
Information and Software Technology xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Change impact analysis for requirements: A metamodeling approach
http://dx.doi.org/10.1016/j.infsof.2014.03.002
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +352 4666445572.
E-mail addresses: arda.goknil@uni.lu (A. Goknil), ivan.kurtev@nspyre.nl (I.

Kurtev), vdberg.nl@gmail.com (K. van den Berg), weedz@frummel.org (W. Spijker-
man).

Please cite this article in press as: A. Goknil et al., Change impact analysis for requirements: A metamodeling approach, Inform. Softw. Technol.
http://dx.doi.org/10.1016/j.infsof.2014.03.002
Arda Goknil a,⇑, Ivan Kurtev b, Klaas van den Berg c, Wietze Spijkerman c

a SnT Centre, University of Luxembourg, Luxembourg
b Nspyre, Dillenburgstraat 25-3, 5652 AM Eindhoven, The Netherlands
c Software Engineering Group, University of Twente, 7500 AE Enschede, The Netherlands
a r t i c l e i n f o

Article history:
Received 9 October 2013
Received in revised form 11 March 2014
Accepted 12 March 2014
Available online xxxx

Keywords:
Requirements metamodel
Change impact analysis
Proposing and propagating changes
a b s t r a c t

Context: Following the evolution of the business needs, the requirements of software systems change
continuously and new requirements emerge frequently. Requirements documents are often textual arti-
facts with structure not explicitly given. When a change in a requirements document is introduced, the
requirements engineer may have to manually analyze all the requirements for a single change. This may
result in neglecting the actual impact of a change. Consequently, the cost of implementing a change may
become several times higher than expected.
Objective: In this paper, we aim at improving change impact analysis in requirements by using formal
semantics of requirements relations and requirements change types.
Method: In our previous work we present a requirements metamodel with commonly used requirements
relation types and their semantics formalized in first-order logic. In this paper the classification of
requirements changes based on structure of a textual requirement is provided with formal semantics.
The formalization of requirements relations and changes is used for propagating proposed changes and
consistency checking of proposed changes in requirements models. The tool support for change impact
analysis in requirements models is an extension of our Tool for Requirements Inferencing and Consis-
tency Checking (TRIC).
Results: The described approach for change impact analysis helps in the elimination of some false posi-
tive impacts in change propagation, and enables consistency checking of changes.
Conclusion: We illustrate our approach in an example which shows that the formal semantics of require-
ments relations and change classification enables change alternatives to be proposed semi-automatically,
the reduction of some false positive impacts and contradicting changes in requirements to be
determined.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

At the present day, software systems get more and more com-
plex. Following the evolution of the business needs, the require-
ments of software systems change continuously and new
requirements emerge frequently. The integration of the new and/
or modified requirements with the existing ones poses a need for
adapting the architecture and source code of the software system
in order to satisfy the new set of requirements. The integration
of the new/modified requirements and adaptations to the software
system is called change management. The size and complexity of
software systems make change management costly and time
consuming. It has been reported that 85–90 percent of software
system budgets goes to operation and maintenance [27]. To reduce
the cost of changes, it is important to apply change management as
early as possible in the software development cycle. When changes
in the requirements are proposed, the impact of these changes on
other requirements, design elements and source code needs to be
analyzed in order to determine parts of the software system to
be changed. Determining the impact of changes on other develop-
ment artifacts is called change impact analysis. In this paper we fo-
cus on change impact analysis in requirements only.

When a change is introduced to a requirement, the require-
ments engineer needs to find out if any other requirement related
to the changed one is impacted. The structure of the requirements
specification is crucial in this process. In practice, requirements
documents are often textual artifacts with implicit structure. Most
relations among requirements are not encoded explicitly [48]. It is
time consuming and error prone to manually identify these
(2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002
mailto:arda.goknil@uni.lu
mailto:ivan.kurtev@nspyre.nl
mailto:vdberg.nl@gmail.com
mailto:weedz@frummel.org
http://dx.doi.org/10.1016/j.infsof.2014.03.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2014.03.002

