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Abstract

Fault localization is one of the most difficult activities in software debugging. Many existing statistical fault-

localization techniques estimate the fault positions of programs by comparing the program feature spectra between

passed runs and failed runs. Some existing approaches develop estimation formulas based on mean values of the

underlying program feature spectra and their distributions alike. Our previous work advocates the use of a non-

parametric approach in estimation formulas to pinpoint fault-relevant positions. It is worthy of further study to

resolve the two schools of thought by examining the fundamental, underlying properties of distributions related to

fault localization. In particular, we ask: Can the feature spectra of program elements be safely considered as normal

distributions so that parametric techniques can be soundly and powerfully applied? In this paper, we empirically

investigate this question from the program predicate perspective. We conduct an experimental study based on the

Siemens suite of programs. We examine the degree of normality on the distributions of evaluation biases of the

predicates, and obtain three major results from the study. First, almost all examined distributions of evaluation biases

are either normal or far from normal, but not in between. Second, the most fault-relevant predicates are less likely to

exhibit normal distributions in terms of evaluation biases than other predicates. Our results show that normality is not

common as far as evaluation bias can represent. Furthermore, the effectiveness of our non-parametric predicate-based

fault-localization technique weakly correlates with the distributions of evaluation biases, making the technique robust

to this type of uncertainty in the underlying program spectra.
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1. Introduction

Software debugging is time-consuming and is often a

bottleneck in software development process. It involves

at least two crucial steps, namely fault localization

and fault correction. Fault localization identifies the

causes of abnormal behaviors of a faulty program. Fault

correction modifies the faulty program or data structure

to eliminate the effect of the identified faults.
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A traditional fault-localization technique consists of

setting breakpoints, re-executing the faulty program

on the inputs, and examining the corresponding

program states. Recently, statistical fault-localization

techniques [10, 12, 14, 15, 16, 17] were proposed

and reported to be promising. They locate faults by

analyzing the statistics of dynamic program behaviors.

A failed run is a program execution that reveals a

failure, and a passed run is a program execution

that reveals no failure. A statistical fault-localization

technique locates a fault-relevant statement (or a

faulty statement directly) by comparing the statistical

information of program elements in these two kinds of

runs. Such program elements can be statements [12] or

predicates [14, 15].

Because of their statistical nature, these techniques

assume that there are statistically enough passed runs

and failed runs to locate faults collectively. These

techniques build underlying statistical behavior models

for the aggregated execution data of selected program

elements (which we call features), and search for

program elements that strongly correlate with the

observed program failures. For instance, predicate-

based statistical techniques [14, 15, 16, 17] locate

those program predicates strongly related to faults. A

program predicate is a Boolean expression about the

property of a system at some program location (such

as a statement). CBI [14, 15] checks the probability of

a predicate to be evaluated to be true in all failed runs

as well as the probability in all the runs (irrespectively

of whether passed or failed), and measures the increase

from the former to the latter. CBI uses this increase as a

ranking score, which indicates how much the predicate

is related to a fault. SOBER [16, 17] defines evaluation

bias to model the chance that a predicate is evaluated to

be true in each run. More precisely, if P is a predicate

and π(P) is the probability that it is evaluated to be true

in every run, then π(P) is estimated to be nt
nt+n f

, where

nt is the number of times that P is evaluated to be true

and n f is the number of times that P is evaluated to

be false. SOBER then evaluates the difference between

the distributions of π(P) between passed runs and failed

runs, and deems that the larger the difference, the more

will P be relevant to a fault.

As indicated in their models, CBI uses means and

changes in mean values to estimate the fault relevance

of a program predicate; SOBER applies the central

limit theorem in statistics to measure the behavioral

difference of a predicate between passed runs and

failed runs. Typically, a mean value may reasonably

represent a distribution if the variable of the distribution

tends to cluster around the mean value. Is it suitable

to assume any known distribution in the program

behaviors such as the evaluation biases of predicates?

We have conducted an initial study in our previous

work [8] and found that evaluation biases may not form

normal distributions. Our previous work also proposes

to use a standard non-parametric hypothesis testing

method to compare the program spectra of passed runs

and those of failed runs. We have stipulated our

model in the context of predicate-based statistical fault

localization, and picked a form of the Mann-Whitney

test to determine the degree of difference between the

evaluation biases for passed runs and those for failed

runs. The degree of difference in such a comparison is

used as the ranking score, which indicates how much

a predicate is related to a fault. Based on the ranking

scores of the predicates, we reorder the predicates

accordingly (predicates having higher values in ranking

score are deemed to be more suspicious). The empirical

results [8] on the Siemens suite show that our technique

can be effective and outperforms CBI and SOBER in

locating faults.

In view of the above-mentioned initial study, in this

paper, we extend our investigation and ask a dual-

sided question: Can the feature spectra of program

elements be safely considered as normal distributions

so that parametric fault-localization techniques can be

soundly and powerfully applied? Alternatively, to what

extent can such program spectra be regarded as normal

distributions? If the answers to these questions are

negative, we further ask the following question: Can

the effectiveness of non-parametric fault-localization

techniques be really decoupled from the distribution

shape of the program spectra?

In this paper, we collect the evaluation biases

of all the predicates from passed runs and those

from failed runs, and conduct normality tests on

them. By using standard statistical hypothesis testing,

we successfully reject the assumption that normal

distribution is commonly exhibited by evaluation biases

of predicates. We further investigate the effect of such

normality property for predicates on fault-localization

techniques. The empirical results show that the

effectiveness of our proposal for non-parametric fault

localization [8] weakly correlates with the presumed

normal distribution of evaluation biases.

The main contribution of the paper is fourfold: (i) It

is the first investigation on the normality nature of the

execution spectra. The empirical results show that

normal distribution is not common for the evaluation

biases of predicates. In particular, the results indicate

that the chance of the distribution of the evaluation
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biases of fault-relevant predicates being normal is less

likely than that of other predicates. (ii) Such a finding

highlights a threat to the construct validity of any

empirical study which is based on the assumption

that the evaluation biases of predicates form normal

distributions. (iii) It proposes a new metric P-

score to measure the effectiveness of fault-localization

techniques. (iv) It investigates the effect of normality for

the evaluation biases of predicates on non-parametric

fault-localization techniques. The empirical results

show that the effectiveness of our non-parametric

fault-localization technique weakly correlates with the

normality of the underlying distribution of evaluation

biases.

The remainder of the paper is organized as follows.

Section 2 gives a motivating study. Section 3 revisits the

background and sets the scene for the empirical study.

