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1. Introduction

Domain Specific Visual Languages (DSVLs) play a crucial role in

ABSTRACT

Context: Domain-Specific Visual Languages (DSVLs) play a crucial role in Model-Driven Engineering
(MDE). Most DSVLs already allow the specification of the structure and behavior of systems. However,
there is also an increasing need to model, simulate and reason about their non-functional properties.
In particular, QoS usage and management constraints (performance, reliability, etc.) are essential charac-
teristics of any non-trivial system.

Objective: Very few DSVLs currently offer support for modeling these kinds of properties. And those
which do, tend to require skilled knowledge of specialized notations, which clashes with the intuitive
nature of DSVLs. In this paper we present an alternative approach to specify QoS properties in a high-level
and platform-independent manner.

Method: We propose the use of special objects (observers) that can be added to the graphical specification
of a system for describing and monitoring some of its non-functional properties.

Results: Observers allow extending the global state of the system with the variables that the designer
wants to analyze, being able to capture the performance properties of interest. A performance evaluation
tool has also been developed as a proof of concept for the proposal.

Conclusion: The results show how non-functional properties can be specified in DSVLs using observers,
and how the performance of systems specified in this way can be evaluated in a flexible and effective
way.

erties, such as QoS usage and management constraints (perfor-
mance, reliability, etc.), is critical in many important distributed
application domains including embedded systems, multimedia
applications and e-commerce services and applications.

In order to fill this gap, in the last few years researchers have
faced the challenge of defining quantitative models for non-func-
tional specification and validation from software artifacts [6,7].

Model-Driven Engineering (MDE) for representing models and
metamodels. The benefits of using DSVLs is that they provide intu-
itive notations, closer to the language of the domain expert and at
the right level of abstraction. In other words, they provide lan-
guages that help to model systems in a way which is closer to the
problem domain. The MDE community’s efforts have been pro-
gressively evolving from the specification of the structural aspects
of systems to the development of languages that allow for model-
ing their behavioral dynamics. Thus, several proposals already ex-
ist for modeling the structure and behavior of systems. Some of
these proposals also come with supporting environments for ani-
mating or executing the specifications, based on the transforma-
tions of the models into other models that can be executed [1-5].
The correct and complete specification of a system includes,
however, other aspects beyond structure and basic behavior. In
particular, the specification and analysis of its non-functional prop-

Several methodologies have been introduced, all sharing the idea
of annotating software models with data related to non functional
aspects, and then translating the annotated model into a model
ready to be validated [8-10]. Most of these proposals for annotat-
ing models with QoS information exist for UML-based notations,
with UML Profiles such as UML-QoSFT, UML-SPT or MARTE [11-
13]. Several tools already exist for analyzing and simulating such
models and for carrying out performance analyses.

Although these profiles provide solutions for UML models, the
situation is different when domain specific visual languages are
used to specify a system. In the first place, the QoS annotations
are normally written using languages which are completely alien
to system designers, because such languages are typically influ-
enced by the analysis methods that need to be used, and written
in the languages of these methods. Besides, their level of
abstraction is normally lower than the DSVL notations used to
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specify the system, and tend to be closer to the solution domain
than to the problem domain (in contrast with the problem-do-
main orientation of DSVLs). Furthermore, when several proper-
ties need to be analyzed, the annotated models become
cluttered with a plethora of different annotations and marks
(see, e.g., many of the diagrams shown in the MARTE specifica-
tion [13]). Another problem is that current proposals for the
specification of these kinds of properties tend to require skilled
knowledge of specialized languages and notations, which clashes
with the intuitive nature of end-user DSVLs and hinders its
smooth combination with them. Finally, most of these proposals
specify QoS characteristics and constraints using a prescriptive
approach, i.e., they annotate the models with a set of require-
ments on the behavior of the system (response time, throughput,
etc.) and with constraints on some model elements, but are not
very expressive for describing how such values are dynamically
computed or evolve over time.

In this paper we present an alternative approach to specify the
properties that need to be analyzed, integrating new objects in the
specifications that allow them to be captured. Our proposal is
based on the observation of the execution of the system actions
and of the state of its constituent objects. We use this approach
to simulation and analysis in the case of DSVLs that specify behav-
ior in terms of rules (which describe the evolution of the modeled
artifacts along some time model), and illustrate the proposal with
the running example of a production line system. We show how,
given an initial specification of the system, the use of observer ob-
jects enables the analysis of some of the properties usually tar-
geted by performance engineering, including throughput, mean
and max cycle-time for produced items, busy and idle cycles for
the machines in the system, mean-time between failures, etc.
One of the benefits of observers is that they can be specified in
the same language that the domain expert is using for describing
the system. Finally, we show how this approach also enables the
specification of other important features of systems, such as the
automatic reconfiguration of the system when the value of some
of the observed properties change.

This work extends our previous work with e-Motions, a notation
and a tool for the specification of real-time systems [14-16], which
has served as a proof-of-concept for the proposal. It also extends our
initial approach presented in [17,18] with a complete treatment of
the properties being studied and the extensions we have imple-
mented in our tool (Section 5), a methodology for the specification
of non-functional properties in rule-based DSVLs (Section 6), and a
modular approach for the specification of observers (Section 4).

Following this introduction, Section 2 briefly describes a pro-
posal for modeling the functional aspects of systems and presents
the running example that will be used throughout the paper to
illustrate our approach. Section 3 introduces the main concepts
of our proposal and how they can be used to specify the system
parameters that we want to analyze. Section 4 presents some ideas
to enable the modular specification of non-functional properties of
systems by decoupling the definition of the observers from the sys-
tem specifications, and the use of aspect-oriented techniques to
realize the bindings. Then, Section 5 shows how the specifications
produced can be used to analyze the performance of the system
and the tool support available for that. Once the main ideas of
our proposal have been illustrated using a running example, Sec-
tion 6 describes the general methodology that we propose for
the performance analysis of systems specified with rule-based do-
main-specific languages such as e-Motions. It also explains the cur-
rent tool support and how the simulations are conducted to obtain
the analysis results. Finally, Section 7 compares our work with
other related proposals, and Section 8 draws some conclusions
and outlines some future research lines.

2. Modeling real-time DSVLs

One way of specifying the dynamic behavior of the models ex-
pressed with a DSVL is by describing the evolution of the modeled
artifacts along some time model. In MDE, this can be done using
model transformations supporting in-place updates [19]. The
behavior of the system is then specified in terms of the permitted
actions, which are in turn modeled by the model transformation
rules.

There are several approaches that propose in-place model
transformations for specifying the behavior of a DSVL, from textual
to graphical (see [20] for a brief survey). This approach provides a
very intuitive way to specify behavioral semantics, close to the lan-
guage of the domain expert and at the right level of abstraction
[1,2].

In-place transformations are composed of a set of rules, each of
which represents a possible action of the system. These rules are of
the form [:[NAC]* x LHS — RHS, where [ is the rule’s label (its
name), and LHS (left-hand side), RHS (right-hand side) and NAC
(negative application condition) are model patterns that represent
certain (sub-) states of the system. The LHS and NAC patterns ex-
press the preconditions for the rule to be triggered, whereas the
RHS represents its postcondition, i.e., the effect of the correspond-
ing action. Thus, a rule can be applied, i.e., triggered, if an occur-
rence (or match) of the LHS is found in the model and none of its
NAC patterns occurs. For simulation, if several matches are found,
one of them is non-deterministically selected and applied, produc-
ing a new model where the match is substituted by the appropriate
instantiation of its RHS pattern (the rule’s realization). The model
transformation proceeds by applying the rules in a non-determin-
istic order, until none is applicable—although this behavior can
usually be modified by an execution control mechanism, e.g., strat-
egies [21].

In [14], e-Motions was presented, a DSVL and a graphical tool
developed for Eclipse that extends in-place model transforma-
tions with a model of time and mechanisms to state action prop-
erties, designed for the specification of real-time systems’
behavior. It was showed how time-related attributes can be
added to in-place rules to represent features like duration, peri-
odicity, etc. In e-Motions there are two types of rules to specify
time-dependent behavior, namely, atomic and ongoing rules.
Atomic rules represent atomic actions with a specific duration,
which is specified by an interval of time with any OCL expres-
sion. Examples of these kinds of actions include the generation
of a part, or its collection from a tray. These rules can be peri-
odic, i.e.,, they admit a parameter that specifies the amount of
time after which the action is periodically triggered (if the rule’s
precondition holds, of course). Ongoing rules represent actions
that progress continuously over time while the rule’s precondi-
tions (LHS and not NACs) hold. This kind of rule is used, for in-
stance, to represent how the state of some observers changes
over time (see, e.g., Figs. 11 and 12). Both atomic and ongoing
rules can be scheduled, or be given an execution interval.

There are two main approaches to the specification of concur-
rent systems and their properties: state-based and action-based
[22,23]. In the former case the system is characterized by states
and state changes, while in the latter case it is characterized by
the events (actions) that can be performed to move from one state
to another. Although in theory the expressiveness of both ap-
proaches is similar, in practice the use of one or the other can force
the use of unnatural or artificial expressions of some properties
(for example, reasoning about some particular actions in a pure
state-based approach normally forces the artificial extension of
the system elements specifications with additional attributes to
capture how their states evolve as the action progresses).
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Fig. 2. A model of the system, which will be used as initial configuration.

