
Analyzing Evolution of Variability in a Software Product Line:

from Contexts and Requirements to Features

Xin Peng1, Yijun Yu2, Wenyun Zhao1

1 School of Computer Science, Fudan University, China
2 Department of Computing, The Open University, UK
{pengxin, wyzhao}@fudan.edu.cn, {y.yu}@open.ac.uk

Abstract

In the long run, features of a software product line (SPL) evolve with respect to changes in
stakeholder requirements and system contexts. Neither domain engineering nor requirements en-
gineering handles such co-evolution of requirements and contexts explicitly, making it especially
hard to reason about the impact of co-changes in complex scenarios. In this paper, we propose a
problem-oriented and value-based analysis method for variability evolution analysis. The method
takes into account both kinds of changes (requirements and contexts) during the life of an evolving
software product line. The proposed method extends the core requirements engineering ontology
with the notions to represent variability-intensive problem decomposition and evolution. On the
basis of problem-orientation, the analysis method identifies candidate changes, detects influenced
features, and evaluates their contributions to the value of the SPL. The process of applying the
analysis method is illustrated using a concrete case study of an evolving enterprise software sys-
tem, which has confirmed that tracing back to requirements and contextual changes is an effective
way to understand the evolution of variability in the software product line.

1. Introduction

Software product lines (SPL) are longer term investments than individual products. Their
promise is to construct high-quality products quicker with less cost [22, 17] by proactive reuse.
Central to SPL development is the notion of commonality and variability. They are usually
modeled by features, which are distinctively identifiable functional abstractions, and organized
into feature models as an AND/OR graph, where AND nodes indicate mandatory features and OR
nodes indicate variation features selectable for different applications [9]. In feature models, typical
variation features include optional, alternative (i.e., exclusive OR) and inclusive OR features. In
the long-term evolution of an SPL, variability constantly evolves with the extension of scopes and
changes in the applications. Capturing, understanding and predicting variability evolution are all
important to achieve the SPL promise.

Changes to a feature model reflect changes in the requirements of the stakeholders or changes in
the domain contexts of the software products. An understanding of the relationship among these

Preprint submitted to Information and Software Technology January 26, 2011

changes may help one prepare for possible changes in the future, to control the risk of unexpected
changes, and to discover the missing rationale for the evolution of variability in the past.

However, the analysis is difficult due to the lack of traceability between requirements, contexts
and features. Domain engineering approaches [9, 17, 22, 20] interpret the variability across dif-
ferent application contexts. Volatile requirements approaches [25, 18] express the variability in
changing requirements. Nonetheless, little has been done to analyze the causes of a change in the
feature by looking at changes of both contexts and requirements [1].

Considering co-changes to contexts and requirements, our goal is to create a problem-oriented
method for analyzing variability evolution of an SPL. To this end, we first establish the intentional
and contextual bases for feature variations and variability evolution using the core requirements
engineering ontology [13]. Then we propose a value-based analysis method for both evolution
history analysis and future evolution prediction, following the perspective of value-based software
engineering [4] that considers economic aspects (such as business value) within the duration of
the whole software development. We categorize typical variability co-evolution patterns in terms
of context and requirement changes into a few canonical rules, which are used by our impact
analysis algorithm to identify the impacted features. To demonstrate the effectiveness of the
overall approach, we conduct a case study on the computer-aided grading system (CAGS-PL), an
enterprise product line for different kinds of official and intra-school examinations widely used in
China.

The main contribution of our work is threefold. First, we propose to analyze variability evolution
from the prospect of context and requirement changes, and present a set of evolution rules that
relate changes of contexts and requirements to those of feature variations. Second, we develop
an algorithm to analyze the impact scope to classify contexts or requirements change in the
variability evolution. Third, we illustrate a systematic process using these rules and the impact
analysis algorithm to help identify possible changes in contexts and requirements and rank their
influences on features.

The remainder of the paper is organized as follows. Section 2 introduces the background of the
core ontology in requirements engineering and gives an account of the brief evolution history of
CAGS-PL. Section 3 provides a formally defined theory of variability evolution as an extension to
the core requirements engineering ontology. Based on the variability evolution theory, in Section
4, we propose our value-based analysis method for variability evolution, which is supported by a
change impact analysis algorithm. Section 5 details the case study and Section 6 evaluates the
benefits of our problem-oriented analysis method and presents a discussion on the completeness
and correctness of our method. Section 7 presents the work in relation to the requirement evolution
and the variability analysis literature. Finally, Section 8 concludes the paper.

2. Background

In this section, we start with introducing the background of the core ontology in requirements
engineering, which forms the basis of our approach. We then introduce the CAGS-PL case study
and its evolution history, which will later be used as a running example to illustrate our approach.

Figure 1. Graphical syntax of a problem frame

2.1. The core ontology in RE

The Problem Frames (PF) approach [12] classifies software development problems into an ana-
lytical structure that relates requirements to the contexts surrounding the system. A specification
of a requirement is interpreted as transforming the context domains in a physical world by the
system-to-be (also called interchangeably as a solution or a machine). Zave and Jackson [30] define
requirement engineering as the problem of finding a way to satisfy the following entailment:

?
〈〈problem〉〉

W,S ` R
(1)

where requirements R are statements that confine the optative properties in the system S and
the indicative properties of the contexts W in which the system operates. Thus, the requirements
problem amounts to finding a solution S that satisfies the given requirements R for given domain
assumptions W [30]. The semantics of requirements engineering problems are further presented
as Problem Frames semantics in problem-oriented software engineering [10].

The structure and relationships among the problem domains are typically presented by a prob-
lem diagram in the PF approach. A generalized problem diagram [12] shown in Figure 1 includes
a requirement, a problem world, and a solution to be developed. These problem elements are all to
be understood in terms of physical phenomena rather than purely mathematical abstractions [12].
The requirement is a predicate or a condition on the problem world that the solution is required
to bring about. It is shown by a dashed oval, indicating its intangible nature. The problem
world consists of a set of domains that are tangible, thus are represented by solid rectangles. A
rectangle with a single vertical stripe denotes a “designed” domain, which is to be obtained as a
solution to a subproblem. A rectangle without any stripe denotes a given domain whose existence
is independent of the solution. A solution (or a machine domain) is shown as a rectangle with
two vertical stripes, linking with the problem world at interfaces of shared phenomena (typically
events and states). The dashed link between requirements and the problem world domain denotes
either a reference or a constraint by the requirement on the physical phenomena of the problem
world.

In parallel, Dardenne et al [8] initiates the KAOS approach to refine requirements into logical
rules relating to stakeholder goals. A goal of the system can be AND- or OR-decomposed into one
to more subgoals, such that one can assess the satisfaction of one goal by checking the satisfaction
of subgoals. Mylopoulos et al [19] further introduces the concept of softgoals, the goals that does
not have a clearcut criteria for satisfaction, to represent quality requirements as nonfunctional
requirements (NFR), whilst regarding functional requirements as hard goals.

Although problem frames and goal models above are complementary, none of the them alone
can capture a complete model of the requirements of stakeholders. In order to allow for the
partial fulfilment of nonfunctional requirements, recently Jureta et al [13] propose a more unified

representations and semantics for requirements, also known as the core ontology of requirements
engineering, by extending the requirements part of rule (1) as follows:

W,S ` F,Q
〈〈refinement〉〉

W,S ` R
(2)

where F denotes the functional requirements, Q denotes the quality requirements. In the very
definition of the core ontology, the semantics of Q can be richer than quality requirements, e.g.,
to include the emotional and psychological modes [13]. However, it is our belief that handling
quality requirements alone is the necessary step in this work.

Goal models represent the intentions which may or may not be fulfilled, while feature models
represent the variability as the system-to-be [28]. Therefore, one can use goal models to capture
the functional and quality requirements, and use feature models to structure the solutions to be
developed. Using feature models to capture the variability in the solution domains S, in this
paper, we consider various changes that might happen to the elements in the core ontology and
propose an extension that is necessary to represent and detect the variability evolution in S during
the long-term SPL evolution with respect to changes in W and Q, while maintaining the top-level
functional requirements F intact.

2.2. The CAGS product line

We use a software product line system to illustrate the concepts of co-changes analysis. The
computer-aided grading system (CAGS) is a commercial system for oral or written examinations.
During the exams, the system collects and preprocesses the answers into electronic answer sheets
before they are to be marked manually by the teachers. Although it was developed by a small
team, this product line supports a wide range of applications, including both oral and written
examinations. The two different screenshots in Figure 2 illustrate its use for written examinations.
Some products support intra-school examinations and some support formal official examinations,
some support regular school students and some other for vocational skill trainees.

