
A Systematic Mapping Study of Web Application Testing

Vahid Garousic,1, Ali Mesbahb, Aysu Betin-Canc, Shabnam Mirshokraieb

aElectrical and Computer Engineering, University of Calgary, Calgary, Canada, vgarousi@ucalgary.ca
bElectrical and Computer Engineering, University of British Columbia, Vancouver, Canada, {amesbah, shabnamm}@ece.ubc.ca

cInformatics Institute, Middle East Technical University, Ankara, Turkey, betincan@metu.edu.tr

Abstract

Context: The Web has had a significant impact on all aspects of our society. As our society relies more and more on the Web, the
dependability of web applications has become increasingly important. To make these applications more dependable, for the past
decade researches have proposed various techniques for testing web-based software applications. Our literature search for related
studies retrieved 147 papers in the area of web application testing, which have appeared between 2000–2011.
Objective: As this research area matures and the number of related papers increases, it is important to systematically identify,
analyze, and classify the publications and provide an overview of the trends in this specialized field.
Method: We review and structure the body of knowledge related to web application testing through a systematic mapping (SM)
study. As part of this study, we pose two sets of research questions, define selection and exclusion criteria, and systematically
develop and refine a classification schema. In addition, we conduct a bibliometrics analysis of the papers included in our study.
Results: Our study includes a set of 79 papers (from the 147 retrieved papers) published in the area of web application testing
between 2000-2011. We present the results of our systematic mapping study. Our mapping data is available through a publicly-
accessible repository. We derive the observed trends, for instance, in terms of types of papers, sources of information to derive test
cases, and types of evaluations used in papers. We also report the demographics and bibliometrics trends in this domain, including
top-cited papers, active countries and researchers, and top venues in this research area.
Conclusion: We discuss the emerging trends in web application testing, and discuss the implications for researchers and practi-
tioners in this area. The results of our systematic mapping can help researchers to obtain an overview of existing web application
testing approaches and indentify areas in the field that require more attention from the research community.

Keywords: systematic mapping, web application, testing, paper repository, bibliometrics

Contents

1 Introduction 2

2 Related Work 2
2.1 Secondary Studies in Software Testing 2
2.2 Online Paper Repositories in SE 3
2.3 Secondary Studies in Web Application Testing . 3

3 Research Methodology 3
3.1 Goal and Research Questions 4
3.2 Paper Selection Strategy 5
3.3 Final pool of papers and the online repository . 6

4 Classification Scheme 6

5 Systematic Mapping Results 8
5.1 RQ 1.1-Types of papers by Contribution Facet . 8
5.2 RQ 1.2-Types of papers by Research Facet . . . 9
5.3 RQ 1.3-Type of Testing Activity 10
5.4 RQ 1.4-Test Locations 11
5.5 RQ 1.5-Testing Levels 11
5.6 RQ 1.6-Source of information to derive test ar-

tifacts . 12

5.7 RQ 1.7-Techniques to derive test artifacts . . . 12
5.8 RQ 1.8-Type of test artifact generated 13
5.9 RQ 1.9-Manual versus Automated testing . . . 14
5.10 RQ 1.10-Type of the Evaluation Method 14
5.11 RQ 1.11-Static Web Sites versus Dynamic Web

Applications 14
5.12 RQ 1.12-Synchronicity of HTTP calls 15
5.13 RQ 1.13-Client-tier Web Technologies 15
5.14 RQ 1.14-Server-tier Web Technologies 15
5.15 RQ 1.15-Tools presented in the papers 16
5.16 RQ 1.16-Attributes of the web software SUT(s) 16

6 Demographic Trends and Bibliometrics 18
6.1 RQ 2.1-Publication trend per year 18
6.2 RQ 2.2-Citation analysis and top-cited papers . 18
6.3 RQ 2.3-Most active researchers in the area . . . 19
6.4 RQ 2.4-Active nations 19
6.5 RQ 2.5-Top venues 20

7 Discussions 21
7.1 Findings, Trends, and Implications 21
7.2 Threats to Validity 22

8 Conclusions and Future Work 23

Preprint submitted to Information and Software Technology February 9, 2013

1. Introduction

The Web has had a significant impact on all aspects of our
society, from business, education, government, entertainment
sectors, industry, to our personal lives. The main advantages
of adopting the Web for developing software products include
(1) no installation costs, (2) automatic upgrade with new fea-
tures for all users, and (3) universal access from any machine
connected to the Internet. On the downside, the use of server
and browser technologies make web applications particularly
error-prone and challenging to test, causing serious dependabil-
ity threats. In addition to financial costs, errors in web applica-
tions result in loss of revenue and credibility.

The difficulty in testing web applications is many-fold. First,
web applications are distributed through a client/server archi-
tecture, with (asynchronous) HTTP request/response calls to
synchronize the application state. Second, they are heteroge-
neous, i.e., web applications are developed using different pro-
gramming languages, for instance, HTML, CSS, JavaScript on
the client-side and PHP, Ruby, Java on the server-side. And
third, web applications have a dynamic nature; in many scenar-
ios they also possess non-deterministic characteristics.

During the past decade, researchers in increasing numbers,
have proposed different techniques for analyzing and testing
these dynamic, fast evolving software systems. As the research
area matures and the number of related papers increases, we
feel it is important to systematically identify, analyze and clas-
sify the state-of-the-art and provide an overview of the trends
in this specialized field. In this paper, we present a systematic
mapping of the web application testing research work.

According to Petersen et al. [47], a systematic mapping (SM)
is a method to review, classify, and structure papers related to
a specific research field in software engineering. The goal is to
obtain an overview of existing approaches, outlining the cover-
age of the research field in different facets of the classification
scheme. Identified gaps in the field serve as a valuable basis for
future research directions [39, 36]. Results of SM studies can
also be valuable resources for new researchers (e.g., PhD stu-
dents) by providing a detailed overview of a specific research
area [16].

There are major differences between SM studies and system-
atic literature reviews (SLR). Kitchenham et al. [39] report a
comprehensive comparison of SM and SLR studies using the
following seven criteria: goals, research questions, search pro-
cess, scope, search strategy requirements, quality evaluation,
and results. According to that report, the goal of a SM is classi-
fication and thematic analysis of literature on a software engi-
neering topic, while the goal of a SLR is to identify best prac-
tices with respect to specific procedures, technologies, methods
or tools by aggregating information from comparative studies.
Research questions of a SM are generic, i.e., related to research
trends, and are of the form: which researchers, how much activ-
ity, what type of studies. On the other hand, research questions
of a SLR are specific, meaning that they are related to outcomes
of empirical studies. For example, they could be of the form: Is
technology/method A better than B? Unlike a SLR [37], find-
ing evidence for impact of a proposed approach is not the main

focus in a systematic mapping [47]. An SLR analyzes primary
studies, reviews them in depth and describes their methodology
and results. SLRs are typically of greater depth than SMs. Of-
ten, SLRs include an SM as a part of their study [47]. In other
words, the results of a SM can be fed into a more rigorous SLR
study to support evidence-based software engineering [38].

SM studies generally consist of five steps [47] including a
definition of research questions, conducting the search for rele-
vant papers, screening of papers, keywording of abstracts, and
data extraction and mapping, which we follow in this paper.

To the best of our knowledge, this paper is the first systematic
mapping study in the area of web application testing. The main
contributions of this paper are:

• A generic classification scheme for categorizing papers in
the field of web application testing;

• A systematic mapping study in the field of functional test-
ing of web applications, structuring related research work
over the past decade by capturing and analyzing 79 in-
cluded papers;

• An analysis of the demographic trends and bibliometrics
in the area of web application testing;

• An online repository of the papers collected and analyzed
through this systematic study.

The remainder of this paper is outlined as follows. A review
of the related work is presented in Section 2. Section 3 ex-
plains our research methodology and research questions. Sec-
tion 4 provides the classification scheme we have developed
for the web testing domain and the process used for construct-
ing it. Section 5 presents the results of the systematic mapping
followed by the bibliometric analysis in Section 6. Section 7
discusses the main findings, implications and trends. Finally,
Section 8 concludes the paper.

2. Related Work

We classify related work into three categories: (1) secondary
studies that have been reported in the broader area of software
testing, (2) related online repositories in software engineering,
and (3) secondary studies focusing on web application testing
and analysis.

2.1. Secondary Studies in Software Testing

We were able to find 22 secondary studies reported, as of this
writing, in different areas of software testing. We list these stud-
ies in Table 1 along with some of their attributes. For instance,
the “number of papers” (No.) included in each study shows
the number of primary studies analyzed, which varies from 6
(in [32]) to 264 (in [33]). Our study analyzes 147 papers and
includes 79 in the final pool, as described in Section 3.

We have observed that SMs and SLRs have recently started to
appear in the area of software testing. We found six SMs in the
area of software testing: (1) product lines testing [20, 23, 44],

2

Table 1: 18 Secondary Studies in Software Testing.
Type Secondary Study Area No. Year Ref.
SM Non-func. search-based testing 35 2008 [3]

SOA testing 33 2011 [45]
Requirements specification 35 2011 [12]
Product lines testing 45 2011 [20]
Product lines testing 64 2011 [23]
Product lines testing tools N/A1 2015 [44]

SLR Search-based non-func. testing 35 2009 [4]
Unit testing for BPEL 27 2009 [51]
Formal testing of web services 37 2010 [22]
Search-based test-case generation 68 2010 [7]
Regression test selection tech-
niques

27 2010 [24]

Survey / Object oriented testing 140 1996 [13]
Analysis Testing techniques experiments 36 2004 [35]

Search-based test data generation 73 2004 [42]
Combinatorial testing 30 2005 [31]
SOA testing 64 2008 [17]
Symbolic execution 70 2009 [46]
Testing web services 86 2010 [14]
Mutation testing 264 2011 [33]
Product lines testing 16 2011 [19]

Taxonomy Model-based GUI testing 33 2010 [43]
Lit. rev. TDD of user interfaces 6 2010 [32]

(2) SOA testing [45], (3) requirements specification and test-
ing [12], and (4) non-functional search-based software test-
ing [3]. There are also five SLRs in the area: (1) search-
based non-functional testing [4], (2) search-based test-case
generation [7], (3) formal testing of web services [22], (4)
unit testing approaches for Business Process Execution Lan-
guage (BPEL) [51], and (5) regression test selection techniques
[24]. The remaining 11 studies are “surveys”, “taxonomies”,
“literature reviews”, and “analysis and survey”, terms used
by the authors themselves to describe their secondary studies
[13, 35, 42, 31, 17, 46, 14, 33, 19, 43, 32]. Note that none of
these studies is related to web application testing, which is the
focus of our study.

2.2. Online Paper Repositories in SE
A few recent secondary studies have reported online repos-

itories to supplement their study with the actual data. These
repositories are the by-products of SM studies and will be use-
ful to practitioners by providing a summary of all the works in
a given area. Most of these repositories are maintained and up-
dated regularly, typically every six months. For instance, Har-
man et al. have developed and shared two online paper reposi-
tories: one in the area of mutation testing [33, 34], and another
in the area of search-based software engineering (SBSE)2 [52].

We believe this is a valuable undertaking since maintain-
ing and sharing such repositories provides many benefits to the
broader community. For example, they are valuable resources
for new researchers in the area, and for researchers aiming to

2This repository is quite comprehensive and has 1,020 papers as of April
2012.

conduct additional secondary studies. Therefore, we provide
our mapping study as an online paper repository, which we in-
ter to update on a regular basis.

2.3. Secondary Studies in Web Application Testing

Here we provide a brief overview of existing secondary stud-
ies (e.g., surveys/taxonomy papers), focusing on different areas
of web testing and analysis.

Di Lucca and Fasolino [21] present an overview of the dif-
ferences between web applications and traditional software ap-
plications, and how such differences impact the testing of the
former. They provide a list of relevant contributions in the area
of functional web application testing. Alalfi et al. [5] present a
survey of 24 different modelling methods used in web verifica-
tion and testing. The authors categorize, compare and analyze
the different modelling methods according to navigation, be-
haviour, and content. Amalfitano et al. [8] propose a classifica-
tion framework for rich internet application testing and describe
a number of existing web testing tools from the literature by
placing them in this framework. Van Deursen and Mesbah [49]
describe the challenges of testing Ajax-based web applications,
discuss to what extent current automated testing can be used
to address those challenges, and formulate directions for future
research. Marin et. al. [40] discuss the testing challenges of
future web applications and provide a concise overview of cur-
rent testing techniques and their limitations for testing future
web applications.

All these existing studies have several shortcomings that
limit their replication, generalization, and usability in structur-
ing the research body on web application testing. First, they
are all conducted in an ad-hoc manner, without a systematic
approach for reviewing the literature. Second, since their selec-
tion criteria are not explicitly described, reproducing the results
is not possible. Third, they do not represent a broad perspec-
tive and their scopes are limited, mainly because they focus on
a limited number of related papers.

To the best of our knowledge, there are currently no system-
atic mappings or reviews for the field of web application test-
ing.

3. Research Methodology

This systematic mapping is carried out following the guide-
lines and process proposed by Petersen et al. [47], which has
the following main steps:

• Defining research questions,

• Defining the search query and searching for papers,

• Screening the retrieved papers, resulting in a set of relevant
papers,

• Keywording using abstracts, resulting in a classification
scheme,

• Data extraction and mapping process, resulting in a sys-
tematic map.

3

Initial
Attributes

Relevant articles found in databases (147)

Articles from
specific venues

Articles by browsing
personal web pages

Final pool
(79)

Article Selection (Section 3.3)

Attribute
Identification

Classification Scheme/Map (Section 4)

Attribute
Generalization and

Iterative Refinement
Final Map

Systematic mapping (Section 5)

Demographics of
the research space

Discussions (Section 6)

Discussions

Systematic
mapping

Systematic
Mapping results RQ 1

Emerging trends

RQ 2

IEEE
Xplore

ACM
Digital

Library

Google
Scholar

Microsoft
Academic

Search

CiteSeerX Referenced
articles

Science
Direct

Application
of exclusion/

inclusion criteria

Bibliometrics and
Demographic

Analysis

Trends and Demographics (Section 6)

Implications for Research
and Practice

RQ 3

Bibliometrics of
the research space

RQ 2

Figure 1: The research protocol used in this study.

The process that we have used to conduct this SM study is
outlined in Figure 1. The process starts with article selection
(discussed in detail in Section 3.2). Then, the classification
scheme/map is systematically built to classify the primary stud-
ies (Section 4). Afterwards, the systematic mapping itself is
conducted and results are reported in Section 5. Trends and de-
mographics of studies are then analyzed and reported in Section
6.

In the remainder of this section, we explain our (1) goal and
research questions, and (2) paper selection strategy.

3.1. Goal and Research Questions

The goal of our study is to identify, analyze, and synthesize
work published during the past ten years in the field of web
application testing. We aim to (1) systematically review related
scientific papers in the field in order to conduct a mapping of
the area, (2) present bibliometrics and demographic analysis of
the field.

Based on our research goal, we formulate two main research
questions (RQ 1 and RQ 2). To extract detailed information,
each question is further divided into a number of sub-questions,
as described below.

• RQ 1-Systematic mapping: What is the research space of
the literature in the field of functional testing and analysis
of web applications? The sub-questions of this RQ are:

– RQ 1.1-Type of contribution: How many papers
present test methods/techniques, test tools, test mod-

els, test metrics, or test processes? The SM guide-
line paper by Petersen et al. [47] proposes the above
types of contributions. Answering this RQ will en-
able us to assess whether the community as a whole
has had more focus on developing new test tech-
niques, or, more focus on developing new test tools.

– RQ 1.2-Type of research method: What type of re-
search methods are used in the papers in this area?
The SM guideline paper by Petersen et al. [47] pro-
poses the following types of research methods: solu-
tion proposal, validation research, and evaluation re-
search. The rationale behind this RQ is that knowing
the breakdown of the research area with respect to
(w.r.t.) research-facet types will provide us with the
maturity of the field in using empirical approaches.

