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Context: Effective test case prioritization shortens the time to detect failures, and yet the use of fewer test
cases may compromise the effectiveness of subsequent fault localization.

Objective: The paper aims at finding whether several previously identified effectiveness factors of test
case prioritization techniques, namely strategy, coverage granularity, and time cost, have observable
consequences on the effectiveness of statistical fault localization techniques.

Method: This paper uses a controlled experiment to examine these factors. The experiment includes 16
test case prioritization techniques and four statistical fault localization techniques using the Siemens suite
of programs as well as grep, gzip, zed, and flex as subjects. The experiment studies the effects of the
percentage of code examined to locate faults from these benchmark subjects after a given number of
failures have been observed.

Results: We find that if testers have a budgetary concern on the number of test cases for regression testing,
the use of test case prioritization can save up to 40% of test case executions for commit builds without
significantly affecting the effectiveness of fault localization. A statistical fault localization technique using a
smaller fraction of a prioritized test suite is found to compromise its effectiveness seriously. Despite the
presence of some variations, the inclusion of more failed test cases will generally improve the fault
localization effectiveness during the integration process. Interestingly, during the variation periods, adding
more failed test cases actually deteriorates the fault localization effectiveness. In terms of strategies,
Random is found to be the most effective, followed by the ART and Additional strategies, while the Total
strategy is the least effective. We do not observe sufficient empirical evidence to conclude that using
different coverage granularity levels have different overall effects.

Conclusion: The paper empirically identifies that strategy and time-cost of test case prioritization
techniques are key factors affecting the effectiveness of statistical fault localization, while coverage
granularity is not a significant factor. It also identifies a mid-range deterioration in fault localization
effectiveness when adding more test cases to facilitate debugging.
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1. Introduction

Continuous Integration (CI) [15][18][19] is a software integration strategy, in which a team of developers integrates a
set of software artifacts frequently and regularly, such as every two hours on a business day. Typically, each developer
makes several changes to the codebase to add new features or enhance existing ones, fix reported or latent bugs, or
improve non-functional properties of an application. Owing to the short time between two consecutive rounds of
software integration involved, each change to the codebase is typically small in relation to the entire codebase.
Effective and efficient regression testing techniques that aim at reassuring previously working features of the
software application is particularly attractive.

In general, a round of CI integration consists of code compilation, linking, testing, and deployment [18][19]. A
developer checks out a module of a baseline version of an application and the baseline version itself from a project
repository in modifiable and read-only modes, respectively. The developer then modifies the local copy of the module,
builds and tests the local copy, updates the local baseline version with the modified module, and rebuilds and tests the
updated baseline version. If the quality assurance on the updated local baseline version is passed, the developer
commits the change to the module to the CI server. The CI server then compiles and links the committed working copy
of the module with the baseline version kept by the CI server into an executable version, performs a first-stage and
fast build to verify the key functionality of the application, avoids regression bugs, and returns a build report to the
developer. We refer to such a build as a commit build [19]. If a commit build is successful, the corresponding
committed modifications are merged with the baseline code in the CI server [18]. Moreover, for each round of CI
integration, multiple developers may commit their code changes to the CI server.

Every developer expects the CI server to run a regression test suite of a baseline version to verify that his or her
own code commit has not unintentionally broken the code in other parts of the executable version, and would like the
CI server to provide the developer with a quick feedback. Based on the feedback, the developer may, for instance,
either fix any reported problem or proceed to make other modifications to the code as required by the software
project.

Executing the whole regression test suite may slow down the feedback cycle to individuals. Our first-hand
experience [24] on testing Microsoft protocols shows that executing the entire regression test suite for one protocol
testing project can take more than a whole day. The continuous integration process stresses on fast feedback to the
developers upon their code commit. However, if the regression testing activity during the continuous integration
process takes too much time, the effectiveness of the whole CI process will degrade seriously. Thus, it is critical to
improve the efficiency of each activity during the CI process.

As described above, CI can be conducted in stages [18][19]. Fig. 1 depicts such a scenario. In the figure, after a
developer has submitted a code module to a CI server, the server first conducts a commit build, which runs a fraction
of a regression test suite to verify a target modified baseline version. In case any failure is revealed, the developer may
debug the module based on the bug report generated from the limited number of test cases [28].

We observe that the CI server may include the results of fault localization techniques in the generated bug reports
to assist the developers to locate faults [13][27][32][36]. After passing the data to the developers, the follow-up stage
of the CI may start, provided that the modified baseline versions have successfully passed the test in the commit-build
stage. For instance, the second-stage build typically involves executing more time-consuming tests such as those
interacting with databases or networks [19].

In other words, in the above CI scenario, a commit build serves not only as a quick check of the integration but also
as a guard that decides whether to invoke the second stage. Our work is motivated by several implications from this
requirement:

The time available for regression testing in a commit build is always limited [18][19]. As a result, the goal of
regression testing during the commit build is to make full use of the allocated time to perform testing until the
deadline is reached. Simply using test suite reduction to reduce the number of test cases to be executed is an inflexible
approach as it is almost impossible to make the execution time of a reduced test suite to be exactly the same as the
time budget. Test case prioritization [16][37][46] is a preferential solution to this problem. Since test case prioritiza-
tion reorders test cases so as to execute those with the higher priority first, the test resources will be spent on the
execution of the most important test cases before the deadline irrespective of the time budget allocated. Hence, it is



crucial in CI to reorder a test suite with test case prioritization techniques to assign higher priority to those test cases
estimated to have higher chances in detecting failures.
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Fig. 1. A scenario of continuous integration.

Given a program P and a test suite T, a general test case prioritization [16][37] reorders test cases in T with the goal
of finding a test case ordering that will be useful over a sequence of subsequent modified versions of P. General test
case prioritization has the advantage of being not on the critical path of software development process. This is
because a CI system can conduct general test case prioritization when the developers are modifying the baseline
version. In this way, the entire period of regression testing of each integration interval (e.g., two hours in the running
scenario) can be used for the actual execution of test cases. The second part of the requirement further demands to
cut a reordered test suite into two consecutive fragments so that the higher priority fragment has the ability
indistinguishable from the entire test suite to assist developers for their subsequent activities.

One of such activities is program debugging, in which developers would like to obtain as much relevant data as
possible to debug the artifacts committed to the CI server. For instance, statistical fault localization techniques in
debugging may acquire the code coverage spectrum information of a variety of test cases to assess the suspiciousness
of program elements [27][32][44]. Such techniques help developers locate faults by producing a list of ranked
statements in descending order of their suspiciousness of being faulty or related to faults [22][27]. Developers may
then walk through the ranked list of statements to find the faults.

Using a smaller high-priority test suite for a commit build helps shorten the response time of a CI server in each
round of system integration (such as a single loop in Fig. 1). However, such a test suite may carry less information for
fault localization techniques to iron out the root causes of detected failures. It may adversely affect fault localization
and lengthen the time to develop or maintain a module. Fig. 2, for instance, shows a scenario of three test cases (t1, t2,
and t3) ordered by two test case prioritization techniques, where different fractions of the prioritized test suite are
fed to a statistical fault localization technique to find the fault in statement s3. A smaller expenselin the figure
indicates less effort to conduct fault localization (marked as debugging in the figure). Using an appropriate test case
prioritization technique (such as random ordering), we may use fewer test cases (2 in this illustration) to locate faults,
while the expense (0.66) is not much worse than that when the entire test suite is used (0.5).

Many previous studies on test case prioritization and fault localization focused on individual problems separately.
More recently, researchers proposed debugging-guided test case prioritization techniques [21]. An inadequate
amount of research work (including our preliminary version [26]) studied to what extent existing test case

1 Expense [22][27][44] is a commonly used metric to measure the (in)effectiveness of fault localization in software engineering
experiments. It is computed by dividing the number of statements needed to be examined to find a specific fault by the total
number of executable statements in the program. Intuitively, a technique having a smaller expense for locating a particular fault
means better fault localization effectiveness for it. More details of the metric will be described in Section 3.5.1.



prioritization techniques and fault localization techniques can be integrated, and examined the factors that affect the
effective integration of testing and debugging activities.
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Fig. 2. The testing/debugging dilemma.

A developer may want to stop regression testing for a commit build earlier with a view to shortening the CI process.
For instance, a CI server may be instructed to stop a regression test after encountering a certain number of failed test
cases (say, 10 or more) and return a bug report to the developer for debugging. In this way, the developer can debug
the code module while their memory on the modification is still fresh. Alternatively, the CI server may have a limited
time budget in regression testing (say, in terms of the number of test cases to be executed). In either case, the commit-
build process merely executes some high-priority test cases in a prioritized test suite, and yet its bug reports are
supposed to support fault localization conducted by developers later. How well do the high-priority test cases of a test
suite support statistical fault localization? To what extent do the test suites prioritized by existing test case
prioritization techniques support effective statistical fault localization? What are the factors in the testing techniques
that effectively affect such integration? Knowing the answers to these questions is critical toward a tighter integration
among software development activities.

This paper extends its preliminary version [26] in the following aspects: (i) In addition to the study of the
integration of random ordering and six coverage-based test case prioritization techniques with fault localization
effectiveness, this paper reports the empirical study results on the integration of adaptive random test case
prioritization techniques with fault localization. (ii) It further investigates the problem of whether the studied test
case prioritization techniques can support effective fault localization if testers stop regression testing of the commit
build after encountering different numbers of failed test cases. (iii) It strengthens the empirical study by using four
additional real-life UNIX utility programs with both single and multi-fault versions as subjects.

We find the following results from our empirical study: If testers want to stop regression testing of the commit
build after a certain number of failed test cases have been observed, the test suites produced by random ordering can
be a cost-effective option to integrate with (existing) statistical/spectrum-based fault localization techniques. We also
find that different levels of coverage granularity do not result in significant differences in supporting effective fault
localization by the studied techniques. Interestingly, we find that adding more failed test cases through test case
prioritization to statistical fault localization techniques as inputs may deteriorate the fault localization effectiveness in
the mid-range. If testers have a budgetary concern on the number of test cases for regression testing, the use of test
case prioritization can save up to 40% of test case executions for commit builds without significantly affecting the
effectiveness of statistical fault localization. The savings are more noticeable on a medium-sized program than on a
small-scale program and, on a multi-fault program than on a single-fault program. Last but not least, we find that the



inclusion of more failed test cases will improve the fault localization effectiveness of integrated techniques, despite
the presence of some variations.