Common to the products in the CAGS-PL, the measurable quality requirements are comforta-
bility, standardization and total cost of ownership (TCO). Comfortability is provided by anything
that can make users feel comfortable, which is wider than user-friendliness. Key to comfortability
in this domain are error-freedom and reliability. Error-freedom aims to have no grading errors
caused by personal or system mistakes, whilst reliability aims to have the smallest mean time of
continuous service delivery without failures. They can be achieved by employing barcode-based
solutions which can greatly reduce the mistakes in examinee identification. Standardization aims
to make the examination conforming to standards, for instance, A3-sized answer sheets must be
used in official written examinations in China. TCO includes both the direct and indirect costs
on the customer side for operating and maintaining the system, for instance, the cost of scanner
is the major part of TCO in application for written examinations.

Initially developed for spoken English examinations, the CAGS was a by-product of the oral
testing system for teachers to grade audio answers produced in the oral exams. During the
early phase, majority of customers were Chinese universities who adopted a computer-aided oral
testing. Since its inception in 2003 (phase 1), the CAGS has evolved into a new product line
CAGS-PL and has gone through three more phases of maintenance as its users base and the scope

Figure 2. Screenshots of CAGS application products

of application domain gets wider. In 2004 (phase 2), the system was adopted in some official
examinations for college entrance tests, in addition to the original oral testing. In late 2006
(phase 3), the CAGS-PL products for written examination were released, targeting at regional-
level formal examinations within cities for senior high-school entrance examinations. Later in
2008 (phase 4), the CAGS products for junior middle schools were released for their intra-school
regular written examinations, including monthly quizs and seminal exams.

3. Rationale of variability evolution

In this section, we first give an informal introduction to the notion of tracing feature vari-
ability to requirements and contexts, then describe the canonical form of the problem derivation
for contexts or requirements changes, classifying the rationale behind the evolution of feature
variability.

3.1. Tracing feature variability to requirements and contexts

Analyzing feature variations according to their intentional or contextual factors may help one
understand the origin of variability in features, since both intentional and contextual variability
can arise in requirements engineering [15, 14].

Intentional variability represents the diversities of requirements among different products in
a software product line. Different products usually share similar basic functions as mandatory
features, but they may have different choices of variant features due to the tradeoff decisions
to meet quality or nonfunctional requirements. In order to accommodate different preferences
of stakeholders, these tradeoffs must be kept in the product line, resulting in quality-related
variability [20]. For example, in CAGS-PL, all products share the same basic functions such as
answering preparation, dispatching, grading, querying and calculating statistics. These functions
all have different preferences in terms of quality requirements. In some applications, TCO and
comfortability are preferred, whilst in others error-freedom and standardization are preferable to
TCO and comfortability. These quality preferences usually lead to variations in corresponding

features, e.g. both barcode-based and blackened-code-based examinee recognition are available
as alternative features for examinee identification. The former has a much better precision at a
higher cost: about 0.007 US dollars per barcode.

Contextual variability represents the diversities of entities or contextual conditions in the prob-
lem world among different applications. They may request different solutions for the same require-
ments. We identify two kinds of contexts that affect the solution for the specified requirements:
(i) The driving context determines whether a solution makes sense at all. For example, CAGS uses
the Answer Sheets in the products for written exams and uses Audio Answers in the products for
oral exams. They require different solutions for preparation and display of the answers, although
answer scanning and other image-related treatment are required for the Answer Sheet alternative,
they become meaningless to the audio-based preparation of answers. (ii) Complementary to the
driving contexts, the supporting context maintains the solution for given functional requirements
whilst either strengthening or weakening certain quality requirements. For example, the closed
and trusted network is a stronger supporting context for the security requirement than the open
network. Therefore, a supporting context can also affect the variations in an SPL. In Section 3.3
we will show that supporting context is often connected to quality preferences in the variability
analysis.

From a static viewpoint, feature variations can be traced back to the differences in requirements
and contexts. From a dynamic viewpoint, variability evolution can be interpreted by requirement
and context changes. It is our belief that classifying the different relationships between variations
in specifications of the features and diversities in quality requirements and contexts, one can trace
their co-changes in the evolution. This enables a further analysis of the impact of changes to
better understand and plan variability evolution. In the remainder of the paper, we show how
such a combined view helps in analyzing the evolution of variability.

3.2. Basic definitions

To facilitate the proposed variability analysis, we refine the requirements semantics and rep-
resentation of the Rule (2) with quality preferences and define the requirements problem in our
method formally as follows.

Definition 1. A requirements problem p is a 6-tuple < Wd,Ws, S, F,Q
+, Q− > representing that

solution S with domain assumptions given by W satisfies the functional requirements F and both
positive and negative preferences on nonfunctional qualities Q. More specifically, Wd is the set
of relevant driving contexts that are characterised in Definition 3, Ws are relevant supporting
contexts characterised in Definition 4, and Wh = W \ (Wd ∪Ws) are irrelevant or hidden domain
assumptions; Q+ denotes the quality attributes that are positively influenced (helped), Q− denotes
the quality attributes that are negatively influenced (hurt), and Q0 = Q\ (Q+∪Q−) are indifferent
ones. For the analysts, the hidden domain assumptions Wh and indifferent quality requirements
Q0 can be ignored. Therefore, following the problem representation in rule (1) and rule (2), the
problem can also be represented by the following formula:

Wd,Ws, S ` F,Q+, Q− (3)

where Wd, Ws, F , Q+ and Q− are represented by a proposition in the conjunctive normal form
(CNF) and S is represented by a functional feature.

In this definition of a problem, Q+ and Q− are divided from the general quality requirements
Q in Rule (2) to represent the quality tradeoff involved in requirements refinement. The specific
quality requirements Q+ (resp. Q−) denotes a satisfaction degree that is higher (resp. lower)
than the that of the average solutions to F . Intuitively, Q+ and Q− can be understood as the
quality requirements preferred and conceded in the solution respectively. For example, “Q+:
PS(standardization)” and “Q−: PD(TCO)” involved in Formula (4) represent the preference
of “standardization over TCO” in the fulfillment of AnswerScan, with PS and PD respectively
meaning ‘Partially satisfied’ and ‘Partially Denied’. An implication of the problem definition
is that F should be meaningful and can be interpreted in the given contexts. For example,
functional requirement AnswerScan is meaningful only with the context setting AnswerSheet
(AnswerScan is meaningless in an oral examination application with corresponding context setting
of AudioAnswer).

It should be emphasized that “`” in our problem representation does not mean logical impli-
cation. It denotes a requirements satisfaction relation between a solution with certain context
assumptions and a requirements statement with both the functional and nonfunctional parts. Ac-
cordingly, “6`” means the requirements on the right are meaningless or cannot be satisfied by the
solution and context assumptions on the left. According to the tuple-based Definition 1, all of the
elements Wd, Ws, S, F , Q+ and Q− in a problem formula are specific, as they denote different
aspects of a problem. And the comma used in the formula denotes the separator for different
problem elements. Therefore, “`” is a domain-independent relation and is not a partial order.

Then one can use logical implication between context or requirement propositions to help a for-
mal variation analysis. In order to distinguish from the requirement satisfaction relation ”`”, we
use ”7→” to denote the logical implication between context or requirement propositions. Context
propositions usually involve predicates about the existence or the properties of certain entities.
For example, the following implication tells that the context specified on the left hand side is a
specialization of the right hand side: (A3 answer sheet)∧ (networked grading)7→(audio answer ∨
answer sheet) ∧ (networked grading). A quality requirement has a multi-valued label to indicate
the degree of its satisfaction [29]. To reason about quality requirements, we introduce the satis-
faction level predicates of a quality requirement Q, such as FullySatisfied (FS), PartiallySatisfied
(PS), PartiallyDenied (PD) and FullyDenied (FD) etc., in quality requirement representation. To
reason about quality requirements, logical implications are considered as comparisons between
discretised quality levels, e.g. “FS(TCO: 1,500)7→FD(TCO: 12,000)” holds.

Based on Definition 1, we further define the concept of stronger/weaker solutions.

Definition 2. Given functional and quality requirements F,Q and the contexts W , a solution S1

is stronger than another solution S2 if and only if

W,S2 ` F ′, Q
′+, Q

′− W,S2 6` F,Q+, Q−
〈〈stronger〉〉

W,S1 ` F,Q+, Q−

as long as the followings are satisfied:

1. F are stronger than F ′, i.e.:
F 7→ F ′ ∧ F ′ 67→ F

2. F = F ′ and Q+/Q− are better than Q
′+/Q

′−, i.e.:

(Q+ ∧Q− 7→ Q
′+ ∧Q

′−) ∧ (Q
′+ ∧Q

′− 67→ Q+ ∧Q−)

Since functional requirements are the basis for a solution, we select a subset of driving contexts
to characterizes the causes of changes to the functional requirements.

