
conforms to the constraints of the model. Although theorem prov-
ers are effective for analyzing properties, but they require a lot of
expertise and are unlikely to be used by application developers.
We chose to use the Alloy Analyzer because it is easy to use and
has been used for verifying many real-world applications.

We illustrate the basic operation of our approach using an
example e-commerce platform called ACTIVE [17]. ACTIVE pro-
vides services for electronic purchasing of goods over the Internet.
The IST EU-project CORAS performed three risk assessments of AC-
TIVE in the period 2000–2003. The project looked into security
risks of the user authentication mechanism, secure payment mech-
anism, and the agent negotiation mechanisms of ACTIVE. Our
example consists of the user authentication mechanism of AC-
TIVE’s login service. In order to keep the example tractable, we only
show how to apply our methodology to one of its risks and one of
the possible treatments for that risk.

The paper makes several contributions. First, it provides a
methodology for designing secure applications. Second, it shows
how to analyze the impact of a security attack on an application
and how effective the security solutions are against a given attack.
Third, it allows one to compare the efficacies of the different secu-
rity solutions with respect to one or more given attacks. Fourth, it
shows how to formally analyze a model and get assurance about
the security properties. Fifth, it demonstrates feasibility that the
approach can be used for real-world applications.

The rest of the paper is organized as follows. Section 2 describes
ACTIVE. Section 3 shows an example attack to the login service. We
also show how to compose the attack model with the primary
model to create a misuse model. Section 4 presents a security
mechanism we use to prevent the attack and illustrates how we
integrate it with the primary model to create a security-treated
model. This section also shows how we generate the misuse model
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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for the security-treated model. Section 5 shows how we can ana-
lyze this model to ensure the satisfaction of the security properties.
Section 6 discusses related work. Section 7 concludes the paper
with some pointers to future directions. The Appendix gives the
detailed Alloy models.

2. Overview of our approach

An overview of our methodology is given in Fig. 1. Step 1 ana-
lyzes the system to identify the threats to the resources. The inputs
to this step are the primary model, possible threats, and the secu-
rity requirements. Threats become attacks on the system when
they compromise protected resources. Since an attack impacts var-
ious parts of the primary model, we abstract the specification of
the attack in an aspect. To distinguish them from the other aspects
used in our work, we refer to them as attack aspects. Step 2 involves
composing the attack aspects with the primary model to create
misuse models. Step 3 analyzes the misuse model to understand
the impact of the attack. If the results are not acceptable, potential
security solutions (or mechanisms) that counter the attack are
incorporated into the primary model to obtain the security-treated
model. The security-treated model is combined with the specific at-
tack to create a security-treated misuse model. This is done in Step 4.
The security-treated misuse model is analyzed as in Step 3, and if
the results are still unacceptable, an alternate security solution
must be integrated, and the new security-treated system misuse
model re-generated and re-analyzed. When the analysis results
are acceptable, a different attack and its potential solutions can
be considered. This is done in Step 5. It is important to continue
integrating security mechanisms and analyzing the resulting secu-
rity-treated system against previously considered attack models
since some mechanisms may interfere with each other. When such
conflicts arise, the designer can integrate alternative solutions until
a usable combination is identified through achieving acceptable
analysis results. We next discuss each step of the methodology in
more details.

2.1. Step 1: Analyze system risk

There are many different risk analyses methodologies that can
be used in the first step of the methodology, and we use the CORAS
framework [15,17,49]. CORAS is model-based, and uses UML dia-
grams and textual usage scenarios as part of a risk assessment. This
fits well with existing design processes since UML is the de-facto
modeling language used in the software industry. CORAS takes
advantage of techniques developed for the safety domain, and
has a platform of supporting tools. Using CORAS, a portion of the
system to be analyzed is identified as the context for the analysis,
and assets associated with particular stakeholders are identified
within that context. UML use case, static class, and dynamic behav-
ior diagrams are used to specify the system design that we refer to
as the primary model.

The CORAS framework use Hazard and Operability (HAZOP)
analysis to identify threats to the assets of interest, and Failure
Mode Effect Analysis (FMEA) to identify system vulnerabilities. It
then uses Fault Tree Analysis, along with the threats and vulnera-
bility analysis results to identify unwanted incidents that can lead
to attacks on assets. The consequences and frequencies of these
incidents determine the value of the risks with which they are
associated. Designers prioritize risks with respect to the system
security requirements, and assess potential treatments using these
priorities and the risk values.

This detailed assessment identifies the context in which specific
attacks could occur and the assets that could be affected. Part of
the output of a CORAS analysis is therefore the exact locations in
the system design that are vulnerable to attacks and the exact
ethodology for designing secure applications, Inform. Softw. Tech-
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forms that such attacks would take. This information is used in
Steps 2 and 4 of our methodology.

Designers identify treatments that can: (1) reduce the fre-
quency of an unwanted incident, (2) reduce its consequences, (3)
transfer the risk elsewhere, or (4) leave the risk unaffected. Poten-
tial treatments, like threats, are developed from a variety of
sources, including experience, domain expertise, and governmen-
tal sources. Treatments may take the form of incorporating an
existing well-defined mechanism (e.g., SSL in web applications),
or they may take the form of ‘‘good practices” such as proper quot-
ing of input values to remove the possibility of database attacks in
form-based web/database applications. The process of identifying
threats and developing treatments is beyond the scope of this pa-
per, however we do note that our methodology relies upon prior
knowledge of potential threats, and we cannot discover previously
unknown threats using these techniques.

Our methodology uses the output of the CORAS process in two
ways: (1) we use UML to model unwanted incidents leading to
high priority risks in what we call attack models, and (2) we use
UML to model potential treatments to create security aspects. Both
types of models consist of diagrams such as use cases, static, and
dynamic diagrams. We add constraints written in the Object Con-
straint Language (OCL) to specify security properties. (OCL [44] is
based on set theory and logic.)

2.2. Step 2: Generate misuse model

The second step in our methodology is to generate a misuse
model. We create this model by instantiating a generic attack
model (defined in the risk analysis step), and composing it with
the primary model. The misuse model represents the system un-
der the specific attack, and illustrates the degree to which the
application can be compromised by the given attack. Please note
that this model could also be a direct output of the CORAS anal-
ysis since system attacks are assessed in the context of the sys-
tem. We describe creation from a generic model to make clear
that other risk assessment techniques that do not directly pro-
duce system-specify attack models can also be used with our
methodology.
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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2.3. Step 3: Analyze misuse model

We analyze the misuse model and compare the analysis results
with the security requirements to determine whether the risk lead-
ing to the misuse is adequately mitigated by the system. Since the
misuse model contains OCL constraints, rigorous formal analysis is
possible. Theorem provers, model checkers, and executable models
can be used to analyze dynamic behavior. In this paper, we use the
Alloy Analyzer for the purpose of analyzing the models.

Analysis can demonstrate that the original functional design
sufficiently protects system assets. If this is the case, a designer
can compose a different attack model with the primary model to
create a new misuse model ready for analysis. More often, how-
ever, the misuse model analysis results are unacceptable, and a
security mechanism must be incorporated into the system to mit-
igate the risk to its assets.