The main contribution of the paper with its preliminary version is twofold. (i) To the best of our knowledge, we
report the first study on the integration between fault localization and test case prioritization techniques. (ii) The
paper reports a multi-faceted result on the integration effectiveness between regression testing and fault localization
techniques. Our result shows that the effectiveness of fault localization techniques can be seriously compromised if
testers merely use a small fraction of a test suite for a commit build. Fortunately, we also find from the experiment
that executing the top 60% of a prioritized test suite can be a cost-effective choice because it can, in general, provide
fault localization effectiveness comparable to that of the whole test suite for all the subject programs studied. The
study shows that the Random ordering strategy can be a cost-effective technique, followed by the ART and the
Additional strategies, while the Total strategy is the least effective in supporting such integration. The result further
shows that different coverage granularity levels do not result in significant differences in terms of their support to
effective fault localization.

The rest of this paper is organized as follows: Section 2 revisits selected test case prioritization techniques and fault
localization techniques to be used in the experiment. Section 3 describes the empirical study, followed by its results in
Section 4. Section 5 reviews related work. We conclude the paper in Section 6.

2. Techniques revisited

This section describes the test case prioritization techniques and fault localization techniques to be used in our
empirical study.

2.1 Test case prioritization techniques

Test case prioritization permutes the test cases in a test suite to increase a specific testing goal. In previous work, such
testing goal can be the rate of fault detection, code coverage, or some other units of measurement. Unlike test case
reduction or test case selection techniques that discard test cases, test case prioritization retains all the test cases, and
hence the fault detection capability of the test suite will not be compromised. Following on with our previous work
[25], we study two groups of general test case prioritization techniques, namely, the greedy techniques and ART-
based techniques. The greedy techniques are coverage-based greedy algorithms [37], which can be further subdivided
into the Additional and the Total strategies. For the ART-based techniques, we study nine techniques proposed in our
previous work [23][25]. Both groups of techniques rely on code-coverage information obtained from the test
execution of the previous (baseline) version of the program. Therefore, we follow the procedure described in
Rothermel et al. [37] to study the effect of code coverage granularity on the effectiveness of test case prioritization
techniques. We also follow Rothermel et al. to use statement and branch coverage data to represent a finer granularity
and use function coverage data to represent a coarser granularity.

2.1.1 Greedy techniques

When we combine the two greedy strategies with the three coverage (granularity) levels, we produce six greedy
techniques: total statement (total-st), total branch (total-br), total function (total-fn), additional statement (addtl-st),
additional branch (addtl-br), and additional function (addtl-fn). We briefly describe these techniques in this
subsection. Interested readers may refer to Rothermel et al. [37] for a detailed description.

The total statement (total-st) test case prioritization technique computes the statements that have been covered in
the execution of each program version over each test case. It permutes test cases in descending order of the total
number of statements covered by the respective test case. When two test cases cover the same number of statements,
it orders them randomly. The total branch (total-br) and the total function (total-fn) test case prioritization
techniques are the same as total-st, except that they use branch coverage and function coverage information,
respectively, instead of statement coverage information.

The additional statement (addtl-st) test case prioritization technique is the same as total-st, except that it selects a
test case that covers the maximum number of statements not yet covered in each round. When no remaining test case
can further improve the statement coverage of the test suite being constructed, addtl-st resets all the statements to
“not yet covered” and reapplies the same procedure on the remaining test cases. When two test cases cover the same
number of additional statements in a round, it randomly picks one.



The additional branch (addtl-br) and additional function (addtl-fn) test case prioritization techniques are the same
as addtl-st, except that they use branch coverage and function coverage data, respectively, rather than statement
coverage data.

2.1.2 ART-based techniques

We summarize the techniques for ART-based test case prioritization [25] as follows. The basic algorithm accepts a test
suite containing a sequence of test cases as its input, and produces a sequence of prioritized test cases. It prioritizes
the test cases by iteratively building a candidate set of test cases and, in turn, picks one test case out of the candidate
set until all given test cases have been selected. To generate the candidate set of test cases, the algorithm randomly
adds test cases that have not yet been selected into the candidate set one by one as long as they can increase the code
coverage achieved by the candidate set. To decide on the candidate test case to be selected from the candidate set, the
algorithm uses a function (denoted by f1) to calculate the distance between a pair of test cases and another function
(denoted by f2) to select a test case from the candidate set that is farthest away from the set of prioritized test cases.

For function f1, we follow our previous work [25] to measure the distance between two test cases using the Jaccard
distance (a special case of the Tanimoto distance, which satisfies the triangle inequality property of a distance
function [33]) based on their code coverage data. Suppose the set of statements (or functions or branches) covered by
test cases p; and ¢; are S(p;) and S(c;), respectively. We have

_Is(;) n s(e)|
s(pj) v ()l

Function f, describes the strategy to select the farthest test case from those test cases that have already been
prioritized. We also follow our previous work [25] in defining the distance between a test case and a set of prioritized
test cases as their minimum, average, or maximum test case distance. We then find a candidate test case that is
associated with the longest distance with the set of test cases already selected. Given a matrix D of distances between
each pair of test cases in the test suite, f, (D) is given by

f1(pj'ci) =1

St dy = maclominde) o
_Jjst avg d;j;j = max { avg d;
f2(D) =1/ Osi§|p| Y OSjSICl{osijPl vl @
j L ij — ij 3
Jstogmgdy = g lngy sl G

In total, 16 test case prioritization techniques are considered in this paper, including nine ART test case
prioritization techniques, six greedy test case prioritization techniques, and random ordering [16]. We summarize the
properties of all the test case prioritization techniques in Table 1.

2.2 Fault localization techniques

Researchers have proposed numerous techniques to help developers locate faults. The statistical fault localization
approach [2][27][28][32][34][35][47][48][49][50] conducts statistical analysis on program execution traces and
pass/fail information of executed test cases to generate a ranked list of suspicious program entities (such as
statements) for the developers to inspect in turn in the code. A popular hypothesis is that if a statement is frequently
executed in failed test cases but rarely executed in passed test cases, then it is more suspicious to be faulty or related
to faults. We revisit four statistical fault localization techniques in this section, which will be used in our empirical
study. They are also the four techniques selected by Yu et al. [44] in their study of the effects of test suite reduction on
statistical fault localization. There are also many other fault localization techniques proposed by various researchers
[13][22][36] that are not included in our experiment.

We note also that we use the statement-level program spectrum as the basis for fault localization. By so doing, our
study not only provides all fault localization techniques with a common basis for comparison, but also represents a
fine-level program spectrum that likely leads to higher fault localization effectiveness than the use of a coarse-level
program spectrum. This serves the goal of the target integration.

2.2.1 Tarantula

Jones and colleagues [27][28][44] propose the Tarantula technique, which was used initially for the visualization of
testing information. To rank program statements, Tarantula computes two metrics, suspiciousness and confidence



[44], according to the coverage information on passed and failed test cases. The suspiciousness of a statement s is given
by the formula

Y%failed(s)
%passed(s) + %failed(s)

The function %failed(s) tallies the percentage of failed test cases that execute statement s (among all the failed test
cases in the test suite). The function %passed(s) is similarly defined.

suspiciousness(s) =

The confidence metric, computed as follows, indicates the degree of confidence on a suspiciousness value:
confidence(s) = max(%failed(s), %passed(s))

Tarantula ranks all the statements in a program in descending order of suspiciousness and uses the confidence
values to resolve ties.

Table 1. Test case prioritization techniques studied.

Ref. Name Descriptions
T1 random Random ordering
Ref. Greedy Level of coverage information Coverage-based strategy
T2 total-st Statement
T3 total-fn Function Total
T4 total-br Branch
T5 addtl-st Statement
T6 addtl-fn Function Additional
T7 addtl-br Branch
Ref. ART Level of coverage information Test set distance (f2) in ART strategy
T8 ART-st-maxmin Equation (1)
79 ART-st-maxavg Statement Equation (2)
T10 ART-st-maxmax Equation (3)
T11 ART-fn-maxmin Equation (1)
T12 ART-fn-maxavg Function Equation (2)
T13 ART-fn-maxmax Equation (3)
T14 ART-br-maxmin Equation (1)
T15 ART-br-maxavg Branch Equation (2)
T16 ART-br-maxmax Equation (3)

2.2.2 Cooperative Bug Isolation (CBI)

Liblit et al. [32] deployed the notion of Cooperative Bug Isolation (CBI) to develop a technique for identifying faults.

The technique is adapted by Yu et al. [44] to calculate the suspiciousness (called SBI) of a statement s as follows:
failed(s)

passed(s) + failed(s)

The functions failed(s) and passed(s) tally the number of failed and passed test cases, respectively, that execute s.

suspiciousness(s) =

2.2.3 Jaccard similarity coefficient

Abreu et al. [1] use the Jaccard similarity coefficient for binary data as a suspiciousness formula. The equation for the
Jaccard coefficient is given by

failed(s)
totalfailed + passed(s)

suspiciousness(s) =

The functions failed(s) and passed(s) have the same meaning as in CBI. The variable totalfailed is the number of failed
test cases in the test suite. The technique ranks the statements similarly to Tarantula.



2.2.4 Ochiai similarity coefficient

Abreu et al. [1] also propose to use the Ochiai similarity coefficient as another suspiciousness formula. The equation
for Ochiai coefficient is given by

failed(s)

suspiciousness(s) =
uspiciousness(s) \/totalfailedx(failed(s) + passed(s))

where passed, failed, and totalfailed have the same meanings as those in CBI and the Jaccard similarity coefficient. The

technique also ranks the statements similarly to Tarantula and the Jaccard coefficient.

3. Empirical study

In this section, we present our study on the relationship between regression testing and debugging.

3.1 Research questions
The empirical study addresses two research questions:

RQ1: During a commit build, if the developers stop regression testing after the process has encountered i failed test
cases, which test case prioritization strategy (Random, Greedy, or ART) and which level of coverage granularities
(function, statement, or branch) are more helpful to developers in conducting effective fault localization?

RQ2: If we are resource conscious about the number of test cases for regression testing, to what extent will a fault
localization technique be affected if it only uses the execution statistics of the high priority test cases as input?