Definition 3. Contexts Wd are the driving contexts for a given solution and functional require-
ments F , iff their changes W ′

d can violate the satisfaction of functional requirements F :

W ′
d, (W \Wd), S 6` F

〈〈driving〉〉
Wd, (W \Wd), S ` F

Here W ′
d denotes a different driving context from Wd and W \Wd means all the other contexts in

W except Wd.

To capture the contexts whose changes still support the functional requirements while affecting
the satisfaction of quality requirements, we denote them as supporting contexts Ws.

Definition 4. Contexts Ws are the supporting contexts for a given solution S, given functional
requirements F and quality requirements Q, iff their changes W ′

s can affect the satisfaction of
quality requirements Q+ or Q−:

Wd,W
′
s, S ` F,Q

′+, Q
′−

〈〈supporting〉〉
Wd,Ws, S ` F,Q+, Q−

where (Q+ ∧Q− 67→ Q
′+ ∧Q

′−) ∨ (Q
′+ ∧Q

′− 67→ Q+ ∧Q−) holds.

The example in Formula (4) presents the problem representation using the canonical form given
in Rule (3). In the example formula, the prefix before each colon denotes the corresponding ele-
ment in the problem formula. It states that given the driving context AnswerSheet, the solution
SinglePageScan is provided with supporting contexts A3-Scanner to implement the requirement
AnswerScan. The influenced quality requirements Q+ and Q− show that the solution helps the
quality requirement standardization but hurts TCO. In this problem, if the driving context An-
swerSheet is not satisfied, e.g. in an oral examination application, the requirement AnswerScan
will be meaningless. The supporting context A3-Scanner is required in the solution, and further
leads to the quality preference of standardization over TCO: although A3-sized answer sheet is
standard, an A3-scanner is much more expensive than an A4-scanner.

Wd : AnswerSheet,Ws : A3Scanner, S : SinglePageScan `
F : AnswerScan,Q+ : PS(standardization), Q− : PD(TCO)

(4)

3.3. Variability-intensive problem decompositions

For a product line, the features including those variations already identified are typically spec-
ified on the basis of the current assumptions on the requirements and contexts in the domain. In
order to capture the requirement and context basis for further evolution analysis, we propose a

set of problem decomposition rules to establish a problem decomposition structure for the whole
domain. We assume that all the products share the same initial contexts and requirements, in-
cluding a functional requirement and some quality requirements. Starting from a common initial
problem, a series of variability-intensive problem decompositions can be derived using those rules.
Here, variability-intensive problem decomposition is to refine a general problem into more specific
sub-problems by certain requirement/context specializations. In problem refinements, feature
variations are identified as the solutions for different sub-problems of the OR-decompositions, and
related assumptions on the requirements and contexts can be captured as the basis of variability
evolution analysis.

Given a problem described as Rules (1) and (2), we use the problem transformation semantics
similar to that of Hall et al [11] as follows:∧

i

(Wi, Si ` Ri) ∧ (W 7→
∧
i

Wi) ∧ (
∧
i

Ri 7→ R)

〈〈AND〉〉
W,S ` R

(5)

∧
i

(Wi, Si ` F,Qi) ∧
∧
i

(Wi 7→ W) ∧
∧
i

(Qi 7→ Q)

〈〈OR〉〉
W,S ` F,Q

(6)

The AND-decomposition rule (5) denotes that S is the solution only when all Si, for i = 1, . . . , n
are specified in compatible contexts and requirements. Similarly, the OR-decomposition rule (6)
denotes that any variant solution Si can be a solution to S in specific requirement/context settings,
and the conjunctive connection of variant problems indicates that a complete refinement to a
general problem should cover all the specialized sub-problems under different requirement and
context settings.

Now consider different kinds of requirement and context specializations in our canonical rule (3),
we can identify two kinds of variability-intensive problem decompositions as follows:∧

i

(Wdi,Ws, Si ` F,Q+, Q−)

〈〈DrivingOR〉〉
Wd,Ws, S ` F,Q+, Q−

(7)

In rule (7), Wd1, . . . ,Wdn are disjoint specializations of Wd (i.e., Wdi 7→ Wd∧∀i, j : Wdi 6= Wdj), and
they demand different solutions to satisfy the same requirement. Formula (8) specifies an example
of OR-decomposition by driving context using rule (7). It tells that the two specializations of the
driving context Answer, AudioRecord and AnswerSheet, require different solutions to implement
the same functional requirement AnswerPreprocess.

Wd : AudioRecord,Ws :, S : AudioAnsPrepare ` F : AnswerPreprocess,Q+ :, Q− :
∧

Wd : AnswerSheet,Ws : Scanner, S : ImgAnsPrepare ` F : AnswerPreprocess,Q+ :, Q− :

Wd : Answer,Ws :, S : AnswerPrepare ` F : AnswerPreprocess,Q+ :, Q− :
(8)

The next rule concerns OR-decompositions for different tradeoffs of quality requirements.∧
i(Wd,Wsi, Si ` F,Q+

i , Q
−
i)∧

∀j 6= i : ((Q+
i ∧Q−i 67→ Q+

j ∧Q−j) ∧ (Q+
j ∧Q−j 67→ Q+

i ∧Q−i))
〈〈PreferenceOR〉〉

Wd,Ws, S ` F,Q+, Q−
(9)

Q+
i /Q

−
i for i = 1, . . . n are different and exclusive quality tradeoffs for the same set of qual-

ity requirements as those of Q+/Q−, i.e. there is no quality tradeoff that is absolutely better
than another one. These alternative solutions finally will be chosen by the customers using an
application-specific utility function reflecting their quality preferences, e.g. with a weight schema
for different quality requirements. In these OR-decompositions by quality preferences, correspond-
ing supporting contexts for each sub-problem (Wsi) may also be different.

Formula (10) specifies an example of preference-driven OR-decomposition using Rule (9). It tells
that the two variant solutions of SinglePageScan and MultiPageScan are provided to implement
AnswerScan with different quality preferences of “standardization over TCO” and “TCO over
standardization”. According to rule (9), neither of the two variant solutions is absolutely better
than the other one, otherwise we can always eliminate the worst one in the previous variability
analysis.

Wd : AnswerSheet,Ws : A3Scanner, S : SinglePageScan ` F : ImgAnsScan,
Q+ : PS(standardization), Q− : PD(TCO)

∧
Wd : AnswerSheet,Ws : A4Scanner,

S : MultiPageScan ` F : ImgAnsScan,Q+ : PS(TCO), Q− : FD(standardization)

Wd : AnswerSheet,Ws : Scanner, S : AnswerScan ` F : ImgAnsScan,Q+ :, Q− :

(10)

There are no OR-decompositions for different supporting contexts. Actually, supporting con-
texts usually appear together with quality preferences as the driving forces of specialized problem
decompositions, see Rule (9). In this kind of decompositions, quality preferences are always the
decisive factors. If no quality preferences are involved in the decomposition, i.e. there is one
sub-problem such that all its quality requirements are better satisfied than those of others, then
the stronger solution (see Definition 2) can always replace those weaker ones and variability will
not emerge.

It should be noted that problem decompositions in an evolving SPL are not invariable. Existing
problem decompositions on Rules (5)-(9) only reflect the current situation of the SPL. Along with
SPL evolution like scope extension and technical evolution, they may be reevaluated and new
variations may be introduced. For example, considering a new driving context for a problem
decomposed using Rule (7) may request a new variant feature to be introduced.

3.4. Variability evolution rules

Rules (6), (7) and (9) provide only a static interpretation for feature variations. From these
rules, one can observe that the current variability status of a solution is based on certain driving
and supporting contexts and quality tradeoffs. Taking a dynamic perspective with changing re-
quirements and contexts, on the other hand, one may discover the patterns and rules of variability
evolution through the variability-intensive problem decompositions. Three variability evolution
patterns are described as follows, each includes two problem-derivation rules.

3.4.1. Mandatory becomes Optional

In dynamic variability evolution, a mandatory feature can turn into optional, which indicates
that the feature is no longer applicable to the emerging requirements or contexts. The following
rules reflect different variability evolution patterns. The left and right sides of an evolve arrow in
these rules represent before and after the change respectively. The label above the arrow indicates
the factors such as the changed requirements or contexts.

Rule (11) describes the case of “Mandatory to Optional” evolution caused by a newly introduced
driving context. In this case, the requirements become meaningless under the newly introduced
driving context Wd2. For example, AnsMark, which enables a teacher to add marks on the answer
images, is a mandatory feature for written answers. It will become optional after oral answers are
introduced, as the original requirement is no longer meaningful for the oral answers.