– RQ 1.3-Type of testing activity: What type(s) of
testing activities are presented in the papers? Exam-
ples of testing activity are: test-case design, test au-
tomation, and test execution [9]. Addressing this RQ
will help us gain knowledge about the type of test
activities that have been more popular.

– RQ 1.4-Test location: How many client-side versus
server-side testing approaches have been presented?
Is it true that server-side testing has received more
focus? Addressing this RQ will help us determine
whether client-side or server-side testing methods
have been more popular.

– RQ 1.5-Testing levels: Which test levels have re-

4

ceived more attention (e.g., unit, integration and sys-
tem testing)?

– RQ 1.6-Source of information to derive test arti-
facts: What sources of information are used to derive
test artifacts? The term test ”artifacts” in this context
denotes any type of artifacts generated and used for
purpose of web-application testing, e.g., test cases,
test requirements, test harness, test code, etc. Exam-
ple sources of information to derive test artifacts in-
clude (but are not limited to): source code (white-box
testing), requirements such as models (black-box
testing), invariants and web usage logs. The ratio-
nale behind this RQ is that knowing the breakdown
of various testing techniques w.r.t. their inputs will
enable practising web developers and researchers to
use the most appropriate techniques given the avail-
ability of inputs in their projects.

– RQ 1.7-Technique to derive test artifacts: What
techniques have been used to generate test artifacts?
Examples are: requirements based testing, static
code analysis, and coverage. Addressing this RQ
will help practising web developers and researchers,
when searching for test techniques, to select the
appropriate techniques based on their web testing
needs.

– RQ 1.8-Type of test artifact: Which types of test
artifacts (e.g., test cases, test inputs) have been gen-
erated? Similar to the above RQ’s, addressing this
RQ will again help practising web developers and
researchers to select the proposed techniques easily,
based on their web testing needs.

– RQ 1.9-Manual versus automated testing: How
many manual versus automated testing approaches
have been proposed?

– RQ 1.10-Type of the evaluation method: What
types of evaluation methods are used? For exam-
ple, some papers use mutation analysis while some
use coverage measurement to assess the applicabil-
ity and effectiveness of their proposed web testing
techniques.

– RQ 1.11-Static web sites versus dynamic web ap-
plications: How many of the approaches are targeted
at static web sites versus dynamic web applications?

– RQ 1.12-Synchronicity of HTTP calls: How many
techniques target synchronous calls versus asyn-
chronous Ajax calls?

– RQ 1.13-Client-tier web technologies: Which
client-tier web technologies (e.g., JavaScript, DOM)
have been supported more often?

– RQ 1.14-Server-tier web technologies: Which
server-tier web technologies (e.g., PHP, JSP) have
been supported more often?

– RQ 1.15-Tools presented in the papers: What are
the names of web-testing tools proposed and de-

scribed in the papers, and how many of them are
freely available for download?

– RQ 1.16-Attributes of the web software under
test: What types of Systems Under Test (SUT), i.e.,
in terms of being open-source or commercial, have
been used and what are their attributes, e.g., size,
metrics?

• RQ 2-Trends and demographics of the publications:
The following set of RQs have been motivated by review-
ing the existing bibliometrics studies in software engineer-
ing, e.g., [48, 27, 30, 29].

– RQ 2.1-Publication count by year: What is the an-
nual number of publications in this field?

– RQ 2.2-Top-cited papers: Which papers have been
cited the most by other papers?

– RQ 2.3-Active researchers: Who are the most ac-
tive researchers in the area, measured by number of
published papers?

– RQ 2.4-Active countries: Which countries are con-
tributing the most to this area, based on the affilia-
tions of the researchers?

– RQ 2.5-Top venues: Which venues (i.e., confer-
ences, journals) are the main targets of papers in this
field?

Sub-questions RQ 1.1–1.16 together will help us answer the
first main question (RQ 1). Similarly, in order to answer RQ 2
properly, we need to address sub-questions RQ 2.1–2.5.

3.2. Paper Selection Strategy
Our paper selection strategy consists of the following activi-

ties:

1. Resource selection, search query definition, and searching

2. Application of exclusion and inclusion criteria.

We explain each step subsequently below. We then, present
an overview of the final pool of papers and the online repository
that were produced after conducting the above activities.

3.2.1. Resource Selection and Search Query Definition
To find relevant papers, we searched the following six ma-

jor online academic paper search engines: (1) IEEE Xplore3,
(2) ACM Digital Library4, (3) Google Scholar5, (4) Microsoft
Academic Search6, (5) CiteSeerX7, and (6) Science Direct8.
These search engines have also been used in other similar stud-
ies [25, 20, 3].

3http://ieeexplore.ieee.org
4http://dl.acm.org
5http://scholar.google.com
6http://academic.research.microsoft.com
7http://citeseer.ist.psu.edu
8http://www.sciencedirect.com

5

In order to ensure that we were including as many relevant
publications as possible in the pool of papers, all authors iden-
tified and proposed potential search keywords in several itera-
tions. The coverage landscape of this SM is the area of func-
tional testing of web applications, as well as (dynamic or static)
analysis to support web-application testing. The set of search
terms were devised in a systematic and iterative fashion, i.e.,
we started with an initial set and iteratively improved the set
until no further relevant papers could be found to improve our
pool of primary studies. By taking all of the above aspects into
account, we formulated our search query as follows:

(web OR website OR ‘‘web application’’

OR Ajax OR JavaScript OR HTML OR

DOM OR PHP OR J2EE OR Java servlet

OR JSP OR .NET OR Ruby OR Python OR

Perl OR CGI) AND (test OR testing OR

analysis OR analyzing OR ‘‘dynamic

analysis’’ OR ‘‘static analysis’’ OR

verification)

Related papers published between 2000-2011 were included
in our pool. 2000 is the year that the very first web testing pa-
pers appeared. Note that the paper selection phase of this study
was carried out during the Summer 2011 (May until August)
and, thus, papers published by the end of that summer were
included in our pool.

To decrease the risk of missing related and important publi-
cations, similar to previous systematic mapping/review studies,
the authors looked for:

• Related papers by browsing personal web pages of active
researchers in the area;

• Related papers referenced from papers already in the pool;

• Related papers from major software (e.g., TSE, ICSE,
FSE, ICST, ISSTA) and web (e.g., ICWE, WSE, WWW,
TWEB, TOIT) engineering research venues.

3.2.2. Exclusion and Inclusion Criteria
Since the focus on this study is on functional testing, a large

number of papers that target non-functional properties, such as
accessibility and performance testing or security vulnerability
detection (e.g., cross-site scripting), were excluded from our
study. We included papers with static analysis used an enabling
technique in web application testing.

To increase the reliability of our study and its results, the au-
thors applied a systematic voting process among the team mem-
bers in the paper selection phase for deciding whether to include
or exclude any of the papers in the first version of the pool. This
process was also utilized to minimize personal bias of each of
the authors. The team members had conflicting opinions on
four papers, which were resolved through discussions.

Our voting mechanism (i.e., exclusion and inclusion crite-
ria) was based on two questions: (1) Is the paper relevant to
functional web application testing and analysis? and (2) Does

the paper include a relatively sound validation? These crite-
ria were applied to all papers, including those presenting tech-
niques, tools, or case studies/experiments. Each author then in-
dependently answered each of the two questions for each paper.
Only when a given paper received at least two positive answers
(from three voting authors) for each of the two questions, it was
included in the pool. Otherwise, it was excluded.

We primarily voted for papers based on their title, abstract,
keywords, as well as their evaluation sections. If not enough in-
formation could be inferred from the abstract, a careful review
of the contents was also conducted to ensure that all the papers
had a direct relevance to our focused topic. We considered all
peer-reviewed papers regardless of the venue. As such, we con-
sidered papers published in journals, conference proceedings,
workshops, and magazines.

Only papers written in English and only those available elec-
tronically were included. If a conference paper had a more re-
cent journal version, only the latter was included. We excluded
papers on “web services”, because the nature of web services
differs from that of web applications.

3.3. Final pool of papers and the online repository

Initially, our pool included 147 papers. After the exclusion
criteria were applied, the paper pool size decreased to 79 pa-
pers. The entire pool of 79 papers has been published as an
online repository on the Google Docs service [26]. The inten-
tion is to update the online repository at least annually to add
related papers that appear in the future. Detailed classification
of each paper is also available in our online repository.

4. Classification Scheme

To conduct a systematic mapping, a classification scheme
(also called systematic map or attribute framework [18]) needs
to be derived by a careful analysis of the primary studies [47].
Our classification scheme started with an initial version, and
evolved during data extraction, through attribute generalization
and iterative refinement steps. New categories were added, and
existing categories were merged or split. The iterative refine-
ment process was finalized and a stable final scheme was de-
rived when the scheme was able to consistently categorize all
the papers in the pool. This phase of our process is also de-
picted in our research protocol (See Figure 1).

For this step, we collaboratively used an online spreadsheet
in Google Docs to document the data extraction process. Each
identified category of the classification scheme was added to
the spreadsheet. When we entered the data of a paper into the
scheme, we provided a short rationale why the paper should
be in a certain category (for example, why/how a paper has
applied evaluation research). We used the “observer triangula-
tion” method in designing the classification scheme and data ex-
traction (mapping) phases. Each paper was reviewed by at least
two reviewers (authors of this paper) and differences of opin-
ions were discussed in detail until a final decision was made.
When needed, the classification scheme was also updated.

6

Table 2: The classification scheme developed and used in our study.
RQ Attribute Possible Types Multiple

selections
Single se-

lection
RQ 1
RQ 1.1 Type of Paper-Contribution Facet {Test method/technique, Test tool, Test model, Metric, Process, Other} x
RQ 1.2 Type of Paper-Research Facet {Solution Proposal, Validation Research, Evaluation Research, Experi-

ence Papers, Philosophical Papers, Opinion Papers, Other}
x

RQ 1.3 Type of Testing Activity {Test-case Design (Criteria-based), Test-case Design (Human
knowledge-based), Test Automation, Test Execution, Test Evalua-
tion (oracle), Other}

x

RQ 1.4 Testing Location {Client-side, Server-side} x
RQ 1.5 Testing Level {Unit, Integration, System} x
RQ 1.6 Source of information to derive Test

artifacts
{Source code (white-box), Requirements and Source code (gray-box),
Requirements (Models, etc), Invariants, (user) logs, Inferred Model (au-
tomatic), Inferred Model (manual), Other}

x

RQ 1.7 Techniques used {Requirements based, Symbolic execution, Static code analysis, Dy-
namic code analysis, Coverage, Crawling, Concolic testing, Model
checking, Search-based testing, Record/ playback, Model-based, Other}

x

RQ 1.8 Type of test artifact generated {Test cases, Test input (data), Test requirements (not input values), Ex-
pected outputs (oracle), Test driver (code), Other}

x

RQ 1.9 Manual versus Automated testing {Manual,Automated} x
RQ 1.10 Type of the Evaluation Method {Coverage (code, model), Mutation testing (fault injection), Manual

comparison, Time/performance, Detecting real faults, Example, Other}
x

RQ 1.11 Static Web Sites versus Dynamic
Web Apps

{Static , Dynamic} x

RQ 1.12 Synchronicity of HTTP calls {Synchronous calls, Asynchronous calls (AJAX)} x
RQ 1.13 Client-tier Web Technology {HTML, DOM, JavaScript, N/A, Unknown, Other} x
RQ 1.14 Web-server-tier Web Technology {PHP, J2EE, .NET, Ruby, Python, Perl (CGI), Java (Servlet, JSP), N/A,

Unknown, Other}
x

RQ 1.15 Presented tool(s) Tool name: String
Whether the tool is available for download (as reported in the paper):
Boolean

RQ 1.16 Attributes of the web software
SUT(s)

of SUTs: Integer

SUT names: String[]
Total SUT Size in LOC: Integer
Other size metrics (e.g., # of pages, # of forms, etc): Integer[]
For each SUT, SUT scale ∈ {Academic experimental, Open-source,
Commercial}

RQ 2
RQ 2.1 Publication year Year: Integer
RQ 2.2 Number of times the paper is cited

in other papers
Number of Citations: Integer

RQ 2.3 List of authors Authors: String[]
RQ 2.4 Venue in which the paper has ap-

peared
Venue: String

RQ 2.5 The country(ies) of the author(s)’
affiliation

Author Countries: String[]

Table 2 shows our final classification scheme along with the
research questions (RQs) addressed by each attribute of the
map. Attributes of our classification scheme are discussed next.

The columns of the table show the research question (RQs),
attributes, and possible types of the attribute. Also, the last two
columns indicate whether for each of the attributes, multiple
or just one type(s) can apply, respectively. For example, for
RQ 1.1 (the contribution facet attribute), multiple types can be
selected for the same paper. On the other hand, for the row
corresponding to RQ 1.11 (static web sites versus dynamic web
applications), only one type (static or dynamic) can be chosen,
which is self explanatory.

We have adopted the two “type” attributes widely used in
other SM studies: contribution facet, and research facet.

A contribution facet (corresponding to RQ 1.1) denotes the
type of contribution(s) proposed in each paper and can be
either: method/technique, tool, model, metric, process, or
other [47]. Naturally, these contribution facets would turn
to the following in our web application testing context: test
method/technique, test tool, test model, test metric, and test
process, respectively.

The research facet attribute corresponds to RQ 1.2. As dis-
cussed by Petersen et al., research facet denotes the type of re-
search approach used in each paper. We adopted the following
research facets for our study:

1. Solution Proposal: A solution for a problem is proposed,
which can be either novel or a significant extension of an
existing technique. The potential benefits and the appli-
cability of the solution is shown by a small example or a
good line of argumentation.

2. Validation Research: Techniques investigated are novel
and have not yet been implemented in practice. Tech-
niques used are for example experiments, i.e., work done
in the lab.

3. Evaluation Research: Techniques are implemented in
practice and an evaluation of the technique is conducted.
That means, it is shown how the technique is implemented
in practice (solution implementation) and what are the
consequences of the implementation in terms of benefits
and drawbacks (implementation evaluation).

7

4. Experience Papers: Experience papers explain how some-
thing has been done in practice. It has to be the personal
experience of the author(s).

Papers with examples only are categorized in (1), papers hav-
ing validation sections, but not in the full-scale of systematic
empirical studies, are categorized in (2), if the proposed tech-
nique in a study is evaluated comprehensively using systematic
empirical evaluations (e.g., case study, controlled experiment),
and its benefits, drawbacks, and threats to validity of the re-
sults are discussed thoroughly, we categorize its research facet
as (3). Papers that merely report applications or experiences in
practice are categorized in (4).

The next attribute in Table 2 is the type of testing activity
proposed in each paper (corresponding to RQ 1.3). In their
book on software testing [9], Ammann and Offutt divide testing
activities into six types as follows: (1) test-case design based
on criteria (e.g., line coverage), (2) test-case design based on
human knowledge (e.g., exploratory testing), (3) test automa-
tion: embedding test values into executable test code (scripts),
(4) test execution: running tests on the software under test and
recording the results, (5) test evaluation (test oracle): evaluat-
ing results of testing (pass/fail), a.k.a. test verdict, and report-
ing results to developers, and (6) other. We found this particular
classification applicable to the papers in our pool and adopted
it for our classification scheme.

The testing location attribute (corresponding to RQ 1.4) can
be client-side and/or server-side. Some papers present testing
techniques for client side aspects of web applications, and oth-
ers focus merely on the server side. There are also papers that
test both client and server sides.

The next attribute denotes the testing level, which corre-
sponds to RQ 1.5. As it has been discussed and defined in
software testing books, e.g. [9], testing level in this context de-
notes, in an abstract viewpoint, the scope (granularity) of test-
ing which could be: modules in isolation (unit testing), testing
the integration of different modules (integration testing), or the
entire software system (system testing). Conceptually, many al-
ternative testing terminologies would also fall into each of the
above categories, e.g., acceptance testing and even smoke test-
ing fall into the system testing level.

