Information and Software Technology xxx (2008) XXX-XXX

Contents lists available at ScienceDirect (= INFORMATION |
— a0 |

| _SOFTWARE |
|___TECHNOLOGY |

Information and Software Technology |

i

‘,

journal homepage: www.elsevier.com/locate/infsof

Evaluating legacy system migration technologies through empirical studies

Massimo Colosimo?, Andrea De Lucia?, Giuseppe Scanniello®*, Genoveffa Tortora?

2 Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
Y Dipartimento di Matematica e Informatica, University of Basilicata, Viale Dell’Ateneo, Macchia Romana, 85100 Potenza, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 1 February 2008

Received in revised form 5 May 2008
Accepted 6 May 2008

Available online xxxx

We present two controlled experiments conducted with master students and practitioners and a case
study conducted with practitioners to evaluate the use of MELIS (Migration Environment for Legacy Infor-
mation Systems) for the migration of legacy COBOL programs to the web. MELIS has been developed as an
Eclipse plug-in within a technology transfer project conducted with a small software company [16]. The
partner company has developed and marketed in the last 30 years several COBOL systems that need to be
migrated to the web, due to the increasing requests of the customers. The goal of the technology transfer
project was to define a systematic migration strategy and the supporting tools to migrate these COBOL
systems to the web and make the partner company an owner of the developed technology. The goal of
the controlled experiments and case study was to evaluate the effectiveness of introducing MELIS in
the partner company and compare it with traditional software development environments. The results
of the overall experimentation show that the use of MELIS increases the productivity and reduces the
gap between novice and expert software engineers.

Keywords:

Software migration
Empirical studies
Controlled experiments
Case studies
Technology transfer

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Legacy systems typically form the backbone of the information
flow within organizations and are the main driver to consolidate
information on their business. In case one of these systems stops
working, the business might be dramatically influenced. In the lit-
erature different solutions have been proposed to replace such sys-
tems [9,32,40]. Typical solutions include: discarding the legacy
system and building a replacement system, freezing the system
and using it as a component of a new larger system, and modifying
the system. Changes may range from a simplification of the system
through a reduction of size and complexity, to preventive mainte-
nance operations such as redocumentation, restructuring, and
reengineering, to an adaptive maintenance process entailing inter-
face modification, wrapping, and migration [32]. These alternatives
are not mutually exclusive and the decision of the approach to use
is generally based on an assessment of the quality and business va-
lue of the system [4]. Often other non-technical factors influence
this decision, as for an example the need of software enterprises
to move their legacy systems to a modern infrastructure in order
to remain competitive in the global market [3]. In this case, system
migration is the only viable alternative [3], since the risk of replac-
ing a legacy system might be unsustainable [39].

* Corresponding author. Fax: +39089963303.
E-mail addresses: massimo.colosimo@gmail.it (M. Colosimo), adelucia@unisa.it
(AD. Lucia), giuseppe.scanniello@unibas.it (G. Scanniello), tortora@unisa.it
(G. Tortora).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.05.012

The migration of a legacy system is a complex task, which is
influenced by several concerns (e.g. its decomposability, budget,
technical and time constraints, etc...). In order to preserve the past
investments, and reduce risks and development costs the encapsu-
lation of legacy systems through wrapping technologies is a viable
alternative [8,14,23,39,41]. Wrapping technologies are now ma-
ture and also include commercial solutions (e.g., WebSphere Studio
Enterprise Developer [27] offered by IBM). Unfortunately, even
when based on wrapping technologies the legacy system migration
often requires ad hoc solutions that needs to be assessed.

To determine whether a new technology is successful, we
should look at whether it solves a problem and it is commercially
viable and at how long the innovation takes to become accepted in
practice. Furthermore, it should be also useful to understand how
to increase the odds that the technology choice is the right one
[33]. Redwine and Riddle [36] have observed that the time needed
for a software technology to mature to the point that it can be dif-
fused to the practitioners of a given company ranges between 15
and 20 years. Nevertheless, this is a too long time in the software
market, where the time-to-market is essential to keep competitive
[33]. A consequence is that innovative technologies are often
adopted before a clear evidence of their advantages. To overcome
these difficulties experimentation is necessary [4,25] and should
be performed with researchers, practitioners, and users to assess
innovative technologies and tools. Experimentation requires a re-
search plan that will take place over the years. Generally, experi-
ments are formal, rigorous, and controlled investigations
normally conducted in laboratory environment to provide a high

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.



mailto:massimo.colosimo@gmail.it
mailto:adelucia@unisa.it
mailto:giuseppe.scanniello@unibas.it
mailto:tortora@unisa.it
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 M. Colosimo et al./Information and Software Technology xxx (2008) xXX—-Xxx

level of control. In case it is not possible to randomly assign sub-
jects to different treatments [11,44] quasi-experiments can be
alternatively performed. Experimentation should be used to enable
the identification of technologies ready to be transferred to partic-
ular organizations and market segments, so an evaluation of these
technologies in typical situations or pilot projects is also required.
Generally, such an evaluation cannot be conducted in a controlled
way, so case studies have to be performed, where the activities
concerning the use of the technology are observed through the col-
lection and the analysis of relevant data [4,44].

In [16], we have presented a process and a supporting environ-
ment, named MELIS (Migration Environment for Legacy Informa-
tion Systems), for the migration of ACUCOBOL-GT legacy systems
to the web. The migration process and tool were developed within
a technology transfer project conducted in cooperation with a
small software company. The goal of the company was to become
an owner of the technology in order to migrate their legacy sys-
tems according to the new technology and business change
requirements of their customers. In that paper, we have also pre-
sented the results of a preliminary case study conducted on a leg-
acy system of the partner company to validate the approach and to
get feedbacks about the tool.

In this paper, we evaluate the effectiveness of using MELIS dur-
ing the migration of COBOL legacy systems to the web, in particular
concerning the productivity improvement. To this aim, we have
conducted user studies to compare the support given to the migra-
tion process defined in [16] by MELIS against the support given by
the COBOL development environment used within the partner
company, namely ACUBENCH [1], combined with the web develop-
ment environment integrated in MELIS, namely Lomboz [26]. It is
worth noting that while the company has a long experience of CO-
BOL development (in particular with ACUBENCH), web develop-
ment is still in the future plans, together with the migration of
the marketed COBOL legacy systems to the web. This means that
there was not an established web development environment avail-
able in the company that we could compare with MELIS in the user
studies and for this reason we decided to use Lomboz. In particular,
we present here the results of two controlled experiments and a
case study. The first controlled experiment was conducted using
master students in Computer Science, while the replicated experi-
ment was conducted within the laboratory of the partner company
and involved professional programmers. The goal was to evaluate
how much the use of MELIS improves the productivity of software
engineers and reduces the gap between expert and novice pro-
grammers. As the nature of controlled experiments requires that
migration tasks are completed in a few hours, we had to necessar-
ily select for these tasks small COBOL programs. To evaluate the
benefits of MELIS in a real environment we also conducted a case
study, where the key practitioners of the partner company were
asked to migrate two subsystems of a relevant system with the
MELIS tool and the development environments ACUBENCH and
Lomboz.

The remainder of the paper is organized as follows: Section 2
presents related work. The developed migration technology in
terms of strategy, migration process, and supporting tool is high-
lighted in Section 3. The controlled experiments and the cases
studies together with the achieved results are discussed in Sections
4 and 5, respectively. Final remarks and future work conclude the

paper.
2. Related work

Internet is an extremely vital technology that is changing the
way in which organizations conduct their business and interact
with the partners and the customers [3]. To take advantage of
the Internet open architecture, most companies discard the

existing software systems and then develop new systems that
meet the new needs of the company business. However, economic
and technical constraints make the development of new software
systems impossible in most cases. Therefore, the migration repre-
sents a successful activity to preserve the past investment [9,39]
and concurrently to move the original system toward the new
technology infrastructure (i.e., the web).

During the years, several approaches have been presented to
migrate monolithic and procedural legacy systems to different dis-
tributed architectures, including client server architectures [10,12],
distributed objects architectures [35,41], and web-based and ser-
vice oriented architectures [2,3,7,13,30,42]. These approaches
share some commonalities in the used reverse engineering and
reengineering methods. Furthermore, due to the risks involved in
reengineering and migration projects [3,9,39], the majority of these
approaches are incremental. Typically, incremental migration ap-
proaches tries to decompose large legacy systems in smaller
chunks, which are then wrapped and used within a new environ-
ment. Thus, in this scenario wrapping approaches become
essential.

Wrapping is essentially the practice of implementing a software
architecture using pre-existing components. The component can
be a batch program, an online transaction, a program, a module,
or even just a simple block of code [39]. Components are accessed
via a wrapper that implements the interface that newly developed
objects use to access legacy components or systems. Therefore,
wrappers are responsible for passing input parameters to the
encapsulated component, capturing the output data, and returning
them to the requester. Different wrapping approaches have been
presented in the literature, which differ mainly in how they sup-
port the migration strategy and in the technology they use to
encapsulate the legacy software at different granularity levels.
For example, Sneed [41] proposes tools and wrapping techniques,
where online programs are transformed into data driven subpro-
grams which process an XML-document. Differently, batch pro-
grams are adapted to read and write XML-documents. Finally, in
subprograms parameters are set from an XML-document. Recently,
Sneed in [42] has extended this approach to enable the integration
of legacy systems into a Service Oriented Architecture. In [14], a
CORBA-IDL (Interface Definition Language) wrapper is adopted to
migrate legacy systems to client-server architectures. Wrapping
is performed at both the procedure and program level. After receiv-
ing the requests from a remote client, the wrapper simulates a Job
Control Language (JCL) procedure in the creation of input and out-
put files and invokes the legacy system program. Lin et al. [23] pro-
pose to use a wrapper in order to reuse MS-Windows as a CORBA
object. The wrapper implementation requires the wrapper to redi-
rect the input/output data streams and to generate a CORBA inter-
face. The windows task input channel is redirected using an event
message simulation for mouse and keyboard devices, while the
wrapped application saves the output data in the clipboard space
using the output redirection mechanism. The CORBA-IDL is
adopted to create the CORBA interface.