Wd1,Ws, S1 ` F,Q+, Q−

Wd,Ws, S ` F,Q+, Q−
Wd2 6=Wd1−−−−−→
evolve

Wd1,Ws, S1 ` F,Q+, Q−
∧
∀S2 : Wd2,Ws, S2 6` F

Wd,Ws, S ` F,Q+, Q−
(11)

The other kind of “Mandatory to Optional” evolution is caused by newly involved quality
preferences. As stated in Rule (12), a feature introduced only for quality requirements (the
functional requirement F is null) will evolve to be optional if the quality tradeoff is unacceptable
for the new quality preferences. For example, FastForward, introduced in the initial applications
for intra-school examinations for better comfortability in oral answer display, turns out to be
optional when “error-freedom over comfortability” emerges with the newly introduced applications
for official examinations.

Wd,Ws1, S1 ` Q+
1 , Q

−
1

Wd,Ws, S ` Q+, Q−
Q+

2 6=Q+
1 ,Q−2 6=Q−1−−−−−−−−−−→

evolve

Wd,Ws1, S1 ` Q+
1 , Q

−
1

∧
Wd,Ws1, S1 6` Q+

2 , Q
−
2

Wd,Ws, S ` Q+, Q−
(12)

3.4.2. Mandatory/Optional becomes Alternative

This pattern means a mandatory or optional feature without any variants is turned into an
alternative feature with two variants, i.e. the existing feature and the newly introduced variant.
Similar to the “Mandatory to Optional” rules, one can identify two evolution rules for this kind
of evolution when the two aspects of requirement and contextual changes are considered.

Wd1,Ws, S1 ` F,Q+, Q−

Wd,Ws, S ` F,Q+, Q−
Wd2 6=Wd1−−−−−→
evolve

Wd1,Ws, S1 ` F,Q+, Q−
∧

Wd2,Ws, S2 ` F,Q+, Q−

Wd,Ws, S ` F,Q+, Q−
(13)

In Rule (13), the requirements F,Q+, Q− are still desired in the new driving context Wd2, so a new
variant solution should be introduced to adapt to the new context. For example, before written
answers are introduced, AudioAnsPrepare is the only solution for the requirement AnswerPrepare.
After written answers are introduced, ImgAnsPrepare, which provides the preparation for written
answers, is introduced and the parent feature AnswerPrepare becomes an alternative feature.

Wd,Ws1, S1 ` F,Q+
1 , Q

−
1

Wd,Ws, S ` F,Q+, Q−
Q+

2 6=Q+
1 ,Q−2 6=Q−1−−−−−−−−−−→

evolve

Wd,Ws1, S1 ` F,Q+
1 , Q

−
1

∧
Wd,Ws2, S2 ` F,Q+

2 , Q
−
2

Wd,Ws, S ` F,Q+, Q−

(14)

In rule (14), the functional requirement F is still desired after evolution under the new quality
preference Q+

2 /Q
−
2 . Therefore, a new variant solution should be introduced to support the new

quality tradeoff, perhaps with different supporting contexts. For example, the initial solution for
AnswerScan in written answer preparation is SinglePageScan, which supports standard A3-sized
answer sheets but requires expensive A3 scanners. Therefore, after the new preference of “TCO
over standardization” is introduced, a new variant solution MultiPageScan is introduced, requiring
much cheaper A4 scanners than those with non A4-sized answer sheets.

3.4.3. New Variant arises

As shown in Rules (15) and (16), the main difference to Rules (13) and (14) is that the problem
before evolution has already been OR-decomposed or several alternative sub-features already exist.
In such cases, a new variant feature can be introduced as the sub-feature of an existing alternative
feature.

n∧
i=1

(Wdi,Ws, Si ` F,Q+, Q−)

Wd,Ws, S ` F,Q+, Q−

∧n
i=1(Wd(n+1) 6=Wdi)−−−−−−−−−−−−→

evolve

n+1∧
i=1

(Wdi,Ws, Si ` F,Q+, Q−)

Wd,Ws, S ` F,Q+, Q−

(15)

n∧
i=1

(Wd,Wsi, Si ` F,Q+
i , Q

−
i)

Wd,Ws, S ` F,Q+, Q−

∧n
i=1(Q+

n+1 6=Q+
i),

∧n
i=1(Q−n+1 6=Q−i)

−−−−−−−−−−−−−−−−−−−−→
evolve

n+1∧
i=1

(Wd,Wsi, Si ` F,Q+
i , Q

−
i)

Wd,Ws, S ` F,Q+, Q−

(16)

3.4.4. Summary

To summarize, four kinds of factors that may bring in new variations:

1. New driving context (new Wd).

2. Weakened supporting context (weakened Ws).

3. Insufficient quality satisfaction (insufficient Q+)

4. Unacceptable quality concession (unacceptable Q−)

These evolution factors, together with the existing problem structures, theoretically determine
whether variability evolution will emerge, as catagorized in Table 1. It can be seen that supporting
context is always accompanied by different quality preferences in variability evolution. And the
rationales for the second and the third evolution types are similar, and the difference is whether
the feature is already an alternative feature before the evolution.

4. Variability evolution analysis

Our variability evolution analysis method has two objectives:

1. to identify possible context or requirement changes that may result in feature variability
evolution;

2. to support design decisions by ranking candidate changes in a value-based perspective.

Table 1. Elementary variability evolution types
Evolution Type Rationale Rule New Feature

Mandatory

becomes
Optional

the requirements are meaningless in the new intro-
duced driving context Wd2

(11) N/A

existing solution is only for quality requirements
and the quality tradeoff is unacceptable for the new
quality preference Q+

2 /Q−2

(12) N/A

Mandatory/Optional

becomes
Alternative

existing solution for the requirements is not com-
patible with the new driving context Wd2

(13) a new solution to achieve the same require-
ments under the new driving context

Ws1 can not be satisfied in the changed context (a
weaker supporting context Ws2 is provided)

(14) a stronger solution to achieve the same
functional requirements with a weaker con-
text support and new quality tradeoffs

the functional requirements are still desired but the
quality tradeoff is unacceptable for the new quality
preference Q+

2 /Q−2

(14) a new solution for the same functional re-
quirements with desired quality tradeoffs

New Variant

arises

existing solution for the requirements is not com-
patible with the new driving context Wd(n+1)

(15) a new solution to achieve the same require-
ments under the new driving context

Ws1 can not be satisfied in the changed context (a
weaker supporting context Ws(n+1) is provided)

(16) a stronger solution to achieve the same
functional requirements with a weaker con-
text support and new quality tradeoffs

the functional requirements are still desired but the
quality tradeoff is unacceptable for the new quality
preference Q+

n+1/Q
−
n+1

(16) a new solution for the same functional re-
quirements with desired quality tradeoffs

For the first objective, we consider several heuristics to identify candidate changes from instable
context or quality assumptions in existing feature models. For the second objective, we use the
procedure described by an algorithm to analyze for all changes the impacted features and their
variability evolution types, on which we base the estimation for the value of the changes. This
section first presents the analysis framework, then introduces the steps involved in the process.

4.1. The analysis framework

Our method considers the factors in terms of intentional and contextual changes in the vari-
ability evolution analysis. Over a traditional evolving feature analysis, the analysis of the driving
factors has an advantage of capturing the trends and influences among requirements, contexts
and features.

An overview of the proposed variability evolution analysis framework is depicted in Figure 3.
Starting with identifying candidate changes that may cause variability evolution, we analyze their
impact on those features on which additional variability will emerge by following the procedure
prescribed by Algorithm 1. Specifically, by analyzing the quality and context settings in the
problem decomposition structure, the procedure finds those problems whose changed solutions
will lead to more variability. Finally, a value-based estimation is conducted to rank all candidate
changes. In our method, the value of a change is measured by how much it contributes to the
capability of the product line by either involving new applications or improving the customer
satisfaction of existing applications. We measure the value of a change from the following three
independent dimensions:

1. probability, how likely a change will happen;

2. volume, how many existing and potential applications will be influenced;

Figure 3. The variability evolution prediction framework

3. value-addition, how much value can be added from the perspective of customers.

Using this analysis framework, one can analyze the past evolution history and predict future
variability evolution of an SPL. For an analysis of the evolution history, one shall use pthe ast
context or requirement changes instead of possible future changes as the input. Evolution history
analysis can help understand the evolution trends and evaluate the past variability decisions. In
variability evolution prediction, top-ranked candidate changes can be priorized in the reference
architecture design.