2.4. Step 4: Generate security-treated system misuse model

We compose potential treatments with the primary model to
create a security-treated system model. This model specifies the
system in which the security mechanism has been incorporated.
Instantiation of the generic security aspect and composition with
the primary model use the same techniques as described above
(as mentioned in Step 2, the system-specific security aspect model
could be a direct output of Step 1). We compose the attack model
with this new system model to create the security-treated system
misuse model. We then analyze this model just as the original mis-
use model was analyzed, and we use the results to give assurance
that the application is indeed resilient to the given attack.

2.5. Step 5: Analyze alternative solution or consider different attack

If the analysis results of the security-treated system misuse
model are unacceptable, designers can incorporate a different
security mechanism into the system, creating a new security-trea-
ted system model. This model can then composed with the attack
model and analyzed. If the results are acceptable, designers can
analyze the security-treated system model with respect to a differ-
ethodology for designing secure applications, Inform. Softw. Tech-
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ent attack, incorporating new security mechanisms to mitigate
additional risks. Once a solution is found to a new attack, designers
should analyze the new security-treated system incorporating the
previous attack to provide assurance that the multiple solutions do
not interfere with each other, rendering one or the other
ineffective.

In an ideal situation, we could automate our entire design
methodology. This is particularly attractive since repeated generic
aspect instantiation, composition, and analysis can be tedious and
error-prone. While we have been unable to automate the method-
ology completely, we have automated certain parts, and identified
others that can be partially automated. We discuss automation in
the context of our example, and give further details as to on-going
work in this area in our conclusions.

3. Example e-commerce system

We illustrate the reasoning about security risk mitigation with
the login service of the ACTIVE e-commerce platform This example
concentrates on the result from the CORAS project risk assessment
of the user authentication mechanism of the login service.

We begin by creating a primary model of the login service. This
model consists of both static (structural) and dynamic (behavioral)
diagrams. Several classes play a part in the login process. A user
who wishes to login to the e-commerce system must run an
ActiveClient in a web browser on his or her local machine. The
browser communicates with a LoginManager class that is located
on a server across the Internet.

The LoginManager has several related classes. An account man-
ager (UAcctManager) authenticates users using a simple user name
and password provided by the client web browser. A profile man-
ager (UProfileManager) keeps track of user profile information. The
login service static and sequence diagrams are shown in Fig. 2.

The login operation proceeds as follows. First, a user, through a
web browser (ActiveClient), requests a login page from the e-com-
merce system by sending requestLoginPage to LoginManager. Login-
Manager responds with loginPage. The user enters a unique user
name (uname) and password (pword), and this information is sent
Fig. 2. Primary model (e-commerce login s

Please cite this article in press as: G. Georg et al., An aspect-oriented m
nol. (2008), doi:10.1016/j.infsof.2008.05.004
to LoginManager. The server then sends validate message to UAcct-
Manager. The UAcctManager returns account information (acct), or
NULL if the user account does not exist.

If the user is authenticated (i.e., a non-NULL acct is returned),
the LoginManager sends a getUProfile message to UProfileManager.
The UProfileManager retrieves the user’s profile (prof) and sends
it to the LoginManager. Using this information the LoginManager
creates an appropriate home page which is returned to the user’s
web browser. If the user could not be authenticated, or the
user’s profile could not be obtained, a visitor page is returned
to the browser.

The asset that needs to be protected in this system is the user
information, specifically the information in a registered user’s pro-
file, which is returned in the homePage, and which is accessible
anytime after a registered user has successfully logged into the AC-
TIVE system.

4. The man-in-the-middle attack

The risk assessments performed as part of the CORAS project
identified the login process as being vulnerable to man-in-the-
middle attacks. During this kind of attack, user information can
be obtained directly, or an attacker can intercept user names and
passwords, to be used at later times to impersonate a valid user.

Attacks can be thought of as aspects because an attack is not
confined to one specific module of the application, but impacts
multiple modules. We represent these attacks as generic aspects.
We represent generic aspects as patterns using UML templates.
These templates must be instantiated for each application to ob-
tain a context-specific attack model.

In this section, we show how to represent the man-in-the-mid-
dle attack as a generic aspect. Messages between a requestor and
authenticator are intercepted by an attacker. This can only occur
if all messages flow through the attacker and not through a direct
association between the requestor and authenticator. The attacker
either intercepts the message intended for the authenticator, or the
attacker eavesdrops on the communication medium between the
requestor and the authenticator.
ervice) static and sequence diagrams.

ethodology for designing secure applications, Inform. Softw. Tech-
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In interception, the attacker must pose as the authenticator
so that any message intended for the authenticator is really sent
to the attacker. The attacker then relays messages between the
requestor and the authenticator until the private information
has been obtained by the attacker. Messages can either be
passed on unchanged (passive attack), or the attacker can change
messages prior to sending them onto the intended recipient (ac-
tive attack).

In eavesdropping, the attacker does not impersonate the
authenticator, but rather just listens to the message flow.
The attacker may not obtain all of the messages flowing be-
tween the requestor and authenticator, but simply sample
messages in the hopes of obtaining information. We use the
active form of interception in our example, where an attacker
can actually participate in complex protocols, and change mes-
sages if desired before passing them on to the requestor or
authenticator. The static and sequence diagrams of a generic
man-in-the-middle authentication attack model is shown in
Fig. 3.

The static diagram shows four classes. The jRequestor communi-
cates with the jAuthenticator, which uses the help of an authentica-
tion helper class, jAuthHelper to authenticate the requestor. The
communication in both directions passes through an jAttacker.
The ‘X’ on the ‘jrequestDirect’ relation indicates that a direct rela-
tionship between the jRequestor and jAuthenticator classes is for-
bidden, and if it exists in a primary model with which this aspect is
composed, it will be removed.

The sequence diagram shows all messages between the jReques-
tor and jAuthenticator passing through the jAttacker. Secret infor-
mation can be changed by the jAttacker as shown by the
jcheckSecretInfo message from the jRequestor to the jAttacker, and
the jcheckSecretInfoAt message passed on to the jAuthenticator. This
generic aspect must be instantiated to create a context-specific as-
pect that can then be composed with the primary model to create
a misuse model.
Fig. 3. Generic man-in-the-middle attack

Please cite this article in press as: G. Georg et al., An aspect-oriented m
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4.1. Generating the misuse model

In order to understand the impact the man-in-the-middle at-
tack has on the e-commerce application, we need to generate a
misuse model. The misuse model will indicate how much the pri-
mary model can be compromised by the attack. Two steps are
needed to generate the misuse model:

1. Instantiate the generic attack aspect to obtain the context-spe-
cific attack aspect.

2. Compose the context-specific attack aspect with the primary
model to obtain the misuse model.

Details on instantiation and composition may be found in
France et al. [19,20]. The steps outlined below are intended to pro-
vide an overview of the process.

4.1.1. Instantiating the generic aspect
The generic aspect shown in Fig. 3 is application-independent. It

is specified using UML templates. These templates must be instan-
tiated for a given application to create a context-specific aspect.
Instantiation consists of several steps: (1) determining model ele-
ment correspondence, (2) creating a binding list, and (3) stamping
out aspect template elements using the binding list to create model
elements.