Some previous studies [16][31] have empirically shown that both strategy and coverage granularity can be key
factors that significantly affect the rates of fault detection or the rates of code coverage of test case prioritization
techniques. At the same time, another previous study [1] has shown empirically that a statistical fault localization
technique that uses a small number of failed test cases (which is 5 as reported in that study) already suffices to
provide the same level of fault localization effectiveness as if the entire test suite were used. If this is the case, a
statistical fault localization technique may use a subset of a test suite that contains a few failed test cases. If such a test
suite is generated via test case prioritization, it is unclear whether factors like strategy and coverage granularity that
affect test case prioritization may significantly affect the effectiveness of statistical fault localization technique.
Moreover, if such a factor exhibits any effect, it is also unclear what direction (i.e.,, improvement or otherwise) that
such a factor may act on such integration in the CI process. The answers to these research questions will disclose the
relationships between such factors and the effectiveness of statistical fault localization.

RQ2 explores whether quick commit builds may preserve the effectiveness of the fault localization techniques as if
the entire test suites were used. In a typical CI process, the time budget for regression testing of a commit build is
limited. The use of fewer test cases is an obvious choice to meet such a time budgetary constraint. Nonetheless, the
positive or adverse effects of such a decision on the CI process are unclear. The answer to RQ2 unveils the tradeoff
between time budgets and fault localization effectiveness, which is crucial if both test case prioritization and fault
localization techniques are used in a CI process.

3.2 Subject programs and test pools

We used two sets of subject programs in our experiment. The first was the Siemens suite of seven programs and the
second was a suite of four UNIX programs. The Siemens programs were originally created to support research on
data-flow and control-flow test adequacy criteria. Because they were small in scale, we also used four real-life UNIX
utility programs with real or seeded faults. Since the Siemens suite was first produced, it has gone through many
modifications and many papers have reported quite different descriptive statistics [40]. There are also numerous
versions of the UNIX programs. For ease of reference by readers, we downloaded all our subject programs from the
Software-artifact Infrastructure Repository (SIR) [14], available at http://sir.unl.edu (last accessed in June 2010).

Table 2 shows the descriptive statistics of our subject programs. The column headed by No. of faulty versions lists
the number of faulty versions for each subject program. The column headed by No. of faults per version shows the
number of faults for each faulty version. The column SLOC shows the numbers of executable source lines of code for
the faulty versions of each program. The column Test pool size represents the total number of available test cases in



the test pool for each program. For example, the last row of the table shows the statistics for the sed program: The
natural program versions range from version 1.18 to version 3.02. There are 17 single fault faulty versions and six
multi-fault faulty versions, each with two to three faults. Finally, there are 4756 to 9289 lines of executable source
code and 370 test cases for this program in the whole test pool.

Table 2. Subject programs.

Subject No. of faulty versions No. of fal.llts SLOC Test pool size
per version
tcas 41 1 133-137 1608
schedule 9 1 291-294 2650
schedule2 10 1 261-263 2710
tot_info 23 1 272-274 1052
print_tokens 7 1 341-342 4130
print_tokens2 10 1 350-354 4115
replace 32 1 508-515 5542
flex (2.4.7-2.5.4) 21 2_; 8571-10124 567
17 1
grep (2.2-2.4.2) 6 >3 8053-9089 809
gzip (1.1.2-1.3) 55 L 4081-5159 217
4 2-3
17 1
sed (1.18-3.02) 6 >3 4756-9289 370

We excluded the versions whose faults cannot be revealed by any test case in our test infrastructure and
environment. We also excluded the versions whose faults were too obvious (where more than 25% of all the test
cases in the pool can detect them [16]) and the versions that do not work with the standard coverage tool gcov (which
was used to collect the coverage information of program executions in our test infrastructure). Similar strategies,
magic numbers, and tools were also used in previous experiments [16][17][23][25]. Finally, we used the remaining
212 faulty versions for data analysis. Faults in the faulty versions were either real or seeded. According to SIR [14],
the seeded faults mimicked real world faults made by developers, including logical operator errors, missing
statements, wrong definitions, missing definitions, and so on. We used the original program versions as the “golden”
versions and compared the execution results of a test case between an original version with that of a corresponding
faulty version to determine whether it passes or fails. A fault is exposed if there is a discrepancy between the two test
results.

3.3 Experimental setup
This section presents the experiment setup for the empirical study.

We applied the 16 test case prioritization techniques (see Table 1) and the four fault localization techniques to
the 212 versions of our subject programs and their test suites. In this section, we present the setup of the experiment.

For the seven Siemens programs, we followed our previous work [23][24][25][26] to use the branch-adequate test
suites provided by SIR to conduct test case prioritization. There are 1000 small test suites and 1000 large test suites,
both of which are branch adequate. Each small test suite contains about 30 test cases while each large test suite
contains about 100 to 200 test cases. For the small test suites, testers can simply retest all test cases because the
execution time of the entire test suite is trivial. There is no real need to conduct test case prioritization on them.
Consequently, we chose to use the large test suite for our empirical study, because test case prioritization is only
needed when the time cost of executing the test suite is non-trivial. For the four UNIX programs, since the test pool
size was not large with respect to the program size, we followed [17][23][25] to use the whole test pool as a suite for
prioritization.

All the ART-based techniques and the random ordering technique are based on random selection. We repeated
each of them 20 times to obtain an average performance. To reduce the huge computation cost incurred in the
experiment, we randomly selected 50 test suites from the available 1000 test suites for each subject for the Siemens



programs. Thus, we conduct a total of 1000 prioritizations for each ART-based technique and 4000 rounds of fault
localizations for each Siemens program. Since we used the whole test pool of UNIX programs as a test suite, we
conducted a total of 20 prioritizations for each ART-based technique and 80 rounds of fault localizations for each
UNIX program. The whole experiment took about one month for all the executions to complete.

Suppose the positions of the 1st, 2nd, .., mth failed test cases in the prioritized test suite are fj, f2, ..., fm, respectively,
where m is the total number of failed test cases for the test suite. To answer research question RQ1, we stop the
regression testing in the commit build if f; test cases (for i = 1, 2, .., m) has been executed. We conducted the
experiment on each faulty version of every subject program and averaged out the results over all the four fault
localization techniques considered.

For the experimental setup of research question RQ1, each test case prioritization technique generated m test
suites of different sizes for fault localization, where m is again the total number of failed test cases. In this way, we
could evaluate how a test case prioritization technique changes in terms of expense when different prefixes of a
prioritized test suite were used for fault localization.

To answer research question RQ2, for every prioritized test suite generated by each test case prioritization
technique, we used its top 10%, 20%, ..., 100% test cases for the commit build. If a percentage of a test suite is not an
integer value, it is rounded down to the nearest integer. We then used the corresponding resultant suites for fault
localization. We conducted the experiment on each faulty version of every subject program and averaged out the
results over all the four fault localization techniques. As a result, for the experimental setup for research question RQ2,
each prioritized test suite generated 10 test suites of different sizes for the commit build.

3.4 Experimental environment

We carried out the empirical study on a Dell PowerEdge 2950 server run under Solaris UNIX. The server had 2 Xeon
5430 (2.66 GHz, 4 core) processors with 4 GBytes of physical memory.

3.5 Main metrics

3.5.1 Expense

We use expense [22][27][44] as the metric to measure fault localization effectiveness. Given a ranked list produced by
a fault localization technique, expense measures the minimum percentage of statements in a program that must be
examined in descending order of the ranks so as to include the fault in the set of examined statements. It is defined by
the formula

rank of the faulty statement
number of executable statements

expense =

where a smaller expense indicates a better result.

When conducting fault localization on multi-fault programs, we first measure the expense for locating the first fault.
After fixing the first fault, we conduct further fault localization and measure the expense for locating the second fault
in the modified program. After fixing the second fault, we continue with the fault localization and measure the expense
for locating the third fault, and so on. In this way, we iteratively measure the expense for each fault. Finally, we report
the mean and variance of the expenses for locating all the faults in a multi-fault program. We measure the expenses for
multi-fault programs in this way because previous papers (such as [48]) have reported this kind of analysis, which
appears to be close to how developers debug multi-fault programs in practice. For instance, developers may firstly fix
one bug, submit the changed code to the CI server for regression testing to confirm that the bug has been correctly
fixed, and then use the updated bug report to assist them to fix another bug.

3.5.2 Area Under Curve (AUC)

We use Area Under Curve (AUC) to measure the cumulative fault localization expense for a given strategy or dimension
after the tester has encountered a number of failed test cases and stopped regression testing. Thus, given a strategy or
dimension and the total number of failed test cases n,

Area Under Curve (AUC) = },i-, expense (i)

0n



where expense(i) is the mean expense achieved when i failed test cases in a test suite has been observed in the commit
build. Like the expense metric, the lower value of AUC, the better will be the result.

For example, the curve in Fig. 3 shows the expenses for a given strategy or dimension after encountering different
numbers of failed test cases in a commit build, until all the n failed test cases have been observed. The x-axis
represents the number of failed test cases encountered in the commit build whereas the y-axis represents the
expenses. If we are interested in the cumulative fault localization effectiveness for that strategy or dimension, we may
use the Area Under Curve (and above the x-axis) to represent it.

0.25

0.2

Expense

0.1

0.05

1 7 13 19 25 31 37 43 49 55 61 67 n
No. of Failed Test Cases Used

Fig. 3. Example illustrating AUC metric.

4. Data analysis and discussions

4.1 Effectiveness

In this section, we first present the results for each research question on the Siemens programs, and then analyze
them to answer research questions RQ1 and RQ2, respectively.

4.1.1 Answering RQ1

4.1.1.1 Comparison of test case prioritization strategies

In this section, we report for each test case prioritization strategy the mean result over all the techniques. We use ART
to stand for the mean expense for the ART-st-maxmin, ART-st-maxavg, ART-st-maxmax, ART-fn-maxmin, ART-fn-
maxavg, ART-fn-maxmax, ART-br-maxmin, ART-br-maxavg, and ART-br-maxmax techniques. The curve for Additional
represents the mean expense for the addtl-st, addtl-fn, and addtl-br techniques. The curve for Total stands for the
mean expense for total-st, total-fn, and total-br.

We show in Fig. 4 the trend of fault localization effectiveness after encountering the first i failed test cases in a test
suite for a commit build on the Siemens programs. The x-axis represents the number of failed test cases observed
before we stop the execution of the prioritized test cases during a commit build, and the y-axis represents the mean
expense achieved by using the corresponding portion of the prioritized test suites for fault localization. The four
curves correspond to the mean expenses achieved by Random ordering, ART, Additional, and Total.

For ease of discussion, we divide the graph in Fig. 4 into three regions using two vertical lines.