In order to be able to model both state-based and action-based
properties, e-Motions also implements a reflective mechanism that
allows extending model patterns with action executions to specify
action occurrences. These action executions specify the type of
the action (i.e., the name of the atomic rule), its status (e.g., if the
action is unfinished or realized) and its identifier. They may also
specify its starting, ending and execution time and the set of par-
ticipants involved in it. This provides a very useful mechanism
when we want to check whether an object is participating in an ac-
tion or not, or if an action has already been executed.

Finally, a special kind of object, named Clock, represents the cur-
rent global time elapse. Designers can use it in their rules (using its
attribute time) to know the amount of time that the system has

been working. Further clocks can be specified by users, according
to the requirements of their systems (to model, for instance, sys-
tems with several distributed clocks).

A Running Example. To illustrate how the behavior of a system
can be modeled using our approach, we will show an example of
a hammer production line. As any other DSVL, our production line
system is defined in terms of three main elements: abstract syntax,
concrete syntax and semantics. The abstract syntax defines the do-
main concepts that the language is able to represent, and is defined
by a metamodel. The concrete syntax defines the notation of the
language, and in our example it is defined by assigning an icon
to each concept in the metamodel. The semantics describe the
meanings of the models represented in the language, and in case



of models of dynamic systems (such as ours) the semantics of a
model describe the effects of executing that model. In our case,
semantics are specified by a set of behavioral rules.

The metamodel for the system is depicted in Fig. 1. There are
different kinds of machines (head generators, handle generators
and assemblers), containers (users and containers with a limited
capacity, such as trays and conveyors) and parts (head, handles
and hammers). They all have a position in the plant, indicated by
a set of coordinates. Generators will produce as many parts as their
counter indicates and deposit them on conveyors; conveyors move
parts from machines to trays at a given speed; and assemblers con-
sume parts from trays to create hammers, which are deposited on
conveyors and finally collected by operators. Parts can be either
defective or not. Machines work according to a production time
(pt) that dictates the average number of time units that they take
to produce a part. They also have an attribute (defective_rate) that
determines the percentage of defective parts they produce, which
depends on their production time (normally, the faster they work
the more defective parts they produce). Trays and conveyors can
contain parts up to their capacity.

Fig. 2 shows an example of a model of the system, depicted with
e-Motions, with a set of objects and values for their attributes,
which will be used as initial configuration. In that Figure, we can
see the concrete syntax given to the concepts of the production line
metamodel.

The behavior of the system is then expressed in terms of a set of
rules, each one representing a possible action. In the case of our
production line system, its behavior can be described by 6 rules:
one for generating handles (GenHandle); one for generating heads
(GenHead); one for describing how conveyors move parts (Carry);
one for assembling heads and handles into hammers (Assemble);
one for depositing parts in trays once they have been transported
by conveyors (Transfer), and one final rule to describe how the
operator collects assembled hammers (Collect).

For example, Fig. 3 shows the atomic Carry rule, which specifies
how a Part is transported through a Conveyor, moving the part from
the beginning of the conveyor to its end. In the LHS pattern of the
rule, the Part is related to the Conveyor with the parts reference,
indicating that the part is placed at the beginning of it. In the
RHS pattern, the relation between both objects is outParts, which
indicates that the part is placed at the end of the conveyor and is
ready to be transferred to the Tray connected to it. The time this
rule spends, which simulates the time needed to move a part
through a conveyor, is the corresponding speed of the conveyor
(15 time units in our example).

=4 Carry
Tin [c.speed,c.speed]

LHS I=] RHS
p P
parts outParts
C C

Fig. 3. Carry rule.

Further examples that illustrate our proposal can be found in
[24].

3. Monitoring the system with observers

Once we can count on languages for specifying models and their
behavior, the next step is to analyze its non-functional properties.
For that we need to be able to express the properties that we want
to analyze (e.g., delays, mean-time between failure, or end-to-end
throughput), and then we need to have a simulation engine that
executes the specifications.

3.1. Specifying the properties to be analyzed

Although the number of non-functional properties that can be
defined for a system can be large, in this paper we will concentrate
on some representative QoS properties [25]. Let us suppose then
that we want to analyze the following performance parameters
of the production line system:

e Throughput. Number of non-defective hammers collected by the
operator per unit of time.

e Mean time between failures (MTBF). It is the mean time between
producing defective hammers.

o Idle-time. Amount of time that a machine has not been working
(idle, waiting for parts or waiting for the output conveyor to be
free).

e Mean Idle-time. Average idle time of all machines.

e Cycle time. Time required to produce a hammer: from the pro-
duction of its parts until its final collection.

e Mean cycle time (MCT). Mean cycle time of all produced
hammers.

e Delay. This property indicates the difference between the theo-
retical optimal cycle time of a hammer and its actual cycle time.

Let us clarify here that all collected hammers will be taken into
account for computing the system mean cycle time and delay,
while only non-defective hammers will be considered for comput-
ing the system throughput.

3.2. Defining the observers’ structure

To specify and calculate the value of system properties, the use
of observers was proposed in [18,17]. An observer is an object
whose purpose is to monitor the execution of the system: the state
of the objects, of the actions, or both. We will use two kinds of
observers depending on whether they monitor the state of the
complete system or the state of individual objects. In the former
case, observers are created with the system and remain there
throughout its entire life. In the latter case, observers are created
and destroyed with the objects they monitor.

Observers, as any other objects, have a state and a well-defined
behavior. The attributes of the observers capture their state and are
used to store the variables that we want to monitor. We have de-
fined an Observers metamodel, which is shown in Fig. 4. It defines
two kinds of observers, IndividualObservers and GeneralObservers,
both inheriting from a general Observer class. Observers of individ-
ual objects have a reference to an EObject class, which is the inter-
face implemented by every model object in the Eclipse Modeling
Framework (EMF, [26]). In this way, these observers can be associ-
ated to any element of any model. We count on two specific
observers for individual objects and five for the whole system.
Let us explain the objectives of each of them for our example:
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e TimeBusyOb. It monitors the time a machine is working and the
time it is idle.

e TimeStampOb. It monitors individual parts. Its ts attribute
stores the time at which the generator started producing the
part. Attribute oct keeps the optimal cycle time of the part. It is
updated as the part moves forward in the system. It is used to
compute the delay.

e MTBOb. This observer monitors the average working time of all
the machines in the plant. It uses the number of machines
(attribute machines) as well as the attributes of the TimeBusyOb
observers of all machines.

e MCTOb. This observer keeps the mean cycle time of every col-
lected hammer in its mct attribute.

e DelayOb. The sum of the delays of all collected hammers is
stored in its acc attribute, while the hammers’ average delay
is stored in its delay attribute.

e ThroughputOb. It stores the throughput of the system in its th
attribute. The number of collected hammers is stored in its col-
lected attribute.

e MTBFOb. It records the mean time between failures in the sys-
tem and the number of defective hammers.

Note how the use of observer objects provides a modular ap-
proach to extend the state of the system with the attributes that
capture the properties we want to analyze. However, to conduct

hag1
el
Sl - e u
counter = 40 #Pos = 2 e
¥Pos = 0 yPos = 2 tBusy = 0
yPos = 2 speed = 15 tide = 0
pt =30 capacity = 4 xPos = 10
defective_rate = 5 4Pos = 10
al c3 t2
thobl thCh2 t
G 6% £ g3
o 7o B U «*
tBusy = 0 tBusy = 0 xb0s= 4 ¥Pos = 6 xPos = 8 KEDS : ?D
= tide = 0 yPos = 9 _ - yPos -
tide = 0 ) yPos = 1 yPos = 1 ty = 4
capacity = 4 Capacity
hegt pt = 40 speed = 15
c2 defective_rate = 1 capacity = 4
¥,
@ J dob thpOb mtbfh mtbCb mctCh
QQD SPQTP @M @QMTB g?c:T
counter = 40 ¥Pos = 2
wPos = 0 yPos = O delay = 0.0 collected = 0 defective =0 busy = 0 act=0
yPos = 0 speed = 15 acc=0 th=10.0 mtbf = 0.0 idle = 0 mct = 0.0
pt = 40 capacity = 4 machines = 3
defective_rate = 2

Fig.

5. The initial configuration of the system with observers.



the performance analyses we also need to specify the behavior of
the observers while the system executes.

3.3. Defining the observers’ behavior

The idea of analyzing the system with observers is to combine
the original metamodel (Fig. 1) with the Observers’ metamodel
(Fig. 4) to be able to use the observers in our DSVL for specifying
production line systems. e-Motions allows users to merge several
metamodels in the definition of a DSVL behavior.

The behavior of the observers is also specified using rules. In
fact, their behavior is described by enriching the system rules with
information about the observers—so that now the rules not only
describe how the system behaves but also how the observers mon-
itor the system and update their state. In what follows we show
how the behavior of the observers is specified by adding them to
the system rules.

Firstly, we modify the model with the initial configuration of
objects by adding observers to it (Fig. 5). We have defined five
observers for the whole system (DelayOb, ThroughputOb, MTBFOb,
MTBOb and MTCOb), and three individual TimeBusyOb observers,
each one associated to a machine to record the time it is working.