RQ 1.6 is about the source of information to derive test ar-
tifacts (e.g., test cases): source code, requirements and source
code (gray-box testing), requirements only (models, etc.), in-
variants, (user) logs, inferred models (derived automatically),
inferred models (derived manually), and other.

Similar to RQ 1.6, the attributes and type sets for RQs 1.7
through 1.14 in Table 2 were derived iteratively. However, we
should clarify the notion of ‘test requirements’ for RQ 1.8 (type
of test artifact generated). Test requirements are usually not ac-
tual test input values, but the conditions that can be used to gen-
erate test inputs [9]. For example, a coverage-based test tech-
nique might require that a certain control-flow path of a func-
tion be covered, e.g., the set of logical expressions that should
be made true. By having test requirements, one can manually or
automatically generate test inputs, an area of research referred
to as test-data generation [41].

In RQ 1.10, we looked for evaluation methods used in each
paper. The evaluation methods we looked for included code
or model coverage measurements, mutation testing, detecting
real faults, and manual comparison. In addition, there were
papers that provided examples and proofs of concept. One
of the methods to evaluate a testing technique was measur-
ing the time/performance of the testing effort. Note that, this
time/performance attribute was an evaluation metric of a test-
ing technique itself, and not the performance evaluation of an
SUT by a proposed technique.

To answer RQ 1.15, we extracted the names of the web test-
ing tools presented in each paper, and also checked whether the
tool is available for download (as indicated in the paper).

For RQ 1.16, we extracted the following data regarding the
web software under test (SUT) in each paper (i.e., used for vali-
dation/evaluation, a.k.a. subject systems): (1) number of SUTs,
(2) SUT name(s), (3) total SUT size in Lines of Code (LOC),
and (4) any other size metrics when reported (e.g., number of
web pages, number of web forms). The scale of each SUT was
determined according to the following categorization: (a) aca-
demic experimental, (b) open-source, or (c) commercial web
application.

The attributes and type sets for RQs 2.1 through 2.5 relate
to demographic and bibliometric information of papers and the
explanations provided in Table 2 should be self-explanatory.

Building the classification scheme was an iterative process.
We started with an initial version and then used attribute gen-
eralization and iterative refinement, while reviewing the papers
in the pool, to derive the final classification scheme. The classi-
fication scheme was considered ”final” if it was able to classify
all the papers properly.

After we developed the classification scheme, the papers in
the pool were then classified using the scheme, i.e., the actual
data extraction took place. From the final table in the spread-
sheet, we were then able to calculate the frequencies of publi-
cations in each category, presented in detail in Section 5.

5. Systematic Mapping Results

In this section, we present the results of our systematic map-
ping study (RQ 1).

5.1. RQ 1.1-Types of papers by Contribution Facet

Figure 2 shows the distribution of the type of papers by con-
tribution face, for all the 79 papers included in our study. Based
on their contributions, some papers were classified under more
than one facet. For example, [60] made three contributions:
(1) a test method (a framework for feed-back directed testing
of JavaScript applications), (2) a test tool called Artemis, and
(3) a test model (event-driven execution model). Figure 3 de-
picts a histogram of the frequency of contribution facets for a
single paper. Most papers presented two contribution facets,
followed by only one contribution, three, and four contribution
facets. There were five papers [96, 115, 74, 94, 84] that covered
four facets. For example, [96] contributed: (1) a test method
(automated cross-browser compatibility testing), (2) a test tool

8

Technique: [60, 111, 116, 104, 103, 96, 78, 54, 68, 105, 100, 88, 115, 130, 85, 117, 101,
102, 128, 72, 62, 122, 67, 75, 77, 97, 70, 66, 81, 82, 71, 99, 61, 110, 109, 56, 59, 95, 98,
131, 126, 83, 90, 74, 108, 89, 86, 58, 64, 57, 94, 84, 65, 127, 124]
Tool: [60, 116, 104, 103, 96, 78, 119, 54, 53, 68, 105, 115, 130, 101, 102, 128, 72, 62, 67,
75, 77, 55, 97, 80, 61, 109, 56, 59, 98, 126, 74, 108, 86, 64, 57, 94, 84, 65, 118, 129]
Test model: [125, 60, 87, 106, 96, 105, 115, 123, 85, 117, 72, 97, 66, 81, 82, 71, 99, 80,
109, 95, 90, 74, 89, 86, 64, 57, 94, 84, 124]
Metric: [111, 87, 53, 115, 93, 77, 55, 99, 74, 94]
Process: [96, 68, 115, 67, 108, 58]
Other: [92, 120, 121, 119, 91, 112, 69, 76, 73, 79, 113]

Figure 2: Contribution facet.

called CrossT, (3) a test model (state navigation model), and (4)
a model generation process to facilitate web testing.

Figure 2 indicates that proposing new techniques or improv-
ing an existing technique has attracted the most research with
54 papers (about 68%) focusing on this aspect. Also, relatively
a high proportion (about 51%) of papers (36 out of 79) pro-
posed web testing tools of some sort. Section 5.15 provides an
extended discussion on test tools presented in the papers. There
were 11 papers which could not be categorized into the five
contribution facets of our scheme, thus we categorized them un-
der ‘Other’. Those papers were mainly secondary studies, such
as comparison studies (e.g., [92]) or empirical studies (e.g.,
[120, 121]).

The annual trend of the same data is shown in Figure 4. It can
be seen that in recent years, there is a focus on a mix of differ-
ent facets. In terms of time, the earliest papers in our paper pool
were published in 2001. This was the time that the web started
to be widely used. We notice that except for a few exceptions
(in 2003, 2006, 2007 and 2009), there is a clear increase in
the quantity of papers on web application testing over the past
decade. The simple reason is that web application and their
testing are becoming more important as time goes by. Recall
from Section 3.2.1 that since the paper selection of this study
was done during the Summer 2011, only papers published (or
accepted for publication) by the end of Summer 2011 are in-
cluded in our pool. Thus, the data for 2011 is incomplete.

5.2. RQ 1.2-Types of papers by Research Facet

Figure 5 shows the types of papers by research facet. To pro-
vide a cross-subject comparison of these facets, we have com-
pared our data with the facet distribution of a related recent sys-
tematic mapping which has been done in the area of software

4321

35

30

25

20

15

10

5

0

Number of contribution facets in one paper

Fr
eq

ue
nc

y

Figure 3: Histogram of frequency of contribution facets per paper.

21/10/2012 Repository, SM, and Bibliometrics of WAT Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AjWeYCv5rkkzdDBMbURET0lidzdVRnJ5NXJBVnptd…

Repository, SM, and Bibliometrics of WAT Papers
All changes savedFile Edit View Insert Format Data Tools Help

$ % 123

 10pt

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Technique Tool Model Metric Process Other

2000 0 0 0 0 0 0

2001 1 1 2 0 0 0

2002 4 4 2 0 1 0

2003 0 0 0 0 0 0

2004 5 3 3 1 1 0

2005 8 4 3 0 1 1

2006 6 1 5 1 0 3

2007 1 2 0 1 0 2

2008 11 7 4 1 0 1

2009 4 3 4 1 0 1

2010 11 10 3 2 1 2

2011 6 6 4 2 2 1

Total 154

Citation Count vs Year Published

Technique

Tool

Model

Metric

Process

Other

Citation count versus Year of Publication

 A B C D E F G H I

Comments Share

vgarousi@gmail.com

 Paper Repository after 2011-to process Charts Venue Data & Chart Related Work (survey-like) Excluded papers

Figure 4: Annual trend of papers by contribution facet. The x-axis denotes the
years (2000-2011) and the y-axis is the number of papers.

product-lines testing [20]. The research in web application test-
ing is dominated by solution proposals (27 papers, 34.18%) and
validation studies (41 papers, 51.90%). Since there are various
types and locations of faults in web applications, there exists a
large body of studies proposing different testing strategies and
techniques. There were also a reasonable share of papers with
full-scale experimental studies (10 papers, 12.66%). Compar-
ing our data to the mapping results of the software product-lines
testing literature [20], it is clear that, in terms of ratio, valida-
tion and evaluation studies are more popular in the web testing
community compared to software product-lines testing. This
indicates the relatively higher level of attention to empirical ap-
proaches in web application testing research.

The yearly trend of research facet types is shown in Figure 6.
The figure shows that in earlier years (from 2001-2006), more
solution proposals with less rigorous empirical studies were
published in the area. However from 2006-2011, we notice
more rigorous empirical studies compared to solution-proposal-
type papers. This is good news for the web testing community

9

Solution Proposal: [125, 116, 87, 104, 100, 115, 130, 107, 123, 85, 117, 122, 67, 75, 66,
82, 71, 99, 98, 73, 89, 86, 58, 64, 84, 65, 127, 129]
Validation Research: [60, 111, 106, 114, 103, 96, 78, 119, 54, 53, 68, 105, 88, 93, 101,
102, 128, 72, 91, 62, 77, 55, 112, 81, 80, 61, 76, 56, 59, 95, 131, 126, 83, 90, 74, 108, 57,
79, 124, 118]
Evaluation Research: [92, 120, 121, 97, 70, 69, 110, 109, 94, 113]
Experience Papers: [63]

Figure 5: Research Facet.

21/10/2012 Repository, SM, and Bibliometrics of WAT Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AjWeYCv5rkkzdDBMbURET0lidzdVRnJ5NXJBVnptd…

Repository, SM, and Bibliometrics of WAT Papers

All changes savedFile Edit View Insert Format Data Tools Help

$ % 123

 10pt

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Solution Proposal
Validation
Research

Evaluation
Research

Experience
Papers

Philosophical
Papers Opinion Papers Other

2000 0 0 0 0 0 0 0

2001 0 2 0 0

2002 4 1 0 0

2003 0 0 0 0

2004 4 2 0 0

2005 6 1 2 1

2006 5 4 1 0

2007 0 3 0 0

2008 3 8 2 0

2009 1 5 1 0

2010 4 8 2 0

2011 0 7 2 0

Total

Focus area of Paper

(Functional)
Testing 61

Static Verification
(analysis) 18

Dynamic
Verification
(analysis) 21

Focus Area of Paper

60

80

N
u

m
b

e
r

o
f p

a
p

e
rs

Solution Proposal

Validation Research

Evaluation Research

Experience Papers

 A B C D E F G H I

Comments Share

vgarousi@gmail.com

 Paper Repository after 2011-to process Charts Venue Data & Chart Related Work (survey-like) Excluded papers

Figure 6: Annual trend of papers by research facet. The x-axis denotes the
years (2000-2011) and the y-axis is the number of papers.

as it indicates that the empirical maturity of the literature in
this area is increasing as a whole. Certainly, to understand the
landscape of empirical research in web testing, dedicated sys-
tematic reviews focusing on empirical studies in this area, for
instance similar to a recent review [6] conducted in the search-
based testing community, are needed.

Furthermore, we conducted a cross analysis of number of
studies in different contribution facet types versus research facet
types. Figure 7 shows the results, in which the x-axis and y-axis
show the different contribution facet and research facet types,
respectively. For example, there are 23 studies which propose
(contribute) a (test) ”technique” and their research facet type
is ”solution proposal”. As we can observe, the concentration
in the top left corner of the chart is the highest, denoting that
majority of the works are contributing techniques or tool and
are low or medium in terms of research facet maturity.

23

28

5

1

12

26

3

14

13

3

2

6

1

3

3

1

5

5

Re
se

ar
ch

 F
ac

et

Contribution Facet

Solution Props.

Validation Res.

Evaluation Res.

Experience Art.

Philo. Art.

Opinion Art.

Figure 7: Cross analysis of number of studies in different contribution facet
types versus research facet types.

5.3. RQ 1.3-Type of Testing Activity

As mentioned in Section 4, we base our test activity catego-
rization on the terminology proposed by Ammann and Offutt
[9].

In the pool of 79 papers included in our mapping, 69 pa-
pers (87.3%) utilized code or model coverage. 50 of those pa-
pers (63.3%) actually presented (coverage) criteria-based test-
ing activities as seen in Figure 8. Control-flow (e.g, line, branch
coverage), data flow (e.g., all uses coverage), and model/state-
based coverage (e.g, all nodes, or all paths criteria) customized
for web applications have been proposed and evaluated in many
papers, e.g, [125, 92].

Only three papers (3.8%) presented test-case design based
on human knowledge. This type of test-case design activity is
usually advocated by the exploratory testing community [50]
and also context-driven school of testing [2]. Thus, it seems
that there is a relatively small number of researchers using ex-
ploratory testing for web applications. This is somewhat sur-
prising since exploratory testing is quite popular in the software
industry.

Test automation was another popular research activity as 27
papers (34.2%) address test automation. For example, 14 pa-
pers (e.g., [67, 96, 71]) adopted the popular browser automa-
tion tool Selenium [15] in their tools and evaluations. [94] ap-
proached test automation by using another existing tool called
FitNesse. In [97], an approach for generating JUnit test cases
from an automatically reverse-engineered state model was pro-
posed.

A large portion of the papers, i.e., 26 of 79 (32.9%), ad-
dresses the test execution activity, which is merely concerned
with running test cases on the software and recording the re-
sults. “Test harness” is also used by some, e.g., [71] as an
acronym for test execution.

The test evaluation activity is also known as the test oracle
concept. 13 papers (16.5%) addressed this issue. For exam-
ple, [118] presented a tool for visualization of automated test
oracles and test results. [109] proposed an approach for de-

10

Test-case Design (Criteria-based): [125, 92, 60, 111, 120, 87, 104, 106, 114, 103, 96, 53,
105, 100, 88, 115, 130, 123, 93, 85, 101, 128, 91, 77, 97, 70, 81, 82, 99, 61, 109, 56, 59,
95, 98, 126, 83, 90, 73, 74, 108, 89, 86, 58, 64, 57, 79, 94, 113, 124]
Test-case Design (Human knowledge-based): [67, 75, 90]
Test Automation: [92, 60, 87, 104, 103, 96, 115, 130, 93, 101, 122, 67, 75, 97, 71, 99,
109, 59, 95, 126, 89, 86, 64, 57, 84, 65, 129]
Test Execution: [92, 60, 111, 106, 114, 96, 68, 115, 130, 93, 102, 62, 122, 75, 97, 71, 61,
109, 95, 126, 108, 86, 64, 84, 65, 129]
Test Evaluation (oracle): [119, 68, 105, 115, 130, 62, 97, 66, 82, 71, 109, 86, 118]

Other: [87, 78, 54, 107, 102, 72, 91, 55, 112, 80, 76, 84, 113, 124]

Figure 8: Type of Testing Activity.

tecting and visualizing regressions in Ajax-based web applica-
tions. [66] generated test oracles in the form of Object Con-
straint Language (OCL) rules. [97] proposed DOM-based in-
variants as test oracles. [91] presented an automated test ora-
cle, which determines the occurrence of fatal failures or HTML
well-formedness failures (the latter via use of an HTML valida-
tor). [105] generated oracles in the context of database-driven
web applications using Prolog rules.

There are also a number of papers that fall in other types of
test activities than the five major types we have adopted from
[9]. For instance, [87, 121, 112, 56, 127, 113] were among the
works that address test suite minimization (reduction) in web
applications. We also found other topics such as: repairing test
data [54], testability [55], reliability and statistical testing [81],
fault localization [61], and test-case prioritization [110].

5.4. RQ 1.4-Test Locations

As far as the location is concerned, the majority of the papers
have focused on testing the server-side. As Figure 9 depicts, 41
(51.9%) of the papers focus on server-side of web applications,
22 (27.8%) targets the client side, and 14 (17.7%) examine both
sides.

The numbers show that both ends of web applications are
getting attention from researchers. Server-side of web appli-
cations usually has a database and consists of scripts or pro-
grams that generate HTML code to be interpreted by the client
browsers. This complexity led many researchers to examine the
server-side of the applications. On the other hand, with the rise
of the client-side scripting (e.g., using JavaScript) and Ajax for
building Web 2.0 applications, the complexity of web clients
has increased. This in turn has motivated many researchers to
shift the focus on client-side analysis and testing in recent years
(as shown in Figure 10).