Wrapping is also used in [24] for integrating COTS MS-Windows
applications in a distributed system using Java technologies. The
authors propose a 3-phase process where the components are first
encapsulated, constructing a server-side Java object by wrapping a
MS-Windows application, secondly, by including a coordinator to
integrate the wrapped applications, and thirdly by constructing a
user interface implemented in Java to manipulate the integrated
applications.

Encapsulating legacy systems usually requires reengineering
the legacy user interface using technologies of the new environ-
ment in which the legacy system has to be accessed. User interface
reengineering involves reverse engineering to abstract a user inter-
face conceptual model and forward engineering to re-implement

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 3

the user interface [28]. Several approaches based on data-flow
analysis [27], State Transition Diagrams [8,43], and techniques de-
rived from artificial intelligence [29] have been proposed in the lit-
erature. For example, Moore and Moshkina [30] describe an
architectural restructuring aimed at migrating character-oriented
user interfaces to a web-based front end.

An approach to migrate character based user interface to any
client devices is proposed in [8]. This approach exploits a black-
box technique to identify the dynamic and static models of user
interfaces based on characters and forms and reproduces them
on client devices with the support of a software wrapper. Checks
on the user interfaces are performed when all the input fields of
a form are filled in. An extension of the approach to a service ori-
ented architecture has been proposed in [13].

Many of the web migration strategies proposed in the literature
are conceived for decomposable or semi-decomposable legacy sys-
tems [9]. For example, Aversano et al. [2,3] propose the main re-
sults of a migration project aimed at integrating an existing
COBOL system into a web-enabled infrastructure. The original sys-
tem was semi-decomposable with a client component (repre-
sented by the user-interface) and a server component
(represented by the application logic and database). The migration
approach that Aversano et al. [2,3] propose requires that the graph-
ical user interfaces are manually migrated to Microsoft ASP tech-
nology, while the server components are wrapped using dynamic
load libraries.

Also, Bodhuin et al. in [6] describe an approach to migrate a CO-
BOL system easy to decompose towards a web-enabled architec-
ture based on Model View Controller (MVC). The software
components of the original legacy system are identified using slic-
ing techniques. These components are restructured and then
turned into java classes by using the PERCobol tool [22]. The same
authors in [7] present an approach and a tool to migrate a non-
decomposable LEGACY SYSTEM to two-tier web-enabled architec-
ture through the use of a Screen Proxy. This approach is very close
to our approach. However, the authors do not discuss problems re-
lated to embedded side effects and control flow in the user inter-
face description.

Zdun [45] provides an overview of a reference architecture inte-
grating the recurring components and the wide variety of technol-
ogies needed to bring a legacy application to the web. This
architecture is based on legacy system wrapping and takes into ac-
count several other aspects, including authentication, session man-
agement, dynamic content creation, and presentational
abstractions. In this way the author provides a conceptual under-
standing of which components are required for reengineering a lar-
ger system to the web.

Research in the empirical software engineering field aims at
acquiring general knowledge about which process, method, tech-
nique, language, or tool is useful for whom to conduct which tasks
in which environments [4,21,38]. Concerning the migration of leg-
acy systems, strategies and supporting tools have been largely
experimented in case studies conducted on real size software sys-
tems [2,7,10,30,35,41]. On the other hand, controlled experiments
have been rarely used in the software maintenance field. The com-
bined use of case studies and controlled experiments let software
engineers better evaluate whether the migration technologies pro-
duced in research laboratories fulfill the industry needs [5,23,33].

3. Industrial context and migration strategy

In this section, we briefly describe the technology transfer pro-
ject in which the user studies described in this paper have been
conducted. In particular, we describe the software development
context of the partner company, the results of the assessment of

the legacy systems that the company needs to migrate, the defined
migration strategy and process and the tool that we have devel-
oped to support this process. More details can be found in [16].

3.1. The context

The main goal of the technology transfer project was to define a
migration strategy and process and the supporting technology to
make the company’s practitioners able to systematically migrate
their legacy systems to the web, according to the customer
requirements.

The partner company has been developing and maintaining
standard business-oriented software packages for 30 years. It
started with the development of COBOL systems for minicomput-
ers in the '70s. In the '80s the company first moved its COBOL
development to UNIX workstations and then to PCs with MS-
DOS. The legacy systems developed in the previous decade were
migrated to the PC in order to broaden their market segment of
smaller users. As part of this migration, the partner transferred
its software first to Micro Focus COBOL for MS-DOS in the '80s
and then to ACUCOBOL for MS-DOS in the '90s. At the end of the
'90s the ACUCOBOL development environment was upgraded to
the ACUCOBOL-GT version, which supports the development of
graphical user interfaces for Windows. The software development
environment currently used is ACUBENCH [1].

As first step of the migration strategy definition we assessed the
legacy systems with greatest business value developed and mar-
keted by the partner company [16]. Among the legacy systems that
the management identified as business critical for the company, in
particular we selected the systems that the customers required to
access on the web. The results of the assessment revealed that
these systems had a very low level of decomposability with spa-
ghetti-like code. For this reason, we decided to adopt an incremen-
tal migration strategy based on the reengineering of the user
interface using web technology, on the transformation of interac-
tive legacy programs into batch programs, and the wrapping of
the legacy programs. The new web-based user interface and the
wrapped legacy system communicate trough a middleware
component.

3.2. Target environment and migration strategy

The target architecture resulting from the migration of a legacy
system to the web is depicted by the deployment diagram of Fig. 1.
The technologies used for the implementation of the software
components of the target architecture were imposed as a con-
straint by the partner company.

At the end of the migration process described in Section 3.3, the
interactive programs of the legacy system are converted into batch
programs (Wrapped Legacy System) and all interactions with the
user are redirected to the Middleware component,! which estab-
lishes a communication link between the migrated user interface
and the application logic of the legacy system. The user interface is
divided into two components, the Reengineered GUI and the GUI
Deliverer. The Reengineered GUI includes the Java Server Pages
replacing the COBOL SCREEN SECTIONSs of the original system, while
the GUI Deliverer includes the Java Servlets and Beans used to man-
age the control logic of the new web user interface and access the
functionalities of the Wrapped Legacy System through the Middle-
ware component. The GUI Deliverer accesses the Reengineered GUI

! User interfaces in COBOL are described using SCREEN SECTIONs, which define
dialogs using the ACCEPT and DISPLAY statements. In particular, these statements are
used to display output data on the user interface and to receive input data from the
user interface, respectively. In a migrated program, these statements are wrapped and
the dialog is redirected to the Middleware component.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




4 M. Colosimo et al./Information and Software Technology xxx (2008) xxX—-Xxx

Server
Client

Web Browser

<<https>>

GUI Deliverer ----
- Reengineered GUI

<<SOAP>>

I

I

I

1

|

I

1

1
1

Service

|

I

Middleware

| <<start>>
!

Wrapped Legacy
System

Fig. 1. The target software architecture.

to get the web pages required to accomplish a given function. The
GUI Deliverer component is accessed by the web browser using
the HTTPS (HTTP over Secure Socket Layer) protocol.

The Middleware was implemented as a Dynamic Link Library
(DLL). This component runs on the same node as the Wrapped Leg-
acy System. The DLL was developed using the programming lan-
guage Delphi. This language was required by the partner
company due to the experience of the practitioners involved in
the project. To enable the communication between the GUI Deliv-
erer and the Middleware component, we wrapped the latter using
JNI (Java Native Interface). In case the Web server and the Middle-
ware run on the same node, no further communication middle-
ware is needed. Otherwise, when it is required that these
components run on different nodes a communication middleware
(e.g., RMI or SOAP) has to be used.

The Middleware starts the Wrapped Legacy System when re-
quired. Successively, it manages the communication between the
reengineered user interface and the wrapped legacy system using
a shared memory and semaphores. The Middleware component
provides two different interfaces to the wrapped legacy program
and the new user interface, respectively. The first interface is pro-
vided to the wrapped legacy program to set and get information
from the web-based user interface. The second interface is pro-
vided to the GUI Deliverer software component to access the func-
tionalities of the wrapped legacy system. More details on the
communication between the components of the target architecture
can be found in [16].

3.3. Migration process and tool support

The Middleware component of the target architecture shown in
Fig. 1 is a generic component developed so that it can be used in
the migration of any legacy program, thus enabling the software
engineer to concentrate only on the wrapping of the legacy pro-
grams and on the reengineering of the user interface. The adopted
migration process is shown by the activity diagram with object
flow of Fig. 2. Ellipses are phases of the process, whilst rectangles
are software artifacts. To fully support the migration of the legacy
systems of the partner company according to the phases of the pro-
posed strategy we decided to develop an Eclipse plug-in, named
MELIS (Migration Environment for Legacy Information Systems).

The Pre-processing phase is automatically supported by MELIS
and provides details on the types and attributes of each graphical
object composing the SCREEN SECTIONs of a given ACUCOBOL-
GT program. The structure of the SCREEN SECTIONs and the corre-

:Legacy code
~
-
-

~

l
\
|
AV I
|
I
|

:User interface model

)

~

2 :Enhanced user interface model

:Target system

Fig. 2. The migration process.

sponding graphical objects are encoded in an XML file, which hier-
archically organizes the SCREEN SECTIONSs, the contained objects
(ENTRY-FIELDS, LABELSs, etc.), and the control checks of a given CO-
BOL program. Control checks on the ENTRY-FIELDs of a SCREEN
SECTION are expressed in terms of BEFORE and AFTER clauses.
These clauses trigger the execution of COBOL paragraphs before
and after the user has filled in the ENTRY FIELD on the screen. As
discussed in [16], this control flow embedded in the user interface
description of COBOL programs increase the difficulty of separating
the presentation logic from the application logic and database ac-
cess logic and make it almost impossible to completely automate
the migration process.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 5

During the Wrapping phase the XML file representing the
SCREEN SECTIONSs is enhanced and the original code is wrapped
to become a batch program. This is the most challenging phase
of the migration process and is semi-automatically supported by
MELIS. The main issue of this phase consists of identifying the
checks that can be or not migrated to the client. In particular, the
checks on the entry fields of the SCREEN SECTIONs have to be clas-
sified as: format check operations, which are migrated to the client,
and field database access or application logic operations, which are
left on the wrapped COBOL program and invoked using the Middle-
ware component. This classification is suggested by MELIS, thus
providing a semi-automatic support.