Then, we need to specify the behavioral rules. The first two de-
fine how and when heads and handles are generated. Fig. 6 shows
the GenHandle atomic rule that generates a new handle every time
it is launched. The time it spends in the generation of a handle de-
pends on its production time attribute (pt). Instead of a fixed time,
we use a random value from the interval [hg.pt — 3, hg.pt + 3] to
specify its duration. It uses the random(n) function available in e-
Motions that returns an integer value between 0 and n. For this rule
to be applied, the LHS pattern indicates that the system has to have
a HandleGen generator which has to be connected to a Conveyor. The
LHS pattern also has a condition (see the WITH clause), so the rule
can only be applied if the attribute counter of the GenHandle object
is greater than 0 and the Conveyor has room for the generated part.
In the RHS pattern a new Handle is generated and it acquires the
position of the Conveyor connected to the HandleGen machine. To
decide whether the new Handle generated is a defective part or

not, we check if a random variable between 0 and 100 (rdm) is
smaller than the defective rate of the generator. The counter value
of the GenHandle is decreased in 1 unit, which represents the fact
that a new handle has been produced. A TimeStampOb observer is
created and it is associated with the Handle, storing in its ts attri-
bute the time at which the HandleGen started to generate the Han-
dle—we use the Clock instance to get the time the system has been
working. Note the use of OCL to compute the values of the objects’
attributes. Analogously, the GenHead rule (not shown here) models
the generation of heads.

As soon as a new part is placed on a Conveyor, it is transported
from its beginning to its end. We modify the Carry rule shown in
Fig. 3, which models this behavior, to introduce the corresponding
observers in our system. The resulting rule is shown in Fig. 7. The
observer associated to the Part simply updates its optimal cycle time
by adding the time the Conveyor takes when transporting the Part.

Once there is a part on a Conveyor ready to be transferred to the
Tray connected to the end of it, the instantaneous rule Transfer
(Fig. 8) deals with it. The LHS pattern specifies that this Part must
be placed in the outParts part of the Conveyor. The rule condition
forbids the triggering of the rule when the Tray is full of parts, or
when there is only one part needed to reach the capacity of the
Tray and the parts on it are of the same type as part p. This last con-
dition, together with the restriction of generators to produce a part
when their out conveyor is full, prevents the system from dead-
locking: if all the parts in the Assembler’s input Tray were of the
same type, the Assembler could not assemble anymore and the pro-
duction line would stop.

The Assemble rule is shown in Fig. 9. This rule models the behav-
ior of generating a Hammer using one Head and one Handle. We can
see in the LHS pattern that the Tray which is connected to the
Assembler has to contain a Head and a Handle. The NAC indicates that
this rule cannot be triggered if the Assembler is already participat-
ing in an action of type Assemble, i.e., if it is already assembling a
Hammer—maybe with different parts. In the RHS pattern we see
how the Head, the Handle and their associated observers have been
removed and a new Hammer has been created in the position of the
Conveyor connected to the assembler. The Hammer has an associated
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TimeStampOb observer whose ts attribute is the lowest value be-
tween the timestamps of the Head and the Handle. Its oct (optimal
cycle time) attribute is the lowest oct value of the Head and the
Handle plus the time the Assembler has spent in assembling the
Hammer, which is specified by the variable prodTime.

Fig. 10 shows the Collect rule. This rule models the behavior of
the system when the User finally collects an assembled Hammer.
The User acquires the position of the Tray where the Hammer is.
The Hammer and its associated observer disappear from the system,
modeling that the User has collected the Hammer, since they are no
longer needed. The time this rule takes is defined by the Manhattan
distance between the Hammer and the User plus one, which is
stored in the variable collectTime. It models the time the User
spends in getting to the Tray where the Hammer is. There is also a
NAC in this rule, which forbids users to collect more than one ham-
mer at a time. We also see the presence of four general observers,
whose states are updated when the rule is executed.

We showed in rules in Figs. 6 and 9 how TimeBusyOb observers
update their tBusy attributes. Their tldle attributes are kept up to
date with an ongoing rule. This rule is shown in Fig. 11. It simply

calculates the time the machine associated with this observer
has been idle by subtracting the time the machine has been work-
ing from the current time elapse of the system.

Finally, another ongoing rule is used to keep the state of the
ThroughputOb and MTBOb observers updated (Fig. 12).

4. A modular approach for the specification of observers

Observers allow a flexible way to monitor the system and to ob-
tain information about its behavior. However, the addition of
observers may require to change the existing behavioral models
to a large extent, making system models potentially complex and
difficult to maintain. One way to cope with this problem is by using
aspect-oriented techniques [27], whereby a modular specification
of the behavior of observers is provided, and then woven (in the as-
pect-oriented sense) into the system behavioral rules. Thus, we
will have a model with a set of observers rules and another with
a set of system rules and they will be merged (woven) together
using weaving mechanisms as explained in Sections 4.3 and 4.4.
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The goal is to define a library with different observers’ behavior,
which can then be reused by concrete systems to incorporate
observers within their behavior specifications. This provides a
modular approach to the specification and monitoring of individual
properties, for which observers can be independently defined and
reused across system specifications.

Our approach is based on standard software measurement ap-
proaches, which define base and derived measures [28]. The former
ones allow measuring individual object attributes, while the latter
build on the values of base measures to define aggregated metrics.
Similarly, we propose individual and general observers. As men-
tioned in Section 3, individual observers are attached to individual
objects to monitor their state and/or behavior. General observers
will monitor individual observers, as well as the rest of the objects
in the system, to build derived measures for non-functional proper-
ties such as throughput or mean time between failures, for instance.

Although of different nature, the behavior of individual and
general observers share a similar and regular pattern, that corre-
sponds to their life-cycle: creation, monitoring and termination.
Hence their behavior can be specified using a similar approach,
in which rules are defined for each of these phases. Such a behav-
ior, once specified, can be woven to the functional behavior of a
system to produce the complete system specifications.

In the remainder of this section we present the behavior for
both individual and general observers in terms of behavioral rules,
and present our approach on how to weave these behavioral rules
with the functional rules of our system (without observers) so that
observers are incorporated to the latter. We show this approach
graphically and also show some AMW and ATL essentials in order
to implement it. Finally, we present some room for improvement
regarding this modular approach.

4.1. The behavior of individual observers

Individual observers are “born” with the objects they monitor,
store information as the associated objects perform relevant ac-
tions and, eventually, “die” when the associated objects terminate.
Thus, the behavior of individual observers can be usually described
by three rules, one for each phase.

For illustration purposes, let us specify here the behavior of the
TimeStampOb observer. Rule IndividualBirthTS (Fig. 13a) describes
how the individual observer is created with the monitored object
(expressed by a generic object represented as an empty box). Usu-
ally, the value of the ts attribute is the current time elapse,
although the modeler can specify another value when weaving
the rule. Attribute oct is set to 0.

Rule IndividualProcessingTS (Fig. 13(b)) specifies how a TimeS-
tampOb observer updates its state variables. In this case, it has to
update its optimal cycle time whenever it participates in a rule,
i.e., when the object associated to it realizes some action in the rule
(like processing some object or being processed). Note that the e-
Motions internal variable “T” indicates the time spent by a rule.
Thus, the oct attribute is updated with the addition of the time
spent by the rule in its execution.

Finally, rule IndividualEndTS (Fig. 13c) shows how the observer
disappears from the system when the monitored object is
dismissed.

Other individual observers follow very similar patterns. In fact,
one possibility is to define the behavior of individual objects at the
highest level in the inheritance hierarchy, in case they all share the
same behavior. In this way, the IndividualEndTS rule, for example,
would be the same for many other individual observers. This is
not always possible, however, because some individual observers
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may have particular pre-conditions for recording events, or per-
form specific actions when recording them.

4.2. General observers

The behavior of general observers is normally determined by
four kinds of rules. Let us show them here in a generic way,
and then we will illustrate them in the particular case of the
ThroughputOb global observer. The first rule (GeneralBirth, shown
in Fig. 14) specifies the creation of a global observer. Since they
are created at start time, this rule is normally woven to the initial
rule of the system.

Two rules specify how global observers update their state vari-
ables, depending on whether they do it when an object disappears
from the system, or when the object participates in a rule. Thus,
generic rule RecordLeave (Fig. 15a) shows how a counter attribute
is updated when an object leaves the system. Similarly, rule Record-
Event (Fig. 15b) models the behavior of a global observer that re-
cords that an object has participated in a rule. Note that these
are generic rules, and that we will have similar rules (sometimes
not both RecordlLeave and RecordEvent, but just one of them) for
each general observer in our observers’ library. We shall later see
the rules for observer ThroughputOb. Note as well the presence of
the clock object. We include it in case the modeler specifies different
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values for the observer’s attributes that need the current time
elapsed.

GeneralBirth
Tin [XY]

i1 RHS

gOb

007

counter =0

Fig. 14. GeneralBirth generic rule.

Some attributes of some general observers need to be updated
as time moves forward. Such a behavior is modeled with ongoing
rules, whose generic form is shown in Fig. 16. When the concrete
system’s behavior is specified, more than one of these rules can
be put together, so that more than one general observer may be
updated as time progresses.