(a) We observe that in the leftmost region, the fault localization effectiveness for different test case prioritization
strategies improves rapidly if more failed test cases are available. It clearly indicates that regression testing should
continue beyond the first failed test case until a few more failed cases have been reported.

(b)In the middle region, on the other hand, the fault localization effectiveness represented by each curve is not
monotonically increasing. It shows that in terms of expense, adding more failed test cases may even adversely
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affect the fault localization effectiveness. Moreover, the experiment has used quite a number of test case
prioritization techniques over 122 faulty versions. Even for the Random ordering strategy that gets rid of the
subjective heuristics used in different test case prioritization strategies and coverage granularity levels, we still
observe such variations.

We note that every analyzed program version contains a single fault. We can, therefore, rule out the reason that
such variations in the fault localization effectiveness of the test suites may be due to the interference among
different faults in the same program version.

It appears to us that the use of adequate test suite and the number of failed test cases have complicated
interactions. This finding is very interesting and, to the best of our knowledge, no previous empirical study has
reported this kind of result.

An empirical study involves the analysis of observations and the validation of hypothesis in specific research
questions. It differs from an experimental study, which verifies predicted behaviors based on models and theories.
In other words, empirical studies are more of an explorative nature and apply to an early stage of the scientific
research on a particular issue before models and theories are postulated. Hence, it is beyond the scope of the
present empirical study to explain the theoretical cause of the small variations in fault localization effectiveness.

On the other hand, to facilitate future research, we put forward two potential reasons for consideration. First,
some of the test cases in a test suite may show coincidental correctness, which causes the contrasting step in
statistical fault localization to be imprecise. Second, the formulas for statistical fault localization techniques are
non-linear with respect to the number of failed test cases.

(c) Finally, the effectiveness of different strategies gradually increases and converges to almost the same value at the
final range. Like the first range, the finding in this range again agrees with the general intuition that to make a
given test suite more effective for fault localization, it is better to make use of as many failed test cases as possible.
This finding is regardless of the test case prioritization strategy employed.
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Fig. 4. Comparison of test case prioritization strategies on fault localization effectiveness for Siemens programs.

Our finding is consistent with, but more detailed than, the result reported in Abreu et al. [1], who find that simply
using up to five test cases helps improve the fault localization effectiveness of an enhanced test suite to match that of
using the entire test pool. Our results show that after encountering the first few failed test cases, the inclusion of more
failed test cases may lead to a variation period where the fault localization effectiveness fluctuates. Moreover, only
when going beyond this variation period will the fault localization be improved again significantly by the inclusion of
more failed test cases. The results in both [1] and this paper show that the inclusion of more failed test cases initially
helps improve the fault localization effectiveness. Our results in particular imply that we should continue to include as
many failed test cases as possible to achieve better fault localization effectiveness despite the small variations period.
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We also observe another interesting result. We recall that previous studies [16][25][37] consistently reported that
the ART, Additional, and Total strategies are more effective in exposing faults earlier than the Random ordering
strategy on the Siemens programs. Indeed, almost all previous empirical studies on test case prioritization research
consider Random ordering as the lower bound technique (on average) to expose faults as early as possible [16][37].
Our results, however, show that although Random can be slower in exposing faults, if we base on the failures observed
from a randomly ordered test suite to decide when to stop regression testing, we can actually provide better fault
localization effectiveness than the ART, Additional, and Total strategies in the initial and middle ranges. We also
observe that the curve for Random forms a lower frontier (i.e., the best result) among all the strategies on the Siemens
programs for the first two regions. Random ordering is simple and objective, and has the advantage of low cost in
terms of the prioritization process. It can be better than other test case prioritization strategies for this scenario (on
the Siemens programs) when the target is to locate faults.

Moreover, in a previous empirical study [23][25], the Total strategy is found to be comparable to the ART and
Additional strategies in terms of rate of fault detection in the Siemens programs. However, the results in Fig. 4
indicate that Total is relatively the least effective strategy in making statistical fault localization effective.

Nonetheless, the study reported here can only show the correlation, but has not revealed the underlying reason
why the Total strategy is ineffective for statistical fault localization. At this stage, it appears to us that Total may select
consecutive passed executions clustering across a set of statements, branches, or functions that is quite different from
the failed executions. It may effectively provide less contrast to distinguish statistically the statements, branches, or
functions related to the failed executions. In this connection, the Random strategy provides a higher probability to
allow a statistical fault localization technique to distinguish different program entities.

To compare the cumulative fault localization expenses, we calculate the AUC for each strategy. We find from Table 3
that the Random strategy is 21.6%, 24.0%, and 93.2% better than the ART, Additional, and Total strategies,
respectively. In other words, Random (2.83) is the most effective fault localization strategy on the Siemens programs.
The ART strategy (3.44) is slightly better than the Additional strategy (3.51). The Total strategy (5.47) is the least
effective strategy on the Siemens programs.

Table 3. Areas under curve for different strategies on Siemens programs.

Strategy Random ART Additional Total
AUC 2.83 3.44 3.51 5.47

4.1.1.2 Comparison of coverage granularity levels

In this section, we report the mean expenses for different levels of coverage granularity across all the test case
prioritization techniques studied. We use “Branch”, “Function”, and “Statement” to represent the mean expenses for
all the branch-level techniques, function-level techniques, and statement-level techniques studied, respectively, on the
Siemens programs. For example, the curve for Branch is the mean of the expenses of using ART-br-maxmin, ART-br-
maxavg, ART-br-maxmax, addtl-br, and total-br on all the analyzed test suites. The other two levels of coverage
granularity are computed similarly. We do not include Random in this analysis because Random does not depend on
such information for ordering.

We observe from Fig. 5 that there is no noticeable difference in fault localization effectiveness between coarse
granularity (function-level) techniques and fine granularity (statement- and branch-level) techniques. We compute
the area under curve for each level of granularity as shown in Table 4. The result also confirms the observation that
branch-level granularity (3.74) is slightly better than function-level granularity (3.91) and statement-level granularity
(3.94), and yet the corresponding differences constitute only 4.5% and 5.3%, respectively. Apparently, the
effectiveness at different levels of coverage granularity is comparable. We further conduct the ANalysis Of VAriance
(ANOVA) test, and the resulting large p-value of 0.112 confirms that there is no significant statistical difference
between coarse granularity techniques and fine granularity techniques in terms of the expense over all test suites at a
significance level of 5%. Intuitively, given a specific test case prioritization strategy, the use of coarse (function-level)
coverage granularity information is a better choice as it incurs less cost in terms of both coverage profiling and
prioritization time.
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Fig. 5. Comparison of coverage granularity levels on fault localization effectiveness for Siemens programs.

Table 4. Areas under curve for different coverage granularity levels on Siemens programs.

Coverage granularity

Branch

Function
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AUC

3.74

3.91
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4.1.1.3 Comparison of distributions of different test case prioritization techniques

In this section, we report variances of the expenses of using the test suites generated by different test case
prioritization techniques for statistical fault localization. Table 5 summarizes the results. Each column represents a
test case prioritization technique. Each row represents the variance of expenses for the same number of failed test
cases. In each row, we have highlighted in gray the cell with the largest variance (unless there are multiple cells
having the same largest variance).

We observe that the 13 Random, ART and Additional techniques are comparable to one another in terms of

variances, whereas the variance of the expenses for the three Total techniques are comparably larger than the former
techniques when the number of failed test cases is no more than 40. Thus, when compared with each of the three
Total techniques, Random ordering achieves a smaller variance when the number of failed test cases is small. When
the number of failed test cases exceeds 40, the variances of different test case prioritization techniques are
comparable to one another.

Table 5. Variances of expenses on Siemens programs.
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We further group different test case prioritization techniques in the dimension of strategy as shown in Table 6. We
have similar observations that the variances of the expenses for the Random, ART, and Additional strategies are
comparable to one another. Also, Random, ART, and Additional have smaller variances than the Total strategy if the
number of failed test cases is small (no more than 40), which is likely the case in practice. If we view different test case
prioritization techniques in the dimension of coverage granularities, the result is shown in Table 7, which excludes
Random as it does not depend on such information. We find that the variances of the expenses of using Statement,
Branch, and Function as the coverage granularities are comparable to one another.

Table 6. Variances of expenses for prioritization strategy on Siemens programs.

Number of

. Random ART Additional Total
failed test cases

10 0.016 0.017 0.017 0.029
20 0.015 0.018 0.018 0.028
30 0.012 0.014 0.014 0.023
40 0.004 0.004 0.004 0.007
50 0.001 0.002 0.001 0.002
60 0.001 0.001 0.001 0.001
70 0.001 0.001 0.001 0.001
Max 0.001 0.001 0.001 0.001

Table 7. Variances of expenses for coverage granularity on Siemens programs.

Number of

. Branch |Function| Statement
failed test cases

10 0.018 0.020 0.019
20 0.020 0.020 0.020
30 0.015 0.014 0.018
40 0.005 0.004 0.005
50 0.002 0.002 0.002
60 0.001 0.001 0.001
70 0.001 0.001 0.001
Max 0.001 0.001 0.001

4.1.2 Answering RQ2

To answer RQ2, we compute the overall fault localization effectiveness of using a particular percentage of a test suite
for a commit build (regardless of the choice of test case prioritization or fault localization techniques), as shown in Fig.
6. The x-axis represents the percentages of a test suite being used to conduct a commit build. The y-axis represents the
expenses. Each box in the figure represents the distribution of expenses over all test case prioritization techniques for
a given percentage of test suite used to conduct a commit build, as indicated by the x-value in the plot.

We observe from Fig. 6 that with an increase in the percentage of a test suite used for statistical fault localization,
the decrease in expense is very noticeable, especially when the percentage is small. For instance, when using the first
10% of a test suite for fault localization, the median expense is 0.42. When using the first 20%, the median expense
decreases to 0.36. When using the entire test suite for fault localization, the resultant expense is only 0.24. However,
the variances of the expenses in all three scenarios are almost the same, which is around 0.04. The result indicates
that although code examination efforts can be reduced by using more high priority test cases, the variance does not
improve when more test cases are used for fault localization.
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If we look closer at Fig. 6, we find that when a higher percentage of a test suite is used for a commit build, the
decrease in expense (or increase in fault localization effectiveness) gradually become slower. In fact, the difference in
the median expense between using 60% and 100% is only 0.02. We further conduct an ANOVA test, validating the null
hypothesis that there is no significant difference between the mean expenses of using different percentages of test
suite for fault localization at a significance level of 5%. The ANOVA test returns a p-value of 0.0037, which successfully
rejects the null hypothesis and shows that there are significant differences among the groups.
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Fig. 6. Distributions of expenses for different percentages of test suites on Siemens programs.