The format checks that can be migrated to the client are embed-
ded in the XML file in terms of javascript functions. To further sup-
port the developers, MELIS also provides a library of reusable and
customizable javascript functions. Concerning the checks that can-
not be migrated to the client, MELIS automatically comments the
statements DISPLAY (used to visualize a SCREEN SECTION) and AC-
CEPT (used to get data from a SCREEN SECTION) and then replaces
them by calls to the Middleware component.

The GUI-Reengineering phase produces the web-based graphical
user interface starting from the intermediate SCREEN SECTION rep-
resentations. MELIS automatically generates a JSP page for each
SCREEN SECTION of a given ACUCOBOL-GT subsystem. Fig. 3 de-
picts a reengineered web-based graphical user interface as shown
in the MELIS plug-in. In particular, this figure shows the reengi-
neered user interface of the ACUCOBOL-GT program used within
a migration task of the controlled experiments described in Section
4. To enable the communication between each JSP page and the
wrapped legacy code MELIS also generates a Servlet and a Java
Bean. The Java Bean contains the fields of the SCREEN SECTIONS
and is built from the XML description contained in the enhanced
user interface model. It is worth noting that to modify the gener-

ated JSP pages MELIS integrates Lomboz [26], an Eclipse plug-in
available under GPL license for J2EE development.

Finally, the Integration and Deployment phase enables the inte-
gration of the wrapped legacy code and reengineered web-based
graphical user interface. First the wrapped legacy code is compiled
using the ACUCOBOL-GT compiler integrated in MELIS, and then
the reengineered web-based graphical user interfaces and the
compiled legacy code are deployed on the Web Server and on the
Application Server nodes, respectively. MELIS fully supports the
compilation of the wrapped legacy code, the deployment of the
reengineered user interface, and the execution of the migrated pro-
gram (see Fig. 4). In this phase the software engineer should also
perform regression testing to prove the functional equivalence be-
tween the original legacy system and the migrated system. Test
case specifications can be derived from the original legacy system
and used to exercise the target system in order to identify possible
differences in behavior. Let us note that MELIS does not provide
specific support to automatically derive test cases and check the
functional equivalence.

4. Controlled experiments

In this section, we report on the results of two controlled exper-
iments, which have been conducted with master students in Com-
puter Science at the University of Salerno and professional
programmers of our partners company, respectively. These exper-
iments aimed at assessing the effectiveness of using MELIS in the
migration of ACUCOBOL-GT programs compared to ACUBENCH,
the software environment used within the partner company for
COBOL development, and the Lomboz Eclipse plug-in for web
development. While the company has a long experience of COBOL
development (in particular with ACUBENCH), web development is
still in the future plans, together with the migration of the mar-

| 32€€ - Age Calculator - ObjectWeb Lomboz i =2 %]
file Edt Navigate Search Project Run Window Help
[ ] [#=-0-Q- ||y |Gls | g8 | S®sL> |E-|@ Ei[s® e @loava »
| v s S . - £ Team Synchr. ..
(2 Projec Explorer 31 = O| P =g
S = & |http:Hloca\host:BOSO!nueCaIcuatorf.ﬂ\qua\cu\ator<isD __'_J B
=& AgeCakualtor =
[#-'25 Deployment Descriptor: AgeCalous
#-2% Java Resources: src Age Calculator
#-{= build
(& WebContent
1 Ajax
1 bi_foz_entWeb Name: Massimo
)
z EE;‘;’:&D Your Birthday Date: [g7][04] [1981] ga/mm/aaa
1 Fomoties
T 651005
T 651008
T HemieoPDF - =i
'~ menu-example [£] AgeCalculator.jsp 23\ -5
& H Srasramm I <hz align="center">Age Calculator</hz> = (=]
)= Parser ey
ik E’z"”agﬁ"T <form id="formS" name="formS" method="post” action="/Calculateige.do">
o] o ik <table align="center'>
*-j= ProvaGianos ctrs
#HS 5 5
gsm:';enu243 <tdr<label>Nawe: </label></td>
B StrutMoms o <tdr<input type="text” neawe="name"” id="nawe" style="width: 150px” />
i < EEs
(-3 15R-109 Web Services it rf’
<t hel >Your Birthday Date: </label></td>
<tdr<span id="brd"> <input type=Ttext" J
mwaxlength="3" scyle="width: 15px"™ /> <input type="text"”
maxlength="3" gcyle="widch: 1Spx"™ /> <input type=ftext”
maxlength="6" style="width: 32px" /> gg/mm/aaa</td>
Irrs -
4| | »
Problems | Tasks | Properties | 47 servers &2 Datd:a-sEExphrﬂ'[Srﬁ:pehl(nmnk;ﬁcwzss]sza:h‘cal Herardﬂy‘ ]
G P =2
il LBl : : :

Fig. 3. Reengineered user interface.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




6 M. Colosimo et al./Information and Software Technology xxx (2008) xXX—-Xxx

= O gstooo.cbl 22
‘ [=] J:‘ = 1 IDENTIFICATION
B 2 PROGRALM-ID. cal
4= -
G- sre T - 3 *AUTHOR. Cillo.
=i JRE Go Into ‘: . .
- Tome 5 environment dis
‘B, Web Open in New Window 6 configuration ¢
[ build Open Type Hierarchy F4 7 Source-computer
B-§= LI5cq g special-names.
i G gliECopy Ctrl+C 9 decimal-poi
i '.U c “ Paste Ctrl+v 10 Crt status
EE Webt 11 SCREEN cont
A Delete Delete
H-= N X e . 12 event stati
_ BBy ot ) i 13 input-output se
1] New Proj Source Ale+Shift+S 14 T e
--g:wva@ Refactor Alt+Shift+T » 15 DATA DIVISION.
ErvVers
- 16 .
a it col (R FILE SECTICN
17 WORKING-3TORAGE
107 task2-cal 24 Export... B
157 WEBtask o~ . ik
- A 19 variabili x
157 WEBtask o Refresh FS =
Close Project 21 01 TIPOMES

Debug As

Alt+-Shift+x, R

3

5] 2 Java Applet ALShIFEHX, & b
Renoce 7] 3 Java Applicati Alt+5Shift+%, 1
Fort y (23 Java Application +Shift+¥, il
Compare With b U 42UnitPlug-in Test  Albeshiftex, P |
Restore from Local History... Ju 5 JUnit Test Alt+sShift+3, T I
PDE Tools ¥ 55 6 SWT application Al+Shift+%, 5 E
i c
Properties Alt+Enter ORwn...
o

Fig. 4. MELIS support to run the migrated program on the server node.

keted legacy systems to the web. This means that there was not an
established web development environment available in the com-
pany that we could compare with MELIS in the user studies and
for this reason we decided to use Lomboz.

In the following, we present the design and the results of the
two controlled experiments according to the template suggested
by Wohlin et al. [44].

4.1. Experiment definition

The goal of the two experiments was to evaluate the
improvements in productivity achieved when using MELIS for
the migration of COBOL programs with respect to more tradi-
tional software development environments. To this aim, we de-
fined two migration tasks that could be performed in 3 h. The
two tasks required to migrate small ACUCOBOL-GT programs to
the web according to the target architecture shown in Fig. 1
and the migration process shown in Fig. 2, and verifying the
functional equivalence of the original and the migrated pro-
grams. To avoid biasing the experiments by using different test
case selection methods, we provided the subjects with the test
case specifications to be used during regression testing. The dif-
ference between the two tasks was given by the programs to be
migrated:

e Ti: migrating an ACUCOBOL-GT program that computes the
basic arithmetic operations, i.e., addition, subtraction, multipli-
cation, and division (composed of 196 LOCs);

e T,: migrating an ACUCOBOL-GT program that computes the age
of a person using his/her birthday (composed of 238 LOCs).

Both programs contained two SCREEN SECTIONs and the only
difference between them concerned the presence of embedded
control flows in the user interface of the second program (three
controls to check the validity of the inserted month, day, and year).

However, we do not expect that this slight difference might have
an effect on the productivity both when using MELIS or the other
development tools. In other words, the selection of a program with
embedded control flows only served to make a difference in the
two migration tasks, not to analyze the effect of task complexity
on the productivity. Indeed, although the assessment of the legacy
systems conducted in [16] revealed that the presence of embedded
control flows in the SCREEN SECTIONs of an ACUCOBOL program is
quite frequent and is one of the main obstacles to the automatic
migration of legacy systems, the goal of these two controlled
experiments was only evaluate how much the semi-automatic
support to legacy system migration provided by MELIS improves
the productivity compared with more traditional development
tools. Further experimentations should be devoted to analyze this
factor.

Each subject involved in the two experiments had to perform
the two tasks across two laboratory sessions, in one case with the
support of MELIS and in the other case with the support of the
software development tools ACUBENCH and Lomboz. Within
the migration process, ACUBENCH was used to change and wrap
the COBOL programs, while Lomboz was used to reengineer the
user interface. The different tool support used in the migration
process is the main factor that we want to investigate. It is worth
noting that there is no other commercial or open source tool avail-
able for the migration of ACUCOBOL-GT programs to the web (and
this was the reason why MELIS was developed [16]), so the only
possible alternative to MELIS was a combination of ACUBENCH
with a web development tool.