Thus, to specify the behavior of the ThroughputOb global obser-
ver, we just need three rules. The first one creates the object, and is
similar to the GeneralBirth rule shown in Fig. 14, the only difference
being that the initialized attributes are th and collected. The second
rule is in charge of updating the collected attribute every time a fi-
nal element is consumed. Thus, it follows the RecordLeave rule pat-
tern. Finally, we need an ongoing rule so that the throughput value
is continuously updated. Fig. 17 shows these three rules for the
ThroughputOb observer.
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4.3. The weaving of rules

Once defined, the independent observers’ behavior can then
be woven with specific system specifications. By “weaving” them
we mean that the observer objects included in the observers
rules will appear, as result of the weave, in the system rules,
by merging the generic objects present in the observer rules with
concrete objects in the system rules. For that we use a weaving
model that uses the AtlanMod Model Weaver (AMW?) [29] to de-
fine the correspondences between the generic objects in the
observers rules and the concrete objects that appear in the system
behavioral rules.

It is also possible to define a correspondence between one ob-
server rule and one system rule. In this case, all the elements from
the observer rule will be copied to the system rule.

When defining the weaving links between the observers and
the system rules it is possible to add expressions that over-
write how the values of the attributes are calculated in the ob-
server's rule. In this way we allow some kind of rule
parametrization.

Finally, it is possible (and very common) to establish correspon-
dences between several observers rules and one system rule, when
we want to add more than one kind of observer to a rule. In this
case, only one final rule is produced with the results of all weaves.
When the attributes of the observers to be added in a rule does not
depend on each other, i.e., they do not use the values of other
observers attributes in their calculations, it does not matter the or-
der in which the weaves are applied. However, when this is not the
case, those observers whose attributes are needed in the calcula-
tions of other observers should be woven first, as shown for exam-
ple in the DelayOb observer in [30]. In the same way, it is also
possible to establish correspondences between one observer rule
and several system rules, when we want to add the same observer
in different rules.

1 The address of the official website of AMW is http://wiki.eclipse.org/AMW.

To illustrate this approach, let us apply it to our case study. In
this section we show our approach graphically, while in Section 4.4
we show how model weaving works in AMW and ATL.

Starting from the behavioral rules described in Section 3.3, tak-
ing out the observers, and assuming that we have defined the rules
for the observers as explained in Sections 4.1 and 4.2, below we
present the weaving for the ThroughputOb and TimeStampOb
observers in order to include them in the system’s behavioral rules.

Fig. 18 shows the weaving links between the rules specifying
the behavior of the ThroughputOb observer and the system rules
where we want the observer to be woven. For illustration pur-
poses, weaving links are graphically depicted in the figure as
thick lines, although in practice the textual Eclipse AMW weaving
editor is used to specify these links. The duration of the resulting
rules is that of the system rules. Two weaving links are defined in
order to include the ThroughputOb observer in the system. The
first one is defined between the InitialRule and GeneralBirthTP
rules, where InitialRule is a system rule that has the initial config-
uration of the system without observers (Fig. 2) in its RHS and
GeneralBirthTP is an observer rule (Fig. 17a). We only show the
headings of both rules for making the figure simpler. The aim
of this binding is to include the observer in the initial configura-
tion of the system (as it appears in the initial model shown in
Fig. 5). The second weaving link is defined between the Hammer
object in the Collect rule of the system and the generic object
in the RecordLeaveTP rule (the NAC of the former rule is not
shown for readability). The effect of this binding is to include
the ThroughputOb observer in both the LHS and RHS of the Collect
rule. Note that the expression used to calculate the value of the
collected attribute in the RHS of the observer rule has been over-
written by a new expression (this is indicated in the figure inside
the box between the two woven rules). Regarding the clock ob-
ject, it has a special treatment. Whenever it appears in one of
the two rules being woven, it appears in the resulting rule. If
there is a clock in both the system and observer rules, only one
will be present in the final rule. Finally, the ContinuousUpdateTP
rule is added to the system rules (it becomes a new rule in the
system).

Fig. 19 shows the weaving links for the TimeStampOb observer
associated to handles. The observer rules (in the lower part of the
figure-note that the figure is rotated) specify its life-cycle. The
generic object in the IndividualBirthTS rule to which the TimeS-
tampOb observer is associated is linked to the Handle in the Gen-
Handle rule. Such a link inserts the observer associated to the
handle in the GenHandle rule. The initial values for the attributes
of the observer for this system are specified in the weaving link
(graphically shown in the box attached to the line that represents
the binding). In the middle part of the figure we can see how the
generic objects in the IndividualProcessingTS rule are linked to the
Part objects in the Carry rule (remember that the Part class is a
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generalization of the Handle one, see Fig. 1). The weaving link will
make the TimeStampOb be inserted in the Carry rule and associ-
ated to the Part object. Finally, the observer has to disappear from
the system when its associated Handle object disappears. For that
purpose, we link the generic object in the IndividualEndTS rule
with the Handle object in the Assemble rule, since the latter disap-
pears in that rule.

The weavings for including the rest of the observers in the sys-
tem can be found in [30].

4.4. A prototype implementation based on AMW and ATL

The AMW is a framework for establishing relationships (i.e.,
links) between models. The links are stored in a model, called
weaving model. It is created conforming to the weaving metamod-
el shown in Fig. 20.

WElement is the base element from which all other elements in-
herit. WModel represents the root element that contains all model
elements. WLink denotes the link type and has a reference end to
associate it with a set of link endpoints (WLinkEnd). Each WLinkEnd
references one WElementRef. The attribute ref contains the identi-
fier of the linked elements. WModelRef is similar to WElementRef,
but it contains references to the models.

This metamodel is to be extended for each concrete situation
according to our semantics for Behavior in e-Motions (see [14] for
a detailed explanation), specified as a set of in-place rules as ex-
plained in Section 2. A possible extension for the core weaving
metamodel for our example is the following:

o The models to be woven are defined as extensions of the WMod-
el class. We want to weave two models, those with the system
and observers rules:

class MergeModel extends WModel{
reference systRulesModel container : WModelRef;
reference obsRulesModel container : WModelRef;

}

o The different kinds of links are extensions of WLink. There are
two kinds of links in our case: those that define a matching
between rules and those defining matchings among objects. In
the latter links, it can be specified the new slot value that super-
sedes the slot value in the observer of the observer’s rule:

class MergeObjLink extends WLink{
reference obsObj container : ObsObject;
reference systOb container : WLinkEnd;

}

class MergeRuleLink extends WLink{

WLinkEnd;
reference systRule container : WLinkEnd;

}

class ObsObject extends WLinkEnd{
attribute slotsR [O-*] : String;
attribute slotsL [0-*] : String;

}

reference obsRule container :

e The elements that can be woven are defined as extensions of
WElementRef. We can weave objects and rules:
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Fig. 18. Weaving the ThroughputOb observer.

class Object extends WElementRe f{}
class Rule extends WElementRef{}

The models conforming to this extension of the core weaving
metamodel will have two kinds of links, those specifying matches
between rules and those specifying matches among objets. An
example of the matching between rules InitialRule and General-
BirthTP shown in Fig. 18 is the following:

<ownedElement xsi:type="MergeRuleLink’’
xmi:id="MergeRuleLinkl"
name="RuleLinkl">
<end xsi:type="obsRule’’ xmi:id="obsRulel’’
name="GeneralBirthTP"
element="0bsRuleTPRefXMI1" />
<end xsi:type="systRule’’ xmi:id="systRulel’’
name="InitialRule"

element="SystRuleRefXMI2" />
</ownedElement>

In contains the names of the rules to be merged as well as ref-
erences to them.

Finally, the weaving operation is interpreted by the ATL [31] en-
gine. An ATL transformation matches each type of link and exe-
cutes the appropriate weaving operation. Thus, the ATL

transformation takes the weaving model, the system rules model
and the observers rules model as input and produces a new woven
model composed by behavioral rules. An excerpt of the rule dealing
with the weaves among rules is the following:

rule MergeRules {
from

link : AMW!MergeRuleLink

to

rule

)s

T

),

: Beh!Rule (

name <— link.end —> last ().name,

soft <—link.end —> last ().soft,

lowerBound <— link.end —> last ().lowerBound,
upperBound <— link.end —> last ().upperBoud,
maxDuration<—link.end—>1last ().maxDuration,

vbles <— link.end —> collect (vbles),
rhs <—r,

lhs <—1

<— Beh!Pattern (
els <—1link.end —> collect (rhs: RHS|rhs.els)

1<- Beh!Pattern (

)

els <—link.end —> collect (lhs: LHS|1lhs.els)
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Fig. 19. Weaving the TimeStampOb observer associated to handles.
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The MergeRules rule receives as input a link among rules that has
been previously identified by the modeler. From that link, we can
access its endpoints, which are a system rule and an observer rule.
This ATL rule creates a behavioral rule which is the result of putting
the elements from both (the system and the observer) rules into
one. The value of the attributes name, soft, lowerBound, upperBound
and maxDuration (specified in the Behavior metamodel [14]) are
those of the system rule, which is the second (and last) element
in the end reference of the MergeRuleLink. For the objects and vari-
ables to be present in the resulting rule, the OCL collect operation is
used in order to gather the elements from both rules together.

4.5. Room for improvement

We have shown how the modular and independent specifica-
tion of observers and their later weaving with the system specifi-
cation can be achieved, thus facilitating the specification of
observers for monitoring system properties. The modular defini-
tion of observers allows the reuse of observers across systems,
and provides support for defining the semantics of observers once
and then reuse them, instead of having to specify the behavior of
observers once and again. Modularity also improves the maintain-
ability of the specifications, and achieves simplicity by separating
independent concerns.