Any element in the generic aspect model that has a name begin-
ning with the ‘j’ character is a template parameter and can corre-
spond to an element in the primary model that is of the same
construct type. For example, in Fig. 3 the ‘jRequestor’ lifeline
parameter in the sequence diagram can correspond to the ‘ActiveC-
lient’ lifeline in the primary model since they are the same con-
struct types (lifelines).

Determining element correspondence is a human-involved
task. A designer must determine ‘‘where” the generic aspect
needs to be integrated into the primary model, and thus, which
model static and sequence diagrams.

ethodology for designing secure applications, Inform. Softw. Tech-
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primary model elements correspond to which aspect parameters.
Hints, such as identical primary model and template parameter
element names or recognizing patterns in the two models, can
be useful in this process, but ultimately a human must decide
what parameters correspond to primary model elements. Corre-
spondence is formalized by binding primary model element
names to template parameters during aspect instantiation. We
call the set of corresponding elements the binding list. It consists
of pairs of element names of the form (htemplate parameter
namei, hprimary model element namei), for example (jRequestor,
ActiveClient). Often there are parameters in a generic aspect that
do not correspond to elements in the primary model. Thus, the
binding list must be completed by including bindings for the rest
of the aspect parameters, using names in the generic aspect with
the leading ‘j’ character removed. An example is (jclientIntersept,
clientIntercept).

If the CORAS framework is used to perform risk analysis, loca-
tions in the primary model where an attack could occur have been
identified, and hence bindings to the primary model are also iden-
tified. In fact, a complete context-specific attack model can be cre-
ated from this information as part of the risk analysis step.

The context-specific aspect pattern is then automatically con-
structed, creating all the elements in the generic aspect model,
and substituting the aspect parameter names with their bound
names from the binding list, and using the generic aspect model
names for the rest of the model elements in the generic aspect.
Examples of aspect templates that will simply be stamped out
upon instantiation are shown in Fig. 6, in the form of most of the
messages comprising the TLS protocol – these messages do not
contain any parameters. The context-specific aspect diagrams of
the man-in-the-middle attack are shown in Fig. 4.

4.1.2. Obtaining the misuse model
The context-specific aspect is composed with the primary mod-

el to obtain the misuse model. The composed static diagram is
Fig. 4. Context-specific man-in-the-middle att

Please cite this article in press as: G. Georg et al., An aspect-oriented m
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shown in Fig. 5, and the composed sequence diagram is shown in
Fig. 6. The first step is to compose the class diagrams of the attack
and primary models.

Class diagram model elements are composed based on their
construct type and ‘‘signature”. The signature can be simply de-
fined as the name of the element, or it can be defined in more de-
tail, such as a class name, attributes, and methods (perhaps
including argument names and types). Composition proceeds by
finding elements of the same construct type, with matching signa-
tures in each model and then composing them. Our default algo-
rithm is to simply add model elements that exist in one model or
the other, but not both, in the composed model. Another default
is to replace elements in the primary model with matching ele-
ack model static and sequence diagrams.

ethodology for designing secure applications, Inform. Softw. Tech-
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ments in the aspect model. Both default actions can be overridden
using composition directives. The presence of an element in the
primary model with a matching aspect model element marked
for deletion (for example, the requestLine relation between ActiveC-
lient and LoginManager in the context-specific aspect model of
Fig. 4) results in the element being deleted from the composition.
Composition proceeds through all the elements of the class dia-
gram. There are default actions to handle simple conflicts (e.g., dif-
ferent multiplicities in a relation), which can be overridden using
composition directives.

Composition of the sequence diagram occurs in a similar fash-
ion, based on matching construct types and their attributes, includ-
ing name. Stereotypes are used to direct the addition (or deletion)
of model elements into the composed sequence. The algorithm de-
faults again to replacing matching elements in the primary model
with their counterparts from the aspect. Composition directives
can be used to modify this behavior. Please see our previous work
[20,50] for details on composition.

Model composition is a largely automated task. A human need
only be involved to re-direct composition behavior from algorithm
defaults, if this is needed, or to decide how to resolve conflicts that
cannot be handled by algorithm defaults. An example of such a sit-
uation occurs when a composition results in the deletion of an
attribute that is needed by another class. To identify such conflicts,
a tool must employ various dependency tracing mechanisms. To
resolve the conflict though, a human must decide whether to rein-
state the attribute, the dependency by moving the location of the
data contained in the attribute, or make other changes to eliminate
the need for this information.

The misuse class diagram (Fig. 5) differs from the primary mod-
el class diagram in the following ways: (i) an Attacker class is
added, (ii) an association between Attacker and ActiveClient
is added, (iii) an association between Attacker and LoginManager
is added, and (iv) direct association between the ActiveClient and
LoginManager is deleted because all communications now go
through the attacker class. The composed sequence diagram
(Fig. 6) shows the addition of the Attacker lifeline, and the fact that
all communication between ActiveClient and LoginManager flows
through Attacker. This sequence diagram will be used to illustrate
how much the primary model can be compromised by a man-in-
the-middle attack.
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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4.2. Evaluating the impact of an attack on the application

Informally, we can reason about the misuse diagram as fol-
lows. First, the security properties that should be present are
that: (1) Attacker should not receive uname and pword and (2)
Attacker should not receive homePage. However, the sequence
clearly shows that the attacker obtains the login name and
password of a registered user, which can be used at a later
time to impersonate the registered user, and the attacker also
receives a homePage, if one is sent. The ability of the attacker
to extract these secrets can be also formally analyzed using
techniques developed by Jürjens [32] or Alloy Analyzer [1,30],
which we use later in this paper.

To counter a man-in-the-middle attack, authentication and con-
fidentiality mechanisms must be incorporated into the login ser-
vice. The mechanism that we choose is Transport Layer Security
(TLS) [51]. We chose to use TLS since it is a follow-on to SSL (Secure
Sockets Layer) [52], which is a commonly available authentication
mechanism used in web applications. Other mechanisms could
also be used to provide a stronger authentication mechanism for
the service, including proprietary schemes developed for particular
applications. The only requirement for use with our methodology
is that the mechanism be specified as a UML model (using static
and behavioral diagrams), and that it be specified at a similar level
of abstraction as the functional system design primary model.

5. Incorporating TLS authentication in the application

The security properties of authentication and confidentiality are
both at risk with the man-in-the-middle attack, so mechanisms
that address authentication and confidentiality are potential risk
treatments. We demonstrate the use of TLS to mitigate the man-
in-the-middle attack risk. TLS is based on passing certificates be-
tween a client and server for authentication purposes, and to
establish secret session keys for the encryption of all subsequent
messages. In this paper, we use a variant of TLS described by Jürj-
ens [32]. The sequence of the TLS mechanism is shown as a generic
aspect diagram in Fig. 7 (the class diagram for TLS is quite simple,
consisting of only two classes, jClient and jServer, and the methods
and attributes used in the sequence diagram. It is not included in
this paper).
ethodology for designing secure applications, Inform. Softw. Tech-
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The TLS generic aspect contains two classes: jClient and
jServer. Certificates shown in Fig. 7 (i.e., sCert and cCert) are data
that contain a name, e.g., server name or user name, and the
public key associated with that name. They are signed by an
authority. Signing is essentially an encryption of the certificate
with the authority’s private key. As a guide to understanding
the sequence diagram, the first argument of the extractKey,
extractName, sign, encrypt, and decrypt methods is the key that
is used to perform the operation, and the second argument is
the data element from which information is to be extracted.
For example, the method call sPublicKey = extractKey(caPub-
Key,sCert) indicates that the server’s public key, sPublicKey, is to
be extracted from the certificate authority signed server certifi-
cate, sCert, using the certificate authority’s public key, caPubKey.
For the purposes of this example, certificate creation and all
public and private keys are assumed to be obtained in a secure
Please cite this article in press as: G. Georg et al., An aspect-oriented m
nol. (2008), doi:10.1016/j.infsof.2008.05.004
manner. The client must have the certificate authority’s (CA)
public key, and the server must have a certificate, signed by
the certificate authority, of its name and public key. Other
assumptions include the fact that both unique identifier num-
bers called nonces, and session keys must change each time
the protocol is initiated.