4.2. Experiment context

To evaluate how much the use of MELIS reduces the gap be-
tween expert and novice programmers we first conducted a con-
trolled experiment with master students and then we replicated
it with professional programmers.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 7

4.2.1. Academic context

The first controlled experiment was conducted within the Soft-
ware Engineering laboratory at the University of Salerno with vol-
unteers. In particular, the volunteers were 28 students of the
Advanced Software Engineering course of the master program in
Computer Science. One of the main topics of the Advanced Soft-
ware Engineering course was software maintenance and reengi-
neering. All students had a comparable level of background, as
they were all graduate students with basic software engineering
knowledge, good web development experience, and no COBOL pro-
gramming knowledge. However, as part of the advanced software
engineering course the students attended some tutorials and lab
sessions on COBOL programming before conducting the controlled
experiment. It is worth noting that while MELIS provides a good
support to the automation of the migration process, the software
development environment used within the partner company does
not provide such a support, so migrating a COBOL program to the
web with these tools requires to manually change and wrap the
COBOL programs. Due to the lack of COBOL programming experi-
ence, there was a risk of abandonment of the experiment that we
mitigated by making the students work in pairs: the 28 students
were then randomly grouped in 14 teams, each composed of 2
students.

4.2.2. Industrial context

The replicated experiment was conducted within the labora-
tory of our partner company with four professional programmers
and four academic researchers (i.e., research fellows and Ph.D.
students). The practitioners had similar COBOL programming
experience level, but no experience of web technologies. For this
reason, we also used academic researchers with good experience
of web development and no COBOL programming experience. The
academic researchers attended some tutorials on COBOL pro-
gramming as well as the master students of the first experiment,
while the practitioners attended some tutorials on web develop-
ment and J2EE technology. The four practitioners and the four
academic researchers were randomly combined in four teams,
each composed of a practitioner and an academic researcher. In
such a way the risk of abandonment of the experiment was
mitigated.

4.3. Hypotheses

The controlled experiments aimed at confirming that on aver-
age the use of MELIS reduces the migration effort (and then in-
creases the productivity) with respect to the use of traditional
development tools. Therefore, we formulated the following null
hypothesis:

e H,;: the use of MELIS does not significantly affect the effort to
migrate an ACUCOBOL-GT program to the defined target envi-
ronment; The alternative hypothesis is:

e H,;: the use of MELIS significantly affects the effort to migrate an
ACUCOBOL-GT program to the defined target environment;

Moreover, we wanted to investigate whether the use of MELIS
reduces the gap between software engineers with different experi-
ence level. We consider the subjects of the replicated experiment
(industrial context) having high experience than the subjects of
the first experiment (master students) and we consider subjects
of the same experiments as having the same experience level. In
particular, we expect to find no significant difference in the effort
produced in the two experiments when the migration tasks are
performed with MELIS, while we expect to find a significant differ-
ence when MELIS is not used. Therefore, we formulated the follow-
ing null hypotheses:

e H,,: the subjects’ experience does not significantly affect the
effort to migrate an ACUCOBOL-GT program to the defined tar-
get environment, when MELIS is used;

e H,3: the subjects’ experience does not significantly affect the
effort to migrate an ACUCOBOL-GT program to the defined tar-
get environment, when ACUBECH and Lomboz are used; The
corresponding alternative hypotheses are:

e Hgy: the subjects’ experience significantly affects the effort to
migrate an ACUCOBOL-GT program to the defined target envi-
ronment, when MELIS is used;

e Hgs: the subjects’ experience significantly affects the effort to
migrate an ACUCOBOL-GT program to the defined target envi-
ronment, when ACUBECH and Lomboz are used;

4.4. Selected variables and experiment design

In order to properly design these experiments and analyze the
achieved results, the following independent variables were
considered:

e Tool: this variable indicates the factor on which the study is
focused, i.e., using MELIS as tool support in the migration pro-
cess (denoted as PL) or using ACUBENCH and Lomboz (denoted
as NOPL);

e Task: the migration tasks, denoted as T; and T>, respectively;

e Lab: the subsequent laboratory sessions, denoted as Labl and
Lab2, respectively;

e Exp: the first controlled experiment (conducted in the academic
context with subjects with low experience) denoted as Exp, and
its replication (conducted in the industrial context with subjects
with high experience) denoted as Exp..

According to the defined null hypotheses the dependent vari-
able to consider in our experiments was the time required to per-
form the tasks. This dependent variable includes both the effort to
comprehend the original program and the effort required to per-
form the phases of the migration process described in Section
3.3, including regression testing. Different dependent variables,
such as the number of produced LOCs, have not been considered,
due to the small size of the selected COBOL programs and to the
fact that the target architecture and the migration process are
the same both when MELIS and the traditional development tool
are used.

Although, we designed the experiments in such a way to avoid
the task effect on the dependent variable, Task has to be considered
as a variable of our controlled experiments and tested to evaluate
that it does not impact on the productivity. The considered treat-
ments of the controlled experiments are then represented by the
possible combinations of the factors Tool (PL and NOPL) and Task
(T; and T). To avoid results to be biased by group ability, each
group experienced both tools and both tasks over the two labora-
tory sessions. As the organization of the laboratory sessions in gen-
eral might affect the results of an experiment, we also needed to
consider the Lab factor as independent variable and assessed its
influence through statistical tests. A significant influence would
denote the presence of a learning effect that might bias the results
of the experiment. In order to minimize the learning effect, half of
the teams worked in Lab1 with MELIS and half of them without
MELIS. Finally, the variable Exp was selected to assess the effect
of the subjects’ experience on the effort to perform the tasks with
the different tool support.

Table 1 summarizes the design of the two experiments. In the
controlled experiment performed with master students, we ran-
domly assigned four teams to the groups A and C in Table 1, while
three teams were randomly assigned to the groups B and D. On the

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




8 M. Colosimo et al./Information and Software Technology xxx (2008) xxX—-Xxx

Table 1
Experiment design
Subject’s group Tool

PL NOPL
A T, Lab1 T, Lab2
B T,, Lab2 Ty, Lab1
C T,, Lab1 T,, Lab2
D Ty, Lab2 T, Lab1

other hand, in the replicated experiment conducted with the prac-
titioners one team was randomly assigned to each group in Table 1.

4.5. Preparation

As mentioned in Section 4.2, the subjects of the first controlled
experiment as well as the academic subjects of the replicated
experiment attended some tutorials on COBOL programming, ACU-
COBOL-GT programming language, and ACUBENCH while the prac-
titioners attended some tutorials on web development, J2EE
technology, and Lomboz. All subjects of the experiments succes-
sively attended a training session aimed at presenting detailed
instructions on the target environment, the migration process,
and the goals of migration tasks (and related COBOL programs). Fi-
nally, to give subjects more confidence with the considered tools
some examples (not related to the tasks to avoid biasing the exper-
iments) were also presented.

To assess the clarity of the migration tasks, the adequacy of the
time to perform the laboratory sessions, and other related ques-
tions, as well as the perceived usefulness and usability of the dif-
ferent tools, the survey questionnaire shown in Table 2 was
adopted. All the questions expected closed answers according to
a five-point Likert scale [31]: from 1 (strongly agree) to 5 (strongly
disagree). The questionnaire was the same for all treatments and
each migration team filled it in at the end of each laboratory
session.

Regarding the preparation of the PCs involved in the controlled
experiments, we installed MELIS, ACUBENCH, Lomboz, and the
technological infrastructure of the target environment.

4.6. Material, execution, and data analysis

To carry out the controlled experiments each team was pro-
vided with a folder containing a pencil, some white sheets, and
the following material in hard copy:

e the introductory presentation of the experiment;

e an introductory guide of the ACUCOBOL-GT programming lan-
guage and J2EE technology containing the contents of interest
for the migration tasks;

Table 2

Survey questionnaire

Id Question

Q1 I had enough time to perform the assigned task

Q2 The objectives of the assigned task were perfectly clear to me

Q3 The task I had to perform was perfectly clear to me

Q4 The material given to me provided enough information
concerning the task to perform

Q5 [ believe that wrapping the ACUCOBOL-GT program was simple

Q6 I believe that that the reengineering of the original graphical
user interface was simple

Q7 I believe that the integration and the deployment of the

migrated ACUCOBOL-GT program was simple

e a document containing a detailed description of the reference
migration process and the components of the target
architecture;

o the user manuals of MELIS and the development environments
ACUBENCH and Lomboz;

o the source code of the ACUCOBOL-GT programs, to be migrated
in the two tasks;

e the survey questionnaires to be filled in at the end of the two
laboratory sessions.

During the experiments the supervisors monitored the teams
and collected the time spent while they performed the migration
tasks with the development environments ACUBENCH and Lomb-
oz. On the other hand, the effort required to migrate the ACUCO-
BOL-GT programs with MELIS has been automatically traced by
the tool. MELIS stored the required effort in a log file.

Once the laboratory sessions of both the controlled experiments
were accomplished (without time limit) the migration teams filled
the survey questionnaire in and the supervisors collected the pro-
duced software artifacts (i.e., the wrapped ACUCOBOL-GT pro-
grams and the reengineered graphical user interface). The
supervisors also collected the log files containing the information
traced by MELIS during the execution of the migration tasks.

Statistic tests have been used to analyze the collected data. In
particular, as the design of the two experiments is paired, we have
used the Wilcoxon signed-rank test [15] to test the null hypothesis
Hp. Furthermore, we have planned to employ a two-way Analysis
of Variance (ANOVA) [18] to verify the effects of other variables
on the means of various groupings of a single dependent variable.
The interactions between the factors as well as the effects of individ-
ual factors are tested as well. To confirm the results of two-way AN-
OVA the Friedman non-parametric test has also been employed. On
the other hand, to verify the null hypotheses H,; and H,,;3 the Mann
Whitney non-parametric test [20] has been used, due to the fact that
the observations are unpaired (i.e., the number of subjects within
the academic and industrial context was different). This test was
also used to assess the correlation between the answers to the sur-
vey questionnaire of the controlled experiment conducted within
the academic context with the Task factor. Let us note that the re-
sults of the tests are intended as statistically significant at o = 0.05.