Based on our initial experiments we have seen that most of the
usual QoS properties can be easily and naturally expressed follow-
ing the modular approach. However, some further research, and
improvements in the current approach tool implementation, are
required to make it really useful. For example, if we wish to use
observers to define systems with self-adaptive behavior (cf. Sec-
tion 5.1), the rules for self-adaptation should make use of the wo-
ven model of the system. This woven model might require some
modifications to incorporate the adaptation rules based on the
observers states. Similar situations may occur in other cases, and
thus it would be very useful to provide facilities for rule modifica-
tion on the woven system without actually manipulating the
resulting specification. Facilities for rule replacement or redefini-
tion, inside the model management world, would be useful here
too.

Some particular observers may also imply rather complex bind-
ings, since their attributes may depend on the kind of objects pres-
ent on the system rules, or may even require the introduction of
new system objects in the rules because they were not initially
present. Further capabilities could facilitate this task.

Finally, there is the issue of the semantics of the resulting sys-
tem specification after the weaving process is performed. Notice
that by introducing observers we may be modifying the behavior
of our system, both when doing it by hand and when using the
modular approach. A deeper understanding of the meaning and
semantics of the weaving operation in the modular case is
required. In this respect, this proposal has just served as a proof-

of-concept that such an approach is feasible, but still a proper
study on the foundations of such approach, as well as of its appli-
cability and correctness, is required. We claim that, with the appro-
priate formalization and requirements, the preservation of the
semantics of the system specification by the merging could be pro-
ven. Some results on this direction are expected to be available
soon.

5. Performance analysis

The rules described in the previous sections allow users to spec-
ify the behavior of their systems and of their monitoring observers.
Once these specifications are completed, we show in this section
how we can analyze them, together with the tool available for con-
ducting such analyses.

In e-Motions, the semantics of real-time specifications is defined
by means of transformations to another domain with well-defined
semantics, namely Real-Time Maude [32]. The e-Motions environ-
ment not only provides an editor for writing the visual specifica-
tions, but also implements their automatic transformation (using
ATL [31]) into the corresponding formal specifications in
Maude—in a way transparent to the user.

One of the benefits of this approach is that it enables the use of
Maude’s facilities and tools available for executing and analyzing
the system specifications once they are expressed in Maude. The
work in [15,16] present some examples of analyses that can be per-
formed on rule-based DSL specifications using Maude. Further-
more, Maude rewriting logic specifications are executable, and
therefore they can be used as a prototype of the system on which
to carry on different types of checks and perform simulations.

In Maude, the result of a simulation is the final configuration of
objects reached after completing the rewriting steps, which is
nothing but a model. The resulting model can then be transformed
back into its corresponding EMF notation, allowing the end-user to
manipulate it from the Eclipse platform. The semantic mapping as
well as the transformation process back and forth between the e-
Motions and Real-Time Maude specifications are described in de-
tail in [16]. These transformations are completely transparent to
the e-Motions user. In this way the user feels like working only
within the e-Motions visual environment, without the need to
understand any other formalisms and being completely unaware
of the Maude rewriting engine performing the simulation.

Another very important advantage with our approach is that
observers are also objects of the system, and therefore the values
of their attributes can be effectively used to know how the system
behaved after the simulation is carried out. For example, if we start
the simulation from the initial configuration of the system shown
in Fig. 5, the values obtained by the observers after running a sim-
ulation are shown in Table 1 (recall that the counter attributes of
the generator machines were set to 40). Let us remind the reader
that a given production time of 40 time units for a machine



Table 1

Observers results after a simulation with one assembler (pt=40 and defective_rate = 1), one GenHandle (pt=30 and defective_rate =5) and one GenHead (pt =40 and

defective_rate = 2). System production time: 27'16".

Throughput MTBF MCT Delay HandleGen HeadGen Assembler
th:1.39 mtbf:9'05" mct:4'05” delay:2'26” tBusy:71% tBusy:95.4% tBusy:95.4%
collected:38 defective:2 act:163'15” acc:97'10” tldle:29% tldle:4.6% tldle:4.6%

Table 2

Observers results after a simulation with one assembler (pt=40 and defective_rate = 1), one GenHandle (pt=30 and defective_rate =5) and one GenHead (pt =30 and

defective_rate = 5). System production time: 26'57".

Throughput MTBF MCT Delay HandleGen HeadGen Assembler
th:1.41 mtbf:8'59” mct:3'42” delay:2'04” tBusy:72.4% tBusy:73.6% tBusy:96.3%
collected:38 defective:2 act:148'3” acc:82'28” tldle:27.6% tidle:26.4% tldle:3.7%

Table 3

Observers results after a simulation with one Assembler (pt=30 and defective_rate = 3), one GenHandle (pt=30 and defective_rate =5) and one GenHead (pt =30 and

defective_rate = 5). System production time: 20'48".

Throughput MTBF MCT Delay HandleGen HeadGen Assembler

th:1.8 mtbf:7'35” mct:1'37” delay:8” tBusy:95% tBusy:94.8% tBusy:93.3%

collected:38 defective:2 act:64'35” acc:5'30” tldle:5% tldle:5.2% tldle:6.7%
Table 4

Observers results after a simulation with one Assembler (pt=40 and defective_rate = 1), one GenHandle (pt=40 and defective_rate =2) and one GenHead (pt =40 and

defective_rate = 2). System production time: 27°52".

Throughput MTBF MCT Delay HandleGen HeadGen Assembler
th:1.4 mtbf:13'56” mct:2'03” delay:13” tBusy:94% tBusy:93.7% tBusy:94.9%
collected:39 defective:1 act:81°53” acc:9'01” tldle:6% tldle:6.3% tldle:5.1%

indicates that it will take an amount of time within the range
[37,43]. Similarly, a production time of 30 means that the real pro-
duction time taken by that machine to produce a part will be with-
in the range [27,33]. In the following tables we will consider that
units of time correspond to seconds, to show the simulation results
in a clearer way—e.g., we will write 9’05” (meaning 9 min and 5 s)
instead of writing 545 units of time.

Table 1 shows the performance parameters achieved by the sys-
tem, whose simulation indicated that the production time was
27'16” (this is the time the system took to produce all the parts).
Starting with the ThroughputOb observer, it indicates that 38 non-
defective hammers have been collected. The throughput value is
1.39 (expressed in parts/minute), which means that 1.39 non-
defective hammers are collected on average every minute. Two
defective hammers have been produced, and the mean time be-
tween their collection was 9'05”. Depending on the price of mate-
rials, this could be of greater or lesser concern. The mean time that
a hammer is in the system is 4’05”. Let us clarify that this is the
time elapse from when its parts start being generated to the mo-
ment it is collected. The average delay of all hammers produced
is 2’26”, which means that they are in the system for around
2'26" more than their optimal (theoretical) production time. Final-
ly, let us have a look at the time the machines have been working.
The head generator and assembler have been working almost the
whole time (95.4%). However, the handle generator is idle one
third of the time. As expected, this is because its production time
is faster than the other machines, so it produces the parts faster
and has to wait for the other machines before being able to carry
on.

We also need to study the reasons for the delay. In the first
place, handles are generated faster than heads. This may cause

an overload of handles in tray t1 (see Fig. 5) and also in conveyor
c1, which makes the handle generator to stop generating handles
(see Section 3.3). This overload means that parts stay in the system
longer, increasing their cycle time and, consequently, their delay.
To try to solve this problem, let us see what happens if the produc-
tion time of the heads generator is set to 30” (and the defective rate
to 5%) so that now the handles do not have to wait for the heads to
be assembled because the production time of both machines is
similar. The results of this simulation are shown in Table 2.

These results are similar to those in Table 1. Once again, 38 non-
defective hammers and two defective hammers have been col-
lected. The mean cycle time and delay of collected hammers have
been slightly reduced, but they are still significant. The explanation
for this is simple. Despite handle and head generators having sim-
ilar production times, now parts which are ready to be assembled
on tray t1 have to wait for the assembler to be available, since its
production time is greater than the production time of the gener-
ators. This is also the reason why the busy time of generators is
smaller than the assemblers’, which is not desirable. A solution
to the problem of these big mean cycle times, delays and idle times
of machines seems to be making the production time of all ma-
chines equal. As we have been simulating with two different pro-
duction times (and, consequently, defective rates), let us do a
simulation with all times set to 30” (and a defective rate of 5%
for generators and 3% for assemblers, see Table 3), and another
with 40” (and a defective rate of 2% for generators and 1% for
assemblers, see Table 4).

Now we can see improvements in these two simulations
regarding the mean cycle time, delay and idle time of the ma-
chines; the mean cycle time of collected hammers has been sub-
stantially decreased and the delay is now quite small. The reason
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Fig. 21. The rules that describe how the system configuration self-adapts.