Research questions are outlined in Section 4, followed

by the experiment in Section 5. A literature review is

given in Section 6. Finally, Section 7 concludes the

paper.

2. Motivating Study

In this section, we use one of the Siemens

programs [5] to illustrate our important initial finding on

the statistics of program behaviors. Figure 1 shows the

code excerpted from faulty version “v1” of the program

“tot info”. In this code fragment, seven predicates are

included, labeled as P1 to P7. The statement “goto ret1;”

(labeled as E1) is intentionally commented out by the

Siemens researchers to simulate a statement omission

fault. Locating such a kind of fault is often difficult

even if the execution of a failed test case is traced step-

by-step.

Let us focus on program behaviors resulting

from predicate evaluations because they have been

successfully used in previous fault-localization research

such as SOBER. We observe that the predicate “P4: k

< 0L” is highly relevant to program failures because

the omitted statement E1 is in the true block of the

branch structure of statement P4. We further find that

none of the predicates P1, P2, and P3 is related to

failures because they neither directly activate the fault

nor propagate an error. Predicate P5 is also related

to the fault, since commenting out the goto statement

(E1) will render a higher chance for P5 to be evaluated.

Predicates P6 and P7 are increasingly distant from the

faulty statement E1.

The seven pairs of distributions of evaluation biases

with respect to P1 to P7 are shown via the histograms

P1: if ( rdf ≤ 0 ‖ cdf ≤ 0 ) {
info = -3.0;

goto ret3;

}
...

P2: for ( i = 0; i < r; ++i ) {
double sum = 0.0;

P3: for ( j = 0; j < c; ++j ) {
long k = x(i,j);

P4: if ( k < 0L ){
info = -2.0;

E1: /*goto ret1;*/

}
sum += (double)k;

}
N += xi[i] = sum;

}
P5: if ( N ≤ 0.0 ) {

info = -1.0;

goto ret1;

}
P6: for ( j = 0; j < c; ++j ) {

double sum = 0.0;

P7: for ( i = 0; i < r; ++i )

sum += (double)x(i,j);

xj[j] = sum;

}
...

ret1:

Figure 1: Excerpt from faulty version “v1” of program “tot info” from

the Siemens programs.

in Figure 2. To attain clear explanations, we also zoom

into the histograms for P7 in Figure 3.

In each of these plots, the X-axis stands for the

evaluation biases (varying in the range of [0, 1]), and the

Y -axis is the number of (passed or failed) runs that share

the same value of evaluation bias. They are produced

by executing the program over all the test cases in the

Siemens suite. If a predicate is not executed in a run,

there will be no data captured in the distribution.

The series of histograms (distributions of evaluation

biases) on the left are for the passed runs and those on

the right are for the failed runs. The resolution (step)

of the histograms is 0.01. Take the plot in Figure 3(a)

as an illustration. The left-most bar means that there

are 82 successful test cases, over which the evaluation

biases of P7 in their corresponding program execution

are in the range of [0.65, 0.66).
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In previous work such as SOBER [16, 17], the

statistical parameters mean and variance are used

to estimate the similarity between such a pair of

distributions of evaluation biases. Let us take the pair

of distributions with respect to P1 as an illustration.

Using the sample of evaluation biases for passed runs,

the mean and variance of evaluation biases for passed

runs are µp = 0.111 and σp = 0.390, respectively.

SOBER constructs the null hypothesis as “µp = µ f

and σp = σ f ” [16, 17], where µ f = 0.073 and σ f =
0.153 stand for the mean and variance, respectively,

of evaluation biases for failed runs. Following this

hypothesis and the central limit theorem [29], µ f should

conform to N(µp,
σ2

p

s
) = N(0.111,0.001), where s = 130

is the sample size of evaluation biases for failed runs.

Next, the similarity between the pair of distributions is

measured by the likelihood function (µp,σp) when µ f is

given [16, 17]. Hence, the likelihood function L(µp,σp |
µ f ) =

√
s

σp
ϕ(

µ f −µp

σp/
√

s
) = 0.399, where ϕ is the probability

density function of N(0,1) [29]. The smaller the value,

the less similar will be the pair of distributions.

We have the following observations from the

histograms:

O1: The two histograms for predicate P1 resemble each

other. The same phenomenon is observed for P2,

P3, P6, and P7. Those for P4 and P5, however, differ

significantly. Since predicates P4 and P5 are more

fault relevant, it indicates that the differences of

distributions between passed runs and failed runs

can be good indicators of the fault relevance of

predicates.

O2: None of the histograms in Figures 2 and 3

resembles a normal distribution. For each

predicate of this program, we have conducted the

standard Jarque-Bera test to determine whether its

evaluation bias follows a normal distribution. The

results show that, as far as the programs under

study can represent, it is unrealistic to assume

normal distributions for the evaluation biases of

predicates.

From the above observations, the assumption that

the evaluation biases of predicates form normal

distributions may not be well-supported by the

empirical data. Furthermore, only a small number

of test cases can reveal failures in practice, and

the number of successful test cases is not large

either. Because of that, in our previous work [8], we

proposed a non-parametric hypothesis testing model,

and advocated the use of a non-parametric predicate-

based fault-localization technique. Is this program an

exception? Can the feature spectra of program entities

be safely considered as normal distributions so that

parametric techniques can be applied rigorously? If the

answer is negative, it is natural to develop and apply

non-parametric techniques to support statistical fault

localization. This motivates the study in this paper.

3. Background

In this section, we revisit the concept of evaluation

bias and our non-parametric fault-localization tech-

nique.

3.1. Evaluation Bias

Liblit et al. [14, 15] propose three types of program

location, namely branches, returns, and scalar-pairs,

to sample the execution statistics of passed and failed

runs. Each program location is associated with a set

of Boolean predicates (known as program predicates).

Each program predicate may be executed more than

once in a run. Each evaluation will give either a true or a

false value. It thus gives the notion of evaluation bias to

estimate the probability of a predicate being evaluated

as true in a run as follows:

Definition 1 (Evaluation Bias [17]). Let nt be the

number of times that a predicate P has been evaluated

to be true in a run, and n f the number of times that it

has been evaluated to be false in the same run. π(P) =
nt

nt+n f
is called evaluation bias of predicate P in this

particular run.