Similarly to [17], to assess the overall quality of the source code
(i.e., the wrapped COBOL program, the JSP pages, the servlets, and
the Java beans) produced by the subjects in the migration tasks we
planned to adopt an inspection process based on the Fagan’s meth-
od [19]. The inspection team was composed of three academic
researchers moderated by one of the authors. The inspection was
blind, i.e., the inspectors were not aware of the tools used to per-
form the migration tasks in the different cases. The goal of the
inspection process was mainly to verify whether the source code
quality of the target systems is (positively or negatively) affected
when MELIS is used to migrate a COBOL program to the web.

4.7. Results of the controlled experiments

In the following subsections we present and discuss the results
of the controlled experiments conducted within the academic and
the industrial context. The impact of the tool used in the migration
tasks on the subjects’ experience is described as well.

4.7.1. Academic context

The descriptive statistics of the dependent variable for the
experiment conducted within the academic context are shown in
Table 3. The first two rows show the statistics in case of different
tool usage without taking into account the task difference, while
the remaining four rows show the statistics for different combina-
tions of tool and task. The results show that the subjects spent on

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 9

Table 3

Descriptive statistics of the experiment performed in the academic context

Task Tool Min Max Mean Median Std. Dev.

All NOPL 174 335 262.3571 296.5 52.59220
PL 25 72 46.8571 48 14.44809

T, NOPL 174 335 250.5714 227 58.96569
PL 25 64 45.4286 49 15.37159

T, NOPL 192 314 274.1429 290 46.81677
PL 34 72 48.2857 47 14.53403

the average about 47 min to perform the migration task using ME-
LIS, while they spent on average about 262 min without using it.
Therefore, the time to migrate a program using traditional devel-
opment tools is on average more than five times the time required
to migrate the same program with MELIS. Moreover, let us also
note that the average time to perform the task T, (with embedded
control flow) is higher than the average time to perform the task T;
(without embedded control flow) when either MELIS or ACU-
BENCH and Lomboz are used.

The time to perform the migration tasks according to the con-
sidered treatments are summarized by the boxplots in Fig. 5. This
figure does not present outliers and shows a good distribution of
the time to accomplish the tasks T; and T, with or without the ME-
LIS support. Let us note that the boxplots of the treatments NOPL
are more skewed than the boxplots of the treatments PL, while
the efforts to perform the task T; have a distribution more sym-
metric than the distribution of the efforts to perform the task Ts.

The Wilcoxon paired test reveled that the hypothesis H,,; can be
rejected. This means that the use of the tool significantly affects the
effort required to perform the migration tasks (p-value = 0.000).
Thus, according to the descriptive statistics shown in Table 3 we
can conclude that the use of MELIS reduces the migration effort
(and then increases the productivity).

The two-way ANOVA test (see Table 4) confirmed that there is
very highly significant effect of the Tool factor, while the Task factor
and the interaction between the variables Tool and Task are not sig-
nificant. The results of two-way ANOVA have been confirmed by
the Friedman non-parametric test, which revealed that the Tool
variable and the effort to perform the migration tasks are related
(p-value = 0.000), while there is not a statistically significant rela-
tion of the distributions of the effort to perform the migration tasks
and the variable Task (p-value = 0.109). Although, as expected the

360
300
240
180

120

T8 & 8

T T T T T T
TI_NOPL T1_PL T2_.NOPL T2_PL ALL_NOPL ALL_PL

Fig. 5. Box plots of the raw times.

Table 4

Two-way ANOVA results on tool and task (R? = 89.9%, R*(adj) = 88.7%)

Source Type III sum df Mean 7 p-Value
of squares square

Tool 325,081.75 1 325,081.75 212.601 0.000

Task 1222.321 1 1222.321 0.799 0.380

Interaction 750.893 1 750.893 0.491 0.490

Residual 36,697.714 24 1529.071

Total 1,033,047 28

selected tasks do not significantly impact on the productivity, Ta-
ble 3 shows that the average time to perform the task T is higher
than the average time to perform the task T;, whatever tool sup-
port is used. This means that the presence of embedded control
flows in the user interface might affect the effort required to mi-
grate a COBOL program. Future work need to be devoted to this is-
sue and to evaluate the interactions between the task size and
complexity and the tool used in the migration process.

Further ANOVA analyses also revealed no significant depen-
dence of the migration effort on the teams, demonstrating that
group ability did not influence the results. Also, ANOVA revealed
no dependence of the migration effort on the Lab sessions, indicat-
ing the absence of learning effect.

The data analysis revealed that the use of MELIS effectively
supports the subjects and significantly reduces the effort required
to perform the migration tasks. However, this result does not say
anything about the quality of the code produced with different
tool support. The inspection revealed that there is no difference
in the quality of the source code in the two cases, probably due
to the small size of the migrated programs and to the fact that
the same migration process is used independently of the tool
support.

To analyze the data collected from the survey questionnaire we
considered the answers provided by each subject according to the
factor Task. The boxplots on the left hand side and on the right
hand side of Fig. 6 visually aggregate the answers of the survey
questionnaire for the tasks T;, and Ts. Fig. 6 shows that the agree-
ment level was quite concordant and adequate for the two tasks.
However, a particular consideration is deserved for the question
Q7. In fact, the Mann-Whitney non-parametric test showed (with
p-value 0.004) that the subjects felt the integration and the deploy-
ment of the migrated programs simpler for the task T, than for the
task T». It is likely that this is due to the control checks embedded
in the user interface description of the task T,. It is worth noting
that there is not a statistically significant difference for the other
questions.

4.7.2. Industrial context results

The descriptive statistics of the dependent variable for the rep-
licated experiment carried out in the industrial context are shown
in Table 5. The time spent for the migration tasks was on average
48.75 min when using MELIS and 191.5 min when using ACU-
BENCH and Lomboz. Therefore, the effort required to migrate a CO-
BOL program using the traditional development tools is on average
four times the effort required to migrate the same program with
MELIS.

The distribution of the time required to perform the migration
tasks is summarized by the boxplots in Fig. 7. Let us note that
the boxplots do not present outliers and show a good distribution
of the time to accomplish the migration tasks with different tool
support.

The Wilcoxon paired test reveled that the null hypothesis Hy;
can be rejected. Similarly to the first experiment and according
to the statistics of Table 5, we can claim that the use of MELIS re-
duces the migration effort also in the industrial context.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




10 M. Colosimo et al./Information and Software Technology xxx (2008) xxX—-Xxx

Fig. 6. Boxplots of the survey questionnaire.

Table 5

Descriptive statistics of the experiment performed in the industrial context

Task Tool Min Max Mean Median Std. Dev

All NOPL 180 205 191.5 190.5 11.56143
PL 30 69 48.75 48 17.23127

T NOPL 184 205 194.5 194.5 14.84924
PL 30 56 43 43 18.38478

T, NOPL 180 197 188.5 188.5 12.02082
PL 40 69 54.5 54.5 20.5061

210

180
150
120
90

" g B =

30

T T T T T T
T1_NOPL T1_PL T2_.NOPL T2_PL ALL NOPL ALLPL

Fig. 7. Box plots of the raw times.

This result has been further confirmed by a two-way ANOVA
test. As shown in Table 6, there is very highly significant effect of
the Tool overall, while the Task factor is not significant as well as
the interaction between the factors Tool and Task. The results of
the two-way ANOVA were confirmed by the Friedman non-para-
metric test that revealed how the Tool variable and the effort to
accomplish the task are related (p-value = 0.046), while the Task
factor is not significant (p-value = 1). Again, as expected the se-
lected tasks do not significantly impact on the productivity. How-
ever, differently from the first experiment, the average time to
accomplish the task T, is higher when MELIS is used and lower
when ACUBENCH and COBOL are used. This result might be due

Table 6

Two-way ANOVA results on tool and task (R? = 97.3%, R*(adj) = 95.3%)

Source Type III sum df Mean square B p-Value
of squares

Tool 40,755.125 1 40,755.125 145.101 0.000

Task 15.125 1 15.125 0.054 0.828

Interaction 153.125 1 153.125 0.545 0.501

Residual 1123.500 4 280.875

Total 157,487.000 8

to the fact that the software engineers in this case are more expe-
rienced with the use of traditional development tools or more sim-
ply to the fact that in this experiment we have a limited number of
observations. Again, this result calls for future investigations of this
issue.

A further two-way ANOVA analyses was performed to investi-
gate the absence of learning effect. This test revealed no significant
dependency of the time to accomplish the migration tasks on the
Lab factor. ANOVA also reveled no significant dependence of the
migration effort on the teams, demonstrating that group ability
did not influence the results.

Similarly to the controlled experiment conducted within the
academic context, an inspection process has been performed to as-
sess the quality of the source code produced in the laboratory ses-
sions. The inspection based process revealed that the use of MELIS
does not affect the quality of the software artefacts produced with-
in the industrial context. In particular, we observed no difference
in quality between the source code produced by using MELIS and
ACUBENCH and Lomboz. Again, this could be due to the small size
of the migrated programs.

The data collected from the survey questionnaire that each sub-
jects filled in at the end of the laboratory sessions are visually sum-
marized by the boxplots of Fig. 8. In particular, this figure visually
aggregates the answers of the survey questionnaire according to
the tasks Ty, and T». The agreement level considering the answers
of the survey questionnaire according to the Task factor can be gen-
erally considered concordant as boxplots of Fig. 8 show. However,
differently form the controlled experiment conducted within the
academic context, the task T, was considered clearer (see boxes
of the question Q3). The subjects also found the wrapping, the inte-
gration, and the testing simpler when they migrated the COBOL
program of the task T, to the web (see boxes of the question Q5
and Q7). The different results obtained within the replicated exper-
iment could be due to the low number of involved subjects and to

Agreement
T2

Q7

Q6 -

Q5

Q4 -

Q3

Q2

it

Q1

— ]
— -
.
A
I
—{0
|

5

T T T T
2 3 4 5

-
P

T
3

[
o

Fig. 8. Boxplots of the survey questionnaire of the replicated controlled
experiment.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 11

the higher experience of the subjects with embedded control flows.
In all other cases more positive judgments were expressed for the
task T,. However, the differences cannot be considered statistically
significant.