In an ANOVA test, we compare the means and variances of several groups to validate statistically the hypothesis
that all these groups are drawn from the same population, as against the general alternative that they are not from the
same population. We further want to know which pairs of the means are significantly different and which are not. A
test that can provide such information is called a multiple comparison procedure.

Thus, to verify whether the mean expenses for two different percentages of a test suite differ significantly, we
further conduct multiple comparisons to compare the mean expenses of using different percentages of a test suite for
a commit build at a significance level of 5%. For each multiple comparison procedure conducted in this work, we use
Tukey’s Honestly Significant Difference (HSD) as the alpha adjustment procedure, which is the default option available
in MATLAB. The result is shown in Fig. 7. The multiple comparisons are conducted between using 100% of a test suite
for a commit build and using other percentages of the test suite for the commit build. The x-axis shows the expenses
and the y-axis shows the different percentages of test suites. Each horizontal line in the figure represents the
distributions of expenses using a specific percentage of the test suite for the commit build, and the central point
indicating the mean expense. The horizontal lines cut by the two dotted vertical lines indicate that their mean
expenses are not significantly different from that of using 100% of test suites for commit build at a significance level of
5%.

The result of multiple comparisons in Fig. 7 shows that there is no statistical difference between the mean expense
of using an entire test suite for a commit build and that of using 60% or more of the test suite at a significance level of
5%. However, there is a significant difference between the mean expenses of using an entire test suite and using no
more than 50% of the test suite. The result also shows that for programs of the scale represented by the Siemens suite,
the CI process can reduce the number of test case executions by up to 40% while maintaining a fault localization
effectiveness result similar to that when the entire test suite is being used.

4.2 Scalability of single-fault subjects
We want to know whether our finding on the Siemens programs can be observed in other real-life scenarios.
Therefore, we further analyze the results for single-fault and multi-fault UNIX programs. In this section, we present
the results for single-fault UNIX programs and re-examine the two research questions. In the next section, we will
report the result on multi-fault UNIX programs.
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4.2.1 Answering RQ1

Similarly to the experiment on the Siemens programs, we first study the scenario of developers stopping a commit
build whenever a specific number of failed test cases have been observed.
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Fig. 7. Multiple comparisons of expenses for different percentages of test suite on Siemens programs.

4.2.1.1 Comparison of test case prioritization strategies

This section reports on the comparison of different test case prioritization strategies as shown in Fig. 8. The x- and y-
axes of Fig. 8 can be interpreted similarly to Fig. 4. The expenses in each curve are computed in the same way as in
Section 4.1.1.1, except that we use single-fault UNIX programs instead of the Siemens programs as subjects.

Similarly to what we did for Fig. 4, we divide the plot in Fig. 8 into three regions using two vertical lines. We
observe that during the initial range (i.e., the leftmost region), the fault localization effectiveness of all the strategies
studied (except Total) improves rapidly when more failed test cases are encountered. In the middle region, roughly
speaking, the fault localization effectiveness of all the strategies deteriorates towards the end of the range. Total
fluctuates more seriously than the other strategies. We observe also that there are quite a number of peaks and
troughs along the curve of Total in the middle region. Finally, all the curves converge to the same value in the final
range. This general trend is similar to what we have observed from Fig. 4. By comparing these curves in Fig. 8, we also
find that Total is the least effective among the strategies studied. The trends of the Random, ART, and Additional
strategies are observably comparable to one another, and quite different from the trend of the Total strategy.

—Random
0.045 ART
0.04 Additional
+ -Total
0.035 -
Ly n ,
o 0.03 X ‘V\" 2
] 1=

2 \ Ty \ \v=~_" - ~ -
@ 0.025 | v ' f- 4
=% [ ] o \
& ! YA | I .

0.02 K1 e o \‘(r« o

. r v....b_\
/7 uJ
0.015 !I'\ R —— f e
y /
(e
0.01
0.005
0 T—

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
No. of Failed Test Cases

Fig. 8. Comparison of test case prioritization strategies on fault localization effectiveness
for single-fault UNIX programs.
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Encouragingly, the effectiveness of the ART and Additional strategies catches up with that of the Random strategy.
However, the former strategies do not outperform the latter noticeably. In order to understand this observation
better, we further compute the area under curve of each strategy, as shown in Table 8. We observe that, in general, the
Random (2.14), ART (2.33), and Additional (2.05) strategies only differ by about 2 to 13%, and they all perform
significantly better than the Total strategy (3.16) by at least 35%. Random ordering can be applied at low cost. On the
other hand, consistent with the time cost reported in Jiang et al. [23][25], the Additional strategy is the least efficient
among the studied techniques, and the time cost of the ART strategy is much lower than that of the Additional
strategy. The result echoes the result in Section 4.1.1.1 that owing to its low prioritization cost, the Random ordering
strategy is useful if the project concerned is buggy; whereas the ART or Additional strategy can be viable options if the
goal is to reassure all the existing features of a baseline version.

Table 8. Areas under curve for different strategies on single-fault UNIX programs.

Strategy Random ART Additional Total
AUC 2.14 2.33 2.05 3.16

4.2.1.2 Comparison of coverage granularity levels

Similarly to our analysis on the raw data of Fig. 5 for the Siemens programs, we report our result on the single-fault
UNIX programs in Fig. 9. We find the trends of the curves for these subject programs are similar to that for the
Siemens programs. We also compute the area under curve for each level of granularity, as shown in Table 9. We find
that different levels of coverage granularity do not result in any significant difference in the cumulative fault
localization effectiveness. This is confirmed by an ANOVA test that returns a p-value of 0.145, which cannot reject the
null hypothesis that there is no difference in expenses between different coverage granularity levels at a significance
level of 5%. Thus, when the test case prioritization strategy (other than Random) is fixed, a coarse (function-level)
coverage granularity can be a better choice from the perspective of cost effectiveness. When Random ordering is used,
coverage granularity is not relevant.
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Fig. 9. Comparison of coverage granularity levels on fault localization effectiveness for single-fault UNIX programs.

Table 9. Areas under curve for different coverage granularity levels on single-fault UNIX programs.

Coverage granularity Branch Function Statement

AUC 2.40 2.32 2.40

4.2.1.3 Comparison of distributions of different test case prioritization techniques

In this section, we report the variances of the expenses of using the test suites generated by different test case
prioritization techniques for statistical fault localization on single-fault UNIX programs. Table 10 shows the results.
Note that a value smaller than 0.001 is represented as “< 10-3” in the table.
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Table 10. Variances of expenses on single-fault UNIX programs.
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90 ]0.004)0.004)|0.003/0.003]0.004]0.004/0.003]0.004|0.004)0.003]0.003|{0.003]|0.003|0.004|0.004|0.004
100 |0.003|0.004|0.003]0.003/0.004/0.004{0.003/0.004|0.004|0.003]0.003/0.003]0.003|0.004|0.004|0.004
110 ]0.004]0.005|0.006(0.004]0.005|0.006|0.004]0.005]0.006|0.004|0.004|0.005|0.004|0.006/0.006|0.006
120 |<10-3)<10-3|]<10-3|<10-3|<10-3|]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3|< 10-3|]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3
130 |<10-3]<10-3|]<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|< 10-3]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3
140 |<10-3]<10-3|]<10-3|<10-3|<10-3|<10-3|]<10-3|<10-3|<10-3|< 10-3|< 10-3]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3
150 |<10-3]<10-3|]<10-3|<10-3|<10-3|<10-3|]<10-3|<10-3|<10-3|<10-3|< 10-3]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3
160 |<10-3)<10-3|]<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|< 10-3|< 10-3|]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3
Max |< 10-3]<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|<10-3|< 10-3|< 10-3|]< 10-3|< 10-3|< 10-3|< 10-3|< 10-3

We can find that all the 13 Random, ART and Additional techniques are comparable to one another in terms of the
variances of the expenses, which are comparably smaller than those of the three Total techniques when the number of
failed test cases is small.

If we group different test case prioritization techniques according to strategies as shown in Table 11, we find that
for the Random, ART, and Additional strategies, the variances of the expenses are comparable to one another, and all
of them have smaller variances than the Total strategy when the number of failed test cases is up to 50. If we classify
test case prioritization techniques in terms of coverage granularity as shown in Table 12 (which excludes the Random
technique), we find that the variances of the expenses for the Statement, Branch, and Function levels are comparable
to one another. As the expense and variance of using a coarse coverage granularity are comparable to those for fine
granularities, function coverage is a better choice from the perspective of cost-effectiveness as it incurs less program
instrumentation, coverage profile, and test case prioritization overheads.

4.2.2 Answering RQ2

Similarly to our analysis shown in Fig. 6 for the Siemens programs, we compute the distributions of expenses in the
use of different percentages of a test suite for a commit build of a single-fault UNIX program. The result is shown in
Fig. 10. The x-axis and y-axis can be interpreted similar to those of Fig. 6.

Like the results for the Siemens programs, if more test cases are used for a commit build, the expense decreases
gradually. For instance, when using 10% of a test suite, the median expense is only 0.21. When using 20% of a test
suite, the median expense improves to 0.148. When using the entire test suite for fault localization, it is about 0.04.

We further observe that the variances for single-fault UNIX programs, as indicated by vertical bars, are larger than
those for Siemens programs. For example, if 10%, 20%, and 30% of the test cases in a test suite are used for a commit
build, the variances are 0.1, 0.15, and 0.2, respectively. They correspond to 2.5, 3.75, and 5 times of the observed
variances for the Siemens programs.

We conduct an ANOVA test to validate whether there is no significant difference between the mean expenses of
using different percentages of test suite for fault localization at a significance level of 5%. The test returns a p-value of
0.0026, which successfully rejects the null hypothesis and shows that there are significant differences among the
groups.
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We further conduct multiple mean comparisons on these data. The result, as shown in Fig. 11, can be interpreted
similarly to those in Fig. 7. It indicates that there is no statistical difference (at a significance level of 5%) between the
expense of using an entire test suite for a commit build and that of using 50% or more of the test suite. This finding is
the same as our earlier result for the Siemens suite that we can reduce the number of test case executions by up to 50%
in a commit build while maintaining a fault localization effectiveness result as if the whole test suite were used.

Table 11. Variances of expenses for prioritization strategy on single-fault UNIX programs.