3.2. Problem Formulation.

Let us consider a faulty program with a number

of predicates. The set of predicates is denoted by

{P1, P2, . . . , Pi, . . . , Pm}. We further let R and R′ be the

sets of passed runs and failed runs, respectively. For

each passed run r j ∈ R, the evaluation bias of predicate

pi is denoted by Ei, j. Similarly, for each failed run

r′k ∈ R′, the evaluation bias of predicate Pi is denoted

by E ′
i,k. The goal is to generate a predicate list, which is

a permutation of {P1, P2 . . . , Pi, . . . , Pm}, such that the

predicates are sorted in descending order of how much

each Pi is fault relevant.
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3.3. Non-Parametric Hypothesis Testing Model and

Non-Parametric Fault-Localization Technique

Following the convention in standard statistics,

the non-parametric hypothesis testing model in our

previous work [8] treats each run as an independent

event. Let H and H ′ be the sets of possible passed runs

and failed runs, respectively. Given a random run r ∈ H

or r′ ∈ H ′, let Xi be the random variable representing the

evaluation bias of predicate Pi for the program execution

over r or r′. Let us use f (Xi|θH) and f (Xi|θH ′) to denote

the probability density functions of the evaluation biases

of predicate Pi on H and H ′, respectively. Suppose

Pi correlates with the failures. Ideally, it should have

a strong positive correlation with θH ′ and a strong

negative correlation with θH . Similarly, suppose there

is another predicate Pj that weakly correlates with the

observed failures by the test cases. Ideally, Pj should

have a weak (or no) correlation with θH ′ and a weak (or

no) negative correlation with θH . Observe that the value

difference in terms of the correlation values between

(θH and f (Xi | θH)) and (θH ′ and f (Xi | θH ′)) forms a

scalar metric. The larger the metric value, the better

will be the chance that the corresponding predicate

correlates with the observed failures. Identifying the

predicates receiving (relatively) high values in terms

of this metric would be important in statistical fault

localization.

Our non-parametric hypothesis testing model then

defines a ranking function

R(Pi) = Diff
(

f (Xi|θH), f (Xi|θH ′)
)

(1)

to measure the difference between f (Xi|θH) and

f (Xi|θH ′). Without any prior knowledge of f (Xi|θH)
or f (Xi|θH ′), the model estimates them from the sample

set, such as a test suite associated to the program. The

evaluation bias of predicate Pi in the corresponding run

of a test case from the test suite is treated as a sample

of the random variable Xi. In this way, it obtains sample

sets for f (Xi|θH) and f (Xi|θH ′), respectively. It then

deems that the difference between the two sample sets

is an approximation of R(Pi). Therefore,

R(Pi) ≈ Diff
(

{Ei,1, . . . , Ei, j, . . . , Ei,|R|},
{E ′

i,1, . . . , E ′
i,k, . . . , E ′

i,|R′|}
) (2)

Thus, the non-parametric hypothesis testing method

uses the difference between the two sample sets to

measure the differences in the sampled distributions of

evaluation biases. The corresponding p-value of the

non-parametric hypothesis testing method is used to

replace the ranking function in equation (2). According

to the corresponding ranking scores of the predicates,

all the predicates are sorted to form a predicate list.

The programmer may use this generated predicate list

to locate faults in a program.

4. Research Questions

To investigate the applicability of using non-

parametric hypothesis testing model for fault localiza-

tion, we design the following research questions:

Q1: Is normal distribution common in program spectra

(and evaluation biases of predicates in particular)?

The answer to this question relates to whether

it is suitable to use parametric hypothesis testing

methods such as SOBER [17] on the evaluation

biases of predicates for fault localization. If

it is not common for the evaluation biases of

predicates be normally distributed, the assumption

that the program spectra on predicates can be

regarded as normal distributions cannot be well

supported. It appears not rigorous enough to

use parametric hypothesis testing methods on the

evaluation biases of predicate for fault localization.

Q2: Is normal distribution common in the program

spectra of the most fault-relevant predicates (and

evaluation biases in particular)?

Many fault-localization techniques (such as [8, 10,

12, 14, 15, 16, 17]) generate a predicate list,

which sorts all the predicates in descending order

of their fault relevance. For these techniques, the

most fault-relevant predicates play an important

role, since the effectiveness of each technique is

mainly decided by the efficiency in locating such

predicates in the given predicate lists. Therefore,

we also investigate the normality of the most fault-

relevant predicates. If the answer to question Q1

is no, and yet the answer to this question is yes,

the use of parametric hypothesis testing methods

in fault localization may be still acceptable.

Q3: Does the normality of evaluation biases of the

most fault-relevant predicates correlate with the

effectiveness of a non-parametric fault-localization

technique?

If the answers to both questions Q1 and Q2 are

no, it appears unsuitable to uphold the assumption

that the underlying program spectra form normal

distributions. It also indicates that the use of a

non-parametric fault-localization technique such
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as the one proposed in our previous work [8], is

a viable choice. This leads us to further investigate

whether the normality of evaluation biases of the

most fault-relevant predicates correlates with the

effectiveness of a non-parametric fault-localization

technique.

5. Experiment

We present the experiment in this section. We first

introduce the subject programs, the selected evaluation

metric, and the selected normality test method. After

introducing the research questions, we describe the

setup of experiment. We report the result of the

normality test on the evaluation bias of each predicate

in each faulty version, and investigate the effect of the

normality of predicates on fault-localization techniques.

Based on the empirical data, we set up the hypotheses

and use standard hypothesis testing method to answer

the three research questions above. At the end of this

section, we will discuss the threats to validity of our

experiment.

5.1. Subject Programs

The Siemens suite consists of 132 C programs

with seeded faults. Each program is a variation of

one of seven programs, namely “tcas”, “tot info”,

“replace”, “print tokens”, “print tokens2”, “schedule”,

and “schedule2”, varying in sizes from 133 to 515

executable lines. 2 Each faulty version is seeded

with one fault. These programs and their faulty

versions are downloaded from the Software-artifact

Infrastructure Repository (SIR) [5] website. Table 1

shows the descriptive statistics of the suite, including

the number of faulty versions (column “No. of Faulty

Versions”), the number of executable lines of code

(column “Executable LOC”), and the number of test

cases (column “Average No. of Test Cases”).

5.2. Evaluation Metrics

In this section, we first introduce our performance

metric, P-score, to measure effectiveness of fault-

localization techniques. Then, we introduce a statistical

normality test and discuss the use of its p-value as

a metric of normality. Finally, we introduce the

correlation relation metric.

2 We use the tool “David A. Wheeler’s SLOCCount” to count the

executable statements. It is available at http://www.dwheeler.com/

sloccount/.