Table 5

Observers results of simulation with the system being self-adapting and pursuing a mct of 1'50”. System production time: 22'59”.
Throughput MTBF MCT Delay HandleGen HeadGen Assembler
th:1.7 mtbf:11'30” mct:1'50.3” delay:15” tBusy:95% tBusy:94.9% tBusy:93.5%
collected:39 defective:1 act:73'33” acc:10'10” tldle:5% tldle:5.1% tldle:6.5%

is that all machines work now at the same speed. The mean cycle
time is bigger when the production time of machines is 40" be-
cause parts are within the system for a longer time until the user
collects them. The busy and idle times in both situations are very
similar (and acceptable), since the machines are working for al-
most the whole time. As expected, the simulation when the pro-
duction times are 30” finishes earlier. In fact, it now takes seven
minutes less: the system produces all parts in 20'48”. Besides,
the throughput of the former, 1.8, is better than the one of the lat-
ter, 1.4. However, in the former two defective hammers have been
collected, while in the latter only one hammer was defective. Tak-
ing into consideration all these factors, we, acting as managers of
the plant, should have to decide which configuration is better for
our plant. For instance, if the costs of the materials were very
expensive, we may prefer the second configuration, where the pro-
cess takes 7’ longer but we only get one defective hammer. How-
ever, in this case, since we are dealing with hammers, we would
probably prefer to get two defective hammers and save 7 min. In
any case, we now count on precise performance figures that allow
us to take decisions and to assess their associated costs and impact
(in terms of time and money).

5.1. Adding rules for self-adaptation

Apart from computing the values of the properties that we want
to analyze in the system, observers can also be very useful for
defining alternative behaviors of the system, depending on specific
threshold levels. For instance, the system can self-adapt under cer-
tain conditions, since we are able to search for states of the system

in which some attributes of the observers take certain values, or go
above or below some limits.

As an example, let us consider the mean cycle time value given
by the MCTOb observer. This value computes, each time a new
hammer is collected, the mean cycle time of all hammers produced
so far, and it directly depends on the production time of the ma-
chines (as we saw in the previous section). Let us suppose that
the production time of the machines can be changed during execu-
tion time. In fact, it is very common in real world systems, where
the working speed of different machines can be adjusted according
to certain parameters while the system operates.

Let us consider the two configurations that gave us better re-
sults in the previous simulations (those where all the machines
had the same production time). The simulation of the configuration
on which every machine has a production time of 40” (resp. 30”)
resulted in a final mean cycle time of 2'03” (resp. 1’37”). Now, sup-
pose that we want to keep the value of the mean cycle time close to
a given optimal value for us (let us say 1’50”) by appropriately
swapping the two configurations. Taking this into account, we in-
clude two new rules in the system to self-adapt its configuration
(Fig. 21). The first rule, DecreasePt, will be triggered whenever the
current mean cycle time of the system goes above 1’50” and the
current production time of the three machines is 40”. This rule will
change the production times of every machine to 30” (and conse-
quently their defective rate) with the aim of raising up the mean
cycle time. Rule IncreasePt will then be triggered whenever the
mean cycle time goes below 1’50” and the production time of the
three machines is 30”. It will change the production times of every
machine to 40” (and accordingly their defective rate) to decrease
the mean cycle time.
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Fig. 22. Mean cycle times.

For checking the efficiency of this approach, we have carried out
a simulation where the initial production time of every machine is
40". The result of this simulation is presented in Table 5, which
shows how the mean cycle time is close to 1'50”, as desired. In fact,
we see that this is the most appropriate configuration: we obtain a
throughput very close to the highest before (1.8) but with only one
defective hammer.

5.2. Storing attributes in traces and exporting analysis results

So far we have seen how it is possible to simulate the system
and obtain performance information on its behavior. But there
are also occasions in which we are not only interested in the per-
formance indicators at the end of the system simulation, but also
during its execution. For instance, we are now able to know the
average cycle time for the produced parts, but it might be useful
to see a graphical representation of how said value is changing
while the system is operating. In addition, it would be important
to have the resulting models designed in a way which can be ana-
lyzed and displayed by different tools (math programs, spread-
sheets, etc.), outside the EMF environment.

This section shows how to achieve this and the tool support that
e-Motions provides. In the first place, if we want to keep track of
how the values of the observed properties change during the
system execution it is just a matter of changing the observers’
attributes to be sequences of values. And then the behavior of
the observers needs to be slightly modified in the rules to append
every computed value to these sequences (instead of gathering
only the final value). This can be useful when we want to analyze
the values of some property along time. It could also be useful if
the user wants to use the values of the traces within the rules.
For example, the Batch Means function described later in
Section 6.2 uses these values.

Regarding the use of the resulting models by other tools, e-
Motions implements a trivial model-to-text transformation that
enables the creation of a comma-separated values (csv) file from
an Ecore model. Such a csv file contains the information of every
object in the model, together with the values of all its attributes.
Objects are named by their identifiers, and attributes are ex-
pressed as a list of name-value pairs. That file can be directly
imported by different applications for performing different kinds
of analysis. For example, it can be fed to an spreadsheet
application that the domain expert can use to analyze the data,
display charts, etc. In this way, the domain expert will be able to
easily display charts with the result of a simulation (which is in
fact a model) to graphically represent the values of the parame-
ters monitored by the observers throughout the whole
simulation.

Fig. 22 shows, for instance, two charts that display the mean cy-
cle time of the simulations whose final results were shown in Ta-
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Fig. 23. Handles generator busy time 40-30-40.

bles 1 and 2, respectively. We can see in both of them how, in
general, the mean cycle time of parts grows as time goes by. This
is because tray t1 gets overloaded at some point in the simulation,
and when this occurs the generated parts at that moment increase
the mean cycle time. However, in some time intervals the mean cy-
cle time does not vary or even slightly decreases. This is caused by
the parts that are produced when the generators re-start their
work after stopping to avoid a deadlock (as discussed in Sec-
tion 3.3), since these new parts will have a smaller mean cycle time
than the average.

Fig. 23 shows the busy time of the handle generator in the
simulation whose final results were shown in Table 1. In this sim-
ulation, the production time of the handle generator was smaller
than the other machines. Therefore, handles were generated fas-
ter than heads and the handle generator had to eventually stop
generating handles to avoid the overload of parts in tray t1 and
the overload of heads in conveyor c2. In particular, we see that
the generator stops for the first time around minute 8 (moment
at which the overload happened) and after this moment it contin-
uously restarts and stops the generation of parts as needed, work-
ing as expected.

This analysis also indicates further potential points for improve-
ment in the system, such as replacing the current conveyors with fas-
ter ones (although probably more expensive—hence another trade-off
to consider). Finding the right balance between costs, performance
and benefits is not easy, although the kinds of analysis presented here
can help solve this problem at the earliest phases of the system’s
design, with precise and objective figures, and also using notations
and mechanisms which are quite close to the domain experts.

6. General methodology

After having described our proposal with a running example,
this section presents a general methodology for the performance
analysis of those systems which are specified using rule-based do-
main-specific languages—such as e-Motions. In addition, it explains



the current tool support and how the simulations can be conducted
with e-Motions to obtain the performance analysis results.

6.1. Methodology

In order to carry out the specification of a system and to obtain
performance metrics by simulating the specifications with e-Mo-
tions, the following steps are required:

1. All the relevant elements of the system have to be specified. In
an MDE setting, this is done by defining the abstract syntax of
the system, which is specified by means of its metamodel. It
describes the concepts of the system and the relationships
between them. The concepts of the system are defined as clas-
ses in the metamodel. Element features are specified by means
of class attributes.

2. Once we know the elements that may be present in the system,
their relationships and features, the system behavior needs to
be defined. In our approach this is specified by means of a set of
rules, each of which represents a possible action in the system.
These rules should be enough to cover all the aspects of interest
for the system. The form of the rules is described in Section 2.

3. We then need to specify the initial configuration of the system,
which is nothing but a model conforming to the system meta-
model.

As a result of these steps we obtain the specification of the basic
structure and behavior of the system, in a way that can be
simulated. This simulation will execute the rules starting from
an initial configuration of the system, which will be changing as
the simulation evolves and the rules are applied. The result of
the simulation will be a model (representing the final state of
the system after the simulation) which conforms to the system
metamodel.

If we also want to measure the performance of the system and con-

duct an analysis over a set of non-functional properties, the follow-

ing additional steps are required:

4. We need to identify the non-functional properties that we want
to analyze in the system, such as throughput, MTBF, delay, cycle
time, etc. Section 3.1 describes some of these properties and
how they can be defined.

5. Once we know the non-functional properties to analyze, we
have to define the Observers that will be in charge of monitoring
the state of the system and its elements during the simulation.
For this, a metamodel for the observers has to be defined. There
can be observers monitoring properties of the global system
and observers monitoring individual elements’ features. Special
care has to be taken when defining the attributes of the observ-
ers. Data structures must be properly defined depending on
what we want to monitor. For example, for a specific feature
of a specific observer we may be interested in storing just the
last value, all the values taken during the simulation, or an
aggregated of these (e.g., the average). The metamodel for the
observers used in our running example is shown in Section 3.2.

6. When we know and have defined the observers for our system,
we need to specify their behavior, and how their values are
computed as the system executes. For this we have discussed
two options: to modify the system behavioral rules defined in
step 2 with the behavior of the observers; or to establish corre-
spondences between the observers’ behavioral rules and the
system rules in case we already have the specification of
observers’ behavior. Examples of how rules are enriched with
observers are discussed and shown in Section 3.3, and examples
of weaving behavioral rules are shown in Section 4.3.