A TLS sequence begins with jClient sending an init message that
contains a nonce (iNonce), its public key (cPublicKey), and its certif-
icate (cCert). When jServer receives this message, it extracts the
public key using the client’s public key sent in the message, and
the client user name. It checks that the public key in the signed
portion of the message is the same as the public key sent in the un-
signed portion of the message. If not, the TLS authentication is
aborted.

If the client public keys match, jServer creates a message con-
taining the session key that needs to be used for encryption once
ethodology for designing secure applications, Inform. Softw. Tech-
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the connection is complete, the nonce received in the original cli-
ent message, and the client public key extracted from the client
certificate. This message is then signed using jServer’s private
key. This signed message is then encrypted using jClient’s public
key. The result, along with jServer’s certificate (which is signed
by a trusted certificate authority) is sent to jClient.
jClient first extracts the server public key from the certificate,

using the certificate authority’s public key. It then extracts the ser-
ver name from the certificate. If the name of the server in the cer-
tificate (recName) matches the name of the server (sName) to
which the original init message was sent, the protocol proceeds.
Otherwise jClient aborts the authentication. The encrypted portion
of the message is decrypted using jClient’s private key (cPrivate-
Key), and the items in the resulting signed message are extracted
using jServer’s public key (using the methods getKey, getNonce,
and getPkey). The received nonce value (reciNonce) is compared
to the nonce originally sent by the client (iNonce). If it does not
match, this indicates that an attack on the communication has oc-
curred, and jClient aborts the operation. If the items match, another
check is made against the received client public key (recPubKey)
and jClient’s internal public key (cPublicKey). If these items match,
then the communication path is secure, and jClient can encrypt its
secrets using the session key and transmit them to jServer. jClient
therefore encrypts a continue message of some sort (jcontL) and
sends it to jServer.

5.1. Generating the security-treated model

The TLS mechanism model can be composed with the e-com-
merce model in Fig. 2 in order to create a security-treated model
that incorporates TLS capabilities. The TLS generic model is first
instantiated as a context-specific model using bindings defined be-
tween it and the primary model, as described previously in Section
4.1. Similar to creating the context-specific attack model, a con-
text-specific security aspect model may be a direct output of the
Fig. 8. Security-treated static diagram.

Please cite this article in press as: G. Georg et al., An aspect-oriented m
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risk analysis step of our methodology. If not, the bindings needed
to create a context-specific model will be an output of the analysis,
and these can be used to automatically create the context-specify
aspect model. The context-specific models are the composed. The
resulting composed static diagram is shown in Fig. 8, and the com-
posed sequence diagram is shown in Fig. 9.

The sequence shown in Fig. 9 begins as the sequence did in Fig. 2,
with the ActiveClient requesting a login page from the LoginManager.
The LoginManager responds with loginPage. Now the TLS sequence is
inserted; instead of ActiveClient sending a login message with a user
name (uname) and password (pword), a different login message is
sent. This new login message contains a nonce, the user’s public
key, and certificate. The logic for the TLS handshake continues as in
the TLS aspect model, with model element name changes per the
bindings discussed above. Once the TLS handshake completes suc-
cessfully, the ActiveClient sends a continue message to LoginManager,
which in turns causes the LoginManager to get personal profile infor-
mation (if it exists), and send a homePage back to the user via ActiveC-
lient. If the profile information does not exist, a visitorPage is sent
back to the user.

5.2. Creating the security-treated misuse model

Once security mechanisms have been incorporated into a pri-
mary model, we need to verify whether the given attack is pre-
vented in this new model. In our example, we need to determine
whether the TLS authentication adequately protects the login ser-
vice from the man-in-the-middle attack. We can reason about the
effective security after composing the man-in-the-middle aspect
with the security-treated primary model and analyzing it for de-
sired security properties.

Fig. 10 shows the detailed sequence when the man-in-the-mid-
dle attack is composed with the system protected by TLS. The attack-
er in this sequence is active, that is, Attacker changes messages
flowing between ActiveClient and LoginManager. The first message
that is changed is the login message, where the attacker creates a cer-
tificate with its own public key and ActiveClient’s user name. Thus,
LoginManager has a valid user name, but the attacker’s public key,
so that any messages from LoginManager that have been encrypted
using the ‘‘client” public key are actually encrypted with the attack-
er’s public key. This encryption means that the attacker can decrypt
them using its private key. When LoginManager sends back the mes-
sage with the session key in it, Attacker decrypts it using its private
key, and re-encrypts it using the real ActiveClient public key.

5.3. Analyzing the security-treated misuse model

Recall that the original threat posed by the man-in-the-middle
attack is to obtain user information, as returned in a home page. In
the original system this occurs when the attacker obtains a user
name and password, followed by a homePage. The receipt of the
homePage indicates that the user is registered, and the fact that the
attacker has the user name and password means that these items
can be used later to obtain more user information.

The addition of TLS to the login sequence changes the situation.
First, the user name/password scheme no longer exists, so the at-
tacker cannot simply eavesdrop to obtain information that can later
be used to gain access to the system. Eavesdropping also will not
work to obtain registered user information from a homePage, since
all communication between LoginManager and ActiveClient is en-
crypted using a session key once the TLS authenticates ActiveClient.
A successful attack can only occur if the TLS protocol is successful
(i.e., a homePage or visitorPage is sent to ActiveClient from LoginMan-
ager), and Attacker obtains the session key.

Therefore the security property that needs to be preserved in
the security-treated misuse sequence is that if the protocol suc-
ethodology for designing secure applications, Inform. Softw. Tech-
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ceeds, Attacker must not obtain the session key of the LoginManager
and ActiveClient.

This property can be validated using either informal or for-
mal methods. The next section presents the use of Alloy Ana-
lyzer to formally validate it. Here, we reason informally about
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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the effective security provided by TLS as follows. Since the pub-
lic key in the login message is the same as in the certificate, the
first test comparison in LoginManager will work. Next LoginMan-
ager creates a signed message (with its private key) containing
the attacker’s public key, received nonce value, and session key,
ethodology for designing secure applications, Inform. Softw. Tech-
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and encrypts it using that same public key. This message and
LoginManager’s certificate are sent to the attacker, which de-
crypts the signed message with its private key and can extract
items from the signed message using LoginManager’s public key
as contained in its certificate. The signed message from the ser-
ver is then encrypted with the ActiveClient public key, and is
Please cite this article in press as: G. Georg et al., An aspect-oriented m
nol. (2008), doi:10.1016/j.infsof.2008.05.004
sent to the ActiveClient, along with the server’s certificate. Note
that the signed message itself cannot be changed since the at-
tacker does not have the LoginManager’s private key. Also, a
new signed message created with Attacker’s private key cannot
be created since the certificate included in the message to
ActiveClient would have to contain the LoginManager server
ethodology for designing secure applications, Inform. Softw. Tech-
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name and Attacker public key and be signed from a trusted cer-
tificate authority. This is required so that the certificate author-
ity public key possessed by ActiveClient can be used to obtain
the ‘‘server” public key.