5.2.1. Effectiveness metric: P-score

In previous studies [3, 16, 17, 19], to gauge the

quality of fault localization, T-score is used as the

metric. It was originally proposed by Renieris and

Reiss [19] and later adopted by Liu et al. [16, 17]

in reporting the performance of their fault-localization

techniques.

The T-score metric helps measure the cost of locating

a fault using a fault- localization technique. However,

some limitations have been reported on the use of T-

score in previous work [3, 19]. (i) They claim that

their evaluation setup “assumes an ideal programmer

who is able to distinguish defects from non-defects at

each location, and can do so at the same cost for each

location considered.” [3]. (ii) Besides, T-score assumes

that the developer can follow the control- and/or data-

dependency relations among statements when searching

for faults. However, there is no evidence that it

resembles the manner of debugging in real life.

To better reflect the effectiveness of the non-

parametric fault-localization technique, we propose a

novel metric, which we call P-score, to evaluate them.

We recall that many fault-localization techniques [10,

11, 12, 16, 17] (including the non-parametric fault-

localization technique) generate a predicate list, which

contains all the predicates sorted in descending order

of their degree of fault relevance (in terms of how

much each of them is deemed to be relevant to fault).

Such degree of fault relevance is measured by the

ranking formula of the technique. For postmortem

analysis, we mark the predicate closest to any fault in

the program, and use the position of the predicate in the

predicate list as the indicator of the effectiveness of a

fault-localization technique in generating the predicate

list. We call such a predicate the most fault-relevant

predicate. Suppose L is the predicate list and P̃ is

the most fault-relevant predicate. The measurement

formula is given by equation (3). To ease our

presentation, we simply call this metric the P-score.

P-score =
1-based index of P̃ in L

number of predicates in L
×100% (3)

where a 1-based index means that the first element

of L is indexed by 1 (rather than 0). The metric P-

score reflects the effectiveness of a fault-localization

technique. The lower the value, the more effective

will be the fault-localization technique. For tie cases,

which mean that there exist multiple most fault-relevant

predicates on the same predicate list, we count P̃ as the

first one reached in L.

For example, the faulty version “v1” of program

“schedule2” (from the Siemens programs) contains 43
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Siemens No. of Executable Average No. of

Programs Faulty Versions LOC Test Cases

print tokens 7 341–342 4130

print tokens2 10 350–354 4115

replace 32 508–515 5542

schedule 9 291–294 2650

schedule2 10 261–263 2710

tcas 41 133–137 1608

tot info 23 272–274 1052

Table 1: Statistics of Siemens programs.

predicates. The fault lies in line 135; the most fault-

relevant predicate exists in line 136. Suppose a fault-

localization technique ranks predicate P̃ = P136 at the

second top position in the generated predicate L. The

P-score is calculated as
2

43
×100% ≈ 4.65%.

5.2.2. Normality test: the Jarque-Bera test

To measure whether the evaluation biases of a

predicate form a normal distribution, we adopt the

standard normality test method, the Jarque-Bera

test [18]. The Jarque-Bera test is used to test the null

hypothesis that the given population is from a normal

distribution. The p-value of the Jarque-Bera test is

used to measure how much the evaluation biases of a

predicate form a normal distribution. For example, a

p-value less than 0.05 means that the null hypothesis

can be rejected at the 0.05 significance level [18].

It also means that the probability of obtaining an

observation agreeing with the null hypothesis (being

normal distribution) is less than 0.05. In general, the

smaller the p-value, the more confident we will be in

rejecting the null hypothesis. In other words, the smaller

the p-value, the farther will be the evaluation biases of

the predicate from a normal distribution.

To help readers follow the idea of normality tests,

we use three different populations to illustrate the

outcomes of the Jarque-Bera test. We use histograms

to represent the distributions of these three populations.

The respective histograms are shown in Figure 4. We

observe that, among the three populations, the leftmost

one (Figure 4(a)) is closest to a normal distribution.

The rightmost one (Figure 4(c)) is farthest from a

normal distribution. The central one (Figure 4(b)) is in

between the two scenarios. The result of the p-value

for the population in Figure 4(a) is 0.7028. It means

that we have a 70.28% probability that the observed

data in Figure 4(a) is from a normally distributed

population. The result of the p-value for the population

in Figure 4(b) is 0.2439. It means that, we have a

24.39% probability that the observed data in Figure 4(b)

is from a normally distributed population. The p-value

of the population in Figure 4(c) is 0.0940. According

to the results of normality tests, we can determine that

the population in Figure 4(a) is closest to a normal

distribution, followed by the population in Figure 4(b),

while the population in Figure 4(c) is farthest from a

normal distribution. Thus, the normality test results

match our expectation.

In the rest of this paper, we will use the results of

the p-value in the Jarque-Best test as the degree of

normality for predicates.

5.2.3. Correlation metrics: Pearson correlation test

Pearson correlation test [18] is designed to evaluate

the direction and strength of the linear relationship

between two populations. The resulting Pearson

correlation coefficient is in the range of [−1, 1]. The

correlation coefficient is close to 1 in the case of an

increasing linear relationship. It is close to −1 in

the case of a decreasing linear relationship. If the

two populations are independent of each other, the

correlation coefficient is close to 0.

For example, we use three sets of data to illustrate

the outcomes of the Pearson correlation test. The

three sets are represented by the points in Figures 5(a),

5(b), and 5(c), respectively. For each point, the X-

and Y -coordinates stand for the values of the X and Y

variables, respectively.

Let us first focus on the leftmost set of data

(Figure 5(a)). The Y -coordinate conforms to a linear

increasing function of the X-coordinate. The Pearson

correlation coefficient for this set of data is 0.995.

For the rightmost set of data (Figure 5(c)), the X-

and Y -coordinates do not have strong dependence

relationships between each other. The Pearson

correlation coefficient for this set of data is 0.173. For

the set of data in Figure 5(b), the situation is in between

the two scenarios above. The corresponding correlation
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coefficient is 0.770. From these examples, we observe

that the Pearson correlation test is useful in determining

the linear relationship between two populations.

5.3. Setup of Experiment

Among the 132 programs from the Siemens suite,

two of them (version “v27” of program “replace”

and version “v9” of program “schedule2”) come

with no failed test cases, which is also reported in

previous studies [16, 17]. These two versions are

excluded in our experiment because our non-parametric

fault-localization method needs the presence of both

successful and failed test cases. To evaluate our method,

we follow [16, 17] to use the entire test suite as input to

our method.

