
This document is published in:

Information and Software Technology 2010 . 52 (8), 821-844.
DOI: http://dx.doi.org/ 10.1016/j.infsof.2010.03.005

 © 2010 Elsevier B.V.

http://dx.doi.org/ 10.1016/j.infsof.2010.03.005

A language-independent and formal approach to pattern-based modelling
with support for composition and analysis

Paolo Bottoni a, Esther Guerra b,*, Juan de Lara c
a Computer Science Department, ‘‘Sapienza” Università di Roma, Italy b Computer Science Department, Universidad Carlos III de Madrid, Spain c Polytechnic

School, Universidad Autónoma de Madrid, Spain

Keywords:

Pattern formalization, Pattern-based modelling, Pattern composition, Pattern conflicts

Abstract:
Context: Patterns are used in different disciplines as a way to record expert knowledge for problem solv-ing in specific areas.
Their systematic use in Software Engineering promotes quality, standardization, reusability and maintainability of software
artefacts. The full realisation of their power is however hindered by the lack of a standard formalization of the notion of
pattern.
Objective: Our goal is to provide a language-independent formalization of the notion of pattern, so that it allows its
application to different modelling languages and tools, as well as generic methods to enable pattern discovery, instantiation,
composition, and conflict analysis.
Method: For this purpose, we present a new visual and formal, language-independent approach to the specification of patterns.
The approach is formulated in a general way, based on graphs and category theory, and allows the specification of patterns in
terms of (nested) variable submodels, constraints on their allowed variance, and inter-pattern synchronization
across several diagrams (e.g. class and sequence dia-grams for UML design patterns).
Results: We provide a formal notion of pattern satisfaction by models and propose mechanisms to sug-gest model
transformations so that models become consistent with the patterns. We define methods for pattern composition, and conflict
analysis. We illustrate our proposal on UML design patterns, and discuss its generality and applicability on different types of
patterns, e.g. workflow patterns, enterprise inte-gration patterns and interaction patterns.
Conclusion: The approach has proven to be powerful enough to formalize patterns from different domains, providing
methods to analyse conflicts and dependencies that usually are expressed only in tex-tual form. Its language independence
makes it suitable for integration in meta-modelling tools and for use in Model-Driven Engineering.

1. Introduction

 Patterns [1] are used in different disciplines as a way to record
expert knowledge for problem solving in specific areas. They are
increasingly used in Software Engineering for the definition of soft-
ware applications and frameworks [14], as well as in Model-Driven
Engineering to indicate parts of required architectures [2,19], drive
code refactorings [21], or build model-to-model transformations
[6]. Their systematic use promotes quality, standardization, reus-
ability and maintainability of software artefacts. However, the full
realisation of their power is hindered by the lack of a standard
formalization of the notion of pattern, as they are typically pre-
sented through natural language to explain their motivation, con-
text and consequences; programming code to show usages of the
pattern; and example diagrams to communicate their structure and
behaviour.

 Moreover, the use of domain-specific modelling languages, such as
UML for design patterns [14] or coloured Petri nets for workflows
[35], forces pattern proposers to provide only examples of their
realisation, appealing to intuition to extend them to the complete
semantics of the pattern. For instance, the fact that in the Visitor
GoF pattern [14] there must be a distinct operation in the Visitor
interface for each ConcreteElement is only under-stood through
generalisation of the examples or reading the asso-ciated text [14].
Even though natural language and examples are necessary and
useful for pattern documentation, the automated use of patterns for
modelling requires a formalization of some of their aspects to
enable pattern instantiation, pattern identification, pattern
composition and analysis of pattern conflicts.

*Corresponding author. Present address: Dpto. Informática, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain.

E-mail addresses: bottoni@di.uniroma1.it (P. Bottoni), eguerra@inf.uc3m.es (E. Guerra), Juan.deLara@uam.es (J. de Lara).

1

In this sense, several existing formal approaches resort to lan-
guages based on mathematics or logics to formalize patterns. This
allows a systematic use of patterns and the automation of pattern-
based tasks. Unfortunately, defining patterns in these approaches
requires expert knowledge of the used underlying formalism,
which is rarely found in the average engineer. Furthermore, engi-
neers have to deal with two representations of the same patterns
(the intuitive one used in the application domain for communica-
tion purposes, and its formal counterpart) and have to guarantee
that both representations are consistent. As a result, tools built
on top of these formalizations make it difficult to define new pat-
terns and maintain the existing ones. Therefore, more user-friendly
formalizations are required.

Moreover, many formal approaches are tied to a specific model-
ling language, frequently UML, and reusing the procedures devel-
oped for them in other languages and tools is not possible. Thus,
it is clear that a formalization would benefit from being generic
and language-independent, and hence reusable. This independence
is especially useful in Model-Driven Engineering, which relies on
domain-specific languages for modelling applications, and in
meta-modelling tools for generating tools for these languages.
Having a generic framework for manipulating patterns for any lan-
guage would reduce the development time of modelling tools with
support for patterns.

In this paper we tackle these problems by proposing a formal
notion of pattern, grounded in category theory [25], which sees
them as formed of: (i) a vocabulary of roles; (ii) a collection of dia-
grams defining associations between roles, and supplemented with
indications of variable regions and their instantiation constraints;
(iii) a collection of interfaces that identify roles across different dia-
grams; and (iv) a set of positive or negative constraints defining
pattern invariants. From this formalization several benefits are ob-
tained, representing a distinguishing novel feature of our approach.
First, patterns in some specific domain are formalized by using the
notation used in that particular domain. For instance, the formal-
ization of a GoF pattern will use the UML notation, whereas work-
flow patterns will use coloured Petri nets instead. This is so
because we rely on a categorical framework rather than on the spe-
cial features of particular languages. Second, a clear specification of
the parts of the pattern that can be replicated (and of the admissi-
ble number of replicas) is given, without recurring to concrete
examples. Third, patterns are defined via several inter-related dia-
grams, e.g. a class and a sequence diagram for GoF patterns, which
enables their synchronous instantiation in a consistent manner.

Moreover, we can formalize additional environmental condi-
tions that must hold for the pattern to be correctly applied. These
are to be understood as pattern invariants and, up to a point, allow
the formalization of some of the intentions and consequences of
patterns and permit automatic detection of pattern conflicts. Final-
ly, the formalization allows pattern composition and the creation
of new patterns by reusing existing ones, thus enabling the realiza-
tion of pattern-based languages. Again, all these operations are ex-
pressed in a language-independent manner, so that they can be
applied across different languages and tools.

This paper builds on our previous work in [7], and extends it
with a more expressive description of the allowed instantiations
of the variability regions (equations instead of intervals), a repre-
sentation of pattern invariants, techniques for pattern composition
and analysis, and the formalization of patterns for additional mod-
elling languages. We purposely present the results using intuition
and examples. However, given that one of the points of our work is
that it is a formalization of patterns, we have kept the main defini-
tions in an appendix.

Paper organization. Section 2 overviews related approaches. Sec-
tion 3 reviews our definition of pattern, presenting the new way of
handling instantiation constraints of variable regions. Section 4

presents our formalization of pattern invariants. Section 5 shows
the procedure for applying patterns to models. As an extension
of previous work, this may imply either the addition of elements
so that the model conforms to a pattern, or both the deletion and
addition of objects so that the pattern invariants are satisfied. Sec-
tion 6 introduces methods for composing patterns and analyse
conflicts. Section 7 presents examples in different modelling lan-
guages, and Section 8 ends with the conclusions. After briefly intro-
ducing the relevant notions of Category Theory in Appendix A, we
gather in Appendix B the formal details of the concepts and defini-
tions used throughout the paper. However, the article can be fully
understood without reading them.

2. Related work

The shortcomings of presenting patterns in the Gang of Four
(GoF [14]) style have been addressed by several researchers, who
advocate a more formal approach. However, most of the formaliza-
tions are specific to UML design patterns since they modify UML to
incorporate elements of the formalization, and therefore they can-
not be extrapolated to other languages.

For example, [13] extends the UML meta-model with roles and
constraints, and conformance of a model to a pattern is checked as
the usual model/meta-model relationship. The technique works for
UML class and sequence diagrams, and is focused on the specifica-
tion of patterns, not on their use for model completion. A non-uni-
form interpretation of interaction diagrams is provided, where
reference to interaction fragments is translated to their unfolding
with respect to the instantiation of roles. In [26] the authors extend
the UML meta-model with stereotypes accounting for possible
realizations of patterns. A distinction between roles, types and
classes is used in [23] to decouple representations of roles from
implementation aspects, although they resort to the lower level
for defining the admissible realisations of the pattern. In [10] the
UML Profile meta-model is extended with stereotypes and tagged
values for pattern annotation and visualization. This also allows
pattern composition through single instances. Our approach relies
on annotations through triple graphs, introducing a new meta-
model for patterns, but without modifying existing meta-models.
Finally, an approach similar to ours – but specific for UML design
patterns – is taken in [27], where a visual language allows repre-
senting roles played by participants in patterns, which can then
be instantiated by elements of a UML model. The approach pro-
vides notions of variability and (limited) support for definition of
behavioural (collaboration) diagrams, but without an explicit no-
tion of synchronization between parts of the specification.
Although patterns can overlap on some model elements, there is
no explicit notion of composition.

There are also other works that introduce the formalization
independently of the modelling language. Such independence is
achieved in [22] by using Object-Z, but no composition or conflict
analysis techniques are given. Constraints on the use of patterns
are exploited in [32] to maintain the consistency of a pattern-based
software framework through the use of high-level transformations
specific to each pattern. In [30], the authors propose a logic-based
approach, using subsets of First Order Logic – for structural aspects
– and Temporal Logic of Actions – for behavioural ones – and sup-
porting pattern combinations. As the language does not include
implications, support for complex constraints appears limited.
These approaches have the shortcoming of using a complicated
mathematical formalism for formalizing the patterns, different
from the domain language in which the pattern has to be applied.

Another axis of related work concerns the different usage sce-
narios of the formal specifications. The most basic activity is check-
ing the conformance of a model against a pattern. Further activities

2

include model completion, guidance for pattern use, pattern iden-
tification (i.e., detecting patterns in models), and pattern analysis.
For example, in [20] the intent of design patterns is described with
an ontology, which can be queried to obtain suggestions about the
most appropriate pattern solving a certain problem. Constraints
are used for formalizing patterns in [15], where patterns are con-
sidered as paragons of good design, to which models must con-
form. The use of a constraint solver allows identifying defects in
the design as violation of constraints. As a defective model satisfies
a relaxed version of the constraints anyway, this suggests recovery
actions. A similar feature is obtained in our approach, as we par-
tially formalize the intents and consequences of patterns via graph
application conditions, which declare invariants for the patterns to
be correctly applied.

The inherently dynamic nature of graph transformation [12] has
also been used to formalise patterns and the actions to be per-
formed on models to achieve pattern conformance. In [28], pat-
terns are represented with rules, applied to abstract syntax trees
to annotate the pattern instances found. In [29], models are trans-
formed to conform to patterns, after having exploited graph que-
ries that detect needs for transformations. In [37] Spatial Graph
Grammars provide a graph representation of GoF patterns, to
transform object structure graphs so that they conform to patterns.
Although declarative, the rules are based on a concrete presenta-
tion of patterns, and not on a meta-model characterisation.

Finally, several works consider pattern composition and con-
flicts, but again mostly with reference to GoF patterns. For exam-
ple, in [36] the authors distinguish between stringing and
overlapping for pattern composition. In the first case, relationships
are added to relate elements that play roles in both patterns. This
facilitates the identification of the individual occurrences of the
composed patterns, but makes the project less cohesive. With
overlapping, in a way analogous to the construction we propose,
some elements play roles in both patterns. They integrate both ap-
proaches by first using stringing at a high level of abstraction, and
then merging the different classes. Their approach works at the
structural level only, and no technique for conflict analysis is pro-
vided. An approach analogous to pattern stringing relies on pattern
componentization, proposed in [3], through which a pattern is
transformed into a component allowing direct reuse of the code
implementing a solution. In this case, an Eiffel contract defines
the characteristics of the component. The approach in [4] formal-
izes patterns in First Order Logic and sees composition as overlap-
ping, as indicated by the presence of elements in models which
conform to the specification of two patterns. A static definition of
composite patterns results from the conjunction of the formulas
defining the individual component patterns. The approach can thus
be used to verify conformance of a model to a composite pattern,
but not for model completion.