ActiveClient first extracts the server name and public key from the
certificate using the CA public key. A comparison is made between
the server name the ActiveClient has and the server name in the cer-
tificate. This test will work. Next, the ActiveClient decrypts the signed
message from the LoginManager using its private key to obtain the
session key and nonce value. It then compares the message nonce in-
cluded in that message with the one it originally sent, and this test
will also work. Next the client public key included in that message
is extracted, and compared with its own public key. This test will fail
because the client key included in the signed message from Login-
Manager is that of the attacker. Therefore the sequence will always
move to the third test failure alternative where the abortLoginAt-
tempt message will be returned to the user of ActiveClient and the se-
quence ends. Thus, the treatment prevents the attack, and
consequently the undesirable properties it allows, from occurring.
6. Formally verifying authentication properties in the misuse
model

The form of informal analysis shown in the previous section is
error prone and tedious. Towards this end, we show how such
analysis can be done formally with the help of automated tools.
We use the Alloy Analyzer to formally reason about the misuse
model sequence shown in Fig. 10 and the ability of TLS to protect
the system from a man-in-the-middle attack. In the following sec-
tions we explain how the Alloy Analyzer can be used to verify that
the desired security properties do indeed hold.

6.1. Alloy

Alloy [30] is a fully declarative first-order logic language that can
be used to model complex software. An Alloy model consists of a
number of signatures and relation declarations. A signature denotes
a set of atoms, which are the basic entities of models. Relations are
sets of tuples of atoms capturing the relationships between entities.

Alloy comes with an accompanying analyzer that is a fully
automatic constraint solver. The analyzer operates on implica-
tions, for example that a system modeled in Alloy implies a par-
ticular property. This assertion is negated, and then translated
into a Boolean expression. The analyzer uses a SAT solver to
search for a model of the negated assertion. A user-specified
scope on model elements bounds the domain, making the prob-
lem finite. This makes it possible to create a Boolean formula for
the SAT solver. If a model is found that fits the negated asser-
tion, this means the original implication has a counterexample
and is not valid. If no counterexample is found, the original
implication may still not be valid since the search was bounded
by the user-defined scope. However, if a large scope is used, this
situation can be made unlikely.

The Alloy Analyzer differs from theorem provers in this sense – if
a counterexample is found, the implication is false, but if no counter-
example is found the implication is still not necessarily true. The
analyzer differs from model checkers in that it finds models of logical
formulas whereas model checkers check that a state machine is a
mathematical model of a temporal logic formula. Please see the Alloy
website for more information on the language and analyzer [1].

6.2. Analyzing the misuse model for security properties

There are two steps involved in analyzing the misuse model in
Fig. 10 for security properties using the Alloy Analyzer. The first is
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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to simplify the model to remove non-essential elements so that the
translation to Alloy produces a model with only the items neces-
sary to reason about the security properties. The second is to trans-
late the UML model to Alloy using the UML2Alloy tool, as described
by Bordbar and Anastasakis [8,9,54].

The UML2Alloy tool requires that the model be presented as a
class diagram, accompanied with OCL specifications of method
behavior. Both of these can be derived from the misuse sequence
diagram of Fig. 10. The class diagram must be complete in that it
contains all attributes and their types, along with complete meth-
od signatures.

6.3. Creating an abstracted OCL specification

Abstracting the security-treated misuse model to exclude un-
used details cannot be fully automated. While portions of the task
may be automated (noted in the discussion below), a set of heuris-
tics guiding a human designer was used to create the results in this
paper. These heuristics are as follows.

1. A designer must decide what assertions will be tested using
Alloy Analyzer. For this example, we need to ensure that:

(a) if the protocol succeeds, Attacker does not have the session
key

The formulation of this assertion is influenced by Alloy Ana-
lyzer since the tool works by attempting to find a counterexam-
ple to the assertion. Formulating the assertion as in (a) means
that the tool needs to search for a case where the protocol suc-
ceeds, and the attacker knows the session key. An alternative
formulation, that if the attacker knows the session key, then
the protocol should abort is harder to test since there are sev-
eral reasons why the protocol might abort, besides the attacker
gaining access to the session key.

2. Every message to a different object lifeline has the potential to
become a method in the OCL specification of the receiving object, if
the object performs some computation of interest as a result of
receiving the message. If the receiving object just passes the message
through to another object lifeline, the method will exist in the final
receiving object. In order to support this heuristic, it is easiest to con-
struct a message list, including sending and receiving object names.
Since messages always exist between at most two object lifelines,
this list can be created automatically. Messages that are the result
of invoking methods in the same object are not included.

3. Every alt box in the sequence diagram of the misuse model rep-
resents an if-then-else OCL constraint in the specification, so the
next step is to identify each of these tests, and identify the variable
dependencies that exist in them. For example, the first alt box in
Fig. 10 has a guard of [res = True]. The variable res is set as a result
of the comparison of aPublicKey and cKey. The cKey variable is ob-
tained by extracting the public key from the certificate, aCert. The
aPublicKey variable is an argument in the login method message.
The res variable thus depends on aPublicKey in the login message,
cKey, and therefore aCert in the login message. Similar dependencies
must be identified for each test of each alt box.

After this step is complete, messages that do not affect these
variables are removed from the message list. This step removes
the requestLoginPage and loginPage messages. Classes that are not
involved in the remaining messages can also be removed. Mes-
sages involving the conditions that will be tested with Alloy Ana-
lyzer need to be retained. In the case of our example, this means
that the messages involving returning a web page to ActiveClient
need to be retained. We will also have to have some way to tell that
the protocol has not aborted, in this case we choose a simple Bool-
ean variable, loginAborted. This variable will be used in Step 5,
below.
ethodology for designing secure applications, Inform. Softw. Tech-
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A further simplification that needs to occur is to replace vari-
ables that are hierarchical with their constituent parts, discarding
parts that are not needed. For example, certificates contain many
things, but all we care about in this example is the name of the cer-
tificate owner and the public key. We make this simplification for
the ActiveClient, Attacker, and LoginManager certificates. Similarly,
the messages sent between ActiveClient, Attacker, and LoginManag-
er have names like sMess, aSMess, and cMess. These are hierarchical
variables, so we replace them with the variables that we identified
in the alt box dependency development.

The next steps create the OCL specifications of methods used in
the UML2Alloy transformation.