For each of the applicable faulty versions, we com-

pare the program output with that of the corresponding

original version, and mark the differences on the faulty

versions as faulty statements. The most fault-relevant

predicates are manually marked, by referring to their

relative distances from the faulty statements. For 111

out of 130 faulty versions, it is straightforward to

identify the most fault-relevant predicates. In each

of these faulty versions, the distance between the

most fault-relevant predicate and the faulty statement

is less than three program lines. For each of the

remaining 19 faulty versions, the faulty statement lies

in a function module without any predicate. Since it is

hard to identify the most fault-relevant predicate in such

situations, we exclude them in our experiment. These

faulty versions include versions “v4”, “v5”, and “v6”

of program “print tokens”, version “v12” of program

“replace”, versions “v13”, “v14”, “v16”, “v17”, “v18”,

“v19”, “v33”, “v36”, “v38”, “v7”, and “v8” of program

“tcas”, and versions “v10”, “v12”, “v21”, and “v6” of

program “tot info”.

Our experiment is carried out on a Dell PowerEdge

1950 server with two 4-core Xeon 5355 (2.66Hz)

processors. The operating system is Solaris Unix

with the kernel version Generic 120012-14. Our

experimental platform is constructed using the tools

of flex++ 2.5.31, bison++ 1.21.9-1, CC 5.8, bash

3.00.16(1)-release (i386-pc-solaris2.10), and sloccount

2.26. The source codes for the Mann-Whitney test

and the Jarque-Bera normality test are from the ALGlib

website. 3

In total, we collect the evaluation biases of 5778

predicates from all 111 faulty versions. In the next three

subsections, we are going to discuss the three research

questions that have been stated in the last section.

3 Available at http://www.alglib.net/.

5.4. Answering Research Question Q1

In this section, we first conduct normality tests on

the evaluation biases of the 5778 predicates from the

111 faulty versions of Siemens programs, and report the

distributions of the evaluation biases of these predicates.

After that, we use hypothesis testing method to answer

Q1.

5.4.1. Direct observations

The distributions (represented by histograms) of the

normality test results are shown in Figure 6. For each

predicate, we separately consider its evaluation biases in

passed runs and those in failed runs. For each predicate,

we specify its normality test result as the minimum

of the normality test results of evaluation biases in all

passed runs and all failed runs. Figure 6(a) shows a

plot of the numbers of predicates against given p-values

of the normality tests of their evaluation biases, in the

range of [0, 1] (10 segments). The leftmost data column

stands for the predicates having p-values less than or

equal to 0.1. The number of such predicates is 2399.

It means that, if the null hypothesis (that evaluation

biases of predicates form normal distributions) is true,

for 2399 predicates, the probability of the appearance

of their observed evaluation biases is less than 10%.

In other words, for these 2399 predicates, the null

hypothesis can be rejected at the 10% significance

level. The rightmost column stands for the predicates

having p-values greater than 0.9. The number of such

predicates is 3238. It means that, if the null hypothesis

is true, for these 3238 predicates, the probability of

observing the sample evaluation biases is higher than

90%. The eight columns at the center show the

predicates having p-values in the ranges of (0.1, 0.2],
(0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7],
(0.7, 0.8], and (0.8, 0.9], respectively. These ranges are

decided by uniformly dividing the range of [0, 1]. The

second and plots show the same statistics in the ranges

of [0.0, 0.1] and [0.00, 0.01], respectively.

From Figure 6(a), we observe that not all of

the predicates form statistically meaningful normal

distributions. If we choose 0.1 as the significance level

for the p-values of normality tests, the null hypothesis

can be rejected for 2339 predicates (or more than

40%). We deem their evaluation biases to be far from

having normal distributions. If we deem 0.9 as the

significance level for the p-values of normality tests,

3238 predicates (or less than 60%) are recognized to

have normally distributed evaluation biases. We deem

that their evaluation biases have normal distributions.

Figure 6(b) is a zoom-in representation of the range

of [0.0, 0.1] (the range of the leftmost data column
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of Figure 6(a)). We notice that, for 1756 out of

2339 predicates (or more than 75%) having p-values

in the range of [0.0, 0.1], their corresponding p-values

concentrate in the range of [0.00, 0.01]. Let us focus

on Figure 6(c). We further notice that, for 1269 out of

1756 predicates (or close to 75%) having p-values in

the range of [0.00, 0.01], their p-values concentrate in

the range of [0.000, 0.001].
Our observations are that: (i) For no more than 60%

of the predicates, their evaluation biases have normal

distributions (the null hypothesis cannot be rejected at

less than a significance level of 0.9). (ii) For a majority

of the remaining 40% of the predicates, their evaluation

biases are far from having normal distributions (the

null hypothesis can be rejected at the 0.1 significance

level). (iii) There are few predicates whose degrees of

normality are within the range of [0.1, 0.9].

5.4.2. Hypothesis testing: answering Q1

Readers may recall that we make use of the standard

normality test method, the Jarque-Bera test, to measure

the degree of normality for the evaluation biases of

predicates. The higher the degree of normality for a

predicate (in terms of the p-value of the Jarque-Bera

test), the closer will be the observed evaluation biases

to a normal distribution. Since we calculate a degree of

normality for each predicate, we design the following

null hypothesis to answer research question Q1:

H1: “The mean degree of normality for

the tested predicates is greater than a given

threshold θ1.”

Such a null hypothesis captures the mean degree of

normality for the predicates, and is therefore used to

determine whether normal distributions are common for

predicates. In addition, we introduce a parameter θ1 to

control the power of the null hypothesis. The higher the

value of θ1, the more confidence will we have on the

null hypothesis. Hence, for the same set of predicates,

the higher the value chosen for θ1, the easier will the

null hypothesis be rejected.

To answer research question Q1, we conduct the one-

tail Student’s t-test [29] to validate H1. The p-value of

the Student’s t-test is the probability that an observed

predicate from a population with a mean degree of

normality is greater than θ1. Suppose, for instance, that

we have only three predicates with degrees of normality

0.640, 0.750, and 0.860, respectively. The p-value of the

Student’s t-test on null hypothesis H1 with θ1 = 0.600

will be 0.929. On the other hand, the p-value of the

Student’s t-test on null hypothesis H1 with θ1 = 0.750

will be 0.500. Similarly, the p-value of the Student’s

t-test on null hypothesis H1 with θ1 = 0.900 will be

0.071. From the first p-value, the probability that the

predicates are from a population with a mean degree of

normality greater than 0.600 is 92.9%. The other two

p-values can be interpreted similarly.