In conclusion, we observe the lack of an integrated, domain-
independent formalism able to give account of mutual synchroni-
zation constraints within a pattern and across different ones, and
to support pattern checking, identification, application, composi-
tion and conflict analysis. In the rest of the paper we present one
such formalism.

3. Pattern specification

Variable pattern. In our proposal, the simplest form of variable
pattern consists of one object structure called rootwith the manda-
tory part that any pattern realization must contain, and a number
of variable parts defining additional structures that can be repli-
cated several times for each instance of the root. Variable parts
can be nested, thus a nested part can only be instantiated by add-
ing structures to an instance of its parent. In addition, each variable

part is assigned a variable of type integer that can be used to define
equations restricting the allowed number of its replicas, e.g. more
than 0, at most 5, or any number if no restriction is given. Equa-
tions may contain relations between the allowed replicas of differ-
ent variable parts, and the number of times a pattern can be
instantiated in a model can be restricted by defining equations
on the variability of the root. Note that if the set of equations has
no solution in the natural numbers, then the pattern cannot be
instantiated.

In this paper, we express both the root and the variable parts of
a pattern as graphs or triple graphs. However, Definition 6 in
Appendix B formalizes them in a categorical way [25], so that they
can be objects of any category with pushouts and pullbacks, such
as algebraic specifications, Petri nets, automata or component sys-
tems. The choice of graphs is however of great generality. As in
[12], graph nodes and edges can be provided with attributes, and
be typed by a so-called type graph (similar to a meta-model).
Hence, models can be very naturally represented as graphs.

Example. The GoF Observer pattern captures one-to-many
dependencies between objects so that when the subject object
changes its state, all its dependent observer objects are notified
and updated automatically. Fig. 1 presents a simplified version of
this pattern. The root, which is associated with the variable Ob, is
depicted with a white background and contains the classes Sub-

ject, Observer and ConcreteSubject, as well as their relations.
Variable parts are enclosed in coloured polygons. In the example
there is only one variable part, associated with the variable Conc,
containing the ConcreteObserver and its relations with the ele-
ments in the root. The equation Conc > 0 requires at least one
instantiation of the variable part for each instantiation of the root,
i.e., at least one ConcreteObserver for each ConcreteSubject.
Each instantiation of the variable part is glued to the root through
the Observer and ConcreteSubject nodes of the root. As the
root is not constrained, any number of instances of the pattern is
allowed. The figure uses the concrete syntax of UML class dia-
grams, but the abstract syntax can also be used.

Pattern expansion. One can see a pattern VP as a shortcut for the
possibly infinite set of valid expansions of its variable parts (those
combinations satisfying the equations). This set is called the expan-
sion set and is written EXP(VP). See the details of its construction in
Appendix B.

Example. Fig. 2 shows some valid expansions of the Observer
pattern. In particular, (a) is the empty graph, where the root is ex-
panded zero times; (b) instantiates once the root and once the var-
iable part; (c) expands the root once and the variable part twice;
(d) expands the root twice and the variable part once for each root
expansion; and (e) expands the root twice and the variable part
once, this latter shared among the two root instances. Since the
root is instantiated twice in expansions (d) and (e), they account
for two instances of the pattern each. On the contrary, expanding
the root once but not the variable part is not valid as it does not
satisfy the equation Conc > 0. Note that expansions allow different
instances of the root to share the same instance of a variable part,
like in the case of expansion (e), as well as two different instances
of a variable part to share the same instance of a nested part.

Fig. 1. Observer pattern (simplified).

3

Pattern satisfaction. Pattern formalizations can be effectively
used as a basis for pattern discovery and reverse architecting pro-
cesses that discover and document pattern instantiations in a given
design. Intuitively, a graph G satisfies a pattern VP if some valid
expansion E 2 EXP(VP) can be found in G. The algorithm for check-
ing pattern satisfaction performs a depth-first traversal of the pat-
tern nesting structure, counting the number of occurrences of the
root and the variable parts along the way, and checking that the
equations hold. This algorithm is shown in detail in Appendix B.

Example. Fig. 3 shows a model G that satisfies the specification
of the Observer pattern, where Clocks provide different representa-
tions of the current system time. In particular, there is a valid
expansion, shown to the left, that is the maximal element of EX-
P(Observer) present in G.

3.1. Annotating structure with roles: annotated patterns

The structure of a pattern is usually enriched with information
regarding the roles its different elements play in the collaboration,
and defining a specialized vocabulary that promotes a common
understanding of its parts. In order to specify such information
we use triple graphs [17] (instead of graphs) to define the root
and variable parts of patterns. Technically, a triple graph is com-
posed of two graphs, called source and target, related through mor-
phisms from the nodes of a third graph called correspondence. A
triple graph is writtenM = (Ms Mc ?Mt), representing the source
(Ms), the target (Mt), the correspondence (Mc), and the morphisms
from the correspondence to source and target, also called corre-
spondence functions. We write M = hMs,Mc,Mti if we are not inter-
ested in explicitly showing the correspondence functions. In this
work we use triple graphs where the source graph is the pattern
structure, the target is a vocabulary of roles, and the correspon-
dence assigns roles to the elements in the pattern. Note that we
also use triple graphs to represent models, where the source is a
domain-specific model, the target contains the vocabulary of roles
of all patterns in the specification, and the correspondence assigns

roles in such vocabulary to the different elements in the model.
This is called a pattern-annotated model (see below).

Example. The left of Fig. 4 shows a triple graph that contains the
structural part of one pattern. Its source graph at the bottom con-
forms to the UML abstract syntax meta-model, its target at the top
is a pattern vocabulary model, and the correspondence maps UML
elements to vocabulary elements. The morphisms from the corre-
spondence are shown as dotted arrows. Intuitively, these are sim-
ilar to pointers in programming languages.

The right of the figure shows the same triple graph but using the
UML concrete syntax and a shortcut for roles where, instead of
showing the complete triple graph, tags similar to stereotypes
are employed. We will use this shortcut in the rest of the paper,
where please note that the names of classes, operations and fields
in the pattern are variables, which get instantiated to the names of
the elements in the model.

Triple graphs are typed by meta-model triples [17] made of a
source and a target meta-models, related through a correspon-
dence meta-model. In our particular case, the meta-model triple
relates the meta-model of a specific language (e.g. UML) with that
of a pattern vocabulary. The top of Fig. 5 shows the meta-model for
the vocabulary, made of classes Pattern and PatternRole. This
meta-model needs to be specialized for the definition of patterns in
concrete modelling languages, by subclassing the PatternRole

class. For the case of UML patterns, this means that roles are appli-
cable to operations, associations, structural features, classifiers and
classes. The bottom of Fig. 5 shows part of the UML meta-model.
Finally, the correspondence meta-model maps roles to UML ele-
ments, and defines a class PatternInstance to group the map-
pings of each pattern instantiation.

Pattern-annotated model. A pattern-annotated model is a triple
graph whose source is a model in some language (e.g. UML), and
the target contains an occurrence of a pattern vocabulary for each
pattern used in the source model. The correspondence graph is
called annotation graph and has a PatternInstance node for each
instance of the pattern, and one RoleMap for each element playing
a role in the instance.

Fig. 2. Some valid expansions of the observer pattern in the set EXP(Observer).

Fig. 3. Pattern satisfaction example.

4

Note that, as shown at the right of Fig. 4, a pattern-based tool
would not need to show the triple graph to the user, but the anno-
tation can be done by marking the source graph e.g. by means of
stereotypes [10]. However for the theory, an explicit triple graph
has some advantages: we do not modify or extend the source
meta-model (e.g. the UML one) with additional classes or attri-
butes for tagging; triple graphs help in enforcing the patterns, as
shown in Section 5; and it is easier to distinguish the instances
of a pattern, as these are identified by PatternInstance nodes.

Annotated pattern. An annotated pattern is a variable pattern
where triple graphs and triple morphisms are used instead of sim-
ple graphs. In this way the roles that the different elements are
playing in the pattern are identified. The notion of pattern satisfac-
tion is adapted to the use of triple graphs, but the theory remains
the same, as we use a categorical framework [7]. Thus, annotated
patterns are satisfied by triple graphs, called pattern-annotated
models.

Example. The annotated pattern in Fig. 4, specifying the struc-
ture of the Proxy pattern [14] in theoretical and compact forms,
conforms to the meta-model triple in Fig. 5. This pattern provides
a surrogate proxy for an object with role realSubject in order to
control access to it. The pattern has just one root, without variable
parts, and requires that the operations in Subject, RealSubject
and Proxy have the same name, modelled with a variable x. Sim-
ilar to the theory of graph transformation [12], graphs in a pattern
definition may have attributes with either a concrete value, or gi-
ven by a variable taken from a set, whose values are constrained
by formulae. More complex attribute conditions such as in [12]

are possible. As we have omitted the name of classes and associa-
tions in the pattern, they can be mapped to any name.

Example. Workflow patterns [35] collect recurring constructs
from existing workflow systems and provide descriptions of their
usage. Their presentation is textual in the style of GoF patterns.
For control flow patterns dealing with synchronization policies,
an intuitive semantics through coloured Petri nets gives example
realizations of the patterns, to be inferred by the reader. Fig. 6
shows formalizations for some of them, where places and transi-
tions can play different roles such as input, split, output, and or
merging. In particular, the pattern Structured Discriminator allows
merging a number of branches in a process into a single subse-
quent branch such that the first of them to complete results in
the subsequent branch being triggered, but completions of other
incoming branches thereafter have no effect on (and do not trigger)
the subsequent branch [35]. We formalize this by allowing two or
more instantiations of the inputs variable part, while we require
one less instantiation of region discard. Note how this is expressed
by means of a system of equations that relate the variability of
these two regions. To the best of our knowledge, this kind of con-
straints cannot be expressed with any other existing pattern
formalization.

3.2. Synchronizing different diagrams: synchronized patterns

A pattern specification can be composed of more than one
diagram, like for example in the case of the GoF patterns, which
are described using class and sequence diagrams. In this case,

Fig. 4. Annotated pattern with the structural part of the Proxy pattern in theoretical (left) and compact (right) forms.

Fig. 5. Meta-model triple for UML patterns.

5

relationships have to be established between the elements in the
different diagrams in order to identify when the same element ap-
pears in more than one of them. We do this through the roles as-
signed to the elements in the pattern, and through the variable
names associated with the root and variable parts.

Example. The Visitor pattern represents as objects the operations
to be performed on the elements of an object structure, so that new
operations can be defined without changing the elements on which
they operate. It is one of the most complex GoF patterns as it re-
quires two levels of variation for the two hierarchies of Visitor
(i.e., the operations) and Element (i.e., the object structure), with
the set of operations for Visitor varying together with the Con-

creteElement set. Fig. 7 shows the structural and interaction dia-
grams for this pattern, where the presence in the same variance
region of the signatures for the visit operations constrains the
types of their parameters to be equal to the types of ConcreteEl-
ement. Both diagrams are formalized through an annotated pat-
tern with two variable parts each, relative to the two hierarchies.
However, while in the structural diagram the two parts are inde-
pendent, in the interaction one they are nested. This reflects the
double constraint that each concrete visitor can be accepted by
each concrete element, and that each concrete visitor has an oper-
ation to visit each concrete element.