Client-side: [92, 60, 116, 106, 96, 123, 117, 102, 67, 75, 81, 82, 69, 80, 109, 56, 95, 83,
73, 94, 65, 124]
Server-side: [111, 120, 87, 121, 114, 78, 119, 54, 53, 68, 105, 100, 88, 115, 85, 101, 128,
72, 62, 122, 77, 112, 70, 99, 61, 76, 110, 59, 98, 126, 74, 108, 89, 58, 57, 79, 84, 127, 113,
118, 129]
Both: [125, 104, 103, 130, 107, 93, 91, 55, 97, 71, 131, 90, 86, 64]

Figure 9: Test locations.

15
20
25
30
35
40
45

er
 o
f p

ap
er
s
(C
D
F)

Client‐side

Server‐side

Both

0
5

10
15

2001 2003 2005 2007 2009 2011

N
um

be Both

Figure 10: Annual trend for test location (Cumulative distribution function).

Details and mapping of client-tier and server-tier web tech-
nologies will be discussed in Sections 5.13 and 5.14, respec-
tively.

We also wanted to know whether more researchers are focus-
ing towards or away from server-side versus client-side testing.
Figure 10 is a cumulative distribution function (CDF) and de-
picts the annual trend for the two types of test location. We
can observe from this trend that, in terms of cumulative num-
bers, server-side testing papers out number the client-side test-
ing papers. However, after year 2008 in terms of growth rate,
the number of papers on client-side testing have been slightly
higher than those on server-side testing. Quantitatively, the cu-
mulative number of papers on client-side testing increased from
9 in 2008 to 22 in 2011 (a growth of 144%), while the cumula-
tive number of papers on server-side testing increased from 30
in 2008 to 41 in 2011 (a growth of only 37%).

5.5. RQ 1.5-Testing Levels
To examine which test levels have received more attention,

we have divided the papers into three groups: unit testing, inte-
gration testing, and system testing which is usually performed

11

Unit testing: [92, 111, 104, 106, 114, 103, 96, 78, 119, 53, 123, 93, 85, 101, 128, 91, 63,
62, 67, 77, 55, 112, 97, 70, 66, 71, 80, 61, 76, 109, 56, 95, 131, 83, 74, 86, 64, 94, 113]
Integration testing: [111, 104, 106, 114, 103, 54, 105, 88, 85, 117, 72, 91, 55, 71, 99,
108, 89, 86, 127]
System testing: [125, 92, 60, 120, 87, 121, 96, 68, 100, 88, 115, 130, 93, 117, 102, 91,

122, 75, 55, 97, 70, 66, 81, 82, 71, 99, 110, 59, 98, 126, 90, 73, 58, 64, 57, 79, 84, 65, 124,

118, 129]

Figure 11: Testing Levels.

through a graphical user interface (GUI). The distribution is
shown in Figure 11.

In this context, a ”unit” included a single HTML file, a
source-code function inside a JavaScript (JS), JSP or PHP file.
A paper was considered to have had a focus on web integration
testing, if it addressed the problem of how to test several ”units”
together, e.g., the client-server interactions of a HTML or JS
file on the client with the corresponding PHP handler module
on server. Last but not least, a given paper was considered to
have had a focus on web system testing, if it addressed testing
of a given web software from a holistic standpoint, e.g., GUI
testing of a web site.

Unit testing and system testing have been almost equally
popular (38% each) while integration testing has been targeted
only in 24% of the papers.

Our main criteria to classify papers in these three categories
were based on the coverage criteria and granularity of test ap-
proaches. For example, [111] performed client-side web-page-
level, statement coverage measurement. It also analysed test
coverage of functions and function calls. Thus, it was mapped
to unit and integration testing levels. As another example, [78]
tests each HTML document separately, thus we consider that as
a unit testing approach.

5.6. RQ 1.6-Source of information to derive test artifacts
Figure 12 shows the distribution of the type of information

sources for all the 79 papers surveyed.
37 papers (46.8%) used source code as information source to

derive test artifacts. We discuss four example works [53, 100,
122, 77] next. The coverage of PHP and SQL is analyzed to de-
rive test cases in [53]. [100] analyzed client code to test server
code. [122] worked on HTML source code. [77] used server-
side source code to derive a set of interfaces for the purpose of
interface testing.

The second mostly-used source to derive test artifacts is re-
quirements (17 papers, or 21.5 %), both textually and graphi-

cally represented. For example, [105] used state transition di-
agrams. [81] used state transitions in unified Markov models.
[57] used use-case maps (UCMs). Last but not least, [66] de-
rived test cases from a formal notation called Abstract Descrip-
tion of Interaction (ADI), a type of class diagram.

Four papers used both requirements and source code, thus
following a gray-box approach. For example, in [84], properties
to be verified (test oracle) were from requirements, but the test
model to generate test inputs were generated from source code.

The next information source was user logs (15 out of 79). For
example, [124, 81] generated unified Markov models from logs
and then used those models to generate test cases. [79] analyzed
server access and error logs to derive navigation patterns.

User-log-based test techniques are followed by inferred mod-
els, which range from state machines to UML models.

We further divided inferred models as automatically-inferred
(16.5%) and manually-inferred (8.9%) models. Examples of
approaches based on the automatically-inferred test models are
the followings. [65] inferred a navigational model through
crawling. [64, 95] reverse engineered UML models from code.
[92] inferred models from execution states. As an example of
approaches based on the manually-inferred test models, [90]
used user reports manually, collected during the testing phase,
to refine a specific test model.

Finally, invariants are used in three papers (3.7%) in our pool.
[66] expected invariants to be provided in form of Object Con-
straint Language (OCL) rules. [97] automatically crawled and
dynamically asserted invariants on web applications. [102] de-
rived DOM invariants dynamically by recording a sequence of
user interactions with the application and observing the changes
to the DOM tree by repeatedly replaying the sequence.

The remaining 5 papers (6.33%) used other source of infor-
mation to derive test artifacts. For instance, the technique re-
ported in this work [83] associated each input field of a web
form with a regular expression that defines valid-input con-
straints for the input field. It then applied perturbation on regu-
lar expressions to generate invalid test inputs. [94] used DOM
models to generate test cases.

5.7. RQ 1.7-Techniques to derive test artifacts

Figure 13 shows the distribution of the type of test-
ing/analysis techniques used in the papers. It is natural that
this attribute is related to a great extent to results of RQ 1.6
(i.e., source of information to derive test artifacts) with results
shown in Figure 12. The reason is that since whatever source of
information is used, an appropriate technique (or techniques) is
(are) needed to derive the necessary test artifacts.

In general, majority of the papers used static code analysis
(21 papers, 26.6%) and model-based approaches (19 papers,
24.1%) to derive test artifacts. This is also the case in Figure
12 (source of information) as source code, requirements, logs
and models were the most frequent sources of information.

Crawling and requirement-based were also popular and used
in 10 papers (12.7%) and 9 papers (11.4%), respectively. The
remaining types of techniques used were, in order of usage: (1)

12

Source code (white-box): [125, 92, 60, 116, 104, 106, 103, 78, 54, 53, 68, 100, 115, 130,
107, 93, 85, 101, 128, 62, 122, 77, 55, 70, 99, 80, 61, 76, 98, 131, 74, 108, 89, 86, 84, 127,
118]
Requirements and Source code (gray-box): [117, 72, 112, 64, 84]
Requirements (Models, etc.): [92, 121, 106, 78, 105, 117, 67, 66, 81, 71, 80, 73, 86, 57,
79, 113, 124]
Invariants : [102, 97, 66]
(User) logs: [111, 120, 87, 121, 114, 54, 88, 115, 70, 81, 110, 126, 79, 113, 124]
Inferred Model (automatic): [92, 96, 75, 97, 109, 56, 95, 126, 90, 64, 94, 84, 65]
Inferred Model (manual): [81, 82, 56, 59, 90, 108, 58]

Other: [119, 61, 95, 94, 83]

Figure 12: Source of information to derive Test artifacts.

dynamic code analysis (e.g,. code coverage), (2) model check-
ing, (3) record and playback, (4) concolic testing, (5) symbolic
execution, and (6) search-based techniques.

“Other” techniques in this attribute included: classification of
user logs [111], agent-based [104], mutation testing [103], anti-
random testing [123], and statistical/probabilistic [81] testing.

For papers using model-based techniques to derive test cases,
a type of model was to be either reverse engineered for the Sys-
tem Under Test (SUT) or be provided by users. These two types
were referred to as “inferred model (automatic)” and “inferred
model (manual)” in the previous attribute (Figure 12).

We noticed that some papers were using more than one tech-
nique to derive test artifacts. We thus mapped each paper to as
many types of techniques it was using. Details can be found
in our online repository and mapping [26]. Figure 14 depicts
the histogram of the number of techniques used in each paper.
52 papers (65.82%) used one technique only. 20 and 4 papers
(25.31% and 8.86%) used two and three techniques, respec-
tively. For example, [92] used three techniques (requirements
based, search-based, and model-based testing) to compare web
testing techniques applied to Ajax web applications in a case
study context. Three papers [129, 63, 91] did not use any par-
ticular technique as they were either overview papers [129], or
focusing on test processes only [63], or reporting an empirical
validation of a web fault taxonomy [91].

5.8. RQ 1.8-Type of test artifact generated
The distribution of generated test artifacts is shown in Fig-

ure 15. The majority (49.4%) of the primary studies created
(concrete) test inputs, i.e., input data or input event sequence,
in their proposed approach.

The second most preferred test artifact generated was test re-
quirements (27.8%). Recall from Section 4 that test require-
ments are not actual test input values, but the conditions that

02/11/2012 Repository, SM, and Bibliometrics of WAT Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AjWeYCv5rkkzdDBMbURET0lidzdVRnJ5NXJBVnptd…

Repository, SM, and Bibliometrics of WAT Papers
All changes saved in DriveFile Edit View Insert Format Data Tools Help

$ % 123

 10pt

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Technique used %

Static code ana. 21 26.6

Model based 19 24.1

Crawling 10 12.7

Requirement-
based 9 11.4

Dynamic code
ana. 8 10.1

Model checking 7 8.9

Record/ playback 7 8.9

Concolic testing 4 5.1

Symbolic exec. 2 2.5

Search-based 2 2.5

Other 11 13.9

type_of test_artifact_generated

Test input (data) 39

Test requirements 19

Expected outputs 17

Test driver (code) 12

Other 13

Type of test artifact generated

Test input (data)

Test requirements

Techniques used

0 5 10 15 20 25

Static code ana.
Model based

Crawling
Requirement-based
Dynamic code ana.

Model checking
Record/ playback

Concolic testing
Symbolic exec.
Search-based

Other

Number of papers

 A B C D E F G H I

Comments Share

vgarousi@gmail.com

 =100*B469/79Paper Repository 4 after 2011-to process Charts Venue Data & Chart Related Work (survey-like) Excluded papers

Symbolic execution: [116, 76]
Static code analysis: [106, 78, 53, 68, 100, 107, 85, 122, 77, 55, 99, 80, 95, 98, 131, 74,
89, 64, 84, 118]
Dynamic code analysis, e.g., Coverage: [125, 60, 104, 53, 130, 70, 89, 127]
Crawling: [96, 54, 93, 55, 97, 109, 56, 126, 83, 65]
Concolic testing: [101, 128, 62, 61]
Model checking: [106, 117, 72, 66, 98, 84]
Search-based testing: [92, 94]
Record/playback: [111, 114, 115, 130, 102, 75, 112]
Model-based: [92, 120, 121, 54, 88, 81, 82, 71, 80, 59, 95, 126, 74, 108, 86, 58, 64, 57,
124]

Other: [111, 87, 104, 121, 106, 114, 103, 115, 123, 89, 79]

Figure 13: Techniques used/proposed.

3210

50

40

30

20

10

0

Number of techniques used in each paper

Fr
eq

ue
nc

y

4

20

52

3

Figure 14: Number of techniques used in each paper.

can be used to generate test inputs. For example, a coverage-
based test technique would generate as test requirement the
need to cover a certain control-flow path of a function, i.e., the
set of logical expressions that should be made true to cover that
control-flow path. By having test requirements, one can man-
ually or automatically generate test inputs, an area of research
referred to as test-data generation [41].

Merely 17 papers (21.5%) focused on creating expected out-
puts to address the oracle problem. Generating automated test
drivers (code) received the least attention (15.2%). Although
current testing frameworks have built-in test drivers to set up
and exercise the system/unit under test, not many proposed
techniques have benefited from these frameworks to generate
automated test code. Examples of papers that did leverage test-
ing frameworks are [97], [57], [122] and [67], which respec-
tively generate test code in JUnit, Fitnesse, Testing and Test
Control Notation (TTCN), and Selenium.

13

Test input (data): [125, 92, 111, 120, 87, 121, 106, 114, 96, 54, 100, 88, 115, 130, 123, 93,
101, 128, 62, 67, 75, 70, 82, 99, 61, 76, 109, 56, 59, 95, 126, 83, 90, 108, 89, 86, 58, 64, 65]

Test requirements: [60, 104, 106, 103, 53, 105, 88, 85, 77, 70, 81, 80, 90, 73, 74, 79, 94,
113, 124]
Expected outputs (oracle): [96, 119, 68, 105, 115, 130, 102, 72, 62, 75, 97, 66, 82, 71,
90, 86, 118]
Test driver (code): [114, 130, 122, 67, 97, 71, 109, 95, 86, 64, 57, 129]

Other: [96, 78, 54, 107, 117, 101, 55, 112, 69, 76, 110, 98, 84, 127]

Figure 15: Type of test artifacts generated.

14 papers (17.7%) generated some other type of test artifacts.
For example, [78] generated a list of interface invocations that
do not match any accepted interface. [96] generated two types
of web navigation graphs that are isomorphically compared to
spot cross-browser defects. [55] generated testability measures.
[112] generated reduced test suites and [110] generated test
case orders.

In addition, we noticed that some papers generated more than
one type of test artifacts. We thus mapped each paper to as
many types of test artifacts as it generated. 54, 18, and 4 pa-
pers (68.35%, 22.78%, and 5.06%) generated one, two, and
three types of artifact, respectively. Three papers [116, 91, 63]
generated no test artifacts according to our mapping: [116]
presented a symbolic execution framework for JavaScript, a
method which can help testing, but is not a testing activity it-
self. [91] is an empirical validation of a web fault taxonomy.
[63] evaluated testing processes of web-portal applications and
had no need to generate test artifacts. For the details, we re-
fer the interested reader to our online repository and mapping
spreadsheet [26].

5.9. RQ 1.9-Manual versus Automated testing

Test automation usually reduces testing effort and therefore
it is a quite popular research topic. 49 papers (62.0%) provided
full automation for the test approaches they were presenting.
For example, [96] presented a fully automated approach for
cross-browser compatibility testing.

The techniques in 7 papers (8.9%) were fully manual. For ex-
ample, [125] presented a 2-layer model (based on control flow
graphs) for the white-box testing of web applications, in which
the model had to be manually provided by the user (tester).