4.7.3. Evaluating the effect of the experience

In this subsection, the null hypotheses H,,,, and H,3 have been
verified to investigate the effect of the subjects’ experience on
the effort to migrate an ACUCOBOL-GT program to the defined tar-
get environment. In order to reject these null hypotheses we inves-
tigated the effect of the factors Tool and Controlled Experiment on
the dependent variable.

The Mann-Whitney test reveled that the null hypotheses H,
cannot be rejected, as there is no significant relation between the
experiment and the dependent variable Time when MELIS is used
(p-value = 0.832). Indeed, as we can see from the second rows of
Tables 3 and 5, the performances of the master students are very
similar to the performances of the more experienced subjects of
the replicated experiment. On the other hand, a significant interac-
tion was observed (p-value = 0.019) in case the development envi-
ronments used were ACUBENCH and Lomboz, thus enabling us to
reject the null hypothesis Hy3. This means that the subjects’ expe-
rience influences the effort to perform a migration task in case tra-
ditional development environment are used. In particular, as we
can see from the first rows of Tables 3 and 5, less expert subjects
needed more time than experienced practitioners when using tra-
ditional development environments. From these two results we
can conclude that the use of MELIS reduces the gap between novice
and expert subjects, or in other words less expert subjects benefit
more of the use of MELIS with respect to the use of traditional
tools.

4.8. Threats to validity

The threats to validity that could affect both the controlled
experiments (i.e., internal, construct, external, and conclusions
validity threats) are described in this section. Generally, the inter-
nal validity is only relevant in studies that try to establish a causal
relationship. Thus, the internal validity threats are relevant for our
study as we aimed at concluding that MELIS made a difference in
the migration of COBOL programs according to the migration strat-
egy proposed in [16]. The internal validity threats are mitigated by
the experiment design, since each group of both the controlled
experiments worked, over the two laboratory sessions, on two dif-
ferent migration tasks and with the support of the tool MELIS or
the software development tools ACUBENCH and Lomboz. However,
this result was confirmed by the two-way ANOVA test, which did
not reveal a significant learning effect of the subjects across the
laboratory sessions. This test also revealed no significant depen-
dency of the time to accomplish the laboratory sessions. We also
observed no significant dependency between the time to accom-
plish the tasks and the Task factor (i.e., T; and T,) using or not
the MELIS tool. This result is due to the selection of similar tasks
with low differences in terms of size and complexity, although
the descriptive statistics in the two experiments calls for future
investigations on the effect of embedded control flows in the user
interface on the effort required to migrate a COBOL program. The
surveys also revealed that the subjects involved in both the exper-
iments found clear everything regarding the migration tasks.
Although the subjects applied the migration strategy and adopted
the target architecture, they knew neither the objective of the
experiment nor its hypotheses. Finally, we did not evaluate the
teams on their performances within the laboratory sessions.

The construct validity threats that could be present in this
experiment, i.e., the interactions between different treatments,
were mitigated by a proper design of the experiments that allowed

separating the analysis of the different factors and of their interac-
tions. In fact, depending on the treatment, the measurement of the
dependent variable was performed either analyzing the log files
produced by MELIS or considering the times gathered by the super-
visors of the experiments. Finally, the survey questionnaire was
designed using standard ways and scales [30].

External validity refers to the approximate truth of conclusions
involving generalizations. This kind of threat is always present
when students are used as subjects. Nevertheless, last-year master
students have a very good analysis, development and program-
ming experience, and they are not far from junior industry pro-
grammers. To mitigate the external validity threats the
controlled experiment was replicated within an industrial context.
Before conducting the replicated experiment, we identified the
population we would like to generalize the MELIS usage (i.e., the
employees of our partner company), and then we drew a fair sam-
ple from that population and conducted our experiment with sub-
jects belonging to this sample. Subjects were professional
developers, while the academic subjects had a very good analysis,
development and programming experience. Due to their experi-
ence academic subjects are not far from professional programmers.
Moreover, none of the subjects of both the controlled experiments
abandoned the experiments. To further confirm or contradict the
obtained results, it will be worth replicating the experiment within
different professional development environments and with a larger
number of practitioners. Furthermore, in the future we need to
investigate the effect of COBOL programs with different size and
complexity, possibly selected from the ACUCOBOL-GT legacy sys-
tems of the partner company (provided that they can be migrated
within a laboratory session).

The conclusion validity is the most important of the four valid-
ity types because it is relevant whenever someone is trying to de-
cide if there exists a relationship in the considered observations. A
definition of conclusion validity could be: the degree to which con-
clusions we reach about relationships in our data are reasonable.
Regarding our experiments proper tests were performed to statis-
tically reject the defined null hypothesis. Non-parametric tests
were used in place of parametric tests where the conditions neces-
sary to use parametric tests were not satisfied. Also, ANOVA results
were confirmed by non-parametric tests (the Friedman test).

5. Case study

To evaluate how much MELIS improves the productivity of soft-
ware engineers with respect to traditional development tools in a
real migration context, we performed a case study. In particular,
we selected the most business and critical legacy system of the
partner company. This system is the oldest legacy system of the
partner company, developed, evolved, and marketed over the last
30 years and it is used by many important customers of the partner
company to support payroll, tax, and social security management,
as well as all other accomplishments which regulate the employ-
ment relationships. The partner company delivered in 1978 the
first release of this system, which was written in COBOL for a UNIX
workstation. Successively, the character based user interface was
migrated to Micro Focus COBOL for MS-DOS in 1986. In 1995 the
system was migrated to ACUCOBOL for MS-DOS and in 2002 to
ACUCOBOL-GT. The legacy system is a multi user system and has
a two-tier client-server architecture with presentation and appli-
cation logic running on the client and a centralized database imple-
mented as ISAM (Indexed Sequential Access Method) files on the
server. The synchronization of concurrent accesses to ISAM files
is directly handled by the ACUCOBOL-GT runtime environment.
The analysis of the source code evidenced that the system was
not decomposable in software layers, while it was structured in

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




12 M. Colosimo et al./Information and Software Technology xxx (2008) xXX—-Xxx

loosely coupled subsystems implementing different functionalities
and communicating through global variables and files. Finally, the
interactions between the user interface and the application logic
and database component were very intensive as also the high
number of BEFORE and AFTER statements revealed. Further details
on the quality assessment of the selected legacy system can be
found in [16].

5.1. Case study design

We designed a balanced case study and selected two subsys-
tems that summarize most of the problems that could be encoun-
tered during the migration of the legacy systems of the partner
company. The main COBOL files of these two subsystems were
named GST005.cbl and GST008.cbl, respectively, thus in the follow-
ing we will refer to them as GST005 and GST008. Statistics con-
cerning these subsystems are reported in Table 7. The GST005
and GST008 subsystems were accompanied by test case specifica-
tions to be used for regression testing and produced by the practi-
tioners of the partner company involved in the maintenance and
evolution of these subsystems.

Both GST005 and GST008 contained calls to subprograms. How-
ever, the only interactive programs are the two main programs,
whereas all the subprograms are batch programs (i.e., they contain
no SCREEN SECTION). It is worth noting that GST005 contains more
screen LOCs than GSTO008. This is due to the fact that GSTO05 con-
tains more SCREEN SECTIONS, entry fields, and labels with respect
to GST008. On the other hand, GST008 contained a larger number
of embedded controls (i.e., 8 BEFORE and 8 AFTER).

Four practitioners with comparable background and not in-
volved in the development and maintenance of the subsystems
GST005 and GSTO08 were randomly grouped in two migration
teams (i.e., A and B). The migration of the legacy subsystems was
organized in two phases (i.e., Phasel and Phase2). In Phasel the
practitioners were asked to migrate a subsystem using the MELIS
plug-in (i.e., PL), while in Phase2 they were asked to migrate a dif-
ferent subsystem using the development environments ACU-
BENCH and Lomboz (i.e., NOPL). In particular, the team A first
migrated GSTO05 using MELIS and then migrated GSTO08 without
using it. Similarly, the team B was asked to migrate GST0O08 and
GST005 with and without the tool support, respectively. The design
of the case study is summarized in Table 8. It is worth mentioning
that in both Phasel and Phase2 the migration teams were asked to

Table 7
Statistics of the subsystems GST005 and GST008

migrate the subsystems using the target environment and migra-
tion process shown in Figs. 1 and 2, respectively. The practitioners
of the partner company were also asked to prove the functional
equivalence between the original and the migrated subsystems,
using the test case specifications provided with the subsystems.
Thus, a migration task was considered concluded when the mi-
grated subsystem passed the test.

To provide the teams with the same knowledge on the technol-
ogies of the target architecture, on the migration environment, and
the companion methods we asked them to attend some tutorials
before starting the empirical investigation.

5.2. Case study results

The statistics on the subsystems GST005 and GSTO08 migrated
with MELIS and ACUBENCH and Lomboz are reported on Table 9.
This table shows the number of total LOCs of the migrated subsys-
tems in the first row. The second row reports the automatically
added LOCs, while the number of LOCs that the practitioners man-
ually added is shown in the third row. Let us note that the number
of LOCs of the manually migrated subsystems is larger with respect
to the number of LOCs of the same subsystems migrated using ME-
LIS (see Table 9). This is probably due to the fact that MELIS gener-
ally optimizes the code required to migrate ACUCOBOL-GT
programs to the web.