The synchronization between the different regions is repre-
sented by equality of their names (i.e., Struct, CElem or CVisit in
the example), whereas the elements that overlap in regions with
the same name are formalized in the notion of a synchronization
graph, which factors out the common structure of the two patterns
to be synchronized. In general, given n diagrams (i.e., n annotated
patterns) to be synchronized with one structuring pattern, the n
synchronization graphs are automatically calculated by the inter-
sections of those regions with equal name with respect to the roles.
This is possible as the diagrams to be synchronized share the same
vocabulary model, since they describe different diagrams of the
same pattern. Thus, the synchronization graph has one region for
each two regions to be synchronized. Two elements in two anno-
tated patterns SP and IP, if mapped to the same role in a region
with same name, will be related through an element in a region

of the synchronization graph. See [7] for a description of the
algorithm.

Synchronized pattern. A synchronized pattern is made of a pri-
mary structuring annotated pattern SP, zero or more secondary
annotated patterns IPi synchronized with SP through synchroniza-
tion graphs SGi. For simplicity, we assume that the equations con-
taining variables of synchronized regions are the same in SP and IPi.
For UML patterns, the primary pattern SP is a class diagram, and
the secondary patterns IPi are sequence diagrams. See [7] for the
formal definition.

Example. The left of Fig. 8 shows a variation of the Proxy pattern
allowing several proxies for a given subject. The figure shows both
the structural and the interaction annotated patterns, related
through a synchronization graph. The synchronization graph con-
tains two regions, as we synchronize the two roots and the two
variable parts. The Subject region contains the elements that are
to be identified in the roots of the structural and interaction pat-
terns (the RealSubject as it plays the role RSubject in both
roots). The Proxy region has the identified elements in the variable
parts (the Proxy and the request operations). For clarity, we
explicitly show the classifiers of the p and rs objects, as both clas-
sifiers play a role in the pattern.

Synchronized pattern satisfaction. The satisfaction of synchro-
nized patterns is similar to that for annotated patterns, but taking
into account the synchronization graph. Thus, instead of looking
only for occurrences of a variable part of the structural pattern to
the graph, we look for a pair of occurrences of the variable part
of the structural pattern and the synchronized variable part of
the secondary pattern, such that their intersection (their pullback)
is exactly the synchronization graph node relating both. This is re-
peated for each combination of structural and secondary patterns.

Example. The right of Fig. 8 shows one step in the satisfaction of
the Proxy pattern to the left of the same figure. The model M con-
tains a class diagram and two sequence diagrams, which a tool
would present in three different views. The model has one instance
of the Proxy pattern, and the variable region that affects the Proxy

role has been instantiated twice (classes ImageProxy and Remo-

teProxy). The figure shows the first step in the satisfaction check-

Fig. 6. Some workflow patterns.

Fig. 7. The structural and interaction diagrams for the Visitor pattern.

6

ing, depicting the pullback (i.e., the maximal intersection) of the
roots, which is equal to the root of the synchronization graph.
The satisfaction check follows by computing two additional pull-
backs for the two instantiations of the variable parts and checking
the variability equations.

4. Pattern invariants

Patterns may include contextual conditions for their correct
application. For example, the intent of the Singleton pattern is to
make available a unique instance of a class and provide a global
point of access to it. This is achieved by defining the unique in-
stance as a static attribute in the class, which is returned by a static
method. Moreover, the pattern forbids the class to have a public or
protected constructor, as this would allow other classes to create
additional instances. Hence, a constraint should demand that all
constructors in the class be private. This is an invariant that needs
to be satisfied in order to make the pattern application correct.

We formalize this kind of pattern invariants using the notions of
graph constraints and application conditions [11]. We present in
this section an informal intuition, see Section B.2 in the Appendix
for a formal treatment.

Pattern with invariants. A pattern with invariants is a pattern
with a set of pattern constraints defined over the root or any vari-

able part of its structural or secondary patterns. The simpler con-
straints are the atomic ones, and consist of one premise graph
and a set of consequence graphs. As in logic, the intuition of con-
straint satisfaction is the following: if the premise graph is found
in a model, then some of the consequence graphs have to be found
as well. We call Negative Application Condition (NAC) an atomic
constraint with empty consequence set, as its satisfaction requires
that no occurrence of the premise graph be found. A Positive Appli-
cation Condition (PAC) is the negation of a NAC, and hence de-
mands the existence of the premise graph for its satisfaction. In
addition, more complex constraints can be formed by using bool-
ean formulae over atomic constraints.

Example. The left of Fig. 9 shows the Singleton pattern. It in-
cludes two invariants in compact notation, in particular two NACs,
which declare model fragments forbidden to occur. The NACs are
represented in the pattern inside crossed grey rectangles. The first
one forbids public constructors in the singleton, while the second
one forbids finding a protected constructor. We have used the
notation ‘‘(. . .)” to mean ‘‘any number of parameters”, which in the
abstract syntax is depicted as an Operation object without refer-
ence to its Parameters.

As we will show in Section 6, invariants help detecting pattern
conflicts, i.e., whether two patterns can be applied together in a
certain way. They can also be used to indicate incompatibility of

Fig. 8. Synchronized pattern for Proxy (left). Annotated model M satisfying the Proxy pattern and first step in satisfaction checking.

Fig. 9. Singleton pattern with two invariants (NACs) (left). Specifying role conflicts as invariants for the Decorator pattern (right).

7

an element to simultaneously play two roles in different patterns,
which is done by including the forbidden role combinations as
NACs in the patterns. This is possible as we work with triple graphs
where the roles are in a separated graph component. As an exam-
ple, the right of Fig. 9 shows the Decorator pattern, where it is for-
bidden for the ConcreteComponent to play the role of Context
in any instance of the Strategy pattern. This is so because although
both patterns allow defining extra behaviour or modifying the
behaviour of a class, using Decorator precludes using Strategy.
The client of a Decorator uses the Component to invoke the opera-
tion, which is propagated through the chain of decorators until it
reaches the ConcreteComponent. On the contrary, the client of
a Strategy uses directly the operation in the ConcreteComponent.
Thus, we can think of a Decorator as a skin over an object that
changes its behaviour, while the Strategy changes the object’s guts
[14]. Finally note also that, as we use triple graphs, should we for-
bid an element to play two roles defined in the same pattern, we
can specify in the invariant whether the prohibition is for roles
in the same instance of the pattern or in different ones. This is done
by referring to the same or different PatternInstance nodes in
the correspondence graph.

Satisfaction of pattern with invariants. In order to check whether
a model satisfies a pattern VP with invariants, we have to check
that each replica of the variable parts satisfies its associated invari-
ants (if any). The details of this procedure can be seen in the
Appendix, Section B.2. Moreover, considering invariants leads to
the notions of hard and soft satisfaction. The former is used on
annotated models, while the latter is used on unannotated ones
for pattern identification (i.e., finding pattern instances in models).
Intuitively, in hard satisfaction, we take the maximal graph E in
EXP(VP) for which there is an occurrence in the model, and then
we demand that the invariants hold. If they do not, the pattern is
not satisfied. In soft satisfaction we take the maximal element in
EXP(VP) which, once embedded in the model, satisfies all invari-
ants. Hard satisfaction makes sense when the model is annotated
with roles, so that we know exactly which elements of the model
belong to a certain instance of the pattern. Soft satisfaction is use-
ful for pattern identification in order to suggest the (maximal)
parts of the model that form an instance of the pattern.

Example. Fig. 10 shows the Composite pattern, which composes
objects into tree structures to represent part-whole hierarchies,
and allows clients to treat individual objects and compositions of
objects uniformly [14]. The pattern is presented to the left, where
for simplification we only consider one variable region concerning
the number of leaves. The pattern contains one NAC that forbids
leaves to be connected with the Component, as this is only permit-
ted (demanded indeed) for the Composite role. To the right, the
figure shows an example of pattern expansion with two leaves
and their corresponding NAC. Finally, the right shows a model that
does not hard-satisfy the pattern because the leaf Rectangle de-

clares a link to the component. On the contrary, the model soft-sat-
isfies the pattern because it contains an expansion of the pattern
with just one leaf (Line). Hence, soft satisfaction permits neglect-
ing replicas of variable parts that, if considered part of the pattern
occurrence, would make the occurrence violate the pattern. None-
theless, soft satisfaction does not make sense for annotated mod-
els: since Rectangle has role Leaf, it belongs to the pattern
instance, and hence it is forbidden to have a link to the Component.
Should we have a model without role annotations, soft satisfaction
could be used to find instances of the pattern, and then a compos-
ite with one leaf would be found.

As explained before, expansion graphs have attached replicas of
the invariants defined in the pattern. Some of these expansions
may already satisfy all invariants, which is the case when for each
constraint, the premise and some consequence graph is found in
the expansion. We call such expansions strong expansions. In some
other cases, the expansions need the model they are embedded in
to provide certain elements in order to evaluate the invariant.
Thus, their validity depends on the environment. This is for exam-
ple the case if we find the premise of an invariant in the expansion
but none of its consequences. Hence, the environment has to pro-
vide the occurrence of some consequence. These expansions are
called weak expansions. Note that expansions containing NACs are
always considered weak. Finally, an expansion is unsatisfiable if
there is no model that can satisfy it. This is so if the expansion is
attached a NAC for which there is already an occurrence in the
expansion. This classification of expansions is useful for the proce-
dure for pattern-based model completion, shown in next section. A
precise discussion of these kinds of expansions is provided in
Appendix B.

5. Pattern-Based model completion

Our formalization of patterns can be used by modelling tools to
automatically complete models according to patterns. In this sce-
nario, a user interacts with the model, while the vocabulary of pat-
tern roles as well as the annotation graph (the correspondence) are
automatically built through the application of patterns, yielding as
a result a pattern-annotated model. The tool would offer a cata-
logue of patterns from which the user chooses a suitable one,
and specifies which elements of the model play some role in the
selected pattern, if any. After this choice is made, the tool would
complete the model (i.e., the source, the target and the annotation
graphs) in case all constraints are satisfied. If the pattern con-
straints are not satisfied, the user would be suggested with some
model transformations that ensure their satisfaction (Section
5.1). If applying the pattern violates the invariants needed by other
already existing pattern instances, the user would be warned.

Fig. 10. Composite pattern with invariants (left). One expansion of the Composite pattern, and a model that does not hard-satisfy it (right).

8

This process is depicted in Fig. 11, where we assume a unique
model acting as a repository (e.g. a UML model conformant to
the UML meta-model). The tool would present views of this model,
which correspond to different diagrams, e.g. along the lines of [16].
Note that the annotation of roles is an example of model marking in
MDA, and can be carried out e.g. by adding tags (shown in the fig-
ure as coloured squares on the elements of the views).

Next we sketch the algorithm that implements step 4a in
Fig. 11, namely the application of a pattern to a model M =
hMs,Mc,Mti in order to perform pattern-based model completion.
As a reminder, Ms is the source model, which contains the design
diagrams (e.g. in UML);Mt is a model containing the pattern vocab-
ulary elements; and Mc is the correspondence model, which anno-
tates the different elements in the source model with roles in the
vocabulary. The procedure starts by applying the primary pattern
(steps i–v), then checks the satisfaction of invariants (steps vi
and vii), and finishes by applying the secondary patterns (step viii).
This procedure can be used to create new instances of a pattern in a
model, as well as to extend previous existing instances. See [7] for
a more detailed description of the algorithm and a proof of its cor-
rectness for patterns without invariants.

(i) Vocabulary extension. If Mt does not contain the definition of
the pattern and its roles, as it happens the first time the pat-
tern is instantiated, then such a definition is added to Mt.

(ii) Role annotation. The user selects the elements playing some
role in the pattern from Ms. Then, a RoleMap node is auto-
matically created in Mc for each of these elements, associ-
ated with a node pm of type PatternInstance. This is a
new node for a new instance of the pattern, or an existing
one if we are extending a previous instance of the pattern.
This process constructs the morphisms from the modified
annotation graph Mc to Mt and Ms.