4.2. Hierarchical decomposition of problem structures

With those problem decomposition rules presented in Section 3.3, one can construct a fairly
complete problem decomposition structure for the targeted domain. The top problem captures
the general functional requirement, related quality requirements and the basic context settings.
Then it is hierarchically decomposed into a series of AND- or OR sub-problems. Each subprob-
lem captures the solution (feature) for specific functional and quality requirements with certain
context assumptions. This problem decomposition structure covers the intentional and contextual
diversities among different products by providing alternative sub-problems.

The root problem can be described in the top-level problem diagram, including the general
solution to be developed (that can be seen as the root feature), the general functional requirement,
related quality requirements and a general context setting. Figure 4 shows the top-level problem
diagram for CAGS-PL. We can see that a functional requirement (dotted ellipse) is constrained
by a set of quality requirements (cloud shape) of interest to the customers of CAGS-PL. From the
extended context diagrams, one can see that the CAGS should load original answers and produce
electronic answers for a teacher to grade. Finally, the system will generate reports for students’
grades.

Figure 4. Problem Diagram for the CAGS Root Problem

Figure 5. Context-driven Problem Decompositions for Answer Preprocess

Following the decomposition rules and the process described above, we can construct the whole
CAGS problem structure by iterative problem decompositions, starting from the root problem
shown in Figure 4. Figure 5 and Figure 6 present two examples of OR problem decompositions.
The requirement “Answer preprocess” is to transform original answers to electronic answers for
the grading purpose. It is a problem relevant to the driving context “Answer”. As shown in
Figure 5(a) and (b), “Answer preprocess” for AudioRecord in oral exams and for AnswerSheet
in written exams are different. Figure 5(b) shows that the quality requirement TCO is sensitive
to the price of Scanner, while Standardization is sensitive to the size and format of AnswerSheet.
Figure 6 shows that both A3 and A4 answer sheets are applicable to be scanned, however, these
two alternative solutions exhibit different quality preferences. The price of an A3 scanner (about
12,000 US dollars) is much higher than that of an A4 scanner (about 1,500 US dollars), whilst “A3
answer sheets” satisfies the standard better than “A4 answer sheets”. Therefore, both solutions
shall be kept when different preferences are to be considered. In the CAGS domain, customers from
smaller middle schools usually prefer the A4 solution for their intra-school exams, and customers
of education administration usually prefer the A3 solution for official exams.

Based on the context diagram for each problem, the corresponding problem representations in
the canonical form (Rule (3)) can be derived for a further variability evolution analysis.

4.3. Candidate change identification

Changes in assumptions are a primary factor for the evolution of complex systems [23]. One
can identify those fragile context or quality assumptions that may change and lead to variability
evolution by considering the following heuristic questions:

• Are there any new alternative driving contexts that may emerge in the near future?

• Are there any assumed supporting contexts that cannot be satisfied in all the existing and

Figure 6. Preference-driven Problem Decompositions for Answer Scan

potential applications?

• Are there any new future techniques that can promote the product qualities?

• Are there any quality tradeoffs that may be unacceptable for potential customers?

The first two of these questions are about assumptions on contexts, and the last two are about
assumptions on quality requirements. Depending on the characteristics of the SPL domains,
the estimations for the probability of different kinds of changes vary. The main drivers for such
changes are typically scope extension and new technology. The probability of extending the market
scope is determined by the market strategy, whilst the probability of adopting new technology is
determined mostly by the maturity and availability of the technology.

Considering an existing problem decomposition structure, our variation evolution method deals
with a change to contexts or a change to requirements. Such a change is established on specific
premises, i.e. the basic assumptions under which the change emerges. For example, the quality
change “low TCO” can be associated with context assumptions such as “written exam” and
“distributed grading”. As a result, each context or requirement change can be represented by a
combination of propositions in the conjunctive normal form, involving both the premise and the
change itself.

4.4. Variability change impact analysis

After identifying possible context or requirement changes, our evolution analysis should answer
the question of how to evolve the feature model to accommodate those changes, i.e. analyze the
impacted features of identified changes. As the variation specifications involved in the feature
model are based on the current assumptions on the requirements and contexts in the domain, we
traverse the problem decomposition structure which hierarchically captures the assumptions on
the requirements and contexts for all the features, in order to identify impacted features and their
variability evolution types according to those variability evolution rules presented in Section 3.4.

4.4.1. The algorithm

Given a problem decomposition hierarchical structure and a change in the contexts or in quality
requirements, Algorithm 1 identifies the necessary changes to the features model accordingly. For
example, when the feature “WrittenAnsPreprocess only supports” “A3-sized answer sheets” with
the support of an “A3-scanner”, the CAGS team considers it necessary to develop new products

Input: a problem decomposition structure rooted at rp, a change c with c.W, c.Q+, c.Q−

Output: influenced problem set INFL with respect to the change
begin1

INFL = {}2
initialize a queue QUEUE3
enqueue the root problem rp into QUEUE4
while QUEUE is not empty do5

dequeue p from QUEUE with p.Wd, p.Ws, p.S, p.F , p.Q+, p.Q− according to Definition(5)6

if (c.W 67→ p.Wd) ∨ (p.Q+ ∧ p.Q− 67→ c.Q+ ∧ c.Q−) then7
if p.parent is refined to p using rule DrivingOR or PreferenceOR then8

add p to INFL as “Mandatory/Optional to Alternative” evolution9
end10
else if p.S is not an optional feature then11

add p to INFL as “Mandatory to Optional” evolution12
end13

end14
else if (c.W 67→ p.Ws) then15

add p to INFL as “Mandatory/Optional to Alternative” evolution16
end17
else18

if p is decomposed into subproblems[i], i = 1, . . . , n using rule AND then19
enqueue subproblems[i], i = 1, . . . , n into QUEUE20

end21
if p is decomposed into subproblems[i], i = 1, . . . , n using rule DrivingOR or PreferenceOR then22

branchNotFound = true23
for i = 1, . . . , n do24

if (c.W 7→ subproblems[i].Wd) ∧ (subproblems[i].Q+ ∧ subproblems[i].Q− 7→ c.Q+ ∧ c.Q−) then25
enqueue subproblems[i] into QUEUE26
branchNotFound = false27
break28

end29

end30
if branchNotFound then31

add p to INFL as “New Variant” evolution32
end33

end34

end35

end36

end37

Algorithm 1: Procedure of identifying influenced feature

for written examinations in middle schools. In this case, the feature “WrittenAnsPreprocess” is
required to be extended because it does not satisfy the preference for low TCO currently.

The problem decomposition structure consists of a series of hierarchically structured problems
rooted at rp, and each problem is represented as the definition given below.

Definition 5. A problem p is a 8-tuple < Wd,Ws, S, F,Q
+, Q−, parent, subproblems > extending

the canonical form defined in rule (3) with an additional reference parent to its parent problem
and an array of sub-problems. The problem p can be decomposed into a series of sub-problems
subproblems[i] (i = 1, . . . , n) using the rule AND, DrivingOR, or PreferenceOR.

A context or requirement change c can be defined as follows.

Definition 6. A context or requirement change c is a 3-tuple < W,Q+, Q− >, in which W , Q+,
Q− satisfying W∪Q+∪Q− 6=∅ are proposition sets representing new emerging context, positively-
and negatively-influenced quality requirements respectively.

For example, the change mentioned above can be represented by the tuple < W : AnswerSheet∧
(networkedgrading), Q+ : FS(TCO), Q− : FD(standardization) >.

Figure 7. An illustrating problem decomposition structure (feature structure) in CAGS-PL

The algorithm employs a queue to traverse the problem decomposition structure in breadth-
first order. For each problem under consideration, the algorithm first evaluates its assumptions
according to the change. If its driving context or quality preferences are not consistent with
the change, then a New Variant evolution will emerge (Line 7-14), determined by whether the
refinement between the problem and its parent problem uses AND/OR rules or not. Otherwise,
if the required supporting context cannot be satisfied by the change, a New Alternative evolution
will emerge (Lines 15-17).

If the problem itself is applicable, its sub-problems (if exist) will be considered. If the problem
is AND-decomposed, then all its sub-problems will be added into the queue for further evaluation
(Lines 19-21), since they are all necessary parts for the problem. If the problem is OR-decomposed,
indicating that several alternative sub-problems are applicable, then the algorithm tries to choose
any applicable sub-problem, assumptions of which conform to the change, for further evaluation
(Lines 22-34). If its solution cannot be found, a new variant solution should be added and a “New
Variant” evolution will emerge (Lines 31-33).