The effort required to migrate the two subsystems with and
without MELIS (expressed in terms of person/hours) as well as
the effort distribution among the different phases of the used
migration process is shown in Table 10. In particular, the first
row shows the effort required to comprehend the original subsys-
tem, while the effort required to wrap it is reported in the second
row. The number of person/hours that the migration teams spent
to reengineer the graphical user interfaces is shown in the third
row. The fourth row reports the effort to integrate the wrapped
legacy code and the reengineered user interface, to test the mi-
grated subsystems, and to perform regression testing. Finally, the
last row shows the total number of person/hours required to mi-
grate each subsystem.

The effort required to migrate GST005 with ACUBENCH and
Lomboz is almost seven times the effort required when MELIS is
used (see Table 10), while the effort required to migrate GST008
without MELIS is eight times the effort required with MELIS. This
result shows that in the case study the subjects achieved even
more benefits from the use of MELIS than in the controlled exper-

Table 9

GST005 GST008 Statistics on the subsystems migrated using MELIS and ACUBENCH and Lomboz
LocC 4502 3756 MELIS ACUBENCH and Lomboz
Number of Screen LOC 633 78
Number of SCREEN SECTIONs 4 3 GST005  GSTO08  GST005 GST008
Number of Label 116 20 Total LOC 7772 4802 7821 5097
Number of EntryField 117 10 LOC automatically added 3232 1025 0 0
Number of BEFORE B 8 LOC manually added 35 21 3319 1341
Number of AFTER 3 8
Number of CALL 71 23
Number of GOTOs 65 34
Number of DISPLAY 18 17
Number of ACCEPT 8 3 Table 10 ‘ .
Effort required to migrate GST005 and GST008 using MELIS and ACUBENCH and
Lomboz
Table 8 MELIS ACUBENCH and Lomboz
Pilot project design GST005 GST008 GST005 GST008
Tool Team Comprehension 3 3 3 3
A B Wrapping 1 0.5 26 24
GUI reengineering 0.5 0.5 16 14
Phasel PL GST005 GST008 Integration and testing 1.5 1.5 3 3
Phase2 NOPL GST008 GST005 Total effort 7 5.5 48 44

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 13

iments. In other words, the results show how the advantages
achieved with MELIS increase with the size and complexity of
the migrated programs. However, to generalize these results fur-
ther investigations are required.

5.3. Threats to validity

The threats to validity that could affect this empirical investiga-
tion are described in this section. The internal validity threats are
relevant for the empirical investigation presented in this section
as we aimed at concluding that MELIS made a difference in the
migration of legacy systems. The internal validity threats are mit-
igated by the experiment design, since each team composed of pro-
fessional programmers has first migrated a legacy subsystem with
the MELIS support and then with ACUBENCH and Lomboz (i.e.,
with a reduced support to the automation of the tasks). Further-
more, the interview of the involved professional programmers re-
vealed that everything regarding the case study was clear.
Finally, the practitioners were not evaluated on the performances
concerning the migration of the selected subsystems.

The interactions between different treatments (i.e., construct
validity threats) were partially mitigated by the design of the
experiment. Let us note that the effort required to migrate the leg-
acy subsystems was manually gathered by the professional pro-
grammers as the case study has been performed within the
company and no control was possible. A further threat to the con-
struct validity could be due to the learning effect. However, the
learning effect could only negatively condition the effort required
to migrate the legacy subsystems with MELIS as the subsystems
were migrated first using MELIS and then without it.

The external validity threats could be present in this experi-
ment. However, the developed migration technologies have been
experimented on real legacy systems. The subjects were also rep-
resentative of the population where the result should be general-
ized. Furthermore, none of the subjects considered the migration
complex or abandoned the experimentation. It is also worth men-
tioning that the subjects carried out this empirical investigation
without time limit. Nevertheless, it will be worth assessing the
proposed migration strategy and tool within different professional
development environments with subjects with different
competences.

For case studies, conclusion validity is generally hard to achieve.
Confounding factors might interact with the factor under study
and threaten internal validity. In the case study presented in this
paper, the majority of the presented data have been directly col-
lected by the subjects. However, conclusion validity has been mit-
igated by the fact that we have also performed a controlled
experiment with professional programmers of the productive envi-
ronment where the defined migration technologies will be adopted
(see Section 4.8). Also the selection of the involved professional
programmers has mitigated the conclusion validity threat. In fact,
they had similar background and programming experience and
are also representative of the population where we would like to
introduce the MELIS tool and the accompanying methods.

6. Conclusion

In this paper, we have presented the results of two controlled
experiments and a case study to evaluate the use of MELIS (Migra-
tion Environment for Legacy Information Systems) for the migra-
tion of legacy COBOL programs to the web. MELIS has been
developed as an Eclipse plug-in within a technology transfer pro-
ject conducted with a small software company [16]. The partner
company has developed and marketed in the last 30 years several
COBOL systems that need to be migrated to the web, due to the

increasing requests of the customers. The goal of the technology
transfer project was to define a systematic migration strategy
and the supporting tools to migrate these COBOL systems to the
web and make the partner company an owner of the developed
technology. The main goal of the controlled experiments and case
study was to evaluate the effectiveness of introducing MELIS in the
partner company and compare it with the traditional development
environments ACUBENCH [1] and Lomboz [26]. ACUBENCH is used
by the partner company for COBOL development, while Lomboz is
a widely employed open source Eclipse plug-in for web develop-
ment that has been integrated in MELIS. We decided to use Lomboz
since there was not an established web development environment
available in the company that we could use in the assessment. In
fact, while the company has a long experience of COBOL develop-
ment (in particular with ACUBENCH), web development together
with the migration of the COBOL legacy systems to the web are still
in the future plans.

The motivation of the industrial partner for moving to the web
was less a desire to be technically innovative than the need to
accommodate the changing business requirements of its custom-
ers. It is the mostly the end users, who suggested the management
of the company to migrated the original legacy systems towards
the web. The software houses themselves are conservative. They
only act when they are forced to [34,37]. Such a position of the
partner company makes the technology transfer quite challenging.
Accordingly, at the end of the technology development phase, that
included the definition of the migration process and the develop-
ment and testing of the MELIS environment (see [16] for details),
we planned a two-phases technology transfer. In the first phase,
we conducted controlled experiments and case studies to achieve
evidence on the main improvements expected by the use of MELIS
with respect to more traditional software development environ-
ments, in particular concerning the improvement of productivity
and the reduction of the gap between experienced and novice soft-
ware engineers. To have evidence of the experience gap reduction
we performed two controlled experiments, one with master stu-
dents and the replication within the industrial environment. These
experiments reveled that the use of MELIS significantly reduces the
time required for the migration tasks. Furthermore, we also ob-
served that the software engineers’ experience does not signifi-
cantly affect the effort to migrate an ACUCOBOL-GT program,
when MELIS is used. In fact, we observed that the software engi-
neers of both the experiments spent on average the same time to
accomplish the tasks using MELIS, while the effort to migrate an
ACUCOBOL-GT program was significantly affected by the software
engineers’ experience, when using ACUBENCH and Lomboz. In par-
ticular, the practitioners of the replicated experiment required less
effort to accomplish the migration tasks, with the traditional devel-
opment environments. A further data analysis reveled that for the
more expert software engineers the time required to conduct a
migration task with MELIS is on average 1/4 of the time required
when using traditional tools. On the other hand, for the master stu-
dents more benefits were achieved from the use of MELIS, as this
ratio is on average less than 1/5. The result is that the use of MELIS
generally increases the productivity and reduces the gap between
novice and expert software engineers.

We have also conducted a case study with two teams of practi-
tioners on two subsystems of the most business critical system of
the partner company with the aim of analyzing the advantages of
using MELIS with the respect to the software development envi-
ronments in real migration tasks. Again, the data analysis reveled
that when MELIS is used the productivity improvement is seven
or even eight times with respect to the use of traditional develop-
ment environments. This result demonstrates how the benefit of
MELIS increases with the size and complexity of the migrated
programs.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.




14 M. Colosimo et al./Information and Software Technology xxx (2008) xXX—-Xxx

Future directions have also been identified as results of the data
collected within this empirical investigation. For example, we have
planned to investigate the effect of the tool usage on the number of
defects introduced and possibly corrected during a migration task.
In particular, due to the high level of automatic support provided
by MELIS to the migration process, software engineers should
introduce less defects when using MELIS than when using tradi-
tional development tools, such as ACUBENCH and Lomboz. In our
studies the migration tasks were considered completed when the
migrated programs passed the test. Although, we did not collect
and analyze the number of defects introduced and corrected dur-
ing the migration tasks, we expect that the higher effort required
to migrate the COBOL programs with the traditional development
environments was also due to the fact that the migration activities
in this case were more error prone and then more defects had to be
corrected during regression testing. For example, Table 10 shows
that for both the migrated subsystems the effort employed in the
integration and testing phase when MELIS is used is half of the ef-
fort required for the same phase when ACUBENCH and Lomboz are
used.

Although the case study only involved the most motivated and
key practitioners, they can also be considered as preliminary train-
ing on the job activities. In the second phase of the technology
transfer project we have actually planned training courses to be at-
tended by all the practitioners who will be involved in the migra-
tion of the COBOL systems of the partner company. In this phase
we also aim at making the partner company an owner of the
migration technology, by training the industrial researchers on
the methodologies and technologies used to develop MELIS and
involving them in the evolution of the tool. This part of the tech-
nology transfer project is actually the most challenging.

Acknowledgement

The authors thank Vincenzo Venezia, Giovanni Vildacci, as well
as the programmers of MTSys s.r.l., our partner company, for the
stimulating discussion and the precious suggestions. Special
thanks are also due to the practitioners of the partner company,
the academic researchers, and the students who, in one way or an-
other, contributed to carry out the experiments presented in this

paper.

The work described in this paper is supported by the project
METAMORPHOS (MEthods and Tools for migrAting software sys-
teMs towards web and service Oriented aRchitectures: exPerimen-
tal evaluation, usability, and technology tranSfer), funded by MiUR
(Ministero dell'Universita e della Ricerca) under Grant PRIN-2006-
2006098097.