(iii) Instance extraction. The portion of the primary pattern that is
already in the model M is identified. For this purpose, a so-
called pattern graph PG is built by navigating from pm to
the elements in Mc belonging to the defined instance of the

primary pattern SP, and from these to the elements in Mt

and Ms along the correspondence morphisms.
(iv) Variability instantiation. The user selects a number r of

instantiations for each variable part of the primary pattern,
such that the existing number of instances e plus the new
ones r satisfy the variability equations. We select from
EXP(SP) an expansion E with r + e instantiations of each var-
iable part. If E is an unsatisfiable expansion, then the model
M cannot be completed and the user is warned about this.

(v) Model extension. M is extended with an instance of the pri-
mary pattern that has the selected number of variable parts.
For this purpose and starting from M, the modified model M0

is built by constructing the pushout1 of E and M through PG.
That is, we add the elements missing from E to the original
model M, yielding M0.

Example. Fig. 12 shows the application of the Proxy to a modelM
containing a class Image, which the user mapped to role RSubject.
The expansion graph E contains two proxies, as the user selected
two instantiations of the variable part; hence two proxies are cre-
ated in the resulting model M0. The name of the operation in the
pattern (‘‘request”, a variable) is mapped to the name of the oper-
ation in the model (‘‘draw”), and similarly for class names.

(vi) Invariant checking. If the chosen expansion E is a strong
expansion, then it already satisfies the invariants and no
additional checking has to be performed. On the contrary,
if E is a weak expansion, then it has to be checked if M0

hard-satisfies E and its invariants. If not, M0 does not satisfy
the pattern, and the procedure finishes by warning the user
of this fact, especially of the invariants of E that cannot be
satisfied. In Section 5.1 we propose some mechanisms that
hint the user on actions enabling the application of the pat-

1 Given two objects Ai, whose ‘‘intersection” is given by A1 I ? A2, the pushout
A1 ? B A2 is their union, where the common elements (given by I) are ‘‘merged”.

Fig. 11. Usage scenario of a pattern-based tool for model completion.

9

tern on these cases. In case the invariants hold, the applied
expansion E and its morphism to M0 are stored in a set Patt,
together with the morphisms (occurrences) of their con-
straints. This is done in order to facilitate the invariant pres-
ervation in next step.

(vii) Invariant preservation. It is checked that no invariant of exist-
ing pattern instances in M is broken by applying the new
pattern. This is done by taking each element E0 2 Patt and
checking that: (i) no occurrence of E0’s NACs appears in the
new model M0, and (ii) if for some constraint with a non-
empty set of consequences, a new occurrence of the premise
appears in M0, then some of the associated consequences
must be found as well. Note that the PACs of existing pattern
instances cannot be violated as this procedure adds ele-
ments to M but does not delete anything. If some constraint
is violated, the procedure finishes by warning the user of it
(and the expansion is deleted from Patt). Otherwise the pro-
cedure continues by enlarging M0 with the application of the
secondary pattern.

(viii) Application of secondary patterns. Finally, the secondary pat-
terns (e.g. sequence diagrams for GoF patterns) are applied
to the model. For this purpose, the model M0 is enlarged by

a sequence of pushouts, which can be seen as a model trans-
formation. To be precise, firstly it is checked which variable
parts of the primary pattern were added to M to yield M0.
This is necessary as the user may have extended an existing
instance. Then, the synchronization graph is used to locate
the variable part of the secondary pattern synchronized with
the variable part of the primary, and a pushout is built (see
[7]). As a result, the model is enlarged with an instance of
the secondary pattern. The procedure is repeated for each
secondary pattern synchronized with the primary one. The
variable parts of secondary patterns may also contain invari-
ants and, as in the case for the primary pattern, it has to be
checked that they are satisfied and that no invariant of exist-
ing pattern instances is violated. The procedure is incremen-
tal – one can update an existing instance – and supports
heterogeneous synchronization, such as the one shown in
Fig. 7, where the structural pattern has two independent
variable parts and nesting in the interaction pattern.

Example. Fig. 13 shows the creation of the first sequence dia-
gram when applying the Proxy pattern starting from model M0 of
Fig. 12. First, the I node of the synchronization graph (which

Fig. 12. Applying the structural pattern of Proxy to an annotated model M yielding M0 .

Fig. 13. Synchronization of secondary pattern: building the first sequence diagram.

10

contains the intersection of the roots of the primary and the sec-
ondary pattern) locates the place in M0 where the root VIP

0 of the
secondary pattern is to be applied. Then, the variable part VIP

1 of
the secondary pattern is added through an intermediate graph BIP

(see [7]) to yield M000. As there were two instantiations of VSP
1 , the

procedure would follow by adding an additional sequence diagram
(i.e., another instance of VIP

1 through a pushout).

5.1. Suggesting tips to enforce invariant satisfaction

As explained in the sixth step of the previous pattern-based
model completion procedure, it is possible that a weak expansion
of a pattern cannot be applied because some of its invariants are
not satisfied by the model in which it is embedded. This subsection
presents an algorithm that returns some actions (deletion or addi-
tion of elements to the models), which can be suggested to the user
so that the model satisfies the invariants imposed by the applied
pattern and those of other existing pattern instances in the model.
We restrict the study to the case of atomic constraints.

There are two scenarios where a weak expansion cannot be ap-
plied. The first one is due to the existence of a NAC that is not sat-
isfied. Hence, a starting model M was completed according to an
expansion E to yield M0, but here an occurrence of the NAC exists.
Thus, we generate a set of deleting rules [12] or ‘‘graph differences”
that eliminate parts of the NAC instance and which are presented
to the user so that he can select the most appropriate one to en-
force the satisfaction of the invariants. In particular, we generate
the partial order of all graphs Xj bigger than or equal to the expan-
sion E and smaller than the forbidden NAC X. As these graphs con-
tain the elements to be preserved, those elements that are in the
NAC but not in Xj are deleted. In addition, each fragment to be de-
leted should let intact (i) each pattern occurrence already existing
in M0 and (ii) each positive constraint of every existing pattern. For
this purpose we use the set Patt that our previous procedure built,
and which stores the patterns applied in the model as well as the
occurrences of their invariants. We do not care about NACs of
existing pattern instances as deleting elements never violates
them. The details on the construction of these rules are given in
Section B.3 in the Appendix.

Example. Fig. 14 shows an example where and expansion E with
two leaves of the Composite pattern cannot be applied to a model
M. The reason is that one of its NACs is found in the model M0 that

results from applying its primary pattern to M: the leaf Text has
an association to the Component. For simplicity, we assume no
other pattern has been applied. Thus, our algorithm hints the user
that one solution is to delete the link from the Text class to the
Graphic class. This is represented as the deleting rule X) X1 with
the intuitive meaning: ‘‘if X is found in the model then replace such
occurrence by X1”. As X is ‘‘bigger” than X1, this means deleting the
elements that appear in X (the NAC) but not in X1, so that the NAC
is no longer present.

In this example, the conflict is due to an element (the link) that
does not play a role in another pattern. However, some conflicts
may arise between elements belonging to other patterns. In this
case, one can use the static analysis techniques shown in the next
section to detect the possibility of such conflicts. Moreover, one
can either use the algorithms presented in this section, or give
more specialized solutions for each conflict type.

The second scenario where a weak expansion cannot be applied
is a pattern defining an invariant with a non-empty consequence
set, which is not satisfied. This is so because at least one occurrence
of the premise X is found, but no consequence is found. The way to
proceed is similar to the previous case. We build a set of sugges-
tions, each building one consequence graph Cn. This set can be seen
as a set of non-deleting rules of the form X) Cn. Such set is offered
to the user so that, if some suggestion is adopted, all constraints for
the expansion occurrence E are satisfied. As before, we must ensure
that the elements Cn in the set of suggestions do not produce an
occurrence of some negative constraint in other patterns instances,
or that they do not introduce an occurrence of a premise but not of
a consequence for some existing constraint.

6. Pattern composition and conflict analysis

This section describes a procedure for composing patterns,
which enables the realization of pattern-based languages. It also
presents static methods to analyse whether such composition is
possible by checking conflicts derived from the pattern invariants.

6.1. Composing patterns

We present two ways of composing patterns. The first one
yields a new pattern where a new role is created for two elements
that are identified together. Thus, this method enables the creation

Fig. 14. Suggesting tips to allow an application of the Composite pattern.

11

of a pattern language with an operator for creating new patterns.
The second method is like a ‘‘macro” that allows applying two pat-
terns in one step.

For the first case, the main idea is to select the elements to be
identified in the roots of both patterns. Then, both roots are glued
through those identified elements (i.e., a pushout is built) yielding
the root of the composite pattern. The process is repeated for the
elements in the variable parts that one wants to identify. The sec-
ond composition operation does not generate a new pattern, but
the operation retains the roles of the original elements in the
two patterns. The procedure is exactly the same, but the roles
are not identified when specifying the intersections of the variable
parts. Concerning the variability equations, both merged variable
parts receive the same name, hence we perform the union of the
original equations (once we do the renaming) so as to consider
the most restrictive ones.

Example. The left of Fig. 15 shows a composition of the Compos-
ite and Observer patterns. In the composition, we have chosen to
keep the roles in both patterns, i.e., we follow the first of our ap-
proaches to pattern composition. In addition, we have chosen to
identify the Observer with the Component in the roots, and the
Leaf with the ConcreteObserver in the variable parts. The
resulting composed pattern has as equation the union of the sets
of equations of the original patterns, once variables are renamed,
var0 = {LeafConcreteObserver > 0, LeafConcreteObserver > 1}. This re-
sults in taking LeafConcreteObserver as the most restrictive (Leaf-
ConcreteObserver > 1). The formal description of this example is
shown in the Appendix, Section B.4.

6.2. Analysing pattern interactions and conflicts

As patterns are equipped with constraints expressing invari-
ants, it is possible to check possible conflicts statically at ‘‘compo-
sition-time”. We have identified the following three conflict types,
restricting to atomic constraints and PACs. These cases appear
when generating the constraints in the composition. Recall that
all these resulting constraints are incorporated into the composed
pattern.

Fatal conflicts. In this first kind of conflicts, an unsatisfiable com-
position is obtained, and hence the identification of elements made
by the composition is invalid. There are two sources for this:

� NAC in root or variable part. The composed pattern has a NAC
that is found in its root or in some of its variable parts. This

pattern is unsatisfiable as, whenever it is applied, an occurrence
of the NAC will be present. This conflict is detected by finding a
morphism from the NAC to the root or variable parts of the
composed pattern, which is shown to the user.
Example. The right of Fig. 15 shows a composition of the Adapter
and Composite patterns. The former contains a NAC forbidding
the Adaptee to generalize the Target. This is reasonable as, if
one decides to solve the problem by subclassing the Target,
the Adapter pattern is not needed. The built composition identi-
fies the Target with the Component, and the Adaptee with
the Composite. The resulting CompositeAdapter pattern vio-
lates the NAC, as there is an occurrence of it in the root of the
composed pattern, hence that identification of roles is not con-
sistent with the invariants. Note that once we detect such con-
flict we can directly add the role conflicts as invariants to the
original Composite and Adapter patterns, as we did to the right
of Fig. 9. This will improve performance next time we try to
compose the patterns, as this combination will not be permitted
from the beginning, as well as when trying to apply one of the
patterns on elements that play a role in an existing instance of
the other.
� NAC in PAC. A NAC included in a PAC also yields incompatibility
of the resulting composed pattern. This is so because PACs have
to be found in the model, but when the PAC is found, so will be
the NAC and hence both constraints can never be satisfied at the
same time.

Conflicts affecting satisfaction. This kind of conflict, which is less
severe, comprises two cases. In the first one, a (possibly strongly
satisfiable) pattern may become weakly satisfiable and hence the
environment has to provide some parts in order for the pattern
to be satisfiable. In the second one, a weakly satisfiable pattern
may become strongly satisfiable.