We vary the value of θ1 within the range of [0, 1]. The

corresponding p-values of one-tail Student’s t-tests are

shown in Table 2. The upper row shows the threshold

values for θ1, while the lower row shows the results of

the one-tail Student’s t-tests in terms of p-values.

We observe that we have great confidence (with a

probability close to 100.0%) that these predicates are

from a population with a mean degree of normality

greater than 0.500. At the same time, the probability

that these predicates are from a population with a mean

degree of normality greater than 0.600 is less than

0.01%. Hence, from the meaning of the null hypothesis

and the symmetry of the one-tail test, we conclude that

it is very likely (with a probability close to 100.0%)

that these predicates are from a population with a mean

degree of normality in the range of [0.500, 0.600].
We note that in order to be statistically significant

(in rejecting a null hypothesis), it generally requires at

least a significance level of 0.1 [29]. Since we want to

study the normality of program spectra in a conservative

manner, we set the threshold of the degree of normality

to a reasonable value (such as 0.700, 0.800, or higher)

in the above null hypothesis. With θ1 > 0.600, the

null hypothesis H1 can always be rejected at the 0.0001

significance level (the resultant p-value is less than

0.0001). Obviously, 0.0001 is a reasonably small value

for significance levels; and we hence conclude that

normal distributions are not common for the evaluation

biases of predicates. The answer to Q1 is no.

We know that the smaller the value of the threshold,

the more difficult it will be to reject a null hypothesis.

Suppose, for example, that we choose a value of 0.600

as the threshold. The hypothesis becomes: “The mean

degree of normality for the tested predicates is greater

than 0.600”. Still, such a null hypothesis can continue to

be rejected at the 0.0001 significance level. Our result,

as presented in Table 2, indicates that many predicates

cannot produce dynamic behaviors that form normal

distributions even if one wishes to lower the judgment

standard to wishfully assume that it could be the case.

5.5. Answering Research Question Q2

In this section, we first conduct normality tests on the

evaluation biases of the most fault-relevant predicates

from the 111 faulty versions of Siemens suite, and

report their normality distributions. After that, we use
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threshold value 0.000 ∼ 0.500 0.576 0.584 0.587 0.591 0.600 ∼ 1.000

(θ1)

p-value 1.000 0.500 0.100 0.050 0.010 ≤ 0.0001

Table 2: Student’s t-test on different thresholds for H1.

the hypothesis testing method to study Q2. At the end of

this subsection, we compare the statistical natures of the

most fault-relevant predicates with the other predicates.

5.5.1. Direct observations

We know from the previous subsection that not all

the predicates can be regarded as having normally

distributed evaluation biases. One may wonder whether

parametric techniques may reasonably be applied

assuming that the dynamic behaviors of the most fault-

relevant predicates are close to normal distributions.

In this subsection, therefore, we are going to study

whether the evaluation biases of the most fault-relevant

predicates may exhibit normal distributions. Like

the analysis in the previous subsection, the same

normality test method is applied to the most fault-

relevant predicates (111 in total). For each of these

predicates, we separately consider its evaluation biases

in passed runs and those in failed runs. Furthermore, for

each predicate, we specify its normality test result as the

minimum among its normality test results of evaluation

biases in all passed runs and those in all failed runs.

The results are shown in Figure 7. It shows the

distributions of p-values for normality tests on the 111

most fault-relevant predicates in the faulty versions. It

can be interpreted similarly to Figure 6.

Let us focus on Figure 7(a) first. If we deem 0.9

as the significance level for the p-values of normality

tests, 61 out of 111 most fault-relevant predicates

(less than 55%) are recognized as exhibiting normally

distributed evaluation biases. It means that, if the null

hypothesis is true, for 61 predicates, there is more than

90% probability for their observed evaluation biases

to appear. At the other extreme, if we choose 0.1 as

the significance level (which is the de facto practice in

hypothesis testing), there are still 45 predicates (more

than 40%) that the null hypothesis can be rejected.

We observe from Figure 7(b) that, for 37 out of

45 predicates (more than 80%) having corresponding

p-values in the range of [0.0, 0.1], these p-values

concentrate in the range of [0.00, 0.01]. When we zoom

in further, as shown in Figure 7(c), for 31 out of 37

predicates (close to 85%) whose p-values are in the

range of [0.00, 0.01], their p-values concentrate in the

range of [0.000, 0.001].

Our observations are summarized as follows: (i) For

about 55% of the predicates, their evaluation biases

have normal distributions (the null hypothesis cannot

be rejected at a significance level of 0.9). (ii) For

about 40% of the predicates, their evaluation biases

are far from exhibiting normal distributions (the null

hypothesis can be rejected at the 0.1 significance level).

(iii) There are about 5% of the predicates whose

normality test results are within the range of [0.1, 0.9].

5.5.2. Comparison with other predicates

We further compare the statistics of the most

fault-relevant predicates with the statistics of all the

predicates collected in the experiment. The results

are shown in Table 3. Take the leftmost data column

as an example. It means that only 54.95% (61 out

of 111) of the most fault-relevant predicates have p-

values greater than 0.900, and only 56.04% (3238 out

of 5778) of all the predicates studied have p-values of

normality tests greater than 0.900. In other words, only

about 55% of the most fault-relevant predicates and

56% of all predicates exhibit a normal distribution at

the 90% significance level. Since parametric statistical

techniques assume a normal distribution of evaluation

biases of predicates, the application of such techniques

to every predicate is questionable because nearly

half of the predicates do not satisfy the underlying

assumption. If the precondition cannot be satisfied,

the conclusion from the precondition cannot, of course,

be established. This finding indicates the reason

why existing parametric statistical fault-localization

techniques do not work as robustly as non-parametric

techniques.

5.5.3. Hypothesis testing: answering Q2

Similarly to Q1, we design the following null

hypothesis to answer research question Q2:

H2: “The mean degree of normality for the

most fault-relevant predicates under test is

greater than a given threshold θ2.”

Such a null hypothesis captures the mean degree

of normality for the most fault-relevant predicates,

and is therefore used to determine whether normal

distributions are common for the most fault-relevant
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Range of

p-values for >0.900 >0.500 >0.100 >0.050 >0.010

normality test

% of the most

fault-relevant 54.95% 54.95% 59.46% 61.26% 66.67%

predicates (61) (61) (66) (68) (74)

(actual number)

% of all predicates 56.04% 58.69% 59.52% 61.70% 78.04%

(actual number) (3238) (3391) (3439) (3565) (4509)

Table 3: Comparison of statistics of predicates with statistics of the most fault-relevant predicates.

predicates. A parameter θ2 is introduced to control the

power of the null hypothesis. The higher the value of θ2,

the more confidence will we have on the null hypothesis.