.Number of Random ART Additional Total
failed test cases
10 0.003 0.003 0.002 0.007
20 0.003 0.003 0.002 0.005
30 0.002 0.003 0.002 0.005
40 0.002 0.003 0.002 0.005
50 0.003 0.004 0.003 0.005
60 0.004 0.004 0.004 0.004
70 0.004 0.004 0.004 0.004
80 0.004 0.004 0.003 0.004
90 0.004 0.004 0.003 0.004
100 0.003 0.004 0.003 0.004
110 0.004 0.005 0.004 0.006
120 <103 <103 <103 <103
130 <103 <103 <103 <103
140 <103 <103 <103 <103
150 <103 <103 <103 <103
160 <103 <103 <103 <103
Max <103 <103 <103 <103

Table 12. Variances of expenses for coverage granularity on single-fault UNIX programs.

Number of .
. Branch |Function| Statement
failed test cases
10 0.0042 | 0.0034 0.0036
20 0.0032 | 0.0028 0.0032
30 0.0030 | 0.0028 0.0030
40 0.0036 | 0.0032 0.0030
50 0.0040 | 0.0036 0.0038
60 0.0042 | 0.0042 0.0042
70 0.0042 | 0.0042 0.0042
80 0.0036 | 0.0038 0.0036
90 0.0034 | 0.0036 0.0036
100 0.0034 | 0.0036 0.0036
110 0.0050 | 0.0052 0.0050
120 <103 <10-3 <10-3
130 <103 <103 <10-3
140 <103 <10-3 <10-3
150 <103 <10-3 <10-3
160 <103 <103 <10-3
Max <103 <10-3 <10-3
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Fig. 10. Distributions of expenses for different percentages of test suite on single-fault UNIX programs.
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Fig. 11. Multiple comparisons of expenses for different percentages of test suite on single-fault UNIX programs.

4.3 Scalability of multi-fault subjects

In this section, we present the results for multi-fault UNIX programs. To reduce the number of repetitions, for brevity,
we directly discuss the results without elaborating again on how to read the corresponding plots and tables, or how to
compute the statistics.

4.3.1 Answering RQ1

4.3.1.1 Comparison of test case prioritization strategies

From Fig. 12, we observe a trend similar to what we have found on the Siemens programs and single-fault UNIX
programs. The variations in the effectiveness of fault localization (in terms of expense) are observed to be consistent
in all three kinds of subjects.

We also measure the area under curve of each strategy. The result is shown in Table 13. We find that the Random
(2.48), ART (2.60), and Additional (2.45) strategies have comparable fault localization effectiveness, and they all
perform better than the Total (3.51) strategy significantly by at least 35%.

4.3.1.2 Comparison of coverage granularity levels

We also report the comparison among different levels of coverage granularity in Fig. 13. The corresponding cumula-
tive fault localization effectiveness at each level is shown in Table 14. We find that different coverage granularity
levels do not show significant differences in terms of fault localization effectiveness in Fig. 13, and the difference in
terms of AUC among different levels are marginal. Furthermore, an ANOVA test returns a large p-value of 0.112, which
cannot reject the null hypothesis that various coverage granularities are not significantly different. Thus, when the
test case prioritization strategy (other than Random) is fixed, a coarse (function-level) coverage granularity is a better
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choice due to its low cost. Random ordering does not, of course, involve coverage information
the findings we have observed in previous sections.
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Fig. 12. Comparison of test case prioritization strategies on fault localization effectiveness
for multi-fault UNIX programs.

Table 13. Areas under curve for different strategies on multi-fault UNIX programes.

Strategy Random ART Additional Total
AUC 2.48 2.60 2.45 3.51
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Fig. 13. Comparison of coverage granularity levels on fault localization effectiveness for multi-fault UNIX programs.

Table 14. Areas under curve for different coverage granularity levels on multi-fault UNIX programs.

Coverage granularity

Branch

Function Statement

AUC

2.77

2.68 2.81

4.3.1.3 Comparison of Distributions of Different Test Case Prioritization Techniques

Table 15 summarizes the variances of the expenses of using the test suites generated by different test case
prioritization techniques for statistical fault localization on multi-fault UNIX programs. We find that all the 13
Random, ART, and Additional techniques are close to one another in terms of the variances of their expenses, while
the variances for the three Total techniques are comparably larger than the former techniques when the number of
failed test cases is small. We should add, of course, that the Random technique is much simpler to implement.
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Table 15. Means and variances of expenses on multi-fault UNIX programs.

N
S AT U Y T IR = B I D T R D <Y B D = be JUR-TN N = = £ - — o -
(9] ) i) -
EZ0) B |%E|2E|2E |58 |55 |22\ S |SE|SE| R | R )28t
10 {0.002}0.002]0.002{0.002/0.002{0.002{0.002]0.002{0.002|0.002|0.002|0.002]0.002{0.007|0.004|0.007
20 ]0.002)0.002]0.002|0.002]0.002]0.002/0.002]0.002{0.002]0.002]0.002{0.002]0.002]0.007]0.006|0.007
32 0.002]0.002|0.002]0.002/0.002{0.002{0.002]0.002{0.002|0.002{0.002]0.002|0.002|0.006]0.005/0.006
40 10.002{0.002|0.002]0.002]0.002/0.003]0.002{0.002]0.003{0.002)0.002]0.002|0.002}0.006|0.004|0.006
50 0.002]0.002|0.003]0.002/0.002{0.003{0.002]|0.003|0.003|0.002{0.002]0.002|0.002|0.006]0.006/0.006
60 ]0.004]0.003/0.004|0.003{0.004]0.004|0.003/0.003]|0.004]0.003]0.003{0.003]0.004]0.004|0.004[0.005
70 ]0.004]0.004|0.005/0.004/0.004|0.005|0.004|0.004|0.005|0.004|0.004]0.004/0.004]0.005/0.005]|0.005
80 [0.005]0.005/0.006|0.004/0.005]|0.006|0.004{0.005]|0.006]0.005]0.005/0.005]0.004|0.006{0.006|0.006
90 ]0.005]0.005/0.005]0.004|0.005]|0.005|0.005|0.005]0.006]0.005]0.004|0.004|0.004]0.006|{0.006|0.005
100 ]0.005]0.005|0.004|0.004]0.005]0.005|0.005]0.005]0.006|0.0040.004|0.004|0.005]0.006/0.005|0.005
110 ]0.005]0.005|0.006(0.005]|0.005|0.006|0.005]0.006]0.006|0.005]0.005]0.005|0.005]0.006]0.006|0.006
120 ]0.005]0.005|0.005(0.004]0.005|0.005|0.005]0.004|0.005|0.005]0.004]0.005|0.005]0.006/0.006|0.006
130 |0.004|0.004|0.004|0.004|0.004/0.004{0.004/0.004|0.004|0.004|0.004|0.004|0.004|0.004|0.004|0.004
140 |0.003]0.004|0.002]0.003/0.002]0.004{0.003|0.002|0.004|0.003|0.003|0.002]0.004|0.003/0.004/0.003
150 ]0.002]0.002{0.002{0.002]0.002]0.002|0.002]0.002]0.002|0.002|0.002]0.002|0.002]0.002]0.002]0.002
160 |0.001}0.001]0.001]0.001/0.001]0.001{0.001|0.001{0.001{0.001{0.001/0.001]0.001}0.001/0.001{0.001
Max |0.001]0.001|0.001]0.001{0.001]0.001]0.001{0.001]0.001]0.001}0.001]0.001{0.001}0.001]0.001|0.001

Table 16. Variances of expenses for prioritization strategy on multi-fault UNIX programs.

.Number of Random ART Additional Total
failed test cases

10 0.002 0.002 0.002 0.006

20 0.002 0.002 0.002 0.007

30 0.002 0.002 0.002 0.006

40 0.002 0.002 0.002 0.005

50 0.002 0.002 0.002 0.006

60 0.004 0.003 0.003 0.004

70 0.004 0.004 0.004 0.005

80 0.005 0.005 0.005 0.006

90 0.005 0.005 0.004 0.006

100 0.005 0.005 0.004 0.005
110 0.005 0.005 0.005 0.006
120 0.005 0.005 0.005 0.006
130 0.004 0.004 0.004 0.004
140 0.003 0.003 0.003 0.003
150 0.002 0.002 0.002 0.002
160 0.001 0.001 0.001 0.001
Max 0.001 0.001 0.001 0.001

Similarly to the results on the Siemens and single-fault UNIX programs, Table 16 and Table 17 show the
corresponding results of Table 15, which summarize the variances of the expenses of using the test suite generated by
different test case prioritization techniques for statistical fault localization on multi-fault UNIX programs at the
strategy and coverage granularity levels. From Table 16, we find that the variances of the expenses for the Random,
ART, and Additional strategies are close to one another, and all of them have smaller variances than those of the Total
strategy when the number of failed test cases is up to 50. From Table 17 (which excludes the Random strategy), we
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find that the variances of the expenses for Statement, Branch, and Function levels are comparable to one another,
which agrees with the results that we have observed on the Siemens and single-fault UNIX programs.

Table 17. Variances of expenses for coverage granularity on multi-fault UNIXprograms.

Number of .
. Branch |Function| Statement
failed test cases
10 0.003 0.002 0.003
20 0.003 0.003 0.003
30 0.003 0.003 0.003
40 0.003 0.003 0.003
50 0.003 0.003 0.003
60 0.003 0.004 0.004
70 0.004 0.004 0.004
80 0.005 0.005 0.005
90 0.005 0.005 0.005
100 0.005 0.005 0.005
110 0.005 0.005 0.006
120 0.005 0.005 0.005
130 0.004 0.004 0.004
140 0.003 0.003 0.003
150 0.002 0.002 0.002
160 0.001 0.001 0.001
Max 0.001 0.001 0.001

4.3.2 Answering RQ2

Lastly, for completeness, we report the distributions of expenses on the use of different percentages of a test suite for
a commit build. The result is shown in Fig. 14, and that for their multiple mean comparisons is shown in Fig. 15.