� Premise in variable part. In this case, an occurrence of the pre-
mise of a constraint is found in a variable part of the composed
pattern, but no occurrence of any consequence is found. Thus,
any expansion of the pattern that instantiates such variable part
at least once becomes a weakly satisfiable expansion, as we
need the environment to provide an occurrence of some
consequence.
� Consequence in variable part. Here an occurrence of some
consequence of a constraint is found in a variable part of the
composed pattern. Thus, any expansion of the pattern that

Fig. 15. Composing the Observer and Composite patterns (left). An example of conflict between the Composite and Adapter patterns (right).

12

instantiates such variable part at least once becomes a strongly
satisfiable expansion (with respect to that particular
constraint).

Conflicts between invariants. The last two cases represent con-
flicts between invariants, which result in losing a part of the
semantics of the invariant as a consequence of the invariant
interaction.

� NAC in premise. If an occurrence of a NAC is found in the premise
of a constraint then such constraint can be removed from the
composition, as the only way to satisfy both the constraint
and the NAC is by not finding an occurrence of the premise. This
is so because, if the premise is found, then so is the NAC. This
conflict means that we have lost the invariants specified by
the consequence part of the constraint.
� NAC in consequence. If an occurrence of a NAC is found in the
consequence Ck of a constraint, then such consequence Ck can
be removed from the composition. Hence, the only way to sat-
isfy the NAC and the constraint once we find an occurrence of
the premise is to find an occurrence of some other consequence
different from Ck. This is so because, if Ck is found, so will be the
NAC and hence the NAC will not be satisfied. Note that if the
constraint has Ck as unique consequence, it is converted into a
NAC.

7. Examples

In this section we provide additional examples that show the
wide applicability of our proposal and the usefulness of the tech-
niques presented in this paper.

7.1. GoF patterns: Invariants on the use of Singleton

As discussed in Section 4, the intent of the Singleton pattern is to
ensure that only one element of the class deemed as Singleton

can exist. This is achieved at the structural level by defining a static
variable typed as the class, a private constructor and a static public
method always returning the same instance of the class. At the
behavioural level, one needs to insure that an instance of the sin-
gleton can be obtained only through a public static method, which
must have a distinctive behaviour, namely, if the class variable is
not already initialized, it initializes it calling the private construc-
tor. In any case, it returns a handle to the instance referred to by
the static variable.

The left of Fig. 16 shows the structural part of the solution
through a class diagram in abstract syntax (where the name attri-
butes in the objects are assigned to variables), and depicts in the
center the behaviour of the public method getInstance()

through an activity diagram in concrete syntax. For simplicity we
do not show again the NACs already presented in Fig. 9.

While a class constructed exactly as above satisfies the pattern,
one can ask under which conditions the solution described to the
right of Fig. 16, given directly in Java for simplicity, is still an in-
stance of the pattern. In this case, the method getOptimizedIn-

stance() sets a field of OptimizedSingleton depending on
some characteristic of the request. Depending on how the code
for setting the instance is defined, the class satisfies the pattern
or not. In particular, if this does not use getInstance() or does
not replicate exactly its structure, then one could actually create
several instances of OptimizedSingleton, while still providing
a match for the root of the pattern.

One can prevent this situation, while still ensuring flexible
adaptation of the pattern, by combining two types of constraints,
as expressed in the left of Fig. 17. The NAC prevents the direct
use of the constructor for the Singleton class in a method other
than getInstance(), while the constraint of the form X ? C (‘‘if
premise (X) then consequence (C)”) requires that each method
returning an instance of the class proceeds through a call to
getInstance().

The complete definition of the Singleton pattern resulting from
the addition of the constraints in Fig. 17 makes the composition
of this pattern with the Prototype pattern unsatisfiable. Indeed,
the Prototype pattern, as presented to the right of the same figure,
demands that a clone operation exists which returns a new in-
stance of a realization of the Prototype interface, by calling its
constructor, conflicting with the NAC on Singleton. A conflict anal-
ysis would then rule out the possibility of composition through
identification of the Prototype and Singleton class roles. Note
that the identification of the getInstance() and clone() oper-
ations is not possible due to the different values of the attribute
isStatic. Once such an incompatibility is detected, it can also
be transformed into an explicit NAC on the roles, as in the example
of Decorator and Strategy (see the right of Fig. 9).

The reader can find a formalization of all GoF patterns with our
approach in [8].

7.2. Workflow Patterns: Describing safety conditions

The left of Fig. 18 formalizes the Critical Region workflow pat-
tern. This pattern provides a means to prevent two or more sec-
tions of a process from executing concurrently. This may happen
if tasks within the sections require exclusive access to a common
resource for completing the tasks [35]. The pattern suggests that
a place, called mutex, acts as mediator for this exclusive access.
The variable region participant specifies that the mutex can
be accessed by any number of processes that need to be synchro-
nized. They should get a token from the mutex in order to enter

Fig. 16. Structural (left) and interaction (center) diagrams for pattern Singleton. A class satisfying the Singleton under certain conditions (right).

13

the critical region, and put the token back once they leave. Note
however that this pattern imposes many security restrictions for
its correct use, shown below. We use the notation AC(Premise,
Consequence) (see Definition 9 in Appendix B). Hence, the first
constraint states that, if a transition takes tokens from the mutex
(premise), such transition should have a role enter (consequence).
Similarly, the second specifies that if a transition puts tokens in the
mutex, it must have the role leave. This guarantees that only tran-
sitions participating in the pattern access the mutex. In addition,
four NACs restrict the participant transitions, so that they have ex-
actly one arc to the mutex.

The right of Fig. 18 shows the classical ‘‘dining philosophers”
model. The model contains two philosophers competing for two
shared resources (two chopsticks) that they need to start eating.
Hence, two instances of Critical region regulate the access to each
chopstick, with two expansions of the participant variable re-
gion each. Also, each philosopher process uses the generalized
and-join pattern shown in Fig. 6 so that they start eating once they
have both chopsticks. Should we want to modify the model to
introduce the fact that the waiter can change a chopstick from left
to right, this is done by adding one transition connecting l-chop to
r-chop. However, this modification violates the invariants for the
Critical region pattern that state that only transitions of participants
can access the mutex, and so the user is warned that the modifica-
tion breaks the two instances of the pattern.

7.3. Enterprise integration patterns: Composing architecture styles and
routing policies

Enterprise integration patterns [18] describe integration solu-
tions across different implementation technologies. The solutions
consist of many different components such as applications, dat-
abases, messages or routing components. In [18] the authors use
a particular visual notation to illustrate the use of the patterns,
which is the one we use in Fig. 19. The patterns to the left specify
three different integration styles so that several applications can
work together and exchange information, namely through a shared
database, file or message interchange.

The right of Fig. 19 shows the composition of the Shared Data-
base integration style pattern, with a message routing pattern
called Recipient list which allows routing messages to the correct
system based on the message content [18]. This second pattern
has a root list made of the router component, and a variable part
made of the recipients and channels through which they receive
the messages. In this way, the composed pattern allows routing a
message to a number of applications sharing a database. This is
useful, e.g., when integrating a system dealing with different types
of queries to be answered by several applications on the same
database system. The final composed pattern is shown in the low-
er-right corner, where we may simplify the variability equation to
just applics > 1.

Fig. 17. Ensuring the singleton solution (left). The Prototype pattern (right).

Fig. 18. The Critical Region workflow pattern (left). Dining philosophers model (right).

14

7.4. Interaction patterns: Expressing pattern dependencies

Interaction patterns [31] represent a way to capitalize on expe-
rience on all different aspects of interaction design, covering lay-
out, navigation, action coordination, etc. They are usually not
formalized, but presented through examples or in textual form.
We illustrate here some examples in the direction of their formal-
ization, relying on a particular meta-model at the foundation of a
markup language for abstract description of interfaces [34], a frag-
ment of which is presented on the left-hand side of Fig. 20. The
meta-model presents an interactive system as composed of several
models, in which an abstract user interface is realized through con-
crete elements, referring to domain objects and workflow descrip-
tions. We only show the classes used in the examples, and omit
most associations for clarity. The meta-model only considers ab-
stract user interfaces and not concrete ones. Interestingly, this
means that the realization of the pattern can be deferred to the

mapping of the abstract to the concrete interface, without loading
pattern descriptions with unnecessary detail, e.g. on the specific
classes to be used.

Inspired by [31], we have built a pattern vocabulary for the
examples, where the Affordance role can be played by elements
on which user actions can be performed, while the Presentation

role pertains to elements providing a visual clue to the user. In a
classical MVC implementation, these roles would be played by dif-
ferent objects, but different paradigms could collapse them on the
same object, e.g. in the Swing architecture.

Fig. 20 shows to the right two patterns concerning the coordina-
tion of the presentation of actions on a common container. In the
ButtonGroup pattern, a small number of actions relative to the
same element are presented within a single container, while in
the ActionPanel pattern, the same container is used to present a
greater number of actions on possibly unrelated elements. The
examples of concrete interfaces illustrate how the affordance role

Fig. 19. Enterprise integration patterns describing integration styles (left). Composition (right).

Fig. 20. A fragment of the UsiXML meta-model (left). Examples of action patterns (right).

Fig. 21. Two patterns associated with workflow items with duration. Cancelability (right) expresses a dependency with Progress Indicator (left).

15

can be played by different types of concrete widgets, buttons in the
first case and links in the second.

Fig. 21 shows other two action patterns, Progress Indicator and
Cancelability, related to processes with duration, as represented
by a status attribute. In the first case, a container is provided in
which, while the process is running, it is possible to have a visual
representation of the current advancement of the work item, and
have controls available, e.g. to suspend, resume or cancel the job.
The second pattern provides a way to establish access to an action
to interrupt any such process. An atomic constraint expresses the
request that if the progress of the item is presented through the
progress indicator pattern, the cancel action is presented in the
same container. Note that in this case the constraint is used as a
means to add a dependency between patterns.

8. Conclusions and future work

In this work we have presented a formal approach to the spec-
ification of patterns, as well as procedures for pattern-based model
completion, pattern composition and analysis of pattern conflicts.
In the proposed formalization, patterns are annotated by roles in
a vocabulary, may contain variable parts (possibly nested), support
synchronization of the variable parts inside a diagram and across
different types of diagrams, and may contain constraints formaliz-
ing environmental conditions. The latter may be used to formalize
some intentions and consequences of the patterns.

Our approach presents several benefits with respect to exist-
ing ones. First, the proposal relies on a general meta-model for
patterns, not necessarily based on UML, and the algorithms and
constructions are presented in a categorical framework so that
they can be applied to a great variety of domain-specific
languages. This was exemplified through the formalization of
patterns in quite different domains. Moreover, the categorical
framework permits using model fragments of the domain-specific
language to specify the pattern. This has the advantage that the
pattern designer does not have to learn a formal complex math-
ematical language for the formalization. Second, variability re-
gions – with the possibility of nesting – together with the
equations governing their permitted instantiations are more flex-
ible than current proposals, which annotate single elements with
cardinalities [13] and for which it is more difficult to express that
several elements have to vary together. For example, complex
dependencies on permitted instantiations of variability regions
(like, e.g., Fig. 6) are possible in our approach, and difficult to ex-
press in most approaches. Third, our mechanism for pattern
application considers synchronization of several diagrams. The
synchronization is flexible, as it allows for example synchronizing
nested variable parts with independent ones, like we showed in
the Visitor example in Fig. 7. Fourth, we separate the roles from
the pattern structure by a triple graph, without extending exist-
ing meta-models. This clean and non-intrusive solution facilitates
the manipulation and querying of the vocabulary models, as well
as the identification of pattern instances. Moreover, using sepa-
rate models for the roles and the traces facilitates the implemen-
tation, as one does not need to modify the meta-model of the
domain-specific language for which the patterns are defined.
Such modification is impractical or even impossible in most
cases. Fifth, our use of constraints to express extra environmental
conditions enables the analysis of pattern conflicts, which can be
done statically. Finally, our formal treatment facilitates the deri-
vation of recovery actions oriented to preserve the satisfaction of
existing pattern instances in models. Thus, altogether we believe
that this work is an enabling step towards the automated and
flexible use of pattern specifications for modelling with do-
main-specific languages.