In another set of 20 papers (25.3 %), there were both manual
and automated aspects (i.e., they were semi-automated). Note

Coverage (code, model): [125, 60, 111, 120, 116, 87, 104, 121, 106, 114, 53, 101, 102,
62, 77, 112, 70, 99, 76, 56, 90, 74, 108, 89, 86, 64, 94, 113]
Mutation testing (fault injection): [92, 111, 121, 114, 103, 68, 88, 115, 102, 91, 112, 70,
80, 110, 56, 95, 83, 90, 73, 74, 57, 94, 113, 118]
Manual comparison: [106, 114, 96, 78, 119, 54, 107, 93, 101, 77, 82, 99, 80, 61, 76, 109,
59, 98, 131, 126, 83, 89, 58, 127, 129]
Time/performance: [111, 78, 119, 105, 102, 97, 76, 131]
Detecting real faults: [100, 88, 128, 62, 97, 71, 69, 99, 80, 61, 83]
Example (proof of concept): [125, 85, 117, 122, 66]
Other: [111, 54, 77, 81, 109, 131, 79, 113, 124]

Figure 16: Type of evaluation method.

that the above three categories add to 76 (=49+7+20). The re-
maining 3 papers in the pool [91, 63, 69] were not directly in-
volved with test techniques, but with other aspects of testing
web applications. For example, for [91] which presented an
empirical validation of a web fault taxonomy , manual or auto-
mated testing was not applicable.

5.10. RQ 1.10-Type of the Evaluation Method

We looked for methods used for evaluating proposed test-
ing techniques. Our mapping includes papers that use cover-
age criteria (e.g., code coverage or coverage based on a model),
fault injection (a.k.a. mutation testing), and manual compari-
son. The distribution of these evaluation methods is depicted
in Figure 16. Coverage criteria (used in 25 papers, 31.65%)
and manual comparison (used in 22 papers, 27.85%) were the
most preferred approaches. Mutation testing was used in 14 pa-
pers (17.72%). 36 papers (45.57%) used other evaluation meth-
ods to validate their proposed testing technique. For example,
[81, 79, 124] each conducted a type of reliability analysis as its
evaluation method. [113] used test suite size as its evaluation
metric.

5.11. RQ 1.11-Static Web Sites versus Dynamic Web Applica-
tions

A majority of papers (75 papers, 94.9%) investigated dy-
namic web applications and only 4 (5.1%) of the papers were
geared towards static web sites.

It is clear that testing dynamic web applications is a more
popular area (perhaps due to being clearly more challenging)
compared to testing static web sites. The handful number of
papers in testing static web sites are [81, 124, 79, 82] which has
been published in 2001 [81], 2006 [124, 79], and 2008 [82]. For
example [81] proposed an approach for measuring and model-
ing the reliability of static web sites using statistical testing.

14

Synchronous calls: [125, 111, 120, 116, 87, 104, 121, 106, 114, 103, 78, 119, 54, 53, 68,
105, 100, 88, 115, 130, 107, 123, 93, 85, 117, 101, 128, 72, 91, 63, 62, 122, 67, 75, 77, 55,
112, 70, 66, 81, 82, 71, 99, 80, 61, 76, 110, 59, 98, 126, 83, 90, 74, 108, 89, 86, 58, 64, 57,
79, 84, 65, 127, 124, 118, 129]
Asynchronous calls (Ajax): [92, 60, 96, 102, 96, 69, 109, 56, 95, 131, 73, 94, 113]

Figure 17: (A)synchronicity of HTTP calls (annual trend).

The technique extracts the web usage and failure information
from existing web logs. The usage information is then used to
build models for statistical web testing. The related failure in-
formation is used to measure the reliability of Web applications
and the potential effectiveness of statistical web testing.

We can clearly observe that with the introduction of dynamic
web languages and technologies in the early 2000’s, e.g., JSP
and PHP, researchers have focused on testing dynamic web ap-
plications, rather that static web sites. This is since the former
type of applications have much more chances of having defects
compared to the latte. In static web sites, defects are usually
quite of limited types, e.g., broken links and invalid resources
(e.g., images), which can be detected quite easily using a large
collection of automated tools (e.g., LinkChecker).

5.12. RQ 1.12-Synchronicity of HTTP calls

In terms of synchronicity of HTTP calls, 66 papers (83.5%)
have targeted synchronous HTTP calls, while only 13 papers
(16.5%) have targeted asynchronous (Ajax-based) calls.

Although asynchronous calls make web applications more
complex, and web development more error-prone, the number
of papers on this topic is much lower than on synchronous calls.
One of the reasons is that asynchronous client-server communi-
cation has been a relatively recent technology through the adop-
tion of the XMLHttpRequest object in modern browsers. Ajax,
a technique advocating the use of asynchronous server calls,
was first introduced in 2005 [28].

As a stack bar chart, Figure 17 shows the annual trends of the
focus on synchronous web calls versus asynchronous web calls
(Ajax). It is clear from the two trends that testing Ajax-based
web applications is starting to attract more researchers in recent
years, and its general trend is in increasing slope.

5.13. RQ 1.13-Client-tier Web Technologies

Recall from Section 5.4 (RQ 1.4: test locations) that, respec-
tively, 22, 41 and 14 papers in the pool focused on client-side

HTML: [125, 92, 60, 106, 103, 119, 100, 88, 130, 123, 93, 85, 91, 122, 75, 55, 81, 82, 69,
99, 83, 90, 86, 64, 79, 65, 124, 118]
JavaScript: [125, 92, 60, 116, 104, 96, 100, 130, 107, 123, 93, 102, 91, 55, 97, 70, 71, 80,
109, 95, 73, 94, 65]
DOM: [92, 96, 100, 102, 75, 97, 80, 109, 56, 95, 83, 90, 86, 94]
Other: [123, 76, 56]
Unknown: [53, 67, 66, 82, 59, 131, 108, 58, 113]
N/A: [111, 120, 87, 121, 114, 78, 54, 105, 115, 117, 101, 128, 72, 62, 77, 112, 61, 110, 98,
126, 89, 57, 84]

Figure 18: Client-tier web technologies used.

testing, server-side testing, or both locations. Figure 18 shows
the distribution of the client-tier web technologies used.

HTML, Document Object Model (DOM), and JavaScript are
the three top main technologies in this context, appearing in 28,
14, and 24 papers (35.44%, 17.72%, and 30.38%), respectively.
One paper (1.27%) [123] was categorized under “other” client-
tier web technologies, i.e., it discussed the testing implications
of browser cookies.

For 23 papers (29.1% of the pool), the client-tier web tech-
nology was ’not applicable’ (shown as N/A in Figure 18). This
was due to the fact that either the paper under study was focused
on server-side application testing only (e.g., [110]), or the pa-
per was not discussing test techniques, per se. For example,
[84] titled ’Verifying Interactive Web Programs’, is a paper in
conceptual level, i.e., it presented formalisms such as control-
flow graph for web applications and the technique seemed to be
quite neutral of any client- or serve-tier web technology.

As per our analysis, 9 other papers (11.4%), which were on
client-tier testing, did not explicitly discuss the client-tier tech-
nologies used. We also did not intend to judge the technologies
based on our own interpretations. These papers are shown as
“Unknown” in Figure 18.

5.14. RQ 1.14-Server-tier Web Technologies

Figure 19 shows the frequency of server-tier web technolo-
gies used in the papers.

J2EE, PHP, .NET, Perl/CGI were the most focused-on server
technologies appearing in 24, 17, 3, and 2 papers (30.38%,
21.52%, 3.80%, and 2.53%), respectively.

In Figure 18), the bar labelled as “Other” includes papers
targeting technologies such as XML, Lisp, PLT scheme, and
Portlet.

15

J2EE (Servlet, JSP, etc.): [111, 120, 104, 121, 114, 103, 78, 119, 100, 88, 115, 130, 85,
112, 99, 76, 110, 95, 131, 74, 86, 57, 94, 113]
PHP: [125, 87, 121, 53, 68, 107, 93, 128, 72, 91, 62, 75, 61, 98, 131, 90, 127]
.NET: [101, 91, 89]
Perl (CGI): [105, 70]
Other: [100, 129]
Unknown: [54, 67, 66, 71, 59, 108, 58, 64, 79, 84, 124]

N/A: [60, 116, 106, 96, 117, 102, 81, 82, 69, 80, 109, 56, 83, 73, 65, 118]

Figure 19: Server-tier web technologies used.

As per our analysis, we decided that 11 papers (13.9%) were
concerned with server-tier testing, but did not explicitly discuss
the server-tier technologies they were focusing on.

After having studied client-tier and server-tier web technolo-
gies in isolation, we found that it would be useful to also con-
duct a cross-analysis of number of studies in different client-
tier versus server-tier web technologies. Figure 20 depicts this
information. Recall from the above discussions that in some
papers, the client-tier was not applicable (N/A) since they were
fully focusing on server-tier testing and, likewise, in some pa-
pers, server-tier web technologies were not present. As we can
see in this figure, there are a handful number of techniques tar-
getting both client and server side.

5.15. RQ 1.15-Tools presented in the papers

41 papers (51.9% of the pool) presented at least a tool, which
were mostly of research-prototype strength. We believe this
is quite a positive sign for the web testing community as about
half of the papers in the pool provided tool support (automation)
along with proposing test techniques.

As a randomly-chosen set of names, the following tools were
presented: Artemis [60], Kudzu [116], TestWeb [106], webMu-
Java [103], and CrossT [96].

We thought that a natural question to ask in this context is
whether the presented tools are available for download, so that
other researchers or practitioners could use them as well. We
only counted a presented tool available for download if it was
explicitly mentioned in the paper explicitly. If the authors had
not explicitly mentioned that the tool is available for download,
we did not conduct internet searches for the tool names. The re-
sult was somewhat surprising. Only 6 of the 41 tool-presenting
papers explicitly mentioned that their tools are available for
download.

3

7

8

9

7

9

3

6

7

8

9

3

6

7

8

.NET

Ruby

Python

Perl (CGI)

N/A

Unknown

Other

ti
e
r
W
eb

 T
ec
h
n
o
lo
gi
es

1

2

1

2

1

2

1

2

PHP

Java family

HTML DOM JavaScript N/A Unknown Other

Se
rv
er
‐t

Client‐tier Web Technologies

Figure 20: Cross analysis of number of studies in different client-tier versus
server-tier web technologies.

5.16. RQ 1.16-Attributes of the web software SUT(s)
As discussed in Section 4 (Classification Scheme), and

shown in Table 2, we extracted the following attributes for the
web software SUT(s), discussed in each paper:

1. Number of SUTs used in each paper

2. The name(s) of the SUT(s)

3. Total LOC size of the SUT(s)

4. For each SUT, its scale which could be a type in this set
{Academic experimental, Open-source, Commercial}

5. Other size metrics (e.g., # of pages, # of form)

Number of SUTs used in each paper: We discuss next the
data and findings for the above items #1 . . . #5.

5.16.1. Number of SUTs used in each paper
Figure 21 depicts the histogram of the number of SUTs used

in each paper. 16, 23 and 9 papers (20.25%, 29.11%, and
11.39%) evaluated their approaches on 1, 2, and 3 SUTs, re-
spectively. There were 6 papers (7.59%), each using more than
10 SUTs. The paper with the highest number of SUTs (53 of
them) was [80], published in 2011. The average number of
SUTs per papers was 4.8.

By statistically reviewing the number of SUTs analyzed in
each paper, we hypothesized that there might be correlation be-
tween number of SUTs analyzed in each paper, and its research
facet type (e.g., solution proposal, validation research, and eval-
uation research). To systematically analyze this hypothesis, we
cluster the papers by their research facet types. Figure 22 shows
the individual-plot of number of SUTs for each of the three
research-facet-type clusters. As we can see, the three distribu-
tions are mostly overlapping, thus rejecting the above hypothe-
sis. Thus, it is not necessarily true that papers with more mature
research facet types would have applied their methods to more
number of SUTs.

16

10

15

20

25

of
 p
ap

er
s

0

5

1 2 3 4 5 6‐10 10+

Number of SUTs

Figure 21: Number of SUTs analyzed in each paper.

Evaluation ResearchValidation ResearchSolution Proposal

60

50

40

30

20

10

0

Research Facet Types

N
um

be
r

of
 S

U
Ts

Figure 22: Cross analysis of number of studies in different client-tier versus
server-tier web technologies.

5.16.2. Names of the SUTs
We recorded the name(s) of the SUT(s) used in each paper

and conducted some brief statistical/text analysis on the list of
names. In total, 176 unique SUT names were used, while the
sum of the number of SUTs used in all the papers was 210.
This indicated that some SUTs were used in more than one pa-
per. For example, we found that an open-source e-commerce
bookstore web application [1] has been used for evaluations in
eleven papers.

The followings are also examples of the real web applications
used as SUTs for testing in the papers: (1) Yahoo Auto Classi-
fieds (used in [65]), (2) www.msn.com (used in [131]), and (3)
Facebook Chat (used in [116]).

Listing the names of all 176 different SUTs in this article is
impossible, but can be found in our online repository [26].

5.16.3. LOC size of the SUTs
Only 41 of the 79 primary studies reported the LOC size of

their SUTs. Figure 23 depicts the histogram of the total LOC
size of the SUT(s) used in each paper. It is good to see that
many papers have used relatively large SUTs (more than 1 or
even 10 KLOC) for evaluating their approaches. The paper

4

6

8

10

12

of
 p
ap

er
s

0

2

<500 500‐1K 1K‐10K 10K‐50K 50K‐100K 100K+

LOC of SUTs

Figure 23: SUT sizes in LOC.

Figure 24: SUT size (LOC) versus publication year.

with the largest SUT LOC sizes was [72], published in 2011,
in which only one large-scale SUT (named Mambo) was used,
having a total of 601 KLOC. The average number of SUTs per
papers was 75,610.35.

In this context, we hypothesized that the LOC of SUTs may
have been increasing in newer papers. To visually assess this
hypothesis, Figure 24 depicts as an X-Y (scatter) plot the LOC
size of SUT(s) used in each paper versus year of publication
of each paper. Each dot in this plot corresponds to a single
paper. Note that the Y-axis in this figure is in logarithmic scale.
The correlation value of this data set if only 0.33, meaning that
there is only a weak correlation between the year of publication
and SUT size. It is still nice to observe that larger and larger
SUT sizes appear in more recent papers. The three papers [72,
68, 96] rank, in order, 1st, 2nd and 3rd in terms of having the
highest LOC sizes of SUTs.

It should be noted in this context that most of the papers have
not applied their testing technique to the entirety of each SUT
that they selected, but only to a or few selected sub-system(s)
of each SUT. Thus, the LOC sizes of the SUTs are not entirely
precise in terms of the scale of the system and evaluation con-
ducted in each paper.

17

02/11/2012 Repository, SM, and Bibliometrics of WAT Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AjWeYCv5rkkzdDBMbURET0lidzdVRnJ5NXJBVnptd…

Repository, SM, and Bibliometrics of WAT Papers

All changes saved in DriveFile Edit View Insert Format Data Tools Help

$ % 123

 10pt

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

type_of_web_software_SUTs

Size in LOC
See file "Excel
charts.XLSX"

Other size
metrics (e.g., # of
pages, forms, etc)

type_of_web_software_SUTs

Real open-source
software 42

Academic
experimental
software 22

Commercial
software 21

SUT_size_versus_year_of_publication

correl 0.339033465317345

Types of web software SUTs

18 26 34 42 50

Real open-source software

Academic experimental software

Commercial software

Number of papers

SUT size versus year of publication

10000

100000

1000000

T
o

ta
l L

O
C

 o
f t

h
e

 S
U

T
(s

)

 A B C D E F G H I

Comments Share

vgarousi@gmail.com

 Paper Repository 4 after 2011-to process Charts Venue Data & Chart Related Work (survey-like) Excluded papers

Figure 25: Type of Web software as SUTs.

5.16.4. Types of SUTs: Academic experimental, Real open-
source, or Commercial Software

In addition to LOC, we wanted to assess the frequency of
using academic experimental, real (not academic) open-source,
or commercial SUTs in the papers. Figure 25 depicts the his-
togram of that information. 42 papers (53.16%) used open-
source SUTs, 22 papers (27.85%) used academic experimen-
tal systems, and 21 papers (26.58%) used commercial applica-
tions. A brief conclusion from observing these numbers is that
relatively a small number of academic experimental web sys-
tems have been used (i.e., tested) in the papers in contrast to the
large number of open-source software.