4.4.2. An illustrating example

Figure 7 illustrates a problem decomposition structure by annotating a feature model with spe-
cific context and requirement settings. Currently, the problem decomposition structure involves
four OR-decompositions by driving contexts or by quality preferences. One can see that “ImgAns
Prepare”, “ImageAns Display” and “AnsMark” are associated with the driving context of “An-
swerSheet” for written exams. All of them are common features while “AnswerSheet” is the only
form of “Answer”. On the other hand,“SinglePageScan” and “BarCodeIdentify” are two features
related to specific quality preferences, i.e. “standardization over TCO” and “error-freedom over
TCO”. They are also common features when these quality tradeoffs are preferred by all the current
customers.

With the given problem decomposition structure reflecting the current status of the product line
and the changes to be evaluated, Algorithm 1 can be used to automatically identify those problems
(features) that may be involved in the variability evolution caused by the changes. Table 2 illus-
trates two changes to the problem structure in Figure 7 with corresponding variability evolution
according to Algorithm 1. The first change introduces AudioAnswer as a new form of answers.
The procedure will traverse from the CAGS problem structure, starting from the “AnswerPre-

Table 2. Two changes to the given problem structure and the variability evolution
Change Impacted Feature Evolution Type Description

AudioAnswer

ImgAnsPrepare Mandatory to Alternative a new variant of AnswerPrepare for audio answer
should be introduced

ImageAnsDisplay Mandatory to Alternative a new variant of audio answer playing should be
introduced

AnsMark Mandatory to Optional marking on the answers is meaningless for audio
answers

AnswerSheet∧
(Q+ : TCO)

SinglePageScan Mandatory to Alternative a new variant with lower TCO should be introduced
with concession to standardization

BarCodeIdentify Mandatory to Alternative a new variant with lower TCO should be introduced
with concession to error-freedom

pare” to “ImgAns Prepare”, since “AnswerPrepare” only involves general context assumptions
that are already implied by the contextual change. When ImgAnsPrepare is analyzed, as its driv-
ing context AnswerSheet cannot be implied by the context change and it is an OR refinement to
its parent problem by rule (7), it is identified as a candidate of “Mandatory/Optional becomes
Alternative” evolution (line 7-8 of the algorithm) and “ImageAnsDisplay” is also identified as
a candidate of “Mandatory/Optional becomes Alternative” evolution. Moreover, “AnsMark” is
identified as a candidate of “Mandatory becomes Optional” evolution, since it was an AND sub-
problem of its parent problem. The second change considers another quality tradeoff that prefers
TCO over other quality requirements like standardization and error-freedom. This requirement
change brings up two candidates of variability evolution.

With influenced features identified by the algorithm, the analyst can further analyze the value
of possible changes based on corresponding evolution rules.

4.5. Change value estimation

Having a collection of possible requirement and context changes and their influences, one can
then rank them by estimating how much value can be added to the SPL platform when the
change is applied. Our value ranking process evaluates the value of a change of contexts or
quality requirements using the following metric:

$(c) = P (c) · V ol(c) · $app+(c) (17)

where P(c) ∈ [0, 1] represents the probability that the change will emerge, Vol(c) evaluates the
volume by the number of relevant existing or potential products, and $app+(c) measures the added
customer value for each new product.

The change probability can be estimated by analyzing the market and technological trends.
For changes driven by technical evolution, the probability can be evaluated by considering the
following factors: how probable the new technology will become mature enough and how probable
we can well master the technology or find proper technological provider for it in the near future.
The volume of the change influence can be estimated by evaluating the existence of the change
proposition in all the existing or potential products. For example, for the technological evolution
of barcode-based examinee identification, all products of written exams with the preference of
error-freedom over TCO are within the scope of the volume.

With the same functional requirements, the customer value for specific customers can be re-
flected by how well the SPL platform can adapt their specific context to satisfy their quality
preferences. We can use the price as the basic value measurement for a product. Then the added
value can be computed by multiplying the price and the relative value of all the impacted problems
identified in change impact analysis:

$app+(c) = priceapp ·
∑

p∈INFL(c)

weight(p) · plus ratio(p, c) (18)

In the formula, priceapp represents the average price of relevant application products as the base
of customer value measurement, weight(p) denotes the relative weight of a problem to the whole
application, and plus ratio(p, c) evaluates to what ratio the change can improve the satisfaction
of the problem.

The weight of each combination of functional and nonfunctional requirements can be evaluated
by their sensibility to relevant customers. The plus ratio can be computed according to different
change types:

plus ratio(p, c) =

{
1 if c is a change to p.Wd

(uapp(Q
′+/Q

′−)− uapp(Q+/Q−))/uapp(Q+/Q−) if c is a change to p.Ws or p.Q
(19)

In the equation, Q+/Q− and Q
′+/Q

′− represent the quality before and after the introduction of
the change, uapp is the utility function from the perspective of relevant applications (e.g. middle
schools that prefer low TCO to standardization). The driving contexts have absolute influence to
the satisfaction of functional requirements. While not supported, however, the customer value of
the problem will be completely lost. The supporting context change is thus reflected as a remedy
to the loss on relevant quality attributes. The added value for newer quality preference is reflected
by the promotion of the overall utility function of the quality requirements for relevant customers,
that is, answering the question “To what extent the customer satisfaction on the quality of the
product can be promoted?”

5. Case study

This section demonstrates the proposed variability evolution analysis method using a case study
in the CAGS product line, describing we analysed the history of CAGS-PL during the last several
years. The method is evaluated by confirming the benefits by the domain experts if they were
using our value-based method.

5.1. The feature model

From the problem decomposition structure described earlier, we can annotate the CAGS feature
model in part presented in Figure 8. Each feature has a superscript denoting the phase (see 2.2)
in which it is introduced. The variability type for each variation feature is also depicted: gray
one is caused by context diversity, diagonal one is caused by different quality preferences. For
example, AnswerPrepare and AnswerDisplay are alternative features caused by the driving context
Answer, and AnsPackDispatch is caused by the network type (standalone or network-based).
ExamineeIDentify is an alternative feature caused by different quality tradeoffs between TCO and

Table 3. CAGS Feature Assumptions
Feature Feature Assumption

AudioAnsPrepare AudioRecord, AudioAnswer

ImgAnsPrepare AnswerSheet, Image Answer, Scanner

SinglePageScan A3-AnsSheet, A3-Scanner, Standardization+, TCO-

MultiPageScan A4-AnsSheet, A4-Scanner, Standardization-, TCO+

AnsMark ImageAnswer

FastForward comfortability+, error-freedom-

Figure 8. The CAGS Feature Model (Part)

error-freedom: barcode recognition can greatly improve the precision in examinee identification,
but needs additional cost.

The variability type for each variation feature is determined through feature assumption anal-
ysis. Some of the CAGS feature Assumptions are listed in Table 3, showing that “AudioAns
Prepare” and “ImgAns Prepare” are mutually exclusive, because their context assumptions are
exclusive: every CAGS application is either for oral or written exams, but never both. Therefore,
their parent feature “Answer Prepare” is an alternative feature. The feature “AnsMark” (edit
marks and comments on image answer) is optional, because its feature assumption “ImageAn-
swer” cannot be derived from its parent feature “Grade”. The feature “FastForward” is another
example of optional feature, which is caused by preference diversity of customers. For some prod-
ucts that satisfy the assumptions of its parent feature “AudioPlay”, “FastForward” is not allowed
due to its negative effect on the “error-freedom”.

5.2. Variability evolution analysis

Following the variability evolution rules, we can analyze those variations introduced in the past
several years with an evolutional perspective. The main changes to contexts and requirements
after the initial phase are listed in Table 4.

The main changes in the second phase are to quality requirements of error-freedom and relia-
bility and to the context of networked grading. Through a trade-offs analysis, “comfortability”

Table 4. Main changes and influences on the feature variability
W Phase Q+ Q− #influenced features

networked grading (Wd) 2 3

networked grading (Ws) 2 error-freedom comfortability 5

networked grading (Ws) 2 reliability comfortability 2

networked grading (Ws) 2 comfortability 5

written answer sheet (Wd) 3 5

written answer sheet (Wd) 3 error-freedom cost 2

written answer sheet (Wd) 3 error-freedom comfortability 6

written answer sheet (Wd) 3 comfortability 4

A4 sheet and scanner (Ws) 4 cost standardization 1

intra-school written exam (Wd) 4 comfortability error-freedom 6

concedes to “error-freedom” and “reliability”. During the third phase, the main change is to the
contexts of written exams. Error-freedom is still an important quality requirement, but it must
be considered within the new context. The fourth phase involves new applications for intra-school
written examinations, where cost and comfortability become the main drivers of new variability.
Such quality preferences were often achieved by choosing specific contextual domains and their
properties, e.g. choosing A4-sized answer sheet and A4-scanner to make a low TCO with the loss
of standardization.