We are implementing this approach in a meta-modelling frame-
work, which is a new version of the AToM3 meta-modelling kernel
[9] rewritten in Java. As the tool allows the definition of domain-
specific modelling languages through meta-modelling, our lan-
guage-independent formalization enables the definition of a gen-
eral infrastructure to define patterns for different languages. For
the algorithms presented in Section 5 (to complete models and
to enforce invariants) one can resort to graph rewriting techniques.
It is important to mention that two crucial features needed are the
ability to generate rules on the fly, as well as to store, interactively
select and pass matches between rule applications. A future contri-
bution will present this meta-modelling framework in depth, to-
gether with its pattern-based modelling capabilities, based on
the formalization we have introduced in this paper.

Concerning the current limitations of the approach, consider for
example the Critical Region pattern shown in Fig. 18. In order to for-
malize the intent of this pattern completely, one should rely not
only on syntactical aspects, as shown with the graph constraints,
but also on behavioural ones. For example, a reasonable assump-
tion is to ask each participant process to be deadlock free, and to
control that a mutex can never receive more tokens than it had
in the initial marking. In general, this cannot be done with purely
syntactical means, but the constraints would have to query the
reachability graph. One way to do it is to allow constraints with
formulae in computational tree logic. It is up to future work to
combine structural patterns with behavioural constraints. Note
that in our current approach we may have constraints on behav-
ioural diagrams, but only concerning their syntax.

Other lines of future work include formalization of patterns in
additional languages and improvement of tool support, both for
modelling and for analysis. The presented notion of satisfaction en-
ables the use of our formalization for pattern identification, but
heuristics specific to the domain language may be needed here.
We are also working towards augmenting the expressivity of our
patterns. Whereas the replication mechanism of variable parts is
powerful enough to cover many interesting patterns, the replica-
tion occurs in ‘‘width” but not in ‘‘length”. For example, with our
current formalization, it is difficult to generate a path of connected
nodes of arbitrary length. Even though we have detected that var-
iability in patterns usually occurs in width, considering replication
in length is also interesting, and could be done along the lines of
[24].

Acknowledgements

This work has been supported by the Visiting Professor Pro-
grammes of ‘‘Sapienza” University of Rome and its Department of
Computer Science, the R&D program of the Community of Madrid
(S2009/TIC-1650, project ‘‘e-Madrid”), the CAM-UC3M project ‘‘EX-
PLORE” (CCG08-UC3M/TIC-4487), as well as by the Spanish Minis-
try of Science and Innovation, under project ‘‘METEORIC”
(TIN2008-02081), and mobility Grants JC2009-00015 and
PR2009-0019. The authors are grateful to the reviewers and the
editor that helped in improving the paper.

Appendix A. Introduction to category theory

This appendix introduces the technical concepts used in the
Appendix B. In particular, we introduce the concepts of category,
pushout, pullback and colimit, and give graphs and triple graphs
as examples of categories. The interested reader can consult some
book specialized on this subject, like [25].

A category is a structure that has objects and arrows (or mor-
phisms), with a composition operation on the morphisms and an
identity morphism for each object.

16

Definition 1 (Category). A category C = (ObC, MorC, �, id) is defined
by:

� a class ObC of objects;
� for each pair of objects A, B 2 ObC, a set MorC(A,B) of morphisms;
� for all objects A, B, C 2 ObC, a composition operation �(A,B,C):-

(A,B,C):MorC(B,C) �MorC(A,B)?MorC(A,C); and
� for each object A 2 ObC, an identity morphism idA 2 MorC(A,A),

such that the following conditions hold:

1. Associativity: for all objects A, B, C, D 2 ObC and morphisms f:
A? B, g: B? C and h: C ? D holds: (h�g)�f = h�(g�f).

2. Identity: for all objects A, B 2 ObC and morphisms f: A ? B
holds: f�idA = f and idB�f = f. j

Instead of f 2MorC(A,B) we write f: A? B and leave out the sub-
script for the composition operation. For such a morphism f, A is
called its domain and B its codomain. One example of category is
Set with objects all sets and arrows the total functions. Another
category that we commonly use is Graph with objects graphs and
morphisms graph homomorphisms. A graph can be described by
a tuple G = (V,E,s, t), where V is a set of nodes (or vertices), E is a
set of edges, and s: E? V and t: E? V are the source and target
functions, which assign the source and target nodes to each edge.
Graph homomorphisms are therefore pairs (mV,mE): G1 ? G2 of
set morphisms mapping the nodes and edges of the graphs G1

and G2, such that the structure of the graph is preserved (i.e.,
mV�s1 = s2� mE, and mV�t1 = t2�mE). The identity arrow is the arrow
that maps each node and edge to itself. Graph homomorphisms are
associative as total functions for sets are associative. The structure
of graphs can be enriched with attributes in nodes and edges, as
well as with types for nodes and edges. See [12] for more details.

One can build new categories out of simpler ones. For example,
we can build the category of triple graphs TriGraph out of the cat-
egory Graph, by taking as objects tuples of three graphs (named
source, target and correspondence) and two graph morphisms

from the correspondence to the source and target. Technically,
what we build is a functor category Graph� �?�.

A pushout generalises the union of two objects in a given cate-
gory. Intuitively, it is the object that results from the gluing of two
objects along a common subobject.

Definition 2 (Pushout). Given two morphisms f: A? B and g:
A? C 2 MorC. A pushout (D, f0,g0) over f and g is defined by:

� a pushout object D and
� morphisms f0: C? D and g0: B? D with f0�g = g0� f,

such that the following universal property is fulfilled: for all objects
X with morphisms h: B? X and k: C? X with k�g = h�f, there is a
unique morphism x: D? X so that x�g0 = h and x�f0 = k. See the left
of Fig. 22. j

The pushout object D is unique up to isomorphism. That is, if
(X,k,h) is a pushout over f and g, then x: D ? X is isomorphic to
x�g0 = h and x� f0 = k. Vice-versa, if (D, f0,g0) is a pushout over f and
g and x: D? X is an isomorphism, then (X,k,h) is a pushout over f
and g, where h = x�g0 and k = x�f0. The center of Fig. 22 shows an
example of pushout in the Graph category, where the morphisms
are depicted by using the same node identifiers in the different
graphs. As it can be noted, the pushout amounts to glueing the
nodes and edges of graphs C and D to the nodes and edges of A.

The dual construction for a pushout is that of a pullback. Intui-
tively, a pullback is the generalised intersection of objects over a
common object.

Definition 3 (Pullback). Given two morphisms f: C? D and g:
B? D, a pullback (A,f0,g0) over f and g is defined by:

� a pullback object A and
� morphisms f0: A? B and g0: A? C with g�f0 = f� g0,

such that the following universal property is fulfilled: for all objects
X with morphisms h: X? B and k: X? C with f�k = g�h, there is a

Fig. 22. Pushout (left). Example of pushout and pullback in category Graph (center). Pullback (right).

Fig. 23. Cocone (upper left). Colimit (lower left). Example of colimit in category Graph (right).

17

unique morphism x: X? A such that f0�x = h and g0�x = k, see the
right of Fig. 22. j

The example in the center of Fig. 22 is also a pullback, as A is the
maximal intersection graph of B and C in the bigger context graph
D.

Finally, we introduce colimits as a generalized pushout in which
we can glue together several objects through their common parts.
For this purpose, we first introduce cocones.

Definition 4 (Cocone). A cocone (X,{gi}) of a diagram with objects
Ai and morphisms fk is an object X and a family of morphisms gi:
Ai ? X which are coherent with fk, i.e., gi = gj�fk for all fk: Ai ? Aj, as
the upper left of Fig. 23 shows. j

Definition 5 (Colimit). A colimit is a cocone (X,{gi}) such that for
any other cocone (Y,{hi}) there is a unique morphism a: X? Y such
that a�gi = hi for all objects Ai, as the lower left of Fig. 23 shows. j

The right of Fig. 23 shows an example colimit in the Graph cat-
egory. Note that we can make colimits of arbitrary coherent dia-
grams, and that the center of Fig. 22 is another example of
colimit, where graph D is the colimit object.

Appendix B. Formal definitions

This appendix provides the formal definitions of the concepts
intuitively presented throughout the paper.

B.1. Pattern specification

This section formalizes the concepts presented in Section 3. We
start by defining a Variable pattern.

Definition 6 (Variable pattern). A variable pattern is a construct
VP = (P,root,Emb,name,var), where:

� P = {V1, . . ., Vn} is a finite set of non-empty graphs, where each Vi

is called variable part,
� root is a distinguished element of P, also called the fixed part,
� Emb is a set of morphisms vi,j: Vi ? Vj with Vi,Vj 2 P, such that it
spans a tree rooted in root 2 P with all graphs Vi 2 P as nodes
and the morphisms vi,j 2 Emb as edges,
� name: P? L is an injective function assigning each variable part
a name from a set of variables L, of sort N,
� var # TAlgIEq(name(P)) is a set of equations governing the num-
ber of possible instantiations of the variable parts. These equa-
tions use variables in name(P) # L, arithmetic operations, and
are restricted to use the <, 6 , = , > ,P relation symbols. We call
this signature ‘‘Algebraic Inequalities” (RAlgIEq) and hence TAlgIEq
(name(P)) is the term-algebra with variables in name(P). j

Each variable name(Vi) – of type N – receives values accounting
for the number of instances of the variable part Vi in a pattern real-
ization. An instance of the pattern is valid if the valuation of the
variables (i.e., an assignment of values to variables) satisfies the
equations in var. We use the notation Val�var to mean that a val-
uation Val satisfies the equations in var. Note that if the set of equa-
tions var has no solution in the natural numbers, then the pattern
cannot be instantiated.

Example. Fig. 24 presents a simplified version of the Observer
pattern using Definition 6. This pattern was presented in compact
form in Fig. 1, where all graphs were displayed together. Here we
encode the theoretical form, with full definition VP = (P = {VOb,
VConc},root = VOb,Emb = {vOb,Conc: VOb ? VConc},name = {(VOb,Ob),
(VConc,Conc)},var = {Conc > 0}). Representing the variability with
the morphism vOb,Conc: VOb ? VConc allows us to replicate the sub-
graph in VConc that is not identified by vOb,Conc(VOb), and the replicas
are glued through their common elements in vOb, Conc(VOb). The
number of allowed replicas is given by the equations in var, which
may use the names of the variables assigned to the variable parts,
of type N. In our example, such names are Ob and Conc.

Next, we provide the construction for the set of expansions
EXP(VP) of a variable pattern VP. Hence, a pattern specification VP
can be seen as a compact form for expressing a (possibly infinite)
language of graphs, EXP(VP). This set is indeed a partial order, tak-
ing graph inclusion as the order relation.

Definition 7 (Expansion set). Given a variable pattern VP, its
expansion set EXP(VP) is given by all graphs Ei,j s.t. there is a
surjective function fi,j: Ci ? Ei,j from the set of all colimits {Ci} of all
possible diagrams a obtained by replicating the graphs in P, and
the morphisms in Emb, such that:Fig. 24. A simplified version of the Observer pattern in theoretical form.

Fig. 25. Construction for the EXP(VP) set. Example of construction for the Observer pattern (right).

18

� the diagram a is consistent with the morphisms in Emb, which
means that if Vi ? Vj is included in a, then there is a morphism
vi,j: Vi ? Vj in Emb.
� the number of replicas in each path from root to Ci satisfies the
equations in var. j

Example. The left of Fig. 25 shows one of the diagrams ai needed
to calculate the expansion set in case the Emb set contains two
morphisms {root? V1,V1 ? V2}. The scheme has n instantiations
of the root, and the right-most instance is connected to m replicas
of V1. We assume that this valuation satisfies the equations. A sim-
ilar reasoning holds for the left occurrence of root. Then the colimit
Ci is obtained and all surjective morphisms fi,j: Ci ? Ei,j are calcu-
lated. This last step is performed to permit the identification of ele-
ments in the different graphs of the diagram. This is illustrated to
the right of the same figure, where one element of the expansion
set of the Observer pattern is calculated. The diagram is made of
two instances of the root, each having one instance of the variable
part, hence these two valuations satisfy the equations. The bottom
of the diagram shows two of the obtained model expansions,
which were also shown in Fig. 2. The one to the right identifies
both ConcOb objects in C1 into a single one in E1,n.