5.16.5. Other size metrics
In addition to LOC measures and statistics, some studies re-

ported other size metrics for their SUTs, e.g., # of pages, # of
sessions, # of forms, # of methods, and # of classes. We also
recorded them in our online data repository [26] whenever we
noticed such reported data.

46 papers reported other size metrics, which denotes, as a
good indicator, attention to detail and high level of transparency
in the web testing literature. For example, the authors of [126]
reported that they applied their statistical testing method to
2,046 sessions of their SUT.

6. Demographic Trends and Bibliometrics

To address RQ 2, we analyzed the demographic trends and
bibliometrics of the web testing literature. We will elaborate on
the results for each related sub question (RQ 2.1–RQ 2.5) in the
following subsections.

6.1. RQ 2.1-Publication trend per year

The annual publication volume of web testing papers is
shown in Figure 26. To conduct cross-area comparisons, we
compare the trend of web testing publications to the publica-
tion trends of three other software testing areas: Graphical User
Interface (GUI) testing, search-based software testing (SBST),

SBST

Mutation Testing

Web testing

GUI Testing

Figure 26: Publication trend per year.

and mutation testing. Data for these three other subjects have
been extracted from [11], [52] and [33, 34], respectively.

In terms of starting year of the publication range, we can see
that web testing papers started to appear in 2001, however, the
other three areas have a longer history, especially mutation test-
ing. This is probably due to the fact that the web technology
has a relatively younger history compared to the general soft-
ware engineering research.

Compared to the other three, the publication volume trend
for web testing is relatively less stable, e.g., our pool had 0
papers from the year 2003. In terms of the absolute number of
papers, according to the above data sources, as of this writing,
web testing, GUI Testing, SBST, and mutation testing domains
have 79, 122, 474, and 289 papers, respectively.

Of course, we should note that there are overlaps between the
different areas. For example, a paper can present a web search-
based method, e.g., [94], or another paper in our pool uses the
Selenium web GUI test tool [15], which falls under both web
and GUI testing domains.

6.2. RQ 2.2-Citation analysis and top-cited papers
This RQ intended to identify the top-cited papers. Since

the papers under study were published in different periods, we
deemed it appropriate to consider the publication year of each
paper in analyzing its citation count. With citation numbers
constantly increasing, we should note that citation data used
for our analysis were extracted from Google Scholar on April
7, 2012. For papers that have appeared both as a conference
publication and a journal extension (e.g., [70]), we count the
citations to both versions.

Figure 27 visualizes the citation count of each paper vs. pub-
lication year as an X-Y plot. Two types of metrics are shown in
this figure: (1) absolute (total) value of number of citations, and
(2) normalized number of citations which is defined as follows:

NormalizedCitations(p) =
TotalCitations(p)

2012−PublicationYear(p)

For example, [106] has 361 total citations as of this writing
and was published in 2001. Thus, its normalized citations is
calculated as:

NormalizedCitations([106]) = 361
2012−2001 = 32.8

Compared to the absolute value, the normalized metric es-
sentially returns the average number of citations of a paper per
year, since its publication year.

18

Figure 27: Citation count vs. publication year.

The top three publications with the most absolute and nor-
malized citations include [106], [70], and [58]. Filippo Ricca
and Paolo Tonella [106] were among the very first researchers
to publish a paper on web testing in 2001. Their ICSE 2001
paper [106] has 361 total citations and 32.8 normalized cita-
tions. That paper is seen as one of the flagship papers in the
web testing domain, and is thus cited by many researchers in
this area9. Elbaum et al. [70] were the first to propose the use
of ‘user session data’ for web application testing. With 311
citations, their paper (ICSE’03 and TSE’05 extension) has the
highest normalized citation count (44.4). Andrews et al. [58]
proposed to model web applications as Finite State Machines
(FSMs) and generate test cases.

A histogram of the citations, based on the two metrics, for
all papers in our pool is shown in Figure 28. Note the x-axes
in the two graphs have different scales. Only 4 papers [101, 67,
90, 73] have had no citations at all. It is easy to see that both
distributions are leaning towards the left side, thus indicating
that most papers have relatively a small number of citations.

9This paper won an ACM SIGSOFT Most Influential Paper Award in 2011.

350300250200150100500

6

5

4

3

2

1

0

Number of citations

Fr
eq

ue
nc

y

45.037.530.022.515.07.50.0

25

20

15

10

5

0

Normalized number of citations (=citations/(2012-publication year))

Fr
eq

ue
nc

y

Figure 28: Histogram of number of citations for all papers included in our study.

6.3. RQ 2.3-Most active researchers in the area

To get an overview of active researchers in this area, we fol-
low a similar approach as other bibliometric/ranking studies in
software engineering, such as [48, 27, 30, 29]. As the metric,
we count the number of papers published by each author. To
keep the brevity of the ranking results, we show the order of
top authors who have published at least three papers in the pool
in Figure 29.

The competition is close as the second and third ranks are
in tie. The ranking is as follows: Paolo Tonella (12 pa-
pers), Filippo Ricca and Lori Pollock with 9 papers, Alessandro
Marchetto, Sara Sprenkle and Sreedevi Sampath, each with 7
papers.

6.4. RQ 2.4-Active nations

Similar to other bibliometric studies in software engineering,
e.g., [52], we ranked the most active countries based on the
affiliation of the authors who have published web testing pa-
pers. The rationale for this ranking is to know the researchers
of which countries (as a group) focus more on web application
testing. Similar studies to rank the most active nations have
been done in other areas of science, e.g., [10].

19

0 5 10 15

Paolo Tonella
Filippo Ricca
Lori Pollock

Alessandro Marchetto
Sara Sprenkle

Sreedevi Sampath
Jeff Offutt

Emily Gibson
Alessandro Orso

Ali M b h

Number of papers

Ali Mesbah
Amie Souter

Anna Rita Fasolino
Anneliese Andrews

Frank Tip
Julian Dolby

Mark Harman
Shay Artzi

William Halfond

Figure 29: Authors with at least three related papers (2001-2011).

If an author had moved between two or more countries, we
attributed each of his/her papers to the explicit affiliation infor-
mation on top of each paper. If a paper was written by authors
from more than one country, we incremented the counters for
each of those countries by one.

Figure 30 shows the ranking of countries from which at least
two papers have been published in this area. The top three coun-
tries are: (1) USA (with 40 papers, 50.6%), (2) Italy (with 18
papers, 22.8%), and Canada (9 papers, 11.4%).

We had access to the country breakdown of authors from
another recent mapping study in testing (namely, GUI testing)
[11]. Thus, as another analysis, it would be interesting to com-
pare the two datasets and assess the activity of the top nations in
these two related areas of software testing. The country listing
for the domain of GUI testing is taken from [11] and is shown in
Figure 31. Note that the paper pool in the mapping study done
in [11] is 122, which denotes that the GUI testing literature is
larger (in terms of paper quantity) than web testing.

There are both similarities and differences between the trends
in Figure 30 Figure 31. Both domains (web and GUI testing)
is dominated by the US researchers, 50.6% and 54.9%, respec-
tively.

To evaluate the degree of contribution to the web testing lit-
erature across the world, we could easily calculate the interna-
tionalization index in this context, i.e., the number of countries
represented in these papers divided by the number of nations in
the world. We considered the value of 193 for the number of
nations, as the United Nations has 193 member states. There
are 19 and 20 countries represented in web and GUI testing,
respectively and the respective internationalization indices are
9.85% and 1.36%. This denotes that the two areas have contri-
butions from only 10 of the world countries.

According to our analysis, 71 (89%) of the papers have been

25/04/2012 Repository, SM, and Bibliometrics of WAT Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AjWeYCv5rkkzdDBMbURET0lidzdVRnJ5NXJBVnptd«

Repositor\, SM, and Bibliometrics of WAT Papers Share

AOO chaQgeV VaYedFiOe EdiW VieZ IQVeUW FRUPaW DaWa TRROV HeOS

$ % 123

 10pt

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

2011 10 5 40

Total 79 122 474 289

Demographic Information -
Author Countr\ aXWhRUV_cRXQWU\

USA 40 50.6

IWaO\ 18 22.8

CaQada 9 11.4

UK 4 5.1

NeWheUOaQdV 3 3.8

DeQPaUN 2 2.5

BUa]iO 1 1.3

ChiQa 1 1.3

GeUPaQ\ 1 1.3

JaSaQ 1 1.3

LebaQRQ 1 1.3

NeZ ZeaOaQd 1 1.3

RXVVia 1 1.3

SaXdi AUabia 1 1.3

TaiZaQ 1 1.3

TXUNe\ 1 1.3

SiQgaSRUe 1 1.3

17

0.088082901554404

Papers written
b\ authors from
more than one
countr\ 8

T\pe of Paper - Contribution
Facet

TechQiTXe 57

TRRO 41

Top Countries (based on author affiliations)

0 10 20 30 40

USA

IWaO\

CaQada

UK

NeWheUOaQdV

DeQPaUN

BUa]iO

ChiQa

GeUPaQ\

JaSaQ

LebaQRQ

NeZ ZeaOaQd

RXVVia

SaXdi AUabia

TaiZaQ

TXUNe\

SiQgaSRUe

NXPbeU Rf SaSeUV

1992 1994 1996
0

 A B C D E F G H

Vahid Garousi

 PaSeU ReSRViWRU\ Charts VeQXe DaWa & ChaUW ReOaWed WRUN (VXUYe\-OiNe) E[cOXded SaSeUV

Figure 30: Countries contributing to the web testing literature (based on author
affiliations).

authored by authors from one nation only, while 8 papers (11%)
[54, 60, 71, 72, 83, 93, 96, 102] have been written by authors
from more than one country.

The followings are the list of internationally-authored papers
and the collaborating nations. As we can see, collaborations
between researchers from USA and Canada are the highest in
this category. This information provides a high-level snapshot
of the level of international collaborations in the web testing
community, and could be compared to other software engineer-
ing/testing sub-fields once their data is available.
• USA, Canada [102, 72, 96]
• USA, Denmark [60]
• USA, China [83]
• USA, UK [71]
• Italy, UK [93]
• Saudi Arabia, UK [54]

6.5. RQ 2.5-Top venues

To rank the venues, we used two metrics: (1) the number of
papers published in each venue, (2) the total number of citations
to web testing papers published in each venue. Using the first
metric, the ranking of the top venues with at least three papers
is shown in Table 3. There are 13 venues in this list: 10 con-
ferences/symposia, and 3 journals. Many major software engi-
neering conferences and journals are in this list. For example,
the venue with most papers (6 papers, 7.59%) is ICST, which
has recently attracted and published many web-testing related
papers.

We then measured the total number of citations to web testing
papers published in each venue (as we had in our paper pool).
Table 4 shows the top 10 venues ranked by number of citations.

20

4/1/12 GUI Testing: Repository of Papers

1/1https://docs.google.com/spreadsheet/ccc?key=0AqdKdxaNjBENdHZhdVNfYXNiazhHb2s૽

_

All changes savedFile Edit View Insert Format Data Tools Help

$ % 123

 10pW

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

Portugal 7
Germany 6

Brazil 5
Canada 5
Finland 4

Australia 3
Italy 2

Japan 1
Poland 2

Switzerland 2
Taiwan 2
Turkey 2

UK 2
Hungary 1
Korea 1

Lebanon 1
Singapore 1
Sweden 1
Other 5
ToWal 127

Top CoXnWUieV (baVed on aXWhoU affiliaWionV)

0 20 40 60 80

USA
China

Portugal
Germany

Brazil
Canada
Finland
Australia

Italy
Japan
Poland

Switzerland
Taiwan
Turkey

UK
Hungary
Korea

Lebanon
Singapore
Sweden

Number of articles

C
ou
nt
r\

 A B C D E F G H

 Paper Repository ChaUWV Venue Data & Chart Chart of Top Authors Chart of Tools Used Related work Excluded Papers Deprecated "Type of Paper" SM Repository: March­2012

Figure 31: Countries contributing to GUI testing literature. Source: [11].

Expectedly, many of the venues in the two Tables 3 and 4 are
overlapping. According to the values in Table 4, ICSE and TSE
(seen by many software engineering researchers as the top two
software engineering venues) have the highest ratio of citations
to number of papers.

7. Discussions

Based on the research work-flow of this study as presented
in Figure 1, summarized discussions and implications of this
study along with some of the threats to validity are presented in
this section.

7.1. Findings, Trends, and Implications
First of all, we witness a clear increase in the number of re-

search papers in the area of web application testing.
Most of the published papers propose new testing techniques

or an adoption of existing software testing techniques geared
towards the web domain. The most popular techniques used for
testing web applications include static analysis, model-based
testing, and crawling. Analysis and testing techniques such as
fault-based testing (e.g., mutation testing), symbolic execution,
concolic testing, and search-based have gained very limited at-
tention from this community so far.

Our answer to RQ 1.1 indicates that about half of the papers
mention an accompanying tool implementation in their paper.
However, merely a few papers (6/79, or 7.59%) have a tool that
can be downloaded (RQ 1.15). This is an alarming fact that
needs to be taken more seriously by the web testing research
community, especially if they intend to have an impact in in-
dustry.

As far as the evaluation methods are concerned (RQ 1.2), the
majority of the papers present an empirical validation of their
proposed solutions. However, most of these validations are con-
ducted on self-implemented or small open-source web applica-
tions. We did not encounter many “experience” papers in our
study. Conducting empirical evaluations on large-scale indus-
trial web applications is an area that still needs much attention
from this research community.

Table 3: Venues with at least three papers, ranked by number of papers.
Venue Acronym #
Int. Conf. on Software Testing ICST 6
Int. Conf. on Automated Software
Engineering

ASE 5

Information and Software Technol-
ogy

IST 5

Int. Conf. on Software Engineering ICSE 5
Int. Conf. on Web Engineering ICWE 4
Int. Symposium on Software Relia-
bility Engineering

ISSRE 4

Int. Symposium on Software Test-
ing and Analysis

ISSTA 4

Int. Symposium on Web System
Evolution

WSE 4

Transactions on Software Engineer-
ing

TSE 3

Int. Symposium on Foundations of
Software Engineering

FSE 3

Int. Conf. on Software Mainte-
nance

ICSM 3

Software Tools for Technology
Transfer

STTT 3

Int. Conf. on World Wide Web WWW 3

The primary focus of the papers seems to be on automa-
tion and coverage (code or model), while (automating) the
oracle problem has received relatively limited attention (RQ
1.3).There is relatively much less work on ”exploratory” web
testing (test activity being based on human knowledge), which
is not in line with the regular pervasive practice of manual ad-
hoc testing of web applications in the industry.

The majority of the work has focused on testing the server-
side in the past (RQ 1.4). However, in order to create more
responsive modern web applications, much of the web appli-
cation state is being offloaded to the client-site. That is why
we see an increasing trend towards papers that target client-side
testing and we believe this trend will continue in the coming
years. RQ 1.5 revealed the need for more integration testing in
the web context.

RQ 1.6 revealed that white-box testing is the most popu-
lar approach to derive test artifacts in the area, while new ap-
proaches such as those based on invariants have been proposed
in recent years.

RQ 1.7 showed that a variety of various techniques have been
used and proposed to derive test artifacts, such as search-based
testing. Even, there are papers using up to three different tech-
niques together.

In term of type of test artifact generated, RQ 1.8 revealed
that while many paper generate test data in abstract notion, few
papers propose approaches to automatically create test driver
(automated test code). There have been a mix of manual and
automated testing (RQ 1.9).

Various types of evaluation methods have been used (RQ
1.10), e.g., coverage and mutation testing.

21

Table 4: Top 10 venues ranked by number of citations.
Venue # of papers # of citations
TSE 3 498
ICSE 5 438
SoSym 2 209
ICSM 3 158
ISSTA 4 155
WWW 3 135
ISSRE 4 131
ASE 5 126
ICST 6 122
FSE 3 64

Most papers focused on testing dynamic web applications,
rather than static web applications (RQ 1.11).

With the introduction of Ajax and similar technologies in re-
cent years, the community is gradually shifting its focus on ap-
plications with asynchronous (Ajax-based) calls (RQ 1.12).