7. In the specification of self-adaptive systems, rules that make
some changes in the configuration of the system depending
on the observers’ attributes may also be needed. An example

was shown in Fig. 21, where the production time and defective
rate of machines changed depending on the current value of the
mean cycle time. Further changes would also be possible, such
as the inclusion of new part generators, new assemblers, etc.

Once the complete behavior of the system and of the observer
objects have been defined, we are in the position to run the simu-
lations, visualize and analyze the results, and make those changes
to the system that are required to improve its performance and
behavior according to our requirements. These steps are described
in detail in the following sections.

6.2. Conducting the Simulations

Normally the behavior of a non-trivial system is stochastic, and
therefore it needs to be defined using probability distributions that
specify the rates at which external events occur (e.g. arrival rates),
the duration of the rules, the probability of failures, etc. The treat-
ment of these stochastic events and the use of random data implies
that two different simulations of the same system may produce
different performance results, since the distributions provide dif-
ferent values. In order to deal with this, the user should launch sev-
eral simulations for the same input model, and should aggregate
the results appropriately.

There are several issues to be considered here: the length of the
simulations, the number of simulations that have to be carried out
to get meaningful results, and the aggregation function to use for
combining the results.

For some systems, it is useful to set a time limit for the simula-
tions, since the user may want to see the state of the system after a
given number of time steps. In other cases, we are interested in
simulating the system until a stable value is found (if it exists).
There are different methods described in the literature to deter-
mine when the steady state of a simulation is reached, namely long
runs, proper initialization, truncation, initial data deletion, moving
average of independent replications, or batch means [33].

In our case we have implemented both the long runs and the
batch means method (with slight modifications). The long runs
method is useful when simulations do not last much, and many
of them can be executed rapidly. In this case, the observers do
not need to keep track of all intermediate states, just the final re-
sults. The original batch means method requires running a long
simulation and later divide it up into several parts of equal dura-
tion, which are called batches. The mean of the observations within
each batch is called the batch mean. The method requires studying
the variance of these batch means as a function of the batch size.
What we do, instead of running a long simulation and then divid-
ing it, is to apply the method at certain points during the simula-
tion as it moves forward. For that we store the values of the
performance parameters in traces to be able to apply this method
over them. In our Production Line system, we have applied the
batch means method over the traces whenever 20 new hammers
are assembled. We consider that a simulation reaches its steady
state when the variance of the batch means of a trace goes below
a threshold value (107%). Such value is different depending on the
system and the precision that we want to get. Our results were ob-
tained for 107,

Finally, the results of a set of simulations need to be aggregated
in order to provide one meaningful final result. Traditionally, the
final value is obtained by calculating the average of the resulting
values, and this is the way we currently compute our final result.
However, the average does not always produce the most meaning-
ful results. As future work we plan to analyze the results given by
the different simulations to return not the mean, but the probabil-
ity distribution that the results from the different executions
follow.
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Fig. 24. Simulating and Analyzing in e-Motions.

6.3. Tool support

Our tool, e-Motions [24], has three main functionalities: model
edition, model simulation and model analysis. The first two are di-
rectly related with the work here and the third one was developed
for further kinds of analysis.

e-Motions provides model editors to graphically define the ab-
stract and concrete syntaxes of DSVLs, and their behavioral rules.
An abstract syntax is defined by means of a metamodel. The con-
crete syntax specifies how the domain concepts included in the
metamodel are represented, and it is defined as a mapping be-
tween the metamodel and a graphical notation. This graphical
notation is used to define initial models and also for specifying
behavioral rules.

Once the metamodel and the behavioral rules (either with
observers or not) are defined, the user can simulate the specifica-
tions (see Fig. 24). When launching a simulation, the user indi-
cates: the file with the metamodel; the file with the behavioral
rules; the time limit for the simulation (if not specified, the simu-
lation runs until no further rule can be triggered); the default time
elapse (1, unless otherwise specified); the initial model, and the file
that will store the resulting model returned by the simulation. Be-
fore carrying out the simulation, e-Motions applies an integrated
OCL validator that checks if the OCL expressions used in the rules
are correct. In case of errors, these are displayed and the user
warned. Otherwise, three ATL transformations are automatically
applied to transform the specifications into Maude code. One of
them transforms the metamodel to its Maude specification
[15,34], the second one transforms the behavioral rules into Maude
rules [20], and a third one is applied if there is an input file with the
initial model [15].

Immediately after the transformations are applied, the simula-
tion is launched. All this happens transparently to the user, who
does not need to be aware of the existence of the Maude back-
end tool, neither of the transformations happening in the back-
ground. Indeed, no Maude code is shown in the e-Motions tool.
The simulation is executed in background, so the tool is not
blocked and users can continue with their activities. A status bar
is shown as long as the simulation is running. When it finishes, a
notification message is shown and the file with the resulting model
is created. This is a model conforming to the metamodel of the sys-

tem. The user can also transform the data in the resulting model
into a csv file by simply right-clicking on the file and selecting
the transformation.

As mentioned above, random functions and probability distri-
butions can be used in the behavioral rules. The most common dis-
tributions are available in e-Motions: Constant, Uniform,
Exponential, Normal, Gamma, Weibull, Erlang, F, Chi-square, Geo-
metric, Lognormal, Pareto, Pascal and Poisson. They are further ex-
plained in [24].

e-Motions also offers some analysis options, for example to
perform reachability analysis. The tool makes use of the Maude
search command, which allows users to explore, following a
breadth-first strategy, the reachable state space of the system in
different ways. Thus, it is possible for example to look for dead-
lock states without needing to simulate the whole system. In
our example, a possible deadlock state is that tray t1 is full of
parts of the same type, preventing the assembler machine from
continuing. However, our production line system never reaches
that state thanks to the OCL constraints in the rules’ LHSs in
Figs. 6 and 8. Once again, the reachability analysis is conducted
from the e-Motions tool (see Fig. 24), which, again, hides the
whole interaction with Maude from/to the user. When perform-
ing reachability analysis, the user has to specify the behavior
model, the metamodel, the initial model, the search pattern (for
example looking for deadlocks), the maximum number of solu-
tions to return (since it may return hundreds of solutions) and
where to store the resulting models.

Finally, it is important to remark that although our proposal has
been implemented on top of e-Motions, it is applicable to any other
rule-based domain-specific language that is able to describe the
behavior of the system in terms of in-place rules, and that admits
the specification of time-related properties. Examples of these lan-
guages are MOMENT2 [35] or the approach presented in [36],
which proposes an alternative way to incorporate time to graph
transformations.

6.4. Pros and cons

This section discusses some of the main advantages and limita-
tions of our proposal concerning performance analysis of systems.



As major advantages, our approach permits obtaining the per-
formance analysis of end-user defined DSVLs, and is supported
by a prototype tool. As long as the user is capable of describing
the structure of the system in terms of a metamodel and can give
behavioral semantics to it by means of in-place rules, the system
can be simulated and analyzed. Furthermore, many different kinds
of analysis can be performed. In fact, users can define as many
types of observers as needed in order to analyze the properties of
interest, which provides a high degree of flexibility. The models
resulting from the simulations can be transformed into a format
compatible with spreadsheet applications, so charts and tables
with performance data can be easily obtained. Another advantage
of our approach is that, in spite of using Maude for simulation, the
user does not have to deal with any Maude code, since it is gener-
ated and used in a transparent way.

The possibility of using probability distributions in the behav-
ioral rules enables the acquisition of performance metrics for sto-
chastic systems, such as queuing networks, Petri nets, stochastic
neural networks and genetic algorithms.

But our approach also presents some limitations. Firstly, learn-
ing to specify systems in terms of metamodels and behavioral rules
is not obvious, and the learning curve is not negligible. Secondly,
we also have to consider the time required to master the tool. Fi-
nally, simulations are always expensive (time-wise). The efficiency
of our current implementation can be improved in some ways.
Although simulating small systems with e-Motions is efficient
and rather fast (in the order of a few seconds), as the complexity
of systems grows (in terms of number of model elements) the sim-
ulations become slow. The use of DSVLs normally implies that
models are not very large, because of the high-abstraction level
at which the system is specified. However, there are cases of mod-
els in which the high number of elements (e.g., greater than 200 at
this time) represents a heavy burden for e-Motions. To improve the
speed of the simulations we are studying alternative representa-
tions of the models and behavioral rules in Maude, as well as the
parallel distribution of simulations among servers. In this way, a
simulation where probability distributions take part are distrib-
uted over several machines, each one dealing with one system sim-
ulation. When the simulations are finished, the resulting models
are gathered and the corresponding results are returned.

We have also evaluated the overhead of introducing the observ-
ers in the system specifications. They are objects, too, and hence
they may mean multiplying by two or three the number of objects
in the model if individual observers are used for all system ele-
ments. For small systems this is an acceptable increase: for sys-
tems with less than 100 elements the simulation time goes from
a few seconds to a few minutes. However, the exponential nature
of the Maude simulations and our current implementation of the

Table 6
Simulation times for the production line system.
# Model With no Global Individual
elements observers observers observers
30 0:00:01 0:00:01 0:00:12
100 0:00:06 0:00:18 0:02:00
120 0:00:12 0:00:34 0:04:26
150 0:00:35 0:01:07 0:08:51
200 0:01:12 0:01:56 0:17:43
300 0:02:28 0:03:32 0:59:42
400 0:03:45 0:05:04 1:59:24
500 0:05:51 0:07:38 4:56:07
600 0:07:31 0:10:30 8:36:08
750 0:11:16 0:17:15 14:51:18
900 0:15:33 0:32:12 31:05:04
1000 0:19:55 0:36:45 127:26:48

tool impose a limit on the number of elements if simulations are
to be finished in a reasonable time—see Table 6.