A model satisfies a variable pattern when some pattern expan-
sion is found in the model.

Definition 8 (Pattern satisfaction). Given a variable pattern VP and
a graph G, we say that G satisfies VP, written G�VP, iff there is an
injective morphism Ei,j ? G, where Ei,j 2 EXP(VP). j

As the definition of the elements in EXP(VP) is non-constructive,
we provide a procedure for checking satisfaction. It performs a
depth-first traversal of the Emb tree, counting the occurrences of
the variable parts Vj along the way, assigning such values to
name(Vj), and building with them a valuation called Val. Once a leaf
in Emb is reached, the equations defined in var need to hold, given
the variables values stored in name(Vj).

Algorithm for pattern satisfaction. Given a graph G and a variable
pattern VP, G satisfies VP, written G�VP, iff SAT(G,VP,Mroot = {pi:
root? G}, root, {(name(root),jMrootj)}) = true, where SAT is defined
as follows:

function SAT(G: Graph, VP: VariablePattern, Occ: set of mor-
phisms, el: VariablePart, Val: Valuation): Boolean

1. Let Children: = {Vjj$vel,j 2 Emb}. // Direct children of el in Emb
2. if (Children = ;) then return Val�var. // el is leaf: check equations
3. "pk 2 Occ: // Take each occurrence of el in Occ

3.1. "Vj 2 Children: //Take all children
// All occurrences of Vj adjacent to pk

3.1.1. Let Mk
j ¼ fpj : Vj ! Gjpk ¼ pj � vel;jg.

3.1.2. if not SATðG;VP;Mk
j ;Vj;Val [fðnameðVjÞ; jMk

j jÞgÞ
then return false. // Check sat of pk’s path

4. return true.

Note that some steps of the algorithm rely on graph pattern
matching (the initialisation, where a set Occ of occurrences of the
root is given, and step 3.1.1), leading to the subgraph isomorphism
problem [33], which is known to be NP-complete. Note however
that in step 3.1.1 the matching has to be adjacent to a previously
found morphism, thus reducing the search space. Optimised algo-
rithms for pattern matching taking into consideration types and
attributes have been successfully applied in the graph transforma-
tion area [5].

As an example, the left of Fig. 26 describes the morphisms con-
sidered by the satisfaction function SAT given a pattern with two
levels of nesting, i.e., Emb = {root? V1,V1 ? V2}, and assuming
the presence of a single morphism p1

root 2 Mroot , i.e., only one occur-
rence of the root in G. SAT is called with the graph, the pattern, the
Mroot set, the root element and the valuation Val = {(name(root), 1)}
as parameters. As there is one child of root in Emb, the step 3.1.1 in
the procedure picks the unique morphism in Mroot and obtains the
set M1

1 of all morphisms p1
1; . . . ; p

n
1 : V1 ! G commuting with

G p
1
root root !vroot;1

V1. Then, the step 3.1.2 makes a recursive call to
SAT with el ¼ V1;Occ ¼ M1

1 and the updated valuation
fðnameðrootÞ;1Þ; ðnameðV1Þ; jM1

1j ¼ nÞg as parameters. This proce-
dure is repeated so that, for each element pk 2 M1

1, a set Mk
2 of

occurrences of V2 commuting with pk is obtained, and a new recur-
sive call is made with the valuation fðnameðrootÞ;1Þ; ðnameðV1Þ;
nÞ; ðnameðV2Þ; jMk

2jÞg. As V2 is a leaf (Children = ;) then the valuation
should satisfy the var set of formulae (step 2). Altogether, the val-
uations built with the set Mk

2 of morphisms commuting with each
occurrence pk of V1 have to satisfy the equations in var. In the fig-
ure, we have replicated V2 and V1 for each different morphism pk

2

and pk
1, to show the tree traversal more intuitively.

The right of Fig. 26 shows an example of a model G that satisfies
the specification of the Observer pattern of Fig. 1. The root VOb oc-
curs once, and the variable part VConc twice (note that they have
been assigned the variables Ob and Conc in the figure, respec-
tively). The variabilities are checked by building the set
MOb ¼ fp1

Ob : Vob ! Gg, picking its only element p1
Ob, and then build-

ing the set M1
Conc ¼ fp1

Conc : VConc ! G; p2
Conc : VConc ! Gg. The valua-

tion fðOb;1Þ; ðConc; jM1
Concj ¼ 2Þg is obtained and therefore Conc > 1

holds. In the figure, the dotted lines indicate some of the mappings
induced by p1

Ob; p
1
Conc and p2

Conc . In the same way, Fig. 3 in Section 3
shows to the left the maximal element of EXP(Observer) that is
present in the graph G to its right.

B.2. Pattern invariants

This section gives the details of the formalization of pattern
invariants, sketched in Section 4. For this purpose we first intro-
duce the notion of graph constraint, taken from [12].

Definition 9 (Pattern constraint). Given a structuring or secondary
pattern VP, an atomic pattern constraint over Vi 2 VP is of the form
AC(xi: Vi ? X, _ n2Ncn), where xi and cn: X? Cn are triple graph

Fig. 26. Scheme for pattern satisfaction (left). Satisfaction example (right).

19

injective morphisms. A pattern constraint PC over Vi is a Boolean
formula over atomic pattern constraints over Vi. j

A constraint over Vi is satisfied if, for each occurrence of X com-
muting with an occurrence of Vi, we find at least one occurrence of
some Ci. Thus, constraints can be interpreted as ‘‘if X is found in the
graph, then C1 or C2 or . . . or Cn should be found”. Pattern constraints
of the form AC(xi, _n2Ncn) and :ACðxi;_n2NcnÞ with empty index set
N are abbreviated by NAC(xi) (for Negative Application Condition)
and PAC(xi) (for Positive Application Condition), respectively. The
former express a forbidden structure X, while the latter demand
finding X in the model.

Definition 10 (Pattern constraint satisfaction). A triple graph
morphism m: Vi ? G satisfies AC(xi: Vi ? X, _n2Ncn) if for all
injective morphisms p: X? G with p�xi =m there exists n 2 N
and an injective morphism qn: Cn ? G with qn� cn = p, see the left
part of Fig. 27. The satisfaction of a pattern constraint PC is as
follows. A morphism m satisfies :PC if it does not satisfy PC. m
satisfies ^k2KPCk if it satisfies all PCk. m satisfies _k2KPCk if it
satisfies some PCk. j

Example. The right part of Fig. 27 shows the invariants for the
Singleton pattern. The constraints are two NACs that forbid a public
and a protected constructor in the singleton (NAC1 and NAC2
respectively). These constraints were shown in compact form in
Fig. 9. For the sake of illustration, we have included an additional

constraint of the form X ? C, which is equivalent to the two NACs.
It states that if the singleton defines another constructor different
from the one with role constructor (X graph), then such con-
structor has to be private (C graph).

Satisfaction of patterns with invariants. In order to check the sat-
isfaction of a pattern VP with invariants, we modify the generation
of its expansion graphs E 2 EXP(VP) so that they include copies of
the pattern invariants, as we illustrate in Fig. 28. The left of this fig-
ure depicts a pattern with two variable parts V1 and V2. Its root has
a constraint AC(x1,c1) stating that, if an A object is connected with
two B’s, then it should be connected with a C. Hence, one can ex-
pand V2 as much as one likes, but if V1 is expanded twice, then
V2 should be expanded at least once in order to obtain the C re-
quired by the constraint, or else the environment (i.e., the model
where the pattern is embedded) should provide a C connected to
the A. Although an equation in var could describe a similar con-
straint, it cannot express the fact that C can be given by the
context.

The right of Fig. 28 shows the expansion graph E that results
from expanding V1 twice. The constraints are transferred from
the root to E by calculating all surjective glueing graphs X1,i of E
and X1 (technically, calculating the set fE!

x01;i
X1;i fi X1jfi; x01;i are

jointly surjective}). The same procedure is used to transfer the
graph C1 to the expansion graph E. There are three ways to identify
the B’s of the constraint X1 with the B’s of E, and hence three

Fig. 27. Scheme for atomic pattern constraint satisfaction (left). Invariants for Singleton in theoretical form (right).

a:A

roota:A

X1

b:B b:B

a:A

C1

b:B b:B

:C

a:A

V1

:B

a:A

V2

:C

x1c1

vroot, 1 vroot, 2

:A

root

V1

:B

V’1

:B

:B :B

X1 :A

:B :B

C1 :A

:B :B

:C

X1,1 :A

:B :B

:AX1,2

:B :B :B

X1,3

C1,1 :A

:B :B

:C

:C
C1,2 :A

:B :B :B

C1,3

:B :B :B :B

:C

E :A

:A:A

pattern
expansion

replica of
constraints

:A :A

:B :B :B :B

x1c1

x’1,1

x’1,2

x’1,3

f1f2f3

Fig. 28. Example pattern VP with constraints (left) and one expansion in the set EXP(VP) (right).

20

different X1,i are obtained. Then, for each one, there is a unique way
to obtain the C1,i graphs. Anyhow even though three different con-
straints are obtained, X1,1 ? C1,1 subsumes the others as it has a
weaker premise. Moreover, this condition is not satisfied by the ob-
tained graph E, but the environment has to provide a C already
connected to the A. As stated throughout the paper, we call an
expansion that does not satisfy some of its constraints a weak
expansion, while a strong expansion is an expansion that satisfies
all constraints. In this example, expanding V1 twice and V2 once
leads to a strong expansion. Finally, if there is no graph G in which
a weak expansion E can be embedded such that its constraints are
satisfied, then E is called an unsatisfiable expansion. This would be
the case if E violates a NAC constraint, because a graph bigger than
E would violate it too.

Example. The upper left of Fig. 29 shows the Composite pattern.
To the right, the figure shows an expansion with two leaves and
some replicas of the negative constraint (indeed other two – iden-
tical – constraints X1,2 and X01;2 are generated with just one leaf, and
the two leaves from E identified into it). The lower left shows a
model that does not hard-satisfy the pattern because one leaf de-
clares a link to the component. This example was shown in
Fig. 10 in compact notation.

B.3. Suggesting tips to enforce invariant satisfaction

This subsection formalizes the procedure described in Section
5.1, which suggests recovery actions when applying one pattern
violates the invariants of the pattern definition, or those of other
pattern instances.

The first scenario is that of a pattern that cannot be applied be-
cause one of its NACs is violated, as Fig. 30 shows. The figure de-
picts the completion of M according to E to yield M0, where
NAC(x) is not satisfied because a morphism p: X?M0 exists. The
figure also shows other existing pattern instances Ej, . . ., Ek, some
of which may have constraints as in the case of Ek. In such scenario,
we generate a set of deleting rules [12] or ‘‘graph differences” that
delete parts of the violated NAC instance and which are presented
to the user so that he can select the most appropriate one to en-
force the satisfaction of the invariants. In particular, we generate
the partial order of all graphs Xj bigger than or equal to E and smal-
ler than X. As these graphs contain the elements to be preserved,
those elements that are in X but not in Xj are deleted. In addition,
each fragment to be deleted should let intact (i) each pattern
occurrence already existing in M0 and (ii) each positive constraint
of every existing pattern. We do not care about NACs, as deleting
elements never violates them. Next we enumerate the steps to
build these rules.

1. Build a set Patt0 as the union of Patt 2 and the occurrence E with
its already satisfied constraints.

2. Take all subgraphs Xj bigger or equal than E and smaller than X,
and their induced morphism to M0. We call this set Pres. Intui-
tively, if we delete the elements of X not present in Xj, the con-
straint NAC(x) will be satisfied as the morphism p: X? Gwill no
longer exist.