On the client-side (RQ 1.13), HTML has received most of the
attention so far. JavaScript, a dynamic loosely-typed language
that is known to be challenging to test, is getting increasingly
more attention. The dynamic DOM, which plays a prominent
role in the realization of modern web applications, will need
more spotlight. Surprisingly, there is no work on CSS, a widely
used language for defining the presentation semantics of web
pages.

On the server-side (RQ 1.14), however, most of the research
work has revolved around J2EE and PHP. There is limited work
on server-side languages such as Python, Ruby, and almost
none on the nowadays popular Node.js framework (Server-side
JavaScript).

SUT’s with various (LOC) sizes and either open-source or
commercial systems have been the subject of evaluations in dif-
ferent papers (RQ 1.16).

An interesting observation we have made is that almost ev-
ery paper is using a different set of web applications (SUTs) for
their validations, which makes tool or technique comparisons
quite challenging in this field. Having a set of subject systems
that everyone can use for rigorous controlled experimentation
is needed here. Ideally, researches in this field should create
a web application-artifact repository, similar to the Software-
artifact Infrastructure Repository,10 which hosts many Java and
C software systems, in multiple versions, together with support-
ing artifacts such as test suites, fault data, and scripts.

7.2. Threats to Validity

The results of a systematic mapping study can be affected
by a number of factors such as the researchers conducting the
study, the data sources selected, the search term, the chosen
time-frame, and the pool of primary studies. Below we discuss
potential threats to validity of this study and the steps we have
taken to mitigate or minimize them.

10http://sir.unl.edu/portal/

7.2.1. Internal validity
We presented in Section 3.2 a detailed discussion around the

concrete search terms and the databases used in our study. In or-
der to obtain as complete a set of primary studies covering the
given research topic as possible, the search term was derived
systematically. Different terms for web application testing and
analysis were determined with many alternatives and different
combinations. However, the list might not be complete and ad-
ditional or alternative terms might have affected the number of
papers found.

Furthermore, our inclusion and exclusion criteria are dis-
cussed in Section 3.2.2. The decision on which papers to in-
clude in the final pool depended on the group judgement of the
researchers conducting the systematic mapping study. As dis-
cussed in Section 3, the authors adopted a defined systematic
voting process among the team in the paper selection phase for
deciding whether to keep or exclude any of the papers in the first
version of the pool. This process was also carried out to mini-
mize personal bias of each of the authors. When the authors of
the study disagreed, discussions took place until an agreement
was reached. A high conformance value was achieved, which
indicates a similar understanding of relevance.

Though a replication of this systematic mapping study may
lead to a slightly different set of primary studies, we believe the
main conclusions drawn from the identified set of papers should
not deviate from our findings.

7.2.2. Construct validity
Construct validity is concerned with the extent to which what

was to be measured was actually measured. In other words,
threats to construct validity refer to the extent to which the study
setting actually reflects the construct under study. As discussed
in Section 4, once the classification scheme was developed, the
papers in the pool were sorted into the scheme, i.e., the actual
data extraction took place. The pool of papers were partitioned
to the authors (i.e., each author was assigned about 27 papers).
Each author first extracted the data by mapping the paper inside
the classification scheme independently. Then a systematic peer
review process was conducted in which the data and attributes
extracted by each researcher were cross-checked by another re-
searcher. In case of differences in opinions, online discussions
(e.g., email, Skype) were conducted to resolve the differences.
This cross-check helped the team to extract the data and con-
duct the measurement in a reliable manner. The above steps
mitigate some of the threats to construct validity of our study.

We should mention that for tool availability, we relied on
the information in the papers. If the authors did not explic-
itly mention that their tool was available for download, we did
not conduct internet searches for the tool. Furthermore, recall
from 5.16 (RQ 1.16: attributes of the SUTs) that most of the
papers have not applied their testing technique to the entirety
of each SUT that they selected, but only to a or few selected
sub-system(s) of each SUT. Thus, the LOC sizes of the SUTs
are not entirely precise in terms of the scale of the systems and
evaluations conducted in each paper.

22

7.2.3. Conclusion validity
It is important for a systematic mapping study to present re-

sults and conclusions that are directly traceable to data and re-
sults that have in turn been carefully extracted from the primary
studies, and can be reproduced by other researchers. To ensure
conclusion validity of our study, we presented throughout Sec-
tions 5, 6 and 7.1 graphs generated directly from the data and
discussed the explicit observations and trends. This ensures a
high degree of traceability between the data and conclusions.
In addition, our mapping data are available in the form of an
online repository, for others to validate.

7.2.4. External validity
The results of the systematic mapping study were considered

with respect to approaches in the software engineering domain.
Thus, the classification map and data presented and the conclu-
sions drawn are only valid in the given context (web application
testing). The classification scheme presented in this paper can
serve as a starting point for future studies. Additional papers
and approaches that are identified in the future can be catego-
rized accordingly. Due to the systematic procedure followed
during the mapping study, we believe our study is repeatable.

8. Conclusions and Future Work

The web has proven to be a powerful medium for delivering
software services over the Internet. Due to its inherit distributed
complexity and dynamism, testing is known to be a challenge
for web developers. That is why many researchers have worked
in this domain from the early days of the web.

In this paper, we present a first systematic mapping of the pa-
pers in the area of web application functional testing, published
between 2000–2011. Our initial search retrieved 147 papers of
which 79 were included in this study using a selection strategy.
We incrementally derived a classification scheme by analyzing
the included papers and used that scheme to conduct the map-
ping.

In addition, we present a first bibliometrics analysis of the
domain to gain an understanding of the publication trend per
year, citations, active researchers and venues in the area.

Our study indicates that web testing is an active area of re-
search with an increasing number of publications. Our map-
ping shows the state-of-the-art in web application testing, ar-
eas that have been covered and techniques and tools that have
been proposed. It provides a guideline to assist researchers in
planning future work by spotting research areas that need more
attention. For instance, areas that need additional investigation
for web application testing include automated oracle genera-
tion, mutation testing, concolic testing, testing asynchronous
client/server interactions, coverage metrics (e.g., state coverage
and code coverage), test support for server-side languages such
as Ruby and Python, and client-side DOM and CSS.

As future work, based on this study, we intend to conduct a
systematic literature review of the field to analyze the existing
evidence for different web testing techniques and their effec-
tiveness. Also, an interesting additional classification would be

related to the domain of the web application under test (e.g.,
medical, financial, academic domains).

Acknowledgements

Vahid Garousi was supported by the Discovery Grant #341511-
07 from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), and also by the Visiting Scientist Fel-
lowship Program (#2221) of the Scientific and Technological
Research Council of Turkey (TUBITAK). Ali Mesbah was sup-
ported by NSERC through its Discovery and Strategic Project
Grants programmes.

References

[1] An open source e-commerce bookstore (book), open source web appli-
cations with source code. http://www.gotocode.com.

[2] Context-driven school of testing, Last accessed: April 2012. http:

//www.context-driven-testing.com.
[3] W. Afzal, R. Torkar, and R. Feldt. A systematic mapping study on non-

functional search-based software testing. In 20th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE
2008), 2008.

[4] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-
based testing for non-functional system properties. Inf. Softw. Technol.,
51:957–976, June 2009.

[5] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Modelling methods for web
application verification and testing: state of the art. Softw. Test. Verif.
Reliab., 19:265–296, 2009.

[6] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A sys-
tematic review of the application and empirical investigation of search-
based test case generation. IEEE Transactions on Software Engineering,
36(6):742–762, 2010.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A sys-
tematic review of the application and empirical investigation of search-
based test case generation. IEEE Trans. Softw. Eng., 36:742–762,
November 2010.

[8] D. Amalfitano, A. Fasolino, and P. Tramontana. Techniques and tools
for rich internet applications testing. In Proceedings 12th IEEE Interna-
tional Symposium on Web Systems Evolution (WSE), pages 63–72. IEEE
Computer Society, 2010.

[9] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

[10] E. Archambault. 30 years in science: Secular movements in knowledge
creation. www.science-metrix.com/30years-Paper.pdf.

[11] I. Banerjee, B. N. Nguyen, V. Garousi, and A. M. Memon. Graph-
ical user interface (gui) testing: Online repository, Last accessed:
April 2012. http://www.softqual.ucalgary.ca/projects/

2012/GUI_SM/.
[12] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt. Alignment of requirements

specification and testing: A systematic mapping study. In Proceedings
of the 2011 IEEE Fourth International Conference on Software Test-
ing, Verification and Validation Workshops, ICSTW ’11, pages 476–485,
2011.

[13] R. V. Binder. Testing object-oriented software: a survey. In Proceedings
of the Tools-23: Technology of Object-Oriented Languages and Systems,
pages 374–, 1997.

[14] M. Bozkurt and Y. H. M. Harman. Testing web services: a survey. In
Technical Report TR-10-01, Department of Computer Science, King’s
College London, 2010.

[15] C. T. Brown, G. Gheorghiu, and J. Huggins. An Introduction to Testing
Web Applications with Twill and Selenium. O’Reilly Media, 2007.

[16] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham. Using Mapping
Studies in Software Engineering. In Proceedings of PPIG 2008, pages
195–204. Lancaster University, 2008.

[17] G. Canfora and M. D. Penta. Service-oriented architectures testing:
a survey. In International Summer Schools on Software Engineering,
pages 78–105, 2008.

23

[18] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A systematic survey of program comprehension through
dynamic analysis. IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[19] P. A. da Mota Silveira Neto, P. Runeson, I. do Carmo Machado, E. S.
de Almeida, S. R. de Lemos Meira, , and E. Engstrom. Testing software
product lines. IEEE Software, 28:16–20, 2011.

[20] P. A. da Mota Silveira Netoa, I. do Carmo Machadoa, J. D. McGregord,
E. S. de Almeidaa, and ilvio Romero de Lemos Meiraa. A systematic
mapping study of software product lines testing. Information and Soft-
ware Technology, 53(5):407423, May 2011.

[21] G. A. Di Lucca and A. R. Fasolino. Testing web-based applications: The
state of the art and future trends. Inf. Softw. Technol., 48:1172–1186,
2006.

[22] A. Endo and A. Simao. A systematic review on formal testing ap-
proaches for web services. In Brazilian Workshop on Systematic and
Automated Software Testing, International Conference on Testing Soft-
ware and Systems, 2010.

[23] E. Engstrom and P. Runeson. Software product line testing - a systematic
mapping study. Journal of Information and Software Technology, 53:2–
13, 2011.

[24] E. Engstrom, P. Runeson, and M. Skoglund. A systematic review on re-
gression test selection techniques. Journal of Information and Software
Technology, 52:14–30, 2010.

[25] V. T. N. N. Frank Elberzhager, Jrgen Mnch. A systematic mapping study
on the combination of static and dynamic quality assurance techniques.
Information and Software Technology, 54:1–15, 2012.

[26] V. Garousi, A. Mesbah, and A. B.-C. S. Mirshokraie. A sys-
tematic mapping of web application testing: Online reposi-
tory. http://www.softqual.ucalgary.ca/projects/Web_

Application_Testing_Repository/.
[27] V. Garousi and T. Varma. A bibliometric assessment of canadian soft-

ware engineering scholars and institutions (1996-2006). Canadian Jour-
nal on Computer and Information Science, 3(2):19–29, 2010.

[28] J. J. Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications, February 2005. [Last visited 27.01.2012].

[29] R. L. Glass and T. Y. Chen. An assessment of systems and software
engineering scholars and institutions (1998-2002). Journal of Systems
and Software, 68(1):77–84, 2003.

[30] R. L. Glass and T. Y. Chen. An assessment of systems and software
engineering scholars and institutions (1999-2003). Journal of Systems
and Software, 76(1):91–97, 2005.

[31] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies:
A survey. Software Testing, Verification, and Reliability, 15:167–199,
2005.

[32] T. D. Hellmann, A. Hosseini-Khayatand, and F. Maurer. Agile Interac-
tion Design and Test-Driven Development of User Interfaces - A Litera-
ture Review. Number 9. Springer, 2010.

[33] Y. Jia and M. Harman. An analysis and survey of the development of mu-
tation testing. IEEE Transactions of Software Engineering, 37(5):649–
678, 2011.

[34] Y. Jia and M. Harman. Mutation testing repository. Last accessed: April
2012. http://www.dcs.kcl.ac.uk/pg/jiayue/repository.

[35] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25 years of testing
technique experiments. Empirical Softw. Engg., 9:7–44, 2004.

[36] B. Kitchenham, D. Budgen, and P. Brereton. The value of mapping stud-
ies - a participant-observer case study. In PProceedings of Evaluation
and Assessment in Software Engineering, 2010.

[37] B. Kitchenham and S. Charters. Guidelines for performing system-
atic literature reviews in software engineering. Technical Report EBSE
2007-001, Keele University and Durham University Joint Report, 2007.

[38] B. Kitchenham, T. Dyba, and M. Jorgensen. Evidence-based software
engineering. In Proceedings. 26th International Conference on Software
Engineering (ICSE), pages 273–281. IEEE Computer Society, 2004.

[39] B. A. Kitchenham, D. Budgen, and O. P. Brereton. Using mapping stud-
ies as the basis for further research: A participant-observer case study.
Journal of Information and Software Technology, 53:638–651, 2011.

[40] B. Marin, T. Vos, G. Giachetti, A. Baars, and P. Tonella. Towards testing
future web applications. In Proceedings 5th International Conference on
Research Challenges in Information Science (RCIS), pages 1–12. IEEE,

2011.
[41] P. McMinn. Search-based software test data generation: a survey. Soft-

ware Testing, Verification and Reliability, 14(2), 2004.
[42] P. McMinn. Search-based software test data generation: a survey: Re-

search articles. Softw. Test. Verif. Reliab., 14:105–156, 2004.
[43] A. M. Memon and B. N. Nguyen. Advances in automated model-based

system testing of software applications with a GUI front-end. In Ad-
vances in Computers, volume 80. Academic Press, 2010.

[44] C. R. L. Neto, P. A. da Mota Silveira Neto, E. S. de Almeida, and S. R.
de Lemos Meira. A mapping study on software product lines testing
tools. In Proceedings of International Conference on Software Engi-
neering and Knowledge Engineering, 2012.

[45] M. Palacios, J. Garcı́a-Fanjul, and J. Tuya. Testing in service oriented
architectures with dynamic binding: A mapping study. Inf. Softw. Tech-
nol., 53:171–189, 2011.

[46] C. S. Pasareanu and W. Visser. A survey of new trends in symbolic
execution for software testing and analysis. Int. J. Softw. Tools Technol.
Transf., 11(4):339–353, 2009.

[47] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping
studies in software engineering. In 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), pages 71–
80, 2008.

[48] J. Ren and R. N. Taylor. Automatic and versatile publications rank-
ing for research institutions and scholars. Communications of the ACM,
50(6):81–85, 2007.

[49] A. van Deursen and A. Mesbah. Research issues in the automated test-
ing of Ajax applications. In Proceedings 36th International Conference
on Current Trends in Theory and Practice of Computer Science (SOF-
SEM’10), volume 5901 of Lecture Notes in Computer Science, pages
16–28. Springer-Verlag, 2010.

[50] J. A. Whittaker. Exploratory Software Testing. Pearson Education, 2009.
[51] Z. Zakaria, R. Atan, A. Ghani, and N. Sani. Unit testing approaches for

bpel: a systematic review. In Proceedings of the Asia-Pacific Software
Engineering Conference, 2009.

[52] Y. Zhang. Repository of publications on search based software engineer-
ing, Last accessed: April 2012. http://crestweb.cs.ucl.ac.uk/

resources/sbse_repository/.

Systematic Mapping References (79 papers)

[53] M. Alalfi, J. Cordy, and T. Dean. Automating coverage metrics for dy-
namic web applications. In Proceedings of the 14th European Confer-
ence on Software Maintenance and Reengineering (CSMR), pages 51–
60. IEEE Computer Society, 2010.