References

[1] ACUBENCH, Available at: <http://[www.acucorp.com/solutions/datasheets/
acubench/>.

[2] L. Aversano, G. Canfora, A. Cimitile, A. De Lucia, Migrating legacy systems to the
web: an experience report, in: Proceedings of European Conference on
Software Maintenance and Reengineering, IEEE CS Press, Lisbon, Portugal,
2001, pp. 148-157.

[3] L. Aversano, G. Canfora, A. De Lucia, Migrating legacy system to the web: a
business process reengineering oriented approach, in: M. Polo (Ed.), Advances
in Software Maintenance Management: Technologies and Solutions, Idea
Group Publishing, USA, 2003, pp. 151-181.

[4] V.R. Basili, RW. Selby, D.H. Hutchens, Experimentation in software
engineering, IEEE Transaction on Software Engineering 12 (7) (1986) 733-743.

[5] V.R. Basili, The role of experimentation in software engineering: past, current,
and future, Proceedings of International Conference on Software Engineering
(1996) 442-449.

[6] T. Bodhuin, E. Guardabascio, M. Tortorella, Migrating COBOL systems to the
Web by using the MVC design pattern, in: Proceedings of Working Conference
on Reverse Engineering, IEEE CS Press, Virginia, USA, 2002, pp. 329-338.

[7] T. Bodhuin, E. Guardabascio, M. Tortorella, Migration of non-decomposable
software systems to the web using screen proxies, in: Proceedings of Working

Conference on Reverse Engineering, IEEE CS Press, Victoria, BC, Canada, 2002,
pp. 165-174.

[8] D. Bovenzi, G. Canfora, A.R. Fasolino, Enabling Legacy System Accessibility by
Web Heterogeneous Clients, in: Proceedings of European Conference On
Software Maintenance and Reengineering, IEEE CS Press, Victoria, Canada,
2003, pp. 73-81.

[9] M.L. Brodie, M. Stonebraker, Migrating Legacy Systems, Morgan Kaufmann, San
Francisco, 1995.

[10] J.G. Butler, Mainframe to Client/Server Migration, Computer Technology
Research Corp., Charleston, South Caroline, 1996.

[11] D.T. Campbell, J.C. Stanley, Experimental and quasi-experimental designs for
research on teaching, in: N.L. Cage (Ed.), Handbook of Research on Teaching,
Rand McNally, Chicago, 1963, pp. 1-2.

[12] G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca, Decomposing legacy
programs: a first step towards migrating to client-server platforms, Journal of
Systems and Software 54 (2000) 99-110.

[13] G. Canfora, A. Fasolino, G. Frattolillo, P. Tramontana, Migrating interactive
legacy systems to web services, in: Proceedings of the Conference on Software
Maintenance and Reengineering, IEEE CS Press, Bari, Italy, 2006, pp. 24-36.

[14] C.C. Chiang, Wrapping legacy systems for use in heterogeneous computing
environments, Information and Software Technology 43 (8) (2001) 497-507.

[15] W.J. Conover, Practical Nonparametric Statistics, third ed., Wiley, 1998.

[16] A. De Lucia, R. Francese, G. Scanniello, G. Tortora, Developing legacy system
migration methods and tools for technology transfer. Software: Practice and
Experience, 2008 (to appear), DOI: 10.1002/spe.870, Available from: <http://
www3.interscience.wiley.com/cgi-bin/abstract/117922806>.

[17] A. De Lucia, M. Di Penta, R. Oliveto, F. Zurolo, Improving comprehensibility of
source code via traceability information: a controlled experiment, in:
Proceedings of 14th International Conference on Program Comprehension,
IEEE CS Press, Athens, Greece, 2006. pp. 317-326.

[18] J.L. Devore, N. Farnum, Applied Statistics for Engineers and Scientists, Duxbury,
1999.

[19] M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal 15 (3) (1976) 182-211.

[20] M. Hollander, D.A. Wolfe, Nonparametric Statistical Methods, second ed.,
Wiley-Interscience, New York, 1999.

[21] B.A. Kitchenham, S.L. Pfleeger, L M. Pickard, P.W. Jones, D.C. Hoaglin, K. El
Emam, J. Rosenberg, Preliminary guidelines for empirical research in software
engineering, IEEE Transaction on Software Engineering 28 (8) (2002) 721-734.

[22] Legacy], Available from: <http://www.legacyj.com/lgcyj_percl.html>.

[23] J.M. Lin, ZW. Hong, G.M. Fang, H.C. Jiau, W.C. Chu, Reengineering windows
software applications into reusable CORBA objects, Information and Software
Technology 46 (6) (2004) 403-413.

[24] J.M. Lin, ZW. Hong, G.H. Fang, C.T. Lee, A style for integrating ms-windows
software applications to client-server systems using java technology,
Software: Practice and Experience 37 (4) (2006) 417-440.

[25] S. LinkMan, H.D. Rombach, Experimentation as a vehicle for software
technology transfer - a family of software reading techniques, Information
and Software Technology 39 (11) (1997) 777-780.

[26] Lomboz, Available from: <http://www.objectlearn.com/index.jsp>.

[27] IBM WebSphere software: Legacy modernization with WebSphere Studio
Enterprise Developer, 2002. Availabel from: <http://www.redbooks.ibm.com/
redbooks/pdfs/sg246806.pdf>.

[28] E. Merlo, P.Y. Gagn, J.F. Gilard, K. Kontogiannis, L. Hendren, P. Panangaden, R.
De Mori, Reengineering user interfaces, IEEE Software 12 (1995) 64-73.

[29] M. Moore, User Interface Reengineering, Ph.D. Dissertation, College of
Computing, Georgia Institute of Technology, Atlanta, GA, 1998.

[30] M. Moore, L. Moshkina, Migrating legacy user interfaces to the internet:
Shifting dialogue initiative, in: Proceedings of Working Conference on Reverse
Engineering, IEEE CS Press, Brisbane, Australia, 2000, pp. 52-58.

[31] N. Oppenheim, Questionnaire Design Interviewing and Attitude Measurement,
Pinter Publishers, 1992.

[32] T.M. Pigoski, Practical Software Maintenance - Best Practices for Managing
Your Software Investment, John Wiley & Sons, New York, NY, 1997.

[33] S.L. Pfleeger, W. Menezes, Marketing technology to software practitioners, IEEE
Software 17 (1) (2000) 27-33.

[34] S.A. Raghavan, D.R. Chand, Diffusing software engineering methods, IEEE
Software 6 (4) (1989) 81-90.

[35] M. Rahgozar, F. Oroumchian, An effective strategy for legacy systems evolution,
Journal of Software Maintenance: Research and Practice 15 (2003) 325-344.

[36] S.T. Redwine, W.E. Riddle, Software technology maturation, in: Proceeding 8th
International Conference on Software Engineering, IEEE CS Press, London, UK,
1985, pp. 189-200.

[37] E.M. Rogers, Diffusion of Innovation, fourth ed., Free Press, New York, 1995.

[38] D.LK. Sjgberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.
Liborg, A.C. Rekdal, A survey of controlled experiments in software
engineering, IEEE Transaction on Software Engineering 31 (9) (2005) 733-753.

[39] H.M. Sneed, Encapsulating legacy software for use in client/server systems, in:
Proceedings of Working Conference on Reverse Engineering, IEEE CS Press,
Monterey, CA, 1996, pp. 104-119.

[40] H.M. Sneed, Risks involved in reengineering projects, in: Proceedings of the 6th
IEEE Working Conference on Reverse Engineering, IEEE CS Press, Atlanta, GA,
1999, pp. 204-211.

[41] H.M. Sneed, Wrapping legacy COBOL programs behind an XML-interface, in:
Proceedings of Working Conference on Reverse Engineering, IEEE CS Press,
2001, pp. 189-197.

Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.



http://www.acucorp.com/solutions/datasheets/acubench/
http://www.acucorp.com/solutions/datasheets/acubench/
http://www3.interscience.wiley.com/cgi-bin/abstract/117922806
http://www3.interscience.wiley.com/cgi-bin/abstract/117922806
http://www.legacyj.com/lgcyj_perc1.html
http://www.objectlearn.com/index.jsp
http://www.redbooks.ibm.com/redbooks/pdfs/sg246806.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246806.pdf

M. Colosimo et al./Information and Software Technology xxx (2008) xXx—-XxX 15

[42] H.M. Sneed, Integrating legacy software into a service oriented architecture, [44] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslen,
in: Proceedings of the Conference on Software Maintenance and Experimentation in Software Engineering - An Introduction, Kluwer, 2000.
Reengineering, IEEE CS Press, Bari, Italy, 2006, pp. 3-14. [45] U. Zdun, Reenginering to the web: a reference architecture, in:

[43] E. Stroulia, M. El-Ramly, P. Iglinski, Paul Sorenson, User interface reverse Proceedings of 6th European Conference on Software Maintenance and
engineering in support of interface migration to the web, Automated Software Reengineering, IEEE Comp. Soc. Press, Budapest, Hungary, 2002, pp. 211-
Engineering, vol. 3, Kluwer Academic Publishers, 2003, pp. 271-301. no. 10. 216.

Please cite this article in press as: M. Colosimo et al., Evaluating legacy system migration technologies through empirical studies, Inform.
Softw. Technol. (2008), doi:10.1016/j.infsof.2008.05.012




	Evaluating legacy system migration technologies through empirical studies
	Introduction
	Related work
	Industrial context and migration strategy
	The context
	Target environment and migration strategy
	Migration process and tool support

	Controlled experiments
	Experiment definition
	Experiment context
	Academic context
	Industrial context

	Hypotheses
	Selected variables and experiment design
	Preparation
	Material, execution, and data analysis
	Results of the controlled experiments
	Academic context
	Industrial context results
	Evaluating the effect of the experience

	Threats to validity

	Case study
	Case study design
	Case study results
	Threats to validity

	Conclusion
	Acknowledgement
	References