4. Classes are specified with methods named for the messages re-
ceived by the class. For example, Attacker has a method called recLo-
ginFromAC (corresponding to the login() message sent from
ActiveClient to LoginManager, but intercepted by Attacker, which
changes it and forwards it onto LoginManager). ActiveClient has a
method called abortLoginAttempt that corresponds to the abortLogin-
Fig. 11. Portion of misuse model class diagra

Fig. 12. OCL specification of the main(
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Attempt messages from LoginManager to ActiveClient (via Attacker,
which simply passes them through). A method called main must
be added prior to the first method, to start the scenario during anal-
ysis. This method is added to ActiveClient in our example, and the last
thing this method does is to invoke recLoginFromAC in Attacker. Vari-
ables that are used in the callee method need to be set next. So for
example, in Fig. 12, the OCL specification of the main method is
shown, and this includes setting the initial nonce value, the server
name, the client name, and then invoking the recLoginFromAC
method.

5. Any alt boxes that appear in the sequence diagram after a mes-
sage corresponding to a method call in the OCL specification, but be-
fore any other messages corresponding to method calls, will result in
an if-then-else constraint in the method body. So, the first alt box of
the sequence occurs after the login message is received in LoginMan-
ager. The corresponding OCL specification of the method recLoginF-
romAttacker thus has an if-then-else block around a comparison of
the key received as part of the message and the key contained in
m used for UML2Alloy tool translation.

) method of the ActiveClient class.

ethodology for designing secure applications, Inform. Softw. Tech-
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the client certificate. Recall that the client certificate was replaced
above by the name and key, e.g., ac.certName in Fig. 12. The misuse
model shows Attacker replacing both the public key in the certificate
and the public key in the message with its own public key; these are
the values that will be checked by LoginManager. Variables that have
been added in order to test security properties with Alloy Analyzer
(i.e., loginAborted in our example) must be set appropriately in the
OCL method specifications. For example, self.loginAborted is set to
true in the abortLoginAttempt method of ActiveClient.

Variables that exist in other classes are accessed via the rela-
tions shown in Fig. 11. For example, LoginManager can test the val-
ues of the public keys by following the relation to the Attacker
class, at1. The public key that was in the certificate is at1.certKey,
and the public key that was just in the message is at1.pubKey.
Methods are also accessed through relations. For example, if the
public key test fails, LoginManager invokes at1.ac1.abortLoginAt-
tempt in ActiveClient.

Using these heuristics allowed us to develop the class diagram
and OCL specification needed by the UML2Alloy tool, which is dis-
cussed next.

6.4. UML2Alloy class diagram and OCL input

A portion of the security-treated misuse model class diagram
used in the transformation from UML/OCL to Alloy is shown in
Fig. 11.

The complete class diagram shows the types of all attributes and
return types of methods. Fig. 11 shows a portion of this diagram to
illustrate its form. Since Alloy has no primitive types everything
must be declared as a separate type, which will be a set in the Alloy
model. Boolean types in the model (e.g., ResultType) are defined as an
enumerated variable with the value r_true or r_false. The behavior of
the methods is specified with the help of OCL pre- and post-condi-
tions. Pre-conditions are statements that must be satisfied before
the invocation of a method. Post-conditions are the declarative out-
come of the method execution. The overall specification must have
an entry point to be analyzable, so the ActiveClient class is augmented
with a main() method. Navigation is specified with a dot (‘.’) notation,
and the special name self refers to the context object. OCL statements
return a Boolean type, so boolean return type operations can be in-
voked from within other OCL operations using the format object.
operationcall ().

The OCL standard forbids the referencing of non-query opera-
tions from within an OCL statement. This is too restrictive for our ap-
proach. In order to be able to simulate and reason about UML models
we have to extend OCL to be able to reference other non-query OCL
specifications from within a pre- or post-condition. To achieve this,
we use Nunes’ [42] approach, which makes this extension to OCL
and provides its formal semantics. The main benefit of the extension
is that it makes OCL more expressive. For example, in the OCL state-
ment of Fig. 12, we can reference the recLoginFromAC(), which is a
non-query operation, from within the OCL specification of the main()
operation. This enables us to simulate the model using Alloy
Analyzer.

Fig. 12 shows the OCL definition of the main() method of the
ActiveClient class. The method specifies that the recLoginFromAC()
method of the Attacker class related to the ActiveClient, should be
invoked. The rest of the methods in the model have similar speci-
fications, in that they specify the values of the attributes of the
classes, and invoke class methods.

6.5. Invariants and assertions

Invariants must be created to constrain the Alloy model. For
example, the ‘‘main” method of the ActiveClient must specify ini-
tialized attributes and state that the recLoginFromAC() operation
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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of the Attacker has to hold for all Attackers in the system. This is
the purpose of the OCL post-condition shown in Fig. 12.

Similarly, assertions must be created to verify the security
properties of interest. The property discussed in Section 6.3
must be translated into an OCL assertion, then into an Alloy
assertion for verification. Recall that this property is: if the
TLS protocol succeeds, Attacker must not possess the same ses-
sion key as LoginManager and ActiveClient. An OCL assertion for
this property is:
6.6. Creating an Alloy model

This section sketches the method adopted for conducting the
transformation from the UML to Alloy, which draws on Model Dri-
ven Architecture (MDA) [35]. This requires creation of a metamod-
el [43] of the source modeling languages, i.e., the UML/OCL and the
destination modeling language, Alloy. Then, a transformation is
specified via rules that map model elements of the source meta-
model to a destination metamodel.

The UML and OCL metamodels have already been defined in
their respective specifications [44,45], which have been released
by the Object Management Group (OMG). We are currently sup-
porting a subset of the UML and OCL metamodels, as the UML
metamodel is very large and includes elements that cannot be
mapped to Alloy. We have created an Alloy metamodel from the
Alloy grammar [30], using the methods proposed by Muller et al.
[40] and Wimmer and Kramler [58].

Transformation rules from UML to Alloy are explained by
Bordbar and Anastasakis [9]. In particular, UML classes are di-
rectly translated to signatures in Alloy. UML associations are
translated to fields of signatures. When translating an associa-
tion, additional multiplicity facts are imposed on the Alloy
fields to reflect the multiplicity constraints of the association
ends that take part in the association. Class attributes are also
translated to signature fields. UML types and enumerators are
also translated to signatures. It is also important to note that
binary bidirectional associations in UML are translated to sym-
metric relations in Alloy.

Both OCL and Alloy are based on first-order logic. They are
therefore quite similar, and the translation from OCL to Alloy is
quite straightforward when dealing with first-order logic state-
ments. As a result, the forAll OCL construct is translated to all in Al-
loy and the exists OCL construct to some in Alloy. For an extended
study of the similarities and differences of OCL and Alloy please re-
fer to Vaziri and Jackson [55].

All OCL statements are declared under a context, which is the
element of the UML model on which the OCL expression is evalu-
ated. In OCL there is a special name self, which refers to the context
object. Alloy expressions on the other hand are evaluated globally.
Therefore, it is essential to define the notion of context in Alloy
models explicitly. This can be achieved by adding an object, which
represents the context, as a parameter in the predicate to which
the original OCL statement is translated. So, for instance, the OCL
statement of Fig. 12 is translated to the Alloy predicate of Fig. 13.
Translation of the rest of the expression items is straightforward.
The complete Alloy model of the misuse model containing the
ethodology for designing secure applications, Inform. Softw. Tech-
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flawed TLS-protected login sequence in the presence of a man-in-
the-middle attack is given in the Appendix.