7. Related work

As mentioned in the introduction, the usual approach to speci-
fying the properties of the system that users want to analyze
through simulation consists of enriching the system elements with
new states and several kinds of annotations. Although this might
(partially) work for UML models, the situation is different when
the models of the system are specified using domain specific visual
languages, for which no clear solution currently exists. Most of the
existing proposals for specifying QoS and other non-functional
properties require skilled knowledge of specialized languages,
which is precisely what DSVLs try to avoid with their notations clo-
ser to the end-users and to the problem domain.

Other analysis tools (such as ARENA [37]) allow users to specify
the models to be simulated using visual notations, but just within
the tools environments and using their proprietary notations. In
other words, these tools cannot easily take as input models pro-
duced by different editors, nor they can easily export their models
so that they can be analyzed by other tools. In addition, users can-
not arbitrarily use these tools with their in-house developed visual
languages, nor define in a flexible way the properties to be moni-
tored and analyzed (let them be properties of the whole system
or of any of its elements). In our proposal we separate the visual
specification of the system from the tools that will be finally used
to simulate or analyze them. Furthermore, the fact that we can use
user-defined monitoring objects that are added to the system spec-
ifications for capturing the properties to be analyzed allows a high
degree of flexibility, since it is the end-user who defines the obser-
ver objects as part of his system design.

Our observers were originally introduced in [18] for specifying
QoS properties, and in [17] it was discussed how they could be
used during simulations. In this paper we have shown how they
can be effectively used for conducting performance analysis. We
have also introduced the use of probability distributions, which
gives us the possibility of analyzing stochastic systems, and the
use of the batch means method for deciding when simulations be-
come stable. More importantly, a generic methodology that sup-
ports our approach has been presented. One of the benefits of
our proposal is that it can be easily applied to other proposals that
also advocate the use of in-place rules for specifying the behavior
of real-time systems [38,35,39,40], and specially those that pro-
pose visual notations for doing so.

Observers are not a new concept. They have been defined in dif-
ferent proposals for monitoring the execution of systems and to
reason about some of their properties. In fact, the OMG defines dif-
ferent kinds of observers in the MARTE specification [13]. Among
them, TimedObservers are conceptual entities that define require-
ments and predictions for measures defined on an interval be-
tween a pair of user-defined observed events. They must be
extended to define the measure that they collect (e.g., latency or
jitter) and aim to provide a powerful mechanism to annotate and
compare timing constraints over UML models against timing pre-
dictions provided by analysis tools. In this sense they are similar
to our observers. The advantage of incorporating them into DSVLs
using our approach is that we can also reason about their behavior
and not only use them to describe requirements and constraints on
models. In addition, we can use our observers to dynamically
change the system behavior, in contrast with the more “static” nat-
ure of MARTE observers.

Regarding the model of time used, Boronat and Olveczky also
present in [35] the use of in-place model transformations to com-
plement metamodels with timed behavioral specifications. How-



ever, the way in which they model time is different. They add ex-
plicit constructs for defining time behavior and include time con-
structs in the system state whose semantics is encoded in
MOMENT2. We, instead, do not add any explicit constructs for
defining time behavior, but our transformation rules have time
intervals denoting the duration interval of each local action. More-
over, any OCL expression and variable used within the rule can be
used for denoting the duration of the rule, which permits us to
model stochastic systems if we use probability distributions for
the durations. In [36], de Lara et al. also use metamodels to de-
scribe the abstract syntax of systems. Then, they use DPO Graph
Transformation rules [41] to specify its behavior. To introduce an
implicit notion of simulation time, they extend their grammars
with scheduling functions, associating edges with relative time
values and with probability density functions. In that way, they
can model either specific times as well as discrete and continuous
distributions, such as the uniform, normal and exponential nega-
tive. They also propose how to measure some performance metrics,
although they do not propose a complete solution. Furthermore,
we can use random values and any probability distribution in
our rules, and not only for time durations but also for any other
values within the rules.

Stochastic Graph Transformation systems were defined by Rei-
ko Heckel in [42]. They are an extension of graph transformations
where the duration of the rules can follow probabilistic distribu-
tions. They have been used to study the performance and reliability
of different kinds of systems [43]. At the beginning, this approach
was based on the use of analytical methods, which generally re-
quire some simplifications on the kinds of probability distributions
they admit, and have also limitations to cope with the huge state
spaces of current software systems. To overcome these limitations,
more recent work in this field proposes the use of stochastic graph
transformation simulations, which allows larger models and more
general distributions. For example, in [44] Heckel and Torrini add a
model of global time and apply stochastic simulations on mobile
systems, and in [45] they use stochastic simulation in order to ver-
ify software performance in large-scale systems.

In [40], de Lara and Vangheluwe presented an interesting ap-
proach to automatically generate model-to-model transformations
from DSVLs into semantic domains with a explicit notion of transi-
tion. From the initial model of the system and the behavioral rules,
they generate a transformation which is expressed in the form of
operational triple graph grammar rules. More precisely, they trans-
form a production system described with a metamodel, an initial
model and a set of behavioral rules into a Timed Petri Net (TPN).
They allow the specification of the duration of rules as an interval
between a lower and an upper bound. Such rule durations are then
translated into durations in transitions in the TPNs. An important
advantage of this approach is that after translating a system to
its representation in Petri nets, specific Petri net techniques can
be used to analyze said system. In spite of the usefulness of this
new technique, it imposes some strict requirements on the behav-
ioral rules in order to successfully transform them into Petri nets.
Furthermore, it is not possible to use any probability distribution
on the rules duration. On the other hand, the use of Petri nets al-
lows some interesting kinds of analysis on the system, and this is
why this proposal can be considered as complementary to ours.

An alternative approach to relying on observers, as we do in our
approach, is to rely on traces that can be generated from the trans-
formations. The analysis of system execution traces to validate QoS
properties has proved to be very effective in the case of compo-
nent-based systems, network protocols and distributed middle-
wares [46-48], and allows different kinds of very powerful
analysis, as described in [49,50]. But in fact, our observers can be
used to generate selected sets of traces, as we have shown in Sec-
tion 5.2, and then use these traces (stored in the observers’ attri-

butes) to analyze the system. The advantages in our approach is
that the user, when defining the observers, can select the kind of
execution traces he is interested in—instead of having the transfor-
mations generate all system traces, which can result in too much
information.

Finally, [7] introduces a generic specification language for
non-functional properties of component-based systems that has
a formal foundation and semantics, using temporal logic, in
which non-functional properties are specified as constraints over
measurements. Although this approach is different in nature to
the one presented here, it can probably be used for providing
some interesting semantic foundations that can help reasoning
about the modular addition of observers to the system
specifications.

8. Conclusions and future work

In this paper we have proposed the use of special objects
(observers) that can be added to the graphical specification of a
system for describing and monitoring some of its non-functional
properties, and shown its application to performance analysis of
systems specified by user-defined DSVLs—in particular those
whose behavior is specified in terms of in-place rules. Observers al-
low extending the global state of the system with the variables that
the designer wants to analyze when running the simulations, being
able to capture the performance properties of interest. Further-
more, the fact that action executions are first-class citizens in the
e-Motions specifications [14] can enable observers to monitor not
only the states of the objects of the system but also their actions.

We have also presented the e-Motions prototype tool for speci-
fying the systems and their observers using DSVLs, and the facili-
ties it provides for conducting different analyses of these systems
(within e-Motions or by feeding its output models into other tools
by means of csv files).

We have described a general methodology for the performance
analysis of systems using our approach, after introducing it with a
running example, and discussed the current tool support—in par-
ticular how simulations can be conducted and the kinds of analysis
that are possible with our proposal. Further examples and case
studies can be found in [24]. We have also presented an approach
for applying a modular specification of the behavior of observers
based on weaving mechanisms for rules. We propose the decou-
pling in the definition of the functional and non-functional behav-
ior of a system by separating the functional rules and the inclusion
of observers within them.

Other than that, we also plan to study in more detail the expres-
siveness of our approach, investigating which kinds of properties
can be analyzed using observers and which ones cannot. We are
also working on improving the internal representation of our mod-
els and of the observers in Maude, to make simulations much fas-
ter. We would also like to explore the use of other existing tools to
perform different kinds of analysis based on the output models of
our simulations (e.g., predictions). Some graphical aid to specify
the weaving models between the system and the observers rules
is also planned as a future activity, in order to provide a more
user-friendly interface than the current AMW Eclipse-based editor.
In addition, weaving is currently accomplished outside the e-Mo-
tions environment but would need to be fully integrated within
the tool.

Finally, we would like to explore the possible connection be-
tween the final implementation of the systems and their specifica-
tions in e-Motions in order to study the conformance of the system
execution with its specified behavior. In this way we could easily
detect deviations from the expected behavior and degradations



in the system performance with regards to its high-level visual
specifications.
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