[54] N. Alshahwan and M. Harman. Automated session data repair for web
application regression testing. In Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation (ICST),
pages 298–307. IEEE Computer Society, 2008.

[55] N. Alshahwan, M. Harman, R. Marchetto, and P. Tonell. Improving web
application testing using testability measures. In Proceedings of 11th
IEEE International Symposium on Web Systems Evolution (WSE), pages
49–58. IEEE Computer Society, 2009.

[56] D. Amalfitano, A. R. Fasolino, and P. Tramontana. Rich internet appli-
cation testing using execution trace data. In Proceedings of the 3rd In-
ternational Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), pages 274–283. IEEE Computer Society, 2010.

[57] D. Amyot, J. Roy, and M. Weiss. UCM-driven testing of web appli-
cations. In Proceedings of the 12th International SDL Forum, pages
247–264. Springer, 2005.

[58] A. Andrews, J. Offutt, and R. Alexander. Testing web applications
by modeling with FSMs. Software Systems and Modeling (SoSYM,
4(3):326–345, July 2005.

[59] A. Andrews, J. Offutt, C. Dyreson, C. Mallery, K. Jerath, and R. Alexan-
der. Scalability issues with using FSMWeb to test web applications. In-
formation and Software Technology (IST), 52(1):52–66, January 2010.

[60] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework for
automated testing of javascript web applications. In Proceeding of the
33rd international conference on Software engineering, ICSE ’11, pages
571–580. ACM, 2011.

[61] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical fault localization
for dynamic web applications. In Proceedings of the 32nd ACM/IEEE

24

International Conference on Software Engineering (ICSE), pages 265–
274. ACM, 2010.

[62] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, and A. Paradkar. Finding
bugs in dynamic web applications. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages 261–272.
ACM, 2008.

[63] H. Bajwa, W. Xiong, and F. Maurer. Evaluating current testing pro-
cesses of web-portal applications. In Proceedings of the International
Conference Web Engineering (ICWE), pages 603–605. Springer, 2005.

[64] C. Bellettini, A. Marchetto, and A. Trentini. TestUml: User-metrics
driven web applications testing. In Proceedings of the 2005 ACM Sym-
posium on Applied Computing (SAC), pages 1694–1698. ACM, 2005.

[65] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically test-
ing dynamic web sites. In Proceedings of the 11th International World
Wide Web Conference (WWW). ACM, 2002.

[66] B. Bordbar and K. Anastasakis. MDA and analysis of web applications.
In Proceedings of the 2nd International Conference on Trends in Enter-
prise Application Architecture (TEAA), pages 44–55. Springer, 2006.

[67] E. C. B. de Matos and T. Sousa. From formal requirements to automated
web testing and prototyping. Innovations in Systems and Software En-
gineering (ISSE), 6(1-2):163–169, January 2010.

[68] K. Dobolyi, E. Soechting, and W. Weimer. Automating regression test-
ing using web-based application similarities. International Journal on
Software Tools for Technology Transfer (STTT), 13(9):111–129, April
2011.

[69] K. Dobolyi and W. Weimer. Modeling consumer-perceived web applica-
tion fault severities for testing. In Proceedings of the 19th International
Symposium on Software Testing and Analysis (ISSTA), pages 97–106.
ACM, 2010.

[70] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II. Leveraging user-
session data to support web application testing. IEEE Trans. Softw. Eng.,
31(3):187–202, 2005.

[71] J. Ernits, R. Roo, J. Jacky, and M. Veanes. Model-based testing of web
applications using NModel. In Proceedings of IFIP International Con-
ference on Testing of Software and Communication Systems and Interna-
tional FATES Workshop (TESTCOM-FATES), pages 211–216. Springer,
2009.

[72] T. Ettema and C. Bunch. Eliminating navigation errors in web applica-
tions via model checking and runtime enforcement of navigation state
machines. In Proceedings of the IEEE/ACM International Conference
on Automated Software (ASE), pages 235–244. ACM, 2010.

[73] Y. Gerlits. Testing ajax functionality with UniTESK. In Proceedings
of the 4th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE), pages 50–57, 2010.

[74] H. B. K. T. H. Liu. Testing input validation in web applications through
automated model recovery. Journal of Systems and Software (JSS),
81(2):222–233, 2008.

[75] h. Raffelt, B. Steffen, T. Margaria, and M. Merten. Hybrid test of web
applications with webtest. In Proceedings of the Workshop on Testing,
Analysis, and Verification of Web Services and Applications (TAV-WEB),
pages 1–7. ACM, 2008.

[76] W. Halfond, S. Anand, and A. Orso. Precise interface identification
to improve testing and analysis of web applications. In Proceedings of
the eighteenth international symposium on Software testing and analysis
(ISSTA’09), pages 285–296. ACM, 2009.

[77] W. Halfond and A. Orso. Improving test case generation for web appli-
cations using automated interface discovery. In Proceedings of the 6th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineer-
ing (ESEC-FSE), pages 145–154. ACM, 2007.

[78] W. Halfond and A. Orso. Automated identification of parameter mis-
matches in web applications. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing (FSE), pages 181–191. ACM, 2008.

[79] J. Hao and E. Mendes. Usage-based statistical testing of web applica-
tions. In Proceedings of the 6th International Conference on Web Engi-
neering (ICWE), pages 17–24. ACM, 2006.

[80] S. H. Jensen, M. Madsen, and A. Moller. Modeling the HTML DOM
and browser API in static analysis of JavaScript web applications. In
Proceedings of ACM SIGSOFT Symposium and European conference on
Foundations of Software Engineering (ESEC-FSE), pages 59–69. ACM,

2011.
[81] C. Kallepalli and J. Tian. Measuring and modeling usage and reliability

for statistical web testing. IEEE Transactions on Software Engineering
(TSE), 27(11):1023–1036, November 2001.

[82] P. Koopman, P. Achten, and R. Plasmeijer. Model-based testing of thin-
client web applications and navigation input. In Proceedings of the 10th
International Conference on Practical Aspects (PADL), pages 299–315.
Springer, 2008.

[83] N. Li, T. Xie, M. Jin, and C. Liu. Perturbation-based user-input-
validation testing of web applications. Journal of Systems and Software
(JSS), 83(11):2263–2274, November 2010.

[84] D. Licata and S. Krishnamurthi. Verifying interactive web programs.
In Proceedings of the 19th International Conference on Automated Soft-
ware Engineering (ASE), pages 164–173. IEEE Computer Society, 2004.

[85] C. Liu. Data flow analysis and testing of JSP-based web applications.
Information and Software Technology (IST), 48(12):1137–1147, Decem-
ber 2006.

[86] G. D. Lucca, A. Fasolino, and F. Faralli. Testing web applications. In
Proceedings of the International Conference on Software Maintenance
(ICSM), pages 310–319. IEEE Computer Society, 2002.

[87] G. D. Lucca, A. Fasolino, and P. Tramontana. A technique for reducing
user session data sets in web application testing. In Proceedings of the
8th IEEE International Symposium on Web Site Evolution (WSE), pages
7–13. IEEE Computer Society, 2006.

[88] X. Luo, F. Ping, and M. Chen. Clustering and tailoring user session data
for testing web applications. In Proceedings of the International Con-
ference on Software Testing Verification and Validation (ICST), pages
336–345. IEEE Computer Society, 2009.

[89] N. Mansour and M. Houri. Testing web applications. Information and
Software Technology (IST), 48(1):31–42, January 2006.

[90] A. Marchetto. Talking about a mutation-based reverse engineering for
web testing: A preliminary experiment. In Proceedings of the 2008 Sixth
International Conference on Software Engineering Research, Manage-
ment and Applications (SERA), 161–168. IEEE Computer Society, 2008.

[91] A. Marchetto, F. Ricca, and P. Tonella. Empirical validation of a web
fault taxonomy and its usage for fault seeding. In Proceedings of the
9th IEEE International Workshop on Web Site Evolution (WSE), pages
31–38. IEEE Computer Society, 2007.

[92] A. Marchetto, F. Ricca, and P. Tonella. A case study-based compari-
son of web testing techniques applied to AJAX web applications. In-
ternational Journal on Software Tools for Technology Transfer (STTT),
10(6):477–492, October 2008.

[93] A. Marchetto, R. Tiella, P. Tonella, N. Alshahwan, and M. Harman.
Crawlability metrics for automated web testing. International Journal
on Software Tools for Technology Transfer (STTT), 13(2):131–149, April
2011.

[94] A. Marchetto and P. Tonella. Using search-based algorithms for ajax
event sequence generation during testing. Empirical Software Engineer-
ing (ESE), 16(1):103–140, February 2011.

[95] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web
applications. In Proceedings of the 1st International Conference on Soft-
ware Testing, Verification, and Validation (ICST), pages 121–130. IEEE
Computer Society, 2008.

[96] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proceeding of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 561–570. ACM, 2011.

[97] A. Mesbah and A. van Deursen. Invariant-based automatic testing of
Ajax user interfaces. In Proc. of the 31st Int. Conference on Software
Engineering (ICSE’09), pages 210–220. IEEE Computer Society, 2009.

[98] Y. Minamide. Static approximation of dynamically generated web
pages. In Proceedings of the 14th International Conference on World
Wide Web (WWW), pages 432–441. ACM, 2005.

[99] J. Offutt and Y. Wu. Modeling presentation layers of web applications
for testing. Software Systems Modeling (SoSYM), 9(2):257–280, January
2010.

[100] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of web applica-
tions. In Proceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE), pages 187–197. IEEE Computer Soci-
ety, 2004.

[101] M. Ozkinaci and A. betin Can. Detecting execution and html errrors
in ASP.Net web applications. In Proceedings of the 6th International

25

Conference on Software and Data Technologies (ICSOFT), pages 172–
178, 2011.

[102] K. Pattabiraman and B. Zorn. DoDOM: Leveraging DOM invariants for
Web 2.0 application robustness testing. In Proceedings of thel Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society, 2010.

[103] U. Praphamontripong and J. Offutt. Applying mutation testing to
web applications. In Proceedings of the 3rd International Conference
on Software Testing, Verification, and Validation Workshops (ICSTW),
pages 132–141, 2010.

[104] Y. Qi, D. Kung, and E. Wong. An agent-based data-flow testing ap-
proach for web applications. Information and Software Technology
(IST), 48(12):1159–1171, December 2006.

[105] L. Ran, C. Dyreson, A. Andrews, R. Bryce, and C. Mallery. Building test
cases and oracles to automate the testing of web database applications.
Information and Software Technology (IST), 51(2):460–477, February
2009.

[106] F. Ricca and P. Tonella. Analysis and testing of web applications. In Pro-
ceedings of the 23rd International Conference on Software Engineering
(ICSE), pages 25–34. IEEE Computer Society, 2001.

[107] F. Ricca and P. Tonella. Construction of the system dependence graph for
web application slicing. In Proceedings of the 2nd IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM), pages
123–132. IEEE Computer Society, 2002.

[108] F. Ricca and P. Tonella. Testing processes of web applications. Annals
of Software Engineering (ASE), 14(1-4):93–114, December 2002.

[109] D. Roest, A. Mesbah, and A. van Deursen. Regression testing ajax appli-
cations: Coping with dynamism. In Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation (ICST’10),
pages 128–136. IEEE Computer Society, 2010.

[110] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A. G. Koru.
Prioritizing user-session-based test cases for web application testing. In
Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation (ICST), pages 141–150. IEEE Computer So-
ciety, 2008.

[111] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. A scalable approach
to user-session based testing of web applications through concept anal-
ysis. In Proceedings of the 19th IEEE International Conference on Au-
tomated Software Engineering (ASE), pages 132–141. IEEE Computer
Society, 2004.

[112] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Integrating cus-
tomized test requirements with traditional requirements in web applica-
tion testing. In Proceedings of the Workshop on Testing, Analyis and
Verification of Web Services and Applications (TAV-WEB, pages 23–32.
ACM, 2006.

[113] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Web application
testing with customized test requirements - an experimental comparison
study. In Proceedings of the 17th International Symposium on Software
Reliability Engineering (ISSRE), pages 266–278. IEEE Computer Soci-
ety, 2006.

[114] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Applying concept
analysis to user-session-based testing of web applications. IEEE Trans-
actions on Software Engineering (TSE), 33(10):643–658, October 2007.

[115] S. Sampath, V.Mihaylov, A. Souter, and L. Pollock. Composing a frame-
work to automate testing of operational web-based software. In Pro-
ceedings of the 20th IEEE International Conference on Software Main-
tenance (ICSM), pages 104–113. IEEE Computer Society, 2004.

[116] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In Proceedings of the
31st IEEE Symposium on Security and Privacy (SP), pages 513–528.
IEEE Computer Society, 2010.

[117] E. D. Sciascio, F. Donini, M. Mongiello, R. Totaro, and D. Castelluccia.
Design verification of web applications using symbolic model checking.
In Proceedings of the 5th International Conference Web Engineering
(ICWE), pages 69–74. Springer, 2005.

[118] S. Sprenkle, H. Esquivel, B. Hazelwood, and L. Pollock. WebVizOr:
A visualization tool for applying automated oracles and analyzing test
results of web applications. In Proceedings of the Testing: Academic
and Industrial Conference - Practice and Research Techniques (TAIC-
PART), pages 89–93. IEEE Computer Society, 2008.

[119] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott. Auto-

mated oracle comparators for testing web applications. In Proceedings
of the 18th IEEE International Symposium on (ISSRE), pages 117–126.
IEEE Computer Society, 2007.

[120] S. Sprenkle, L. Pollocky, and L. Simko. A study of usage-based navi-
gation models and generated abstract test cases for web applications. In
Proceedings of the 4th IEEE International Conference on Software Test-
ing, Verification and Validation (ICST), pages 230–239. IEEE Computer
Society, 2011.

[121] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and A. Souter. An
empirical comparison of test suite reduction techniques for user-session-
based testing of web applications. In Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance (ICSM), pages 587–596.
IEEE Computer Society, 2005.

[122] B. Stepien, L. Peyton, and P. Xiong. Framework testing of web ap-
plications using TTCN-3. International Journal on Software Tools for
Technology Transfer (STTT), 10(4):371–381, 2008.

[123] A. Tappenden and J. Miller. Cookies: A deployment study and the test-
ing implications. ACM Transactions on the Web (TWEB), 3(3):1–49,
June 2009.

[124] J. Tian and L. Ma. Web testing for reliability improvement. Advances in
Computers, 67:178–225, 2006.

[125] P. Tonella and F. Ricca. A 2-layer model for the white-box testing of web
applications. In Proceedings of the 6th IEEE International Workshop on
Web Site Evolution (WSE), pages 11–19. IEEE Computer Society, 2004.

[126] P. Tonella and F. Ricca. Statistical testing of web applications. Journal of
Software Maintenance and Evolution: Research and Practice (JSME),
16(1-2):103–127, January 2004.

[127] P. Tonella and F. Ricca. Web application slicing in presence of dynamic
code generation. Automated Software Engineering (ASE), 12(2):259–
288, April 2005.

[128] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su.
Dynamic test input generation for web applications. In Proceedings of
the International symposium on Software testing and analysis (ISSTA),
pages 249–260. ACM, 2008.

[129] W. Xiong, H. Bajwa, and F. Maurer. WIT: A framework for in-container
testing of web-portal applications. In Proceedings of the 5th Interna-
tional Conference on Web Engineering (ICWE), pages 87–97. Springer,
2005.

[130] J. Yang, J. Huang, F. Wang, and W. Chu. Constructing an object-oriented
architecture for web application testing. Journal of Information Science
and Engineering (JISE), 18(1):59–84, January 2002.

[131] Y. Zheng, T. Bao, and X. Zhang. Statically locating web application bugs
caused by asynchronous calls. In Proceedings of the 20th International
Conference on World Wide Web (WWW), pages 805–814. ACM, 2011.

26