Most decisions of variations were made in a reactive mode, i.e. by adapting the product line
when changes emerge. Through interviews with the CAGS-PL team, we found several deficiencies
in the decisions made in the past. For example, as required by supporting written examinations
during the third phase, it took the developers greater effort to modify the features to adapt
audio handling to answer sheets image handling. If the change had been foreseen and properly
considered in the design of the product, it would have been much easier to introduce this new
variation of audio handling to handle images.

5.3. Value-based estimation in variability evolution

Due to confidentiality, here we only present the value evaluation of two cases in variability evo-
lution. At the third phase, we compared two candidate changes: A4-sized answer sheet (Change
1) and barcode for examinee ID (Change 2). The Change 1 is introduced because of the preference
of “low TCO”, but we knew that breaks the quality goal of “standardization”. The Change 2 is a
change driven by technological development for a better precision in examinee recognition, which
can be seen as a sub-goal to fulfil the parent goal of “error-freedom”.

Through interviews with the market team, we got the data for evaluation as listed in Table 5.
From the results of value evaluation, one can see Change 1 is much more valuable to be involved
than the Change 2. Therefore, Change 1 should be considered as having priority with respect to
Change 2. This result has been recognized by the CAGS team. Restrospectively, however, they
actually introduced the Change 2 at the third phase and the Change 1 at the fourth phase. This
resulted in the subsequent refactoring to scan-related components due to the lack of separation of
commonality and variability.

Table 5. Value evaluation for two past changes
Data Change 1 Change 2

probability At that time, the probability of entering the market
of middle school was estimated to be 70%.

At that time, the probability of getting mature bar-
code recognition techniques was estimated to be
80%.

influenced features AnswerScan ExamineeIdentify

volume There are totally about 2,000 middle schools in the
local region, the anticipated market share is 30%,
and 40% of them prefer low TCO to standardiza-
tion, making a volume of 240=2000*30%*40%.

There are totally about 40 district-level education
administrations in local and near regions, the an-
ticipated market share is 50% and 90% of them
prefer precision to low TCO, making a volume of
18=40*50%*90%.

price The average price of CAGS products for middle
schools is 4,300 US dollars.

The average price of CAGS products for adminis-
trations is 14,300 US dollars.

weight The relative weight of TCO/standardization is eval-
uated to 0.3.

The relative weight of precision in examinee recog-
nition is evaluated to 0.1.

plus-ratio The cost on scanner is reduced from 12,000 to 1,500
US dollars, but the goal of standardization is bro-
ken. The new tradeoff makes a total plus ratio of
70%.

With barcode recognition, the precision of examinee
recognition can be improved from 95% to 99.99% at
the additional cost. The new tradeoff makes a total
plus ratio of 60%.

value 70%*240*30000*0.3*70% =1,058,400 80%*18*100000*0.1*60% =86,400

6. Evaluation and Discussion

In this section, we first evaluate the benefits of the proposed problem-oriented analysis method
for variability evolution in SPL development and maintenance, then we discuss the completeness
and correctness of the method.

6.1. Evaluation

If successfully applied, the proposed problem analysis provides the intentional and contextual
basis for feature variations thus facilitates variability analysis and captures the rationales by
intentional and contextual propositions. Thus, product customization and variability evolution
can also be eased.

Help capturing the rationale of variability In the segment of feature model in Fig-
ure 8, there are 6 optional features, 7 alternative features and 1 OR feature. Because “Up-
load/Download” is both optional an OR subfeature, these amounts to 13 distinct variant features.
The context and preference factors that cause these variation features are listed in Table 6, show-
ing that all the variation features can be interpreted by 3 contextual diversities and 5 preferencial
diversities. Considering the relevance among them, those quality preferences can be further clas-
sified as high-end (preferring error-freedom, security, etc) and low-end (preferring comfortability,
TCO, etc) with different weights.

Reducing decision making effort in customization Product customization using a feature
model helps derive the product feature model from the domain feature model [21]. With the
intentional and contextual feature assumptions captured in problem analysis, we can derive the
product model by evaluating the feature assumptions. As listed in Table 6, we can derive a basic
product model by only considering 3 context factors and 1 quality preference (either high-end or
low-end), instead of went through all the 13 variant features individually. Thus, the efforts needed

Table 6. Variation Features Caused by Each Context or Preference Diversity
Factor Type Variation Features

Answer (audio or written) Context AnswerPrepare, AnsMark, AnswerDisplay (3)

Grading Mode (networked or stand-alone) Context AnsPackDispatch, Upload/Download, CutByQues (3)

Dispatch Mode (by answer or by question) Context OnlineDispatch (1)

comfortability/error-freedom Preference Check&Mediation, FastForward (2)

comfortability/error-freedom&security Preference ModelAnswerSetting (1)

comfortability/reliability Preference NetworkMonitor (1)

TCO/standardization Preference AnswerScan (1)

TCO/error-freedom Preference ExamineeIDentify (1)

for variability communications with the customers and the customization decision-making can be
reduced greatly. This embodies the principle emphasized by Pohl et al. [22] and others: explicitly
document variability rationales and use them to help customers and domain engineers to make
decisions on variant choices. Furthermore, this kind of rationale-based variability customization
can better ensure the consistency of the variability configuration, since most of the variability
constraints come from the relevance of intentional and contextual settings.

Identifying reasons for introducing new variability In the long-term SPL life cycle, vari-
ations continuously evolve along with scope extensions and changes in existing products. Feature
assumptions represent the current intentional and contextual cognitions on the SPL domain, de-
termining the current feature variations. By analyzing how the intentional or contextual changes
affect existing feature assumptions, one can precisely identify the reason for introducing new vari-
ability. For example, CAGS-PL has evolved for 6 years and 4 phases, and the superscript of
each feature in Figure 8 represents the phase in which the feature was introduced. In the Phase
3, the contextual setting of “AnswerSheet” was introduced, then variability evolution might oc-
cur on all the features with the assumption of “AudioRecord”, e.g. both “AnswerPrepare” and
“AnswerDisplay” evolve from mandatory features into alternative features. With this kind of
variability evolution analysis, one can better understand the evolution history. Moreover, one can
further predict future variability changes by revealing the fragile feature assumptions.

6.2. Discussion

In this paper, we identify a series of variability evolution patterns by rules (11) to (16) in terms
of different context or requirement changes. We are not trying to cover all possible changes in
a small set of rules, but to consider them as elementary patterns that our case study has found
to be relevant. The changes in reality may be much more complex, but they can be analyzed
as a combination of these rules under the following assumptions. First, the root problem, e.g.
the CAGS root problem shown in Figure 4, is shared by all the products and does not change
in SPL evolution. This means that the general functional and nonfunctional requirements of
different products must not change in SPL evolution. What differs among products are contextual
and requirement diversity which evolves with the features derived from problem decomposition.
Second, the context and requirement diversity among products always increases monotonically,
which means that existing differences among the contexts and requirements of different products

will not disappear in the future as all rationales are kept. Third, as a simplification we do not
consider the changes of dependencies among contexts and requirements, e.g. exclusive context
settings will always be exclusive. Given the above assumptions and simplifications, variability
evolution can always be analyzed as variability increments to the current problem decomposition
structure, following the procedure described in Algorithm 1.

Of course, variability evolution in real SPL engineering is much more complex due to the
occurrence of changes beyond our assumptions. (i) These complex evolution will cause global
reconstructions to the problem decomposition structure. In CAGS-PL, for example, new general
requirements about “improvement by error learning” emerge and require a series of new features
like error recording, classifying, analysis and history management for each examinee to be intro-
duced. (ii) Context and requirement diversity can shrink, making feature variation decrease due
to market shrink or changes in existing products. For example, if the CAGS team decides to
quit the low-end market or all the low-end products change to adopt standard A3-sized answer
sheets, the diversity between A3- and A4-sized answer sheets and corresponding answer prepara-
tion solutions will disappear. (iii) Example of complex changes of dependencies among contexts
and requirements can be the exclusion relation between “ImageAnswer” and “AudioAnswer”. If
some products in the future involve both oral and written questions together in the same ex-
amination at the runtime, the two context statements of ImageAnswer and AudioAnswer will
evolve to be non-exclusive. This change of context dependency will turn the alternative feature
“AnswerPrepare” to become a runtime OR-decomposed feature. These complex evolution types
require new problem decomposition for new general requirements and possible reconstructions to
existing problem decomposition rather than just introducing new variation branches. It is our fu-
ture work to investigate how the rules will adapt to accommodate such runtime changes, as these
complex variability evolution patterns are not captured by Rules (11) to (16) and not analyzed
using Algorithm 1.

7. Related work

We review the literature from both the requirements engineering and the software product line
engineering fields on the following three related subjects.