We observe that the difference in median expenses between using the entire test suite and using 30% is only 0.003,
which is small. We conduct an ANOVA test to check whether there is no significant difference between the mean
expenses of using different percentages of test suite for fault localization at a significance level of 5%. However, the
ANOVA test returns a p-value of 0.0039, which rejects the null hypothesis, and shows that there are significant
differences among the groups. We further perform a multiple-comparison procedure to find out which pairs of
techniques differ significantly. Interestingly, the result of multiple comparisons in Fig. 15 shows that there is no
statistical difference (at a significance level of 5%) between the mean expense of using the whole test suite for a
commit build and that of using 30% or more of the test suite. We conjecture that the presence of multiple faults in a
program may reduce the effectiveness of locating the first fault among all the faults in the same version. Nonetheless,
more studies are required to confirm the conjecture.
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Fig. 14. Distributions of expenses for different percentages of test suite on multi-fault UNIX programs.
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Fig. 15. Multiple comparisons of expenses for different percentages of test suite on multi-fault UNIX programs.

4.4 Summary

In summary, the results of our empirical study provide new information to better configure the continuous
integration process to make the best use of test case prioritization techniques and statistical fault localization
techniques under different scenarios.

With respect to research question RQ1, we have the following findings: (a) Random ordering can be a cost-effective
strategy to reorder test suites for statistical fault localization. It is a low cost prioritization strategy to assist
developers to locate faults. However, Random may require executing more test cases to obtain the same number of
failed test cases than the other strategies studied. (b) The ART and Additional strategies have quite comparable
results with Random ordering in terms of cumulative fault localization effectiveness. If covering different program
elements (depending on the coverage granularity) is the prioritization requirement, these two are good strategies.
Total is the least effective among the strategies studied. (c) There is no statistically significant difference among
various levels of coverage granularity. Intuitively, since the collection of statistics on coarse-grained program
elements is less intrusive and more lightweight, it can be more attractive to software projects (except when Random
ordering is used, in which case coverage information is not relevant). (d) Last but not least, despite small variations,
there is a gradual increase in fault localization effectiveness as the number of failed test cases increases. The
underlying reason for the variations remains to be uncovered. In a nutshell, we find that strategy can be a factor for
fault localization effectiveness, and yet coverage granularity is not a significant factor.

With respect to research question RQ2, we find that fault localization effectiveness will be compromised only if a
small fraction (< 40% in the experiment) of the test suite is used for a commit build. In addition, for all our subject
programs, when the scale of a program increases and multi-faults are involved, we observe more savings in terms of
the percentage of test cases used in a commit build. Real-life applications are usually large and contain many faults.
Our result provides the first piece of empirical evidence that the integration of test case prioritization and fault
localization techniques can save efforts in test case execution in a commit build. We find that time cost expressed in
terms of the number of test cases is a factor for fault localization effectiveness.

Our empirical findings surprisingly show that Random is effective for continuous integration if our objective is to
locate faults by using a prioritized test suite with a fixed number of failed test cases. Random can be attractive because
it can be efficiently implemented and is non-intrusive. Researchers may wish to study deeper on the role of Random in
such integration.

While our study provides empirical findings on the integration of test case prioritization techniques with statistical
fault localization, further studies are need to relate such findings to underlying models or theories.

AN



4.5 Threats to validity
4.5.1 Internal validity

To conduct the empirical study, we used many tools, which could have added variability to our results and introduced
threats to internal validity. We used several procedures to control potential sources of variation.

All our subject programs and their faulty versions were downloaded from SIR. The fault seeding process used by
SIR followed a precise specification so that each program was handled in a similar way [37]. Various previous work
[16][17][37] also used the Siemens suite of programs from SIR to study test case prioritization and other problems.
We have verified that in our experiment, each version produced the same test verdicts as indicated in the fault matrix
files provided by SIR.

We evaluated four fault localization techniques and 16 test case prioritization techniques in our empirical study.
We chose these specific techniques because they have been studied in recent regression testing and fault localization
papers. They are chosen because they are representative.

When analyzing the results of the empirical study, we chose to group the subjects into small-sized programs,
medium-sized single fault programs, and medium-sized multi-fault programs rather than discussing each subject
program individually. Our rationale is an attempt to provide a useful summary rather than overwhelming readers
with unnecessary details. We also carefully verified the results of every subject program to ensure that they are
consistent with those of the overall group.

We carefully tested our regression testing tools, which were also used in Jiang and Chan [23]. The result for ART-
based techniques can be repeated by the experiment presented in [25]. We also systematically tested our fault
localization tools, which were also used in Zhang et al. [47][48][48]. More specifically, we tested our tools on the SIR
subjects and compared the results with the fault matrix provided by SIR. Our tools produced exactly the same fault
matrix as that from SIR. To evaluate Tarantula, CBI, Jaccard similarity coefficient, and Ochiai, we carefully studied
their papers on the technical details and implemented them on our platform. For the ranking results produced by a
fault localization technique, we spot-checked them manually to verify the correctness of the implementation. To
conduct ANOVA test and multiple comparisons, we used MATLAB rather than any toolset of our own. This is because
MATLAB's statistics package is mature and tested by many users to be reliable. We also made use of gcov, a popular
code coverage collection tool used with gcc. The gcov tool has been demonstrated to work well by many researchers
and software engineers. We have also double checked the reported figures. We use an unweighted average to
aggregate the measured value from the outputs of the techniques of the same dimension because they have the same
probability to happen in our experiment setting. Using other aggregation formulas may obtain different findings.

One important component of our study was how to use a prioritized test suite for fault localization. In other words,
how could we define the interface between test case prioritization and fault localization? To do it correctly, we
obtained a prioritized test suite generated by a test case prioritization technique, collected the execution profile of
different percentages (or numbers) of test cases within the test suite to emulate the commit build process, and fed the
execution profile to each fault localization technique. We carefully verified the results with invariant properties to
ensure correctness. We also manually worked out small examples to check whether our implementations output the
results correctly.

4.5.2 External validity

There were several issues that may affect the external validity of our experiment. The first issue was concerned with
the subject programs studied.

We used the Siemens and UNIX programs as subjects in the study. They ranged from small scale to real-life
programs with single and multiple faults. While the Siemens programs were small in scale, all the subject UNIX
programs were real-life programs with 4756 to 10,124 statements. We used them to study the integration problem
between test case prioritization and statistical fault localization because they were also used by other studies on
regression testing and statistical fault localization [1][16][17][23][25][27][31][34][40][47][48][50]. Nonetheless,
compared to the scale of software development today, the programs are still relatively small. Case studies of
industrial-scale programs would help to verify the results further.

Another potential threat to validity for the Siemens and UNIX programs is that seeded faults were the only
modifications between the original versions and the faulty versions. In real life, code evolution by developers may
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include both benign and faulty modifications. Since benign and faulty modifications may interact with each other, a
further study on subject programs with both kinds of changes may further strengthen the validity of our study.

KLEE [4] has demonstrated that it is feasible to generate test cases automatically to achieve high branch coverage
for selected industrial-strength and complex programs. In general, not all test suites may fully satisfy a specific test
adequacy criterion. We used the test suites already developed for Siemens programs because all the test suites are
based on the branch coverage criterion. The use of other test case coverage criteria to construct test cases for
regression testing is also an interesting topic for future study.

We only chose C programs in our empirical study because they are still widely used in many real-life applications
such as Web servers, UNIX tools, and database servers. A further investigation on subject programs written in other
programming languages may help generalize our findings.

The current results show that if a tester starts debugging after a given number of failed test cases have been
observed, Random may, on average, generate a more effective test suite for fault localization than the techniques
under each of the other strategies studied. There are many interesting follow-up questions: First, it is unclear (to us)
how the current results can be generalized if the tester chooses to start debugging after (i) a given number of test
cases (regardless of whether they have failed) have been executed, (ii) a given test adequacy criterion has been
fulfilled, (iii) some criterion that is determined not only by the test results has been satisfied, or (iii) other feedback
related to fault prediction has been obtained. Second, the current study has only explored the strategy dimension
(which is at an aggregated level of the underlying techniques). Future research may be conducted to examine the
effect of, say, one particular prioritization technique coupled with one particular fault localization technique. While it
will be a valuable option, the result of such research may have even more significant threats to external validity than
the present study, because there is a vast number of test case prioritization techniques and fault localization
techniques proposed in the literature. At the other extreme, a further study covering more techniques will surely
alleviate the threats to external validity of our study.

4.5.3 Construct validity

APFD was originally proposed to measure the fault detection rates of test case prioritization techniques. In this paper,
however, we focused on the integration of test case prioritization and fault localization, whose efficacy was
demonstrated by debugging effectiveness. As a result, we used expense as the primary metric in our empirical study. It
was widely adopted in many previous studies on fault localization techniques. This is because it corresponds to a
typical way software engineers use fault localization techniques, by examining the individual entries in a ranked list
from top to bottom until they find a faulty statement. On the other hand, we are aware that software engineers may
also use the ranked list of suspicious statements in various other ways. For example, when developers examine a
particular statement s1, they may happen to spot problems in another statement s2 close to s1. Statement s2 may have
a much lower rank, however. This indicates that more code or less code may be examined to locate faults than what an
effectiveness metric may indicate. In any case, a study of the behavior of software engineers on the use of ranked list is
beyond the scope of this paper.

They were also other studies [13][34][36] that used T-score to evaluate the effectiveness of fault localization
techniques. We did not use T-score because it was a metric for predicate-based fault localization techniques rather
than statement-based fault localization techniques. Furthermore, T-score relies heavily on the assumption of “an ideal
programmer who is able to distinguish defects from non-defects at each location, and can do at the same cost for each
location considered” [13]. As a result, we used expense rather than T-score to evaluate the effectiveness of fault
localization techniques.

We studied the impact of using different portions of a reordered test suite on fault localization for the integration
problem. Therefore, we also wanted to know the overall effectiveness of a strategy. We thus used area under curve to
compute the cumulative expense for the full range of a test suite for fault localization. The use of more metrics may
help strengthen the study.

5. Related work

This section reviews projects that are related to our work. We firstly review the work on test case prioritization and
fault localization, followed by their integration.
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Our work is related to studies on the time-cost dimension of test case prioritization. In our empirical study, we
used the ART [25], Additional [16], and Total [16] strategies to prioritize a test suite based on code coverage
information obtained from the executions of the test suite over previous versions of a program. Researchers have
proposed a number of variants of these basic strategies. For instance, a binary matching technique was proposed by
Srivastava and Thiagarajan [38] to identify program modifications between versions, and reorder test cases to
optimally cover such modifications.