Hence, for the same set of predicates, the higher the

value chosen for θ2, the easier will the null hypothesis

be rejected.

To answer research question Q2, we also conduct

the one-tail Student’s t-test [29] to validate H2. The

p-value of the Student’s t-test is the probability that

an observed predicate from a population with a mean

degree of normality is greater than θ2. We vary the value

of θ2 within the range of [0, 1]. The corresponding p-

values of one-tail Student’s t-tests are shown in Table 4.

The upper row shows the threshold values for θ2, while

the lower row shows the results of the one-tail Student’s

t-tests in terms of p-values.

We have great confidence (with a probability close

to 100.0%) that these predicates are from a population

with mean degree of normality greater than 0.400. At

the same time, the probability that these predicates are

from a population with a mean degree of normality

greater than 0.700 is less than 0.01%. Therefore, from

the meaning of the null hypothesis and the symmetry of

the one-tail test, we draw the conclusion that it is very

possible (with a probability close to 100.0%) that these

predicates are from a population with the mean degree

of normality in the range of [0.400, 0.700].

Similarly, since we want to study the normality of

program spectra in a conservative manner, we set the

threshold of the degree of normality to a reasonable

value (such as 0.700, 0.800, or higher) in the above

null hypothesis. With θ2 > 0.700, the null hypothesis

H2 can always be rejected at the 0.0001 significance

level (the resultant p-value is less than 0.0001). Since

0.0001 is a reasonably small value as a significance

level, we conclude that normal distributions are not

common for the evaluation biases of the most fault-

relevant predicates. The answer to Q2 is no. And our

results as presented in Table 4 indicates that many fault-

relevant predicates cannot produce dynamic behaviors

that form normal distributions even if one wishes to

lower the standard of judgment to wishfully assume that

it could be the case.

5.6. Answering Research Question Q3

In this section, we first report the findings and then

analyze the results using hypothesis testing to answer

Q3.

5.6.1. Direct observations

From previous subsections, we know that the

assumption of evaluation biases of predicates forming

normal distributions is not well supported by the

experiment on the Siemens suite. Since the non-

parametric fault-localization technique is supposedly

not based on such an assumption, we predict that

the effectiveness of non-parametric fault-localization

technique does not correlate with the normality of

predicates. Figure 8 gives the results of the

corresponding correlation tests. To investigate whether

it is the case, we analyze the P-score of the predicate list

produced by our fault-localization technique against the

degree of normality.

Figure 8 depicts the correlations between the p-values

of the most fault-relevant predicates and the results of

our non-parametric fault-localization technique. In this

figure, there are 111 points, which stand for the 111

faulty versions. The X-coordinates show the p-values

of normality tests for the most fault-relevant predicates.

The Y -coordinates show the P-scores for the same faulty

version. This figure is divided into two parts. The left

rectangle represent the 55 most fault-relevant predicates

with p-values less than 1.0. The right axis represents the

56 most fault-relevant predicates with p-values equal to

1.0.

We observe that, as the p-value changes from 0.0 to

1.0, the P-scores of the fault-localization technique on

the faulty versions do not show an obvious increasing or
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threshold value 0.000 ∼ 0.400 0.561 0.621 0.638 0.671 0.700 ∼ 1.000

(θ2)

p-value 1.000 0.500 0.100 0.050 0.010 ≤ 0.0001

Table 4: Student’s t-tests on different thresholds for H2.

decreasing trend. On the contrary, the P-scores appear

scattered across the whole rectangle. Apparently, as

far as our non-parametric fault-localization technique

is concerned, the normality of evaluation biases of the

most fault-relevant predicate does not strongly correlate

with the effectiveness of the technique in locating faults.

5.6.2. Hypothesis testing: answering Q3

We design the following hypothesis to answer Q3:

H3: “The correlation of normality and

effectiveness is greater than a given threshold

θ3.”

To scientifically investigate the effect of normality

on the fault-localization techniques, we conduct the

Pearson correlation test on them. The Pearson

correlation coefficient on the P-score of the non-

parametric fault-localization technique on the 111 faulty

versions is 0.1201. If we only count the 55 faulty

versions whose p-values are less than 1.0, the Pearson

correlation coefficient on the P-score of the non-

parametric fault-localization technique is 0.0037.

We may choose some reasonable threshold values

(such as 0.700, 0.750, or higher) to determine whether

there exist strong correlations between the degree of

normality of the most fault-relevant predicate from a

faulty version and the effectiveness of fault-localization

techniques on the same faulty version. However,

the hypothesis H3 with θ3 ≥ 0.700 can always be

rejected easily. It means that, the answer to Q3 is no,

and the normality for evaluation biases of predicates

only weakly correlates with the effectiveness of the

non-parametric fault-localization technique. This can

also indicate that the non-parametric hypothesis testing

model for fault localization has high robustness in terms

of the normality for the evaluation biases of predicates.

5.7. Threats to Validity

In this section, we discuss the threats to internal,

construct, and external validity of our experiment.

5.7.1. Internal validity

Internal validity is related to the cause and effect of

the experimental findings.

We design null hypotheses and use hypothesis testing

to answer research questions. To control the power of

the designed null hypothesis, however, some parameters

are involved in the research questions Q1, Q2, and

Q3. The arbitrary choice of these parameters does

not have scientific support. To address this threat, we

adopt some value widely used previously (such as 0.700

for correlation tests), or change the values within a

reasonable range to conduct hypothesis testing several

times with different thresholds.

Many statistical algorithms are involved in our

experiment, including the Mann-Whitney test, the

Jarque-Bera test, and the Student’s t-test. Different

implementation details (such as accuracy in floating-

point operations) may affect the experimental results.

To address this threat, we choose to use the

same programming library (ALGlib) to implement

these algorithms. Such a consideration can reduce

implementation faults and hence the computing errors.

5.7.2. Construct validity

Construct validity lies in the evaluation method we

choose.

Although T-score is widely used in previous work

(including [16, 17]), some limitations have also been

reported in its use (see [3], for example). Has any

other measures been used to evaluate predicate-based

techniques successfully? We are not aware of such

alternatives in the public literature. Therefore, we use

a novel metric, P-score. The P-score metric evaluates

the speed of locating the most fault-relevant predicate

using the generated predicate list. The consideration is

that all these techniques estimate the fault relevance of

predicates and generate a list of predicates according to

their suspiciousness.