Domain requirements engineering. Existing domain analysis methods [9, 17, 22] observe and an-
alyze domain-wide commonality and variability from a static perspective. The process of eliciting
the change of variability from the stakeholders is largely absent. However, in practical SPL de-
velopment, proactive and reactive reuse are usually interweaved and variations are introduced
gradually as a result. Therefore, analyzing and understanding the variability change in an evolu-
tionary perspective is necessary. In this paper, we focus on an analysis of evolving requirements
and contexts in order to understand the development history and to predict potential variations
in features.

Recent work tries to combine problem analysis with feature models and variability analysis:
Classen et al. [5, 6] use the Problem Frames approach to analyze the physical environment of
the feature to establish mappings between features and problem frames and achieve a deeper
understanding of the variability. Salifu et al. [24] on the other hand, analyze the variability native
in variant frames in the context of SPL. Ali et al. [2] present several ways by which the context can

be related to requirements and subsequently used for product derivation. Yu et al. [29] attempt
to configure features using high-variability goal models. However, these work do not provide a
systematic way to provide the rationale for the changes in variability evolution.

Volatility requirements. Requirements are involved in software evolution and change for most soft-
ware systems [7]. Therefore, some evolution analysis techniques have been proposed to interpret
the motivations behind changes, in order to better understand the change history and even to
predict the trend of changes. For example, volatile requirements are considered concerns that are
likely to change during development or after operation. Moreira et al. propose to model volatile
requirements with early aspects techniques [18]. These works focus on the modeling and speci-
fication of volatile requirements only, and it is not explicit how to discover them. Savolainen et
al. [25] propose a volatility analysis framework to estimate evolution from two perspectives: the
probability of a change in requirement in the future, and vagueness of the requirement. However,
their work does not recognise the influences of context diversity in variability evolution.

Variability and evolution management. Variability management includes the activities of variabil-
ity capturing, modeling, implementation, traceability and also evolution. Svahnberg et al. [26]
presents an experience report on variability evolution and the connections between evolution and
variability. Their work focuses on the evolution of SPL architecture and components for require-
ment evolution, however, the analysis and prediction of requirement variability are not made ex-
plicit. Thurimella et al. [27] propose a rationale-based SPL evolution method using the Questions,
Options and Criteria model [16] and a modified version of EasyWinWin [3]. Although it involves
a value-based viewpoint on SPL evolution, there is no formal basis for variability evolution.

8. Conclusion

Effective variability evolution management is the premise to achieve successful proactive reuse.
By interpreting and recognizing the variation evolution trend, the understanding on how the SPL
requirements have evolved can be improved greatly. By foreseeing variation evolution, an SPL
can be instrumented with appropriate variability mechanisms accordingly [26] [25]. Thus, the
time and cost needed in the reactive SPL refactoring and extensions can be reduced. In this paper
we establish a canonical form for tracing possible variations of a software product line features
to the changes in requirements and contexts. Classifying changes to contexts by their impact on
functional and quality requirements, this canonical form is used to separate changes of driving
contexts from those of quality supporting contexts. Such a detailed analysis enables us to further
assess the value of adding variations to the SPL feature models for potential changes, taking into
account the probability, the change impact and the range of changes. The rules for variability
evolution and the impact analysis algorithm help one to identify places on the feature models for
candidate variations, after which the computation of added-values further help one to decide on
extending the variability of feature models. We have applied the above analysis framework to
a commercial SPL case study and report the feedbacks from the domain engineers at different
phases of its maintenance activities.

Acknowledgments. We would like to thank the anonymous reviewers for their valuable com-
ments and suggestions that allowed us to improve our paper. This work is supported by National
Natural Science Foundation of China under Grant No. 90818009, National High Technology

Development 863 Program of China under Grant No. 2009AA010307, EU FP7 SecureChange,
and Shanghai Committee of Science and Technology, China under Grant Nos. 08DZ2271800,
09DZ2272800.

References

[1] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based framework for contextual
requirements modeling and analysis. Requir. Eng., 15(4):439–458, 2010.

[2] Raian Ali, Yijun Yu, Ruzanna Chitchyan, and Paolo Giorgini. Towards eliciting contextual
variability in requirements. In Proceedings of the 4th International Workshop on Software
Product Management (IWSPM ’09), collocated at the Requirements Engineering conference
(RE’09). IEEE Computer Society, 2009.

[3] B. Boehm, P. Grünbacher, and R. Briggs. Developing groupware for requirements negotiation:
Lessons learned. IEEE Software, 18(3), 2001.

[4] Barry Boehm and Apurva Jain. An initial theory of value-based software engineering. In
Value-Based Software Engineering. Springer Verlag, 2005.

[5] A. Classen, P. Heymans, R. Laney, B. Nuseibeh, and T. Tun. On the structure of problem
variability: From feature diagrams to problem frames. In VaMoS ’07, pages 109–117, 2007.

[6] A. Classen, P. Heymans, and P. Schobbens. What’s in a feature: A requirements engineering
perspective. In FASE ’08, pages 16–30, 2008.

[7] M. Dambros. Supporting software evolution analysis with historical dependencies and defect
information. In ICSM ’08, 2008.

[8] A. Dardenne, A. Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. Sci.
Comput. Program., 20(1-2):3–50, 1993.

[9] K. Kang et al. FORM: a feature-oriented reuse method with domain-specific reference archi-
tectures. Annals of Soft. Eng., 5:143–168, January 1998.

[10] J. Hall, L. Rapanotti, and M. Jackson. Problem frame semantics for software development.
Software and System Modeling, 4(2):189–198, 2005.

[11] J. Hall, L. Rapanotti, and M. Jackson. Problem oriented software engineering: Solving the
package router control problem. TSE, 34(2):226–241, 2008.

[12] M. Jackson. Problem Frames: Analysing and Structuring Software Development Problems.
Addison-Wesley, February 2001.

[13] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and problem in
requirements engineering. In RE ’08, pages 71–80. IEEE Computer Society, 2008.

[14] S. Liaskos, L. Jiang, A. Lapouchnian, Y. Wang, Y. Yu, J. Leite, and J. Mylopoulos. Exploring
the dimensions of variability: a requirements engineering perspective. In VaMoS ’07, pages
17–26, 2007.

[15] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos. On goal-based variability
acquisition and analysis. In RE ’06, pages 76–85. IEEE Computer Society, 2006.

[16] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, options, and criteria: Elements
of design space analysis. Human-Computer Interaction, 6(3):201–250, 1991.

[17] M. Mikyeong, Y. Keunhyuk, and S. Heung. An approach to developing domain require-
ments as a core asset based on commonality and variability analysis in a product line. TSE,
31(7):551–569, 2005.

[18] A. Moreira, João Araújo, and J. Whittle. Modeling volatile concerns as aspects. In CAiSE
’06, pages 544–558, 2006.

[19] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional requirements:
A process-oriented approach. TSE, 18(6):483–497, 1992.

[20] X. Peng, S. Lee, and W. Zhao. Feature-oriented nonfunctional requirements analysis for
software product line. Journal of Computer Science and Technology, 24(2):319–338, 2009.

[21] X. Peng, W. Zhao, Y. Xue, and Y. Wu. Ontology-based feature modeling and application-
oriented tailoring. In ICSR ’06, 2006.

[22] K. Pohl, G. Böckle, and F. Linden. Software Product Line Engineering : Foundations,
Principles and Techniques. Springer, September 2005.

[23] B. Ramesh and M. Jarke. Toward reference models of requirements traceability. TSE,
27(1):58–93, 2001.

[24] M. Salifu, B. Nuseibeh, L. Rapanotti, and T. Tun. Using problem descriptions to represent
variabilities for context-aware applications. In VaMoS ’07, pages 149–156, 2007.

[25] J. Savolainen and J. Kuusela. Volatility analysis framework for product lines. Softw. Eng.
Notes, 26(3):133–141, 2001.

[26] M. Svahnberg. Variability in evolving software product lines. Technical report, Blekinge Insti-
tute of Technology, Department of Software Engineering and Computer Science, Karlskrona,
Sweden, 2000.

[27] A. Thurimella and B. Bruegge. Evolution in product line requirements engineering: A ratio-
nale management approach. In RE ’07, pages 254–257. IEEE, 2007.

[28] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J.C.S.P. Leite. From goals to high-
variability software design. In Proc. 17th Int. Symposium on Methodologies for Intelligent
Systems (ISMIS), Toronto, Canada, May 20-23, pages 1–16, 2008.

[29] Y. Yu, J. Leite, A. Lapouchnian, and J. Mylopoulos. Configuring features with stakeholder
goals. In SAC ’08, pages 645–649, 2008.

[30] P. Zave and M. Jackson. Four dark corners of requirements engineering. TOSEM, 6(1):1–30,
1997.