The translation rules have been implemented in a tool called
UML2Alloy [18,19]. Fig. 14 depicts the sequence of steps in-
volved in the transformation. The starting point is to create a
UML model of the system in a UML CASE tool such as ArgoUML
[3]. Most UML tools, including ArgoUML, can export the UML
model to an XMI [46] format. XMI, which stands for XML Meta-
data Interchange is an OMG standard used by UML tools to
store, import and export UML models. UML2Alloy implements
the transformation and generates an Alloy model from the XMI
file. The Alloy model of the system can then be analyzed with
the Alloy Analyzer [1].

6.7. Results from the Alloy Analyzer

The first step in analysis is to simulate the model. Simulation
generates a random instance that conforms to the whole specifica-
tion, ensuring there are no conflicting statements. The next step is
to formulate the OCL assertions as Alloy assertions, capturing prop-
erties that we wish to check, as outlined above. The Alloy analyzer
automatically checks such assertions and if they fail to produce a
counterexample. The Alloy translation of the OCL assertion pre-
sented in Section 6.5 is:

The Alloy Analyzer does not present any counterexamples to
the above assertion, indicating that this security property is pres-
ent in the TLS security-treated system model.

6.8. Discussion

As explained in Section 5.1, analysis in Alloy requires selecting a
scope for the execution, that is, putting an upper limit on the num-
ber of elements of each signature. The underlying idea of Alloy is to
deploy automated analysis to inspire confidence in the correctness
of the design. The larger the scope, the more confidence is war-
ranted, but the longer the analysis will take [30, page 163]. Cur-
rently, there is no clear guideline or method for identifying a
suitable scope for analyzing an Alloy model. However, experience
has shown that design flaws are often discovered in smaller scope.
This is known as ‘‘small scope hypothesis” [30, Section 5.1.3]. Find-
ing a suitable scope for each problem is a practical problem and is a
matter of experience.

In this example, we initially analyzed the security-treated mis-
use model with a scope of 1 for each of the ActiveClient, Attacker
and LoginManager and a scope of up to 8 for the rest of the model
elements, to analyze the attack by a single Attacker. This analysis
did not provide any counterexamples and returned the results in
less than one second. To increase our confidence in the correctness
of the design we increased the scope to 16 for all model elements.
This means that the Alloy Analyzer has searched for a counterex-
ample for all combinations of up to sixteen clients, attackers, serv-
ers, public keys, certificate names, etc. Again the Analyzer did not
produce a counterexample.

Table 1 captures time required for the analysis of the model
in the scope of up to 16 on a server with two dual core AMD
Opteron CPUs and 4 GB of RAM. It can be seen that the time re-
quired for the analysis increases rapidly, as scope increases.
Since there are many relations between the elements of the
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model, as the scope increases the number of possible cases the
Analyzer needs to search, grows dramatically. With a scope of
16 the Analyzer exhaustively searches a very large number of
cases, but still does not find a counterexample that violates
our assertion.

Finally, we wish to point out that this analysis is valid only for
the particular attack that is included in the Alloy model, i.e., man-
in-the-middle. A new Alloy model must be created for each type of
attack that needs to be checked. Of course, the assertions that are
checked must correctly reflect how a properly protected system
should respond to the attack.

7. Related work

Recently, a lot of work appears in the areas of AOM and AOP
[2,13,14,31,34,57]. These works are similar to ours in that they rep-
resent a view of interest, e.g., security, and they are cross-cutting.
In AOM, this means that an aspect model must be integrated in
several places with the primary model. In AOP, aspect code must
be inserted into multiple components of the implementation. In
both AOM and AOP, it is necessary to define what an aspect will
do, and where this action should be done. Many AOP and AOM
techniques use the term advice for the action an aspect will take
and join points for where these actions will be inserted in the pri-
mary model. Point cuts are used to specify more general rules of
where to apply an aspect. Often, advice, joint points, and point cuts
are specified as one entity, called an aspect.

There are other AOM approaches to adding security template or
patterns to applications. Trillo and Rocha [53] describe an ap-
proach that describes security patterns as aspect models, and
keeps them separate from the main application functionality
throughout the design process (using AOP techniques also keeps
them separate through implementation). Implicit in such an ap-
proach is that interactions between aspects will not be found since
the aspects are never combined for analysis. If AOP techniques are
used, interactions will only be found in the running system. Our
approach composes multiple aspects with the primary model, so
that we can analyze the entire system and identify interactions be-
tween security mechanisms. Such an analysis at design time is par-
ticularly useful when the different mechanisms interact with each
other and trade-off decisions must be made because the properties
ensured by the different mechanisms cannot be simultaneously
enforced.

Other researchers have proposed languages based on UML that
allows for the specification and analysis of system and security prop-
erties. SecureUML [6,11] is one such language that specifies system
and security models using an UML profile. Model transformations
are used to generate system code from the models that includes a
security infrastructure. The interactive theorem prover Isabelle is
used to analyze and verify the model prior to code generation. Our
work differs in three ways. First, SecureUML is specifically meant
for access control and authorization properties. Our work is more
generalized to check to any sort of security property as long as it
can be expressed in first-order logic. Secondly, Alloy Analyzer is
not a theorem prover; it does not require any user guidance to gen-
erate the result of the analysis. In Alloy a property is specified in first-
order logic and the analyzer automatically tries to find an instance of
the model that violates the property. If an instance is found, Alloy
provides counterexamples that will help the application developer
understand the flaws of the protocol. Finally, we are interested in
security property validation in abstract specifications of system
models and have not investigated code generation from these mod-
els. It might be possible to use model transformations to refine the
abstract platform independent model to a platform specific one
and partially generate code for the system. However this was not
the initial aim of this work and remains for future investigation.
ethodology for designing secure applications, Inform. Softw. Tech-



Fig. 13. Alloy code after the translation of the main() method of the ActiveClient
class.

Fig. 14. Process of analysis of UML models via UML2Alloy.
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UMLsec [32] is a UML profile that allows a developer to specify
security requirements and specifications in a system design. It has
an accompanying toolset that allows the design to be verified as
having the required security properties in the presence of a partic-
ular type of attacker. UMLsec provides several common adversary
models that can be used to ensure that the system has the neces-
sary security properties. Such verification can be done using a the-
orem prover such as e-SETHEO [39]. As described earlier, the
approach adopted by Alloy, unlike theorem provers, is fully auto-
mated. For a detailed description of the differences between Alloy
and theorem provers, please refer to Jackson [30, Ch.5.1.1]. Our
method also differs from the UMLsec approach in that we require
a specific misuse model to be composed with the system model
prior to analysis. UMLsec embodies the misuse in a more general-
ized adversary model.

Researchers have also focused on the analysis of UML models.
One method to conduct analysis of complex systems relies on for-
malizing the UML. Evans et al. [18] propose the use of Z [59] as the
underlying semantics of UML models. This is a natural choice, as Z
has been used to formally model and verify a wide variety of sys-
tems. However, conventional Z does not provide any support for
object oriented constructs. Kim [36] uses Object-Z [48], an object
oriented extension of Z, which is better suited to formalizing
UML models. Kim also makes use of MDA technology [36] to trans-
form UML models to Object-Z, in order to facilitate analysis of the
models.