3. Build a set PresP # Pres with the elements Xj 2 Pres such that
deleting the difference between X and Xj does not destroy any
existing pattern instance. For this purpose, iterate on all ele-
ments Xj ?M0 2 Pres and do:
(a) Take each Ei ?M0 2 Patt0: if every intersection with X?M0

is smaller than or equal to Xj (i.e., the occurrence Ei is pre-
served), then add Xj ?M0 to PresP. Technically, this is

Fig. 29. Composite pattern (upper left). One expansion of the pattern (right). A model that does not hard-satisfy the pattern (lower left).

Fig. 30. Scheme for suggesting recovery actions.

2 Patt is a set that contains all patterns applied to a model, together with the
occurrences of their invariants, as explained in step vi of the algorithm for pattern-
based model completion presented in Section 5.

21

checked by building the pullback Ei B!b X of Ei ? M0 X
and checking that there is an injection i: B? Xj s.t. ij�i = b
with ij: Xj ? X.

4. Build a set PresPC # PresP with all the elements of PresP that pre-
serve all constraints of the pattern occurrences in Patt0. For this
purpose, we iterate on each element Xj ?M0 2 PresP and do:
(a) For all Ek ?M0 2 Patt having a constraint Ek ? Xk ? Cn, do:

i. If some occurrence Xk ?M0 is preserved (see item 3a) but
some Cn ?M0 is not, then break (that is, take a new
Xj ?M0 2 PresP, as the current one does violate a positive
constraint).

(b) Add Xj ?M0 to PresPC.
5. return PresPC.

The resulting set PresPC contains the model fragments Xj that
can be preserved, and thus the elements of X not in Xj can be de-
leted. This ensures that the pattern occurrence E satisfies all invari-
ants once one of the proposed deletions is performed.
Conceptually, the set contains deleting graph transformation rules
of the form X) Xj (with meaning: ‘‘if X is found in the model, replace
it by Xj”). Additionally, we should check that the deletions leave the
model in a consistent state, that is, do not violate the language
meta-model constraints. The set PresPC is indeed a partial order,
so in practice a tool would propose first the smaller deletions (big-
ger Xj) and later the bigger ones (smaller Xj, E in the limit).

The second scenario in which a pattern cannot be applied be-
cause a constraint AC(x: E? X, _n2Ncn: X? Cn) is not satisfied is
similar, but in that case a set of non-deleting graph transformation
rules is built.

B.4. Pattern composition

Next we present some formal details of our two ways of com-
posing patterns, which were introduced in Section 6. The first
one yields a new pattern where a new role is created for two ele-
ments that are identified together. The second method is like a
‘‘macro” that allows applying two patterns in one step.

The left of Fig. 31 illustrates the first case. Given two variable
parts (in this case the roots) of two patterns to be composed, the

user selects the elements in root1 and root2 that are to be identified.
Formally, this is modelled by an intersection graph K and mor-
phisms to root1 and root2, root1 K? root2. Then, the pushout is
built yielding root0. If the two original patterns contain constraints,
we calculate all jointly surjective graphs from the constraint and
root0 (similar to the procedure for adding constraints to the expan-
sion in Fig. 28) and the new pattern incorporates the conjunction of
all resulting constraints. In the figure, the conjunction of the two
constraints X0 and X00 is added to the composed root0. Concerning
the variability equations, both merged variable parts receive the
same name, hence we perform the union of the original equations
(once we do the renaming) and consider the most restrictive ones.

The second composition operation does not generate a new pat-
tern, but the operation retains the roles of the original elements in
the two patterns. The procedure is the same, but the roles are not
identified when specifying the intersections of the variable parts.
The right of Fig. 31 illustrates the difference with the previous
composition mechanism. In the diagram to the left, two elements
c2 and c3 in two patterns are identified in the composition (sig-
nalled by element c in the intersection and the morphisms (c,
c2) and (c,c3) yielding element c23. In this case, the roles are also
identified and a new role r23 is created. In the diagram to the
right, the roles are not identified in the intersection, and the origi-
nal roles are retained in the composition.

In case the patterns have additional variability parts, the algo-
rithm proceeds by constructing the pushouts of the variable parts,
according to the identified elements in these. The universal prop-
erty of the pushout [25] allows finding the embedding of the com-
posed variability regions into one another.

Example. Fig. 32 shows the composition of the Composite and
the Observer patterns, which was shown in Fig. 15 in compact form.
In the composition, we have chosen to keep the roles in both pat-
terns, and to identify the Observer with the Component in the
root (given by graph K) and the Leaf and the ConcreteObserver

in the variable parts (given by graph K0). The intersection of the
variable parts must be coherent with that of the roots, which is gi-
ven by the injection K? K0. Regarding the equations, assume that
the first pattern has fVObserver

1 > 0g, while the second has
fVComposite

1 > 1g. Then the composition has the union of both sets,

r1:rA

:m

c1:C

r3:rB

m3:m

c3:C c3:Op

r1:rA r23:r

:m m23:m

c1:C c23:C

{(r,r2),
(m,m2),
(c,c2)}

{(r,r3),
(m,m3),
(c,c3)}

c3:Op

{(r2,r23),
(m2,m23),
(c2,c23)}

{(r3,r23),
(m3,m23),
(c3,c23)}

P.O.

:r

:m

c:C
root1 root2

root’

K

r2:rC

m2:m

c2:C

r1:rA

:m

c1:C

X
r2:rC

m2:m

c2:C

c4:Op c5:Par

r1:rA

:m

c1:C

X’
r23:rC

m23:m

c23:C

c4:Op

c5:Par

r1:rA

:m

c1:C

X’’
r23:rC

m23:m

c23:C

c4:Op

c3:Op c5:Par

r1:rA r2:rC

:m m2:m

c1:C c2:C

r3:rB

m3:m

c3:C c3:Op

c:C

r1:rA r2:rC

m2:m:m

c1:C c23:C

{(c,c3)}{(c,c2)}

m3:m

r3:rB

c3:Op

{(c2,c23)} {(c3,c23)}

P.O.

Fig. 31. Composition identifying roles (left). Composition without identification of roles (right).

22

once variables are renamed, var0 = {V1 > 0,V1 > 1}. This results in
taking V1 as the most restrictive (V1 > 1). Finally, note that a mor-
phism root ? V is automatically obtained by the universal pushout
property, so that the pattern root? V is obtained as the result of
the composition.

References

[1] C. Alexander, A Pattern Language: Towns, Buildings, Construction, Oxford
University Press, 1977.

[2] J. Arlow, I. Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML, Addison-Wesley Object Technology Series
(2004).

[3] K. Arnout, B. Meyer, Pattern componentiation: the factory example, ISSE 2 (2)
(2006) 65–79.

[4] I. Bayley, H. Zhu, On the composition of design patterns, in: Proceedings of the
QSIC 2008, IEEE Computer Society, 2008, pp. 27–36.

[5] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, G. Varró, Incremental pattern
matching in the VIATRA model transformation system, in: Proceedings of
GRaMoT ’08, ACM, 2008, pp. 25–32.

[6] J. Bézivin, F. Jouault, J. Palies, Towards model transformation design patterns,
in: Proceedings of EWMT 2005, 2005.

[7] P. Bottoni, E. Guerra, J. de Lara, Formal foundation for pattern-based modelling,
in: M. Chechik, M. Wirsing (Eds.), FASE, LNCS, vol. 5503, Springer, 2009, pp.
278–293.

[8] P. Bottoni, E. Guerra, J. de Lara, A formalization of the GoF design patterns,
2010. <http://arxiv.org/abs/1003.3338> arXiv:1003.3338v1.

[9] J. de Lara, H. Vangheluwe, AToM3: a tool for multi-formalism and meta-
modelling, in: R.-D. Kutsche, H. Weber (Eds.), FASE, LNCS, vol. 23, Springer,
2002, pp. 174–188.

[10] J. Dong, S. Yang, K. Zhang, Visualizing design patterns in their applications and
compositions, IEEE Trans. Soft. Eng. 33 (7) (2007) 433–453.

[11] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann, Theory of constraints and
application conditions: from graphs to high-level structures, Fundam. Inform.
74 (1) (2006) 135–166.

[12] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph
Transformation, Springer, 2006.

[13] R.B. France, D.-K. Kim, S. Ghosh, E. Song, A UML-based pattern specification
technique, IEEE Trans. Soft. Eng. 30 (3) (2004) 193–206.

[14] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides, Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[15] Y.-G. Guéhéneuc, H. Albin-Amiot, Using design patterns and constraints to
automate the detection and correction of inter-class design defects, in:
Proceedings of TOOLS (39), IEEE Computer Society, 2001, pp. 296–306.

[16] E. Guerra, J. de Lara, Model view management with triple graph
transformation systems, in: ICGT, LNCS, vol. 4178, Springer, 2006, pp. 351–
366.

[17] E. Guerra, J. de Lara, Event-driven grammars: relating abstract and concrete
levels of visual languages, Software Syst. Model. 6 (3) (2007) 317–347.

[18] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley, 2004.

[19] P. Hruby, Model-Driven Design Using Business Patterns, Springer, 2006.
[20] H. Kampffmeyer, S. Zschaler. Finding the pattern you need: the design

pattern intent ontology, in: MoDELS, LNCS, vol. 4735, Springer, 2007, pp. 211–
225.

[21] J. Kerievsky, Refactoring to Patterns, Addison-Wesley Signature Series, 2004.
[22] S.K. Kim, D. Carrington, A formalism to describe design patterns based on role

concepts, Form Aspects Comput. 21 (5) (2009) 397–420.
[23] A. Lauder, S. Kent, Precise visual specification of design patterns, in: ECOOP,

1998, pp. 114–134.
[24] J. Lindqvist, T. Lundkvist, I. Porres, A query language with the star operator,

ECEASST 6 (2007).
[25] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in

Mathematics, second ed., vol. 5, Springer, 1998.
[26] J.K.-H. Mak, C.S.-T. Choy, D.P.-K. Lun. Precise modeling of design patterns in

UML, in: ICSE, 2004, pp. 252–261.
[27] D. Maplesden, J. Hosking, J. Grundy, A visual language for design pattern

modelling and instantiation, in: T. Taibi (Ed.), Design Patterns Formalization
Techniques, Idea Group Inc., 2007, pp. 20–43 (Chapter 2).

[28] J. Niere, W. Schäfer, J.P. Wadsack, L. Wendehals, J. Welsh. Towards pattern-
based design recovery, in: ICSE, 2002, pp. 338–348.

[29] A. Radermacher, Support for design patterns through graph transformation
tools, in: AGTIVE LNCS, vol. 1779, Springer, 1999, pp. 111–126.

[30] T. Taibi, D.C.L. Ngo, Formal specification of design pattern combination using
BPSL, Inf. Soft. Technol. 45 (2003) 157–170.

[31] J. Tidwell, Designing Interfaces, O’Reilly, 2006.

Fig. 32. Composing the Observer and Composite patterns.

23

[32] T. Tourwé, T. Mens, High-level transformations to support framework-based
software development, ENTCS 72 (4) (2003).

[33] J. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (1) (1976) 31–
42.

[34] UsiXML. UsiXML, user interface extensible markup language, 2007. <http://
www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-
Documentation.pdf>.

[35] W. van der Aalst, A. ter Hoefstede, B. Kiepuszewski, A. Barros, Workflow
patterns, Distrib. Parallel DataBases 14 (3) (2003) 5–51.

[36] S. Yacoub, H. Ammar, UML support for designing software systems as a
composition of design patterns, in: Proc. UML 2001, Springer-Verlag, 2001, pp.
149–165.

[37] C. Zhao, J. Kong, J. Dong, K. Zhang, Pattern-based design evolution using graph
transformation, J. Vis. Lang. Comput. 18 (4) (2007) 378–398.

844 P. Bottoni et al. / Information and Software Technology 52 (2010) 821–844

24