We use the Mann-Whitney test, the Jarque-Bera test,

the Student’s t-test, and the Pearson correlation test

in the experiment. Using other kinds of hypothesis

testing methods, normality test methods, or correlation

test methods may produce different results. To address

this issue, all the methods we choose are representative

among their respective families.

Threats may also exist in the manual work involved

in the experiments, since we manually mark the

most fault-relevant predicates. This step is neither
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entirely objective nor automated. However, for faulty

versions whose most fault-relevant predicates are hard

to identify, we have excluded them from the experiment

to avoid subjective biases. How to decide the most fault-

relevant predicates in programs can be further explored

in future work.

5.7.3. External validity

External validity is related to whether the results of

the experiment can be generalized.

Our experiment is conducted on the Siemens

programs. Though the Siemens programs are

representative programs and have been used in many

previous studies [10, 12, 17, 16], the use of other

programs (such as JAVA programs instead of C

programs) may product different results. In addition,

the use of different normality tests or hypothesis testing

methods may also affect the experimental results.

Evaluations on the use of other alternatives should be

included in future work.

6. Related Work

Program slicing [22] is a code-based technique. It is

widely used in debugging [20]. Gupta et al. [6] propose

a forward dynamic slicing approach to narrow down

slices. They further integrate the forward approach with

standard dynamic slicing approaches [26].

Collofello and Cousins [4] pioneer the use of test

cases for fault localization. A promising approach

is to use the behavioral statistics collected from test

case executions. Delta debugging helps to simplify or

iron out fragments of failed test cases [25], producing

cause-effect chains [24] and linking them to suspicious

statements [3].

Harrold et al. [7] list nine classes of program

spectra, such as path count, data-dependency count,

and execution trace. Among them, the execution trace

spectrum is most widely used in debugging. Jones et

al. [10, 12], in their work Tarantula, rank each statement

according to suspiciousness, which is a function of

the percentages of failed and successful test cases that

execute the statement. Renieris and Reiss [19], in

their work Nearest Neighbor, find that the execution

trace difference between a failed run and its nearest

passed neighboring run is more effective for debugging.

Baudry et al. [2] observe that some statements (known

as a dynamic basic block) are always executed by

the same set of test cases. They use a bacteriologic

approach to generate test cases so as to maximize the

number of dynamic basic blocks, and use the algorithm

in [10, 12] to rank them. They further extend their work

in [11] to make it possible for multiple developers to

debug at the same time.

The most relevant related projects are CBI [14, 15]

and SOBER [16, 17]. Rather than locating faulty

statements, these techniques make use of predicates to

indicate the fault locations. Since these techniques have

been explained in Section 1, we do not repeat them here.

Arumuga Nainar et al. [1] further extend CBI to address

compound Boolean expressions. Zhang et al. [28]

propose a fine-grained version of such techniques and

use an empirical study to investigate the effectiveness.

Wong et al. [23] propose a code coverage-based fault-

localization technique, which uses a utility function

to calibrate the contribution of each passed run when

calculating the fault relevance of executed statements.

In our previous work [8], we observe that the assump-

tion of evaluation biases of predicates forming a normal

distribution is not well supported by empirical data,

and accordingly propose a non-parametric hypothesis

testing model for fault localization. However, the

investigation about normality of predicate and its effect

on fault localization are not included. Zheng et al. [27]

incorporate the notion of error propagation along with

program dependences to statistical debugging. Wang

et al. [21] formulate the notion of context patterns

to improve statistical debugging. Jiang et al. [9]

empirically study the relationship between statistical

fault localization and test case prioritization and find

that random ordering is superior to many test case

prioritization techniques.

7. Conclusion

Fault localization is a time-consuming and yet

crucial activity in software debugging. Many previous

studies contrast the feature spectra between passed

runs and failed runs to locate the predicates related

to faults (or to locate the faulty statements directly).

For instance, CBI [14, 15] and SOBER [16, 17]

contrast the feature spectra of predicates in a program.

They collect statistics about the behaviors of program

predicates, such as evaluations of branch statements.

They further assume that, for predicates near the

fault position, the successes or failures of their

evaluations highly correlate with the successes or

failures of program executions. Hence, identifying

effective program predicates and formulating correct

and robust statistic comparisons are important for such

techniques. However, they overlook the investigation

of the statistical distributions of the spectra, on which

parametric hypothesis testing methods fully or robustly
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rely. In our previous work, we have argued and

empirically verified that assuming a specific distribution

of the feature spectra of dynamic program statistics is

problematic, and proposed a non-parametric approach

that applies general hypothesis testing techniques to

statistical fault localization.

In this paper, we rigorously investigate the statistical

nature of normality test results for predicates. We show

empirically that the evaluation biases of predicates,

particularly the most fault-relevant predicates, are not

necessarily normally distributed. In fact, almost all

examined distributions of evaluation biases are either

normal or far from normal, but not in between. Besides,

the most fault-relevant predicates are less likely to

exhibit normal distributions in their evaluation biases

than other predicates. Unfortunately, the position of

the most fault-relevant predicate(s) in a faulty program

cannot be known before successful localization of the

corresponding fault. Thus, to apply a hypothesis testing

technique across the board, there is no scientific ground

to assume all predicates to exhibit normal distributions

among test executions.

We further investigate the effect of normality of

predicates on fault-localization techniques, and use it as

a measure to test the robustness of non-parametric fault-

localization techniques. The empirical results show that

the non-parametric model for fault localization has high

robustness in terms of the normality for the evaluation

biases of predicates. Our work also highlights a threat

to construct validity in fault-localization techniques that

employ parametric hypothesis testing methods.

Future work may include concurrent debugging of

multi-fault programs and evolving software. It is

also necessary to conduct more studies on large size

programs. There are also an increasing number

of data mining approaches to addressing software

engineering issues. Our work also highlights the need

to study potential normality assumptions in such mining

approaches.
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Figure 2: Distributions of evaluation biases of predicates P1 to P7.
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(a) Distribution of evaluation biases in passed runs (b) Distribution of evaluation biases in failed runs

Figure 3: Distributions of evaluation biases of predicate P7.
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Figure 4: Illustrations for normality tests.
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Figure 5: Illustration of Pearson correlation test.
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Figure 6: Results of normality tests for predicates.
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Figure 7: Results of normality tests for the most fault-relevant predicates.
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Figure 8: Effect of normality on fault-localization techniques.
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