However, such optimization can be inefficient. Walcott et al. [39] adopted a genetic algorithm approach, which
usually runs fast, to propose a time-aware test case prioritization technique that generates approximations to an
optimized permutation efficiently. Li et al. [31] empirically evaluated various search-based algorithms for test case
prioritization in a systematic way. However, they concluded from their experiments that meta-heuristics approaches
to optimizing the rate of coverage might not outperform the greedy algorithms proposed by Elbaum et al. [16]. Zhang
et al. [46] used integer linear programming to optimize time-aware test case prioritization. They found that such
coverage-based optimization could help improve the fault detection rate for selected Java programs. You et al. [43]
evaluated time-aware test case prioritization on the Siemens suite and the program space. They found that the
differences among techniques in terms of AFPD were not statistically significant. Li et al. [30] further showed that the
Additional strategy and the 2-optimal greedy algorithms could be more effective than generic hill-climbing algorithms
and the Total strategy. Based on previous results, therefore, we chose to use the Additional strategy [16] in our
experiment to study this time-related dimension, rather than using a meta-heuristics approach. We also included the
Total strategy [16] in our experiment because it is often used in pair with the Additional strategy.

Jiang et al. [25] showed that an ART-based approach to test case prioritization can be slightly less effective but
more scalable than the Additional strategy. We note that even without a comparison with a genetic algorithm such as
those proposed in [30], the result is still valid. Their experiments found that coverage granularity is not a consistent
factor that affects the goal of detecting failures as early as possible, which is consistent with our finding on fault
localization that coverage granularity is not a factor that affects fault localization effectiveness significantly. Thus, our
result is consistent with their observation, even though we focus on fault localization rates. Rather than using the
Jaccard distance as in Jiang et al, Zhou [51] uses the Manhattan similarity coefficient to measure the test case
differences from the codebase perspective.

The related work above differed from the present paper in that their techniques primarily focused on the goal of
increasing the rate of fault detection or the rate of code coverage, while our study focuses on the goal of increasing the
fault localization rate primarily measured by expense [27][48]. Our target is not to measure the effectiveness of test
case prioritization techniques, but whether test case prioritization may affect the use of statistical fault localization
techniques to help developers locate faults.

All the ART, Additional, and Total techniques in our study prioritize a test suite based on code coverage information
obtained from the executions of the test suite using previous versions of the program. However, the code coverage
information for different versions may be different, which may especially affect the effectiveness of the greedy
techniques for test suite prioritization. Chittimalli and Harrold [9] proposed techniques that use algorithms for
regression test selection to compute accurate, up-to-date coverage data on a modified version of the software without
having to rerun test cases that do not execute the modified statements. Zhang et al. [45] proposed a regression test
selection technique that manages to choose a subset of an original test suite while maintaining high precision and
recall rates. They proposed to use a clustering approach to achieve this objective. Leon et al. [29] proposed failure-
pursuit techniques for test case generation and prioritization. Their techniques first cluster test cases based on inputs
and then use sampling to select an initial sample. If a failure is revealed by any test case in the initial sample, its k
nearest neighbors are selected and checked. If additional failures are found, the process will be repeated. This is an
online technique that uses execution results to guide the selection of follow-up test cases. Yan et al. [42] proposed a
new sampling strategy to select test cases. One may also adapt their idea to conduct online test case prioritization to
support more statistical significant execution information. However, the degree of fault localization support is unclear.
Moreover, in the preliminary version of this paper [26], we showed that such techniques could be more sensitive than
random ordering. We therefore did not include such clustering-based techniques in our empirical study.

To support debugging, researchers have proposed many individual techniques. Delta Debugging [13] automatically
isolated failure-inducing inputs, produced cause-effect chains, and identified the faults. It located faults by
systematically manipulating the input to isolate the minimum failure inducing input, and analyzing when an
erroneous program state is produced and propagated to the final output. Since their techniques changed the test cases
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systematically, it would be hard to directly integrate it with test case prioritization techniques. Renieris and Reiss [36]
used the difference in the execution traces between a failed run and its nearest neighboring passed run for fault
localization. Jeffrey et al. [22] proposed a value replacement approach to ranking program statements according to
their suspiciousness of being faulty. Zhang et al. [48] proposed to represent passed executions and failed executions
using edge profiles, and compared them in order to model how each basic block contributes to failures and how the
infected program states propagate along control flow edges. Wong et al. [41] proposed a family of code-coverage-
based heuristics for fault localization. Abreu et al. [2] also proposed to combine spectrum-based fault localization (SFL,
which correlate failures with abstractions of program traces) and model-based fault diagnosis to support fault
localization in programs with multiple faults. Their techniques used ideas similar to the four techniques studied in this
paper. Zhang et al. [50] proposed to conduct fault localization at evaluation sequence level to take into consideration
the short-circuit evaluations of individual predicates. Zhang et al. [48] also studied whether the feature spectra of
program elements can be safely considered as normal distributions, so that parametric fault localization techniques
can be soundly and powerfully applied. These techniques used different ranking formulas in statistical analyses to
rank the faulty statements. Since our study is an integration of test case prioritization techniques and fault localization
techniques, the experiment may grow exponentially if we evaluate more fault localization techniques. We have
therefore focused on four well-studied fault localization techniques to make the empirical study both comparable to
previous work and manageable.

Yu et al. [44] studied the effect of applying different test suite reduction techniques on the effectiveness of fault
localization. In regression testing research, test suite reduction and test case prioritization are two different
categories of techniques. On the other hand, at an abstract level, both of them can select a subset of test cases from a
test suite, and can therefore be considered as test case selection approaches. However, applying every technique
studied by Yu et al. on a pair of a test suite and a program generates exactly one subset of the test suite. Owing to the
redundancy elimination nature of every such test suite reduction technique, in general, such a technique cannot
generate two subsets, say A and B, from the same pair of test suite and program such that 4 is a proper superset of B.
Moreover, each technique also has an assumption of the availability of a coverage adequacy criterion. Test case
prioritization has neither of these limitations. Without such limitations, we can explore in this paper the effects of
adding or removing test cases to fault localization effectiveness at a level of detail unprecedented in previous studies.

Wong et al. [40] proposed to select test cases based on a ratio of cost to incremental coverage. Their approach
combined both test suite minimization and prioritization techniques. Baudry et al. [3] used a bacteriologic approach
to create test suites that aim at maximizing the number of dynamic basic blocks and use the ranking algorithm in
Jones and Harrold [27] to conduct fault localization. It would be interesting to study how test case generation
techniques may support fault localization. Gonzalez-Sanchez et al. [20][21] proposed to directly incorporate fault
localization estimations into test case prioritization techniques. They did not study the factors of test case
prioritization techniques that might affect the integration. In our previous work [23], we reported a postmortem
analysis of the support by test case prioritization strategies on the capability of fault localization. Different from the
current study, our previous work first set a threshold effectiveness value for the metric expense to select criterion-
adequate test suites. It then conducted a postmortem analysis on the test case prioritization strategies that may
generate these test suites.

Adaptive random testing [5][6][8] improved the effectiveness of random testing in detecting the first failure by
recommending diversity guidelines to the test case generation process. Chen and Merkel [7] proposed the use of
quasi-random sequences for testing in a high-dimensional input space. Ciupa et al. [10][11][12] investigated how to
define distance among objects for ART. Their experimental results showed that ART based on object distance can
significantly increase the fault detection rate for object-oriented programs. Chen et al. [5] further proposed a more
general category and choice method of using ART in non-numeric applications. They have not studied test case
prioritization. However, these distance measures and the idea of handling higher dimensional inputs may be used to
enhance adaptive test case prioritization [25].

6. Conclusion and future work

In this paper, we have examined the integration of test case prioritization and fault localization techniques. Our
primary interest is motivated by whether such an integration supports commit build in continuous integration. We
have conducted and reported the first empirical study in this area, and have examined three factors, namely strategy,
coverage granularity, and time cost. Our empirical study has used 11 subject programs, including the Siemens suite as
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well as single-fault and multi-fault UNIX programs. It has involved 16 test case prioritization techniques, four
statistical fault localization techniques, tens of thousands test cases, and different percentages of test suites. The
empirical results have concluded that strategy and time cost of test case prioritization techniques can be factors that
affect the effectiveness of statistical fault localization techniques, while there is no statistical evidence to conclude that
coverage granularity is a factor. Last but not least, we have found that the addition of more failed test cases will
generally improve the fault localization effectiveness in such integration, and yet there are variations (namely,
deteriorations in fault localization effectiveness) in terms of expenses during the process. In other words, statistical
fault localization can be fully effective only after sufficient failed test cases have been added to get over such variation
periods.

Based on the empirical results, we have the following interpretations: If testers want to stop regression testing of
the commit build after a certain number of failed test cases have been observed, the test suites produced by Random
ordering can be a cost-effective option to integrate with (existing) statistical/spectrum-based fault localization
techniques. The ART and Additional strategies have comparable fault localization effectiveness as Random ordering.
The Total test case prioritization techniques are the least effective in ordering test suites for effective statistical fault
localization. We have also found that different coverage granularity levels do not result in significant differences in
supporting effective fault localization by the studied techniques. If testers have a resource concern in terms of the
number of test cases for regression testing, the use of test case prioritization can save up to 40% of test case
executions for commit builds without significantly deteriorating the fault localization effectiveness from the statistics
point of view. The finding shows that such savings are more noticeable on medium-sized programs than small-scale
programs, and more on multi-fault programs than single-fault programs.

For future work, it is interesting to study how to achieve a tighter integration between regression testing and
debugging techniques. We also want to further study test case generation techniques and test case adequacy selection
criteria that enable the original test suite to provide better support for effective fault localization. We would also like
to know why there is a variation of fault localization effectiveness after the addition of failed test cases. Our study only
reveals some empirical findings in this integration process. The answers on why the integration leads to such
empirical findings are still open to further investigation.

In previous work, random ordering was reported to be slow in revealing faults when compared with Greedy and
ART. In studying RQ1, we set the scenario that testers start debugging on observing a given number of failed test cases.
Random probably requires more test cases than either Greedy or ART to reveal the same number of faults. Moreover,
statistical fault localization techniques can be more effective if they work on a larger test suite than a smaller one.
However, our finding on RQ1 also shows that even for the same strategy (such as Additional), there is a deterioration
period in which the addition of more test cases worsens the average fault localization effectiveness. Based on such
findings, we conjecture that the effect of failed test cases is more significant than the size of a test suite. We suggest
studying these two observations in more detail in the future. Fault detection capability of a test suite is also closely
related to the concept of test adequacy. Hence, for RQ2, we suggest further studies on the effect of test adequacy. In
addition, special attention should be given to marginal savings rates rather than simply on whether there are savings
if less test cases are applied.
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