There are also a number of tools that support analysis of UML
models. For example, the UML Specification Environment (USE)
[25] is a snapshot generator. USE can check whether a specific in-
stance of a UML model conforms to the OCL constraints of the
model. This method requires the manual generation of the in-
stances to be checked. Gogolla et al. [25] propose the use of a
scripting language (ASSL), which can be used to automate the in-
stance generation process. Such instances can be checked for the
conformance to the model. However, creation of such instances
Table 1
Performance of the Alloy Analyzer

Scope Time
required (s)

Scope of 1 for the ActiveClient, the Attacker, the LoginManager.
Scope of 8 for the rest model elements

�1

Scope of 8 for all model elements �9
Scope of 12 for all model elements �13
Scope of 16 for all model elements �43
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is directed towards validation. On the other hand our approach,
which makes use of the Alloy Analyzer, automatically checks the
state space exhaustively on all possible valid instances of the mod-
el up to user specified scope, for a counterexample, hence resulting
in verification.

Another group of UML tools rely on theorem provers for con-
ducting the analysis. For example the Key tool [7] formalizes OCL
with the help of dynamic logic [26] and provides an interactive
theorem prover environment for the analysis. HOL–OCL [10] is an-
other tool that transforms OCL to HOL formulas that can be ana-
lyzed by the Isabelle [41] theorem prover. All these methods
require guidance and special expertise to operate the theorem pro-
ver environment. Most application developers lack such expertise.
On the other hand, our method relies on SAT-solvers and as a result
the analysis if fully automated.

Finally there are a number of UML tools, which are oriented to-
wards checking the runtime conformance of an implementation.
For example, the Dresden OCL toolkit [27] can generate java code
from UML class diagrams enriched with OCL constraints. The code
generated checks at runtime whether the implementation violates
any of the constraints. For an extended study of this category of
tools the reader is referred to [12]. In contrast to such approaches,
our method deals with the analysis of the system at an abstract le-
vel before the implementation. As a result our method can expose
bugs and security issues of a system, early in the development pro-
cess before the model is refined enough to be implemented and
executed.

Another suitable choice of formalism for UML model is Al-
loy, which is specifically designed for Object Oriented design.
As described in Section 3, our approach is based on using Al-
loy, by transforming UML class diagrams and OCL into Alloy
models. Massoni et al. [37] also transform UML Class diagrams
to Alloy in order to analyze structural properties of UML mod-
els. However, their work is mainly focused on static aspects
and, unlike our method, does not deal with the dynamics of
UML models.

Mostefaoui and Vachon [38] also use Alloy to analyze behav-
ioral interactions of aspect-oriented models. Base behavior is
transformed into an Alloy model along with joint points, point
cut specifications, and aspect behavioral advice. Alloy analyzer
is used to verify the presence of the required base behavior,
in addition to aspect behavior. The technique was developed
to identify interactions or conflicts between multiple aspects
being applied to a base behavior at the same time. Aspects in
this work related to additional features being added to a base
system. The multiple aspects are composed into a single Alloy
entity and then woven with the base behavior before, after,
or both before and after the join point. Our work differs in that
composing a security-treated system model with different at-
tack models prior to transformation and analysis provides
assurance that the system design is resilient to particular forms
of attack identified through risk analysis. Also, the work we de-
scribe provides a methodology for designing secure applications,
and the use of Alloy to analyze for security issues is just one
part (albeit a crucial one) of the overall methodology.

A number of protocols and systems have been modeled and
analyzed in Alloy. The COM architecture [29] and the consistency
of the International Naming Scheme (INS) [33] are two of them.
There are also a number of systems originally modeled in UML,
which have been manually transformed to Alloy for the purpose
of analysis. Alloy has also been used for partially analyzing the
run-time configuration management of an Asynchronous Transfer
Mode/Internet Protocol (ATM/IP) Network Monitoring System
[21]. Dennis et al. [16] have used Alloy to analyze a radiation ther-
apy machine, exposing major flaws in the original UML design of
the system. Unlike these case studies, our work supports fully
ethodology for designing secure applications, Inform. Softw. Tech-
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automated transformation of UML models enriched with OCL con-
straints, to Alloy, for the purpose of analysis.

Vela et al. [56] focus on model driven development of secure XML
databases. Specifically, the authors address authorization and audit
properties. While they use model transformations to convert a plat-
form independent model to a platform specific one, our approach is
using model transformation to create formalism for analysis. Unlike
our work, they do not apply any analysis techniques on the UML de-
sign of the system.

The idea of using aspects for designing secure systems has been
presented in our earlier works [22–24]. In our very early work
[22,24] we developed the concepts needed to specify and compose
security aspects with a primary model. At that time we utilized
UML1.4 static class diagrams and UML dynamic collaboration dia-
grams to specify behavior. Other work in our group [19,20,50] pro-
vided formal notations (using newer versions of UML),
specifications, and composition algorithms that we rely on in the
research presented in this paper. In our later paper [23], we out-
lined the steps needed to verify security properties (embodied in
an aspect) after composition with a primary design model. The
analysis was informal and done manually. Although informal anal-
ysis is easy to perform and requires fewer resources, it cannot give
adequate assurances especially for complex systems. The work
presented in this paper extends the earlier work by showing how
a real-world complex system can be formally analyzed to ensure
that a given attack does not compromise the system resources.
The formal analysis done in this paper is automated and ensures
that problems have not been overlooked.

8. Conclusion

In this paper, we propose a methodology for developing secure
systems that are resilient to given attacks. We first perform risk
assessments to identify the types of attacks that are typical for
such applications. We show how to evaluate the application
against such attacks. If the results of this evaluation indicate that
the assets may be compromised, then some security mechanism
must be incorporated into the application. The resulting system
is then formally analyzed to ensure that it is indeed resilient to
the given attack. We validated our approach on a real-world e-
commerce application.

Our approach does not detect new vulnerabilities but it can be
used for assessing whether a given vulnerability poses sufficient
risk that necessitates its mitigation. The main benefit of our ap-
proach is that it simplifies the design of complex systems. The pri-
mary models and the aspects can be analyzed in isolation to ensure
that individually they satisfy the functional and security properties
respectively. The models can be composed and the analysis of the
composed model will give assurance that the resulting system also
satisfies the properties. Another benefit of our approach is that it
allows one to experiment with various security mechanisms to
see which one is most suitable for preventing a given attack on
the application. When a system is required to enforce different
security properties, multiple aspects must be integrated with the
application. This will allow one to study and formalize the interac-
tion between aspects.

Our on-going and future work concentrates efforts in three
areas. We are in the process of developing detailed algorithms to
support the abstraction of complex UML diagrams and their con-
version to OCL specifications, so that the approach can be auto-
mated. This ability will aid developers using the approach by
reducing the chances that simplifying abstractions made by the
developer leave out crucial items for the analysis. We are also
investigating the broader applicability of the approach to other
security mechanisms that are more appropriately specified by
UML diagrams other than sequence diagrams. Finally, we are also
Please cite this article in press as: G. Georg et al., An aspect-oriented m
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investigating application of the approach to other stages in the
development lifecycle of complex software systems, especially to
the requirements phase.
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