2 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
relations and to follow them in order to determine impacted
requirements. Several commercial tools use a semi-structured for-
mat of requirements documents and provide support for automatic
change impact analysis. IBM Rational RequisitePro [44] and DOORS
[45] are some of the most commonly used tools with such support.
Although these tools represent requirements relations explicitly,
the provided information is often too general and the analysis re-
sults may be not satisfactory. For example, when a requirement
is changed in RequisitePro, relations of the changed requirement
are marked as suspect by the tool. RequisitePro provides two gen-
eral relation types that indicate only the direction of relations:
traceFrom and traceTo. These types do not indicate the meaning
of the dependency between requirements. All requirements reach-
able from the changed requirement (by following the suspect rela-
tions) are potentially impacted. Without semantic information that
precisely determines how a change propagates through the rela-
tions, the requirements engineer generally has to assume the worst
case scenario where all related requirements are impacted. This
type of analysis often produces a high number of false positive im-
pacted elements.

Bohner [5–7] describes this situation as explosion of impacts
without semantics. He states that change impact analysis must em-
ploy additional semantic information to increase the accuracy by
eliminating false positives.

Several approaches use models to express requirements specifi-
cations. Most of them follow the goal-oriented paradigm [91], for
example i� and KAOS, where requirements are given as goal mod-
els. In these approaches, requirements relations have well defined
semantics that allow a higher precision in change impact analysis.
Unfortunately, this way of specification is not yet a part of the
mainstream industrial practice. Many software companies still rely
on specifications in the form of textual documents and use cases. In
this paper we describe change impact analysis techniques on
requirements that are still specified textually but are extended
with several types of well-defined requirements relations.

In our previous work [38,36], we use a representation of
requirements and the relations among them as models conforming
to a requirements metamodel. The metamodel contains concepts
commonly found in the literature and that reflect how most
requirements documents are structured. The most important ele-
ments in the metamodel are requirements relations and their
types. The semantics of these elements is given in First Order Logic
(FOL) and allows two activities. First, new relations among require-
ments can be inferred from the initial set of relations. Second,
requirements models can be automatically checked for consistency
of the relations. Tool for Requirements Inferencing and Consistency
Checking (TRIC) [38,92] is developed to support both activities.
The details about the metamodel, the semantics and the tool are al-
ready reported in [38]. In [38] we also thoroughly study how to
manually identify and assign initial relations between require-
ments. In this paper we extend these results with a technique for
change impact analysis in requirements models.

The technique uses the formal semantics of requirements rela-
tions and a classification of requirements changes. Three activities
for impact analysis are supported. First, the requirements engineer
proposes changes according to the change classification before
implementing the actual changes. Second, the requirements engi-
neer identifies the propagation of the changes to related require-
ments. Possible alternatives in the propagation are determined
based on the semantics of change types and requirements rela-
tions. Third, possible contradicting changes are identified. We ex-
tended the tool TRIC to support these activities. The tool
automatically determines the change propagation paths, checks
the consistency of the changes, and suggests alternatives for imple-
menting the changes. There are different rationales for require-
ments changes (e.g., refactoring and domain changes). Our focus in
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
this paper is the requirements changes fostered by the evolution
of the business needs since they have an impact on other software
development artifacts like software architecture, detailed design
and source code. We name these changes as domain changes. The
described approach for change impact analysis helps in the elimi-
nation of some false positive impacts in change propagation, and
enables consistency checking of changes.

This paper is organized as follows. In Section 2 we illustrate an
example impact analysis with and without using semantics. Sec-
tion 3 briefly introduces the elements of requirements models. This
is required for understanding the impact analysis process. Section 4
presents the classification of changes in requirements. Section 5
explains our solution for change impact analysis based on change
propagation and consistency checking. The tool support for change
propagation activities is illustrated in Section 6. Section 7 illus-
trates the approach with an example. In Section 8 we give a brief
discussion for the overall approach. Section 9 compares our work
with the existing results. Section 10 concludes the paper.
2. The importance of semantics for change impact analysis

We perform impact analysis on an example problem with and
without using semantics of requirements relations. Table 1 gives
some requirements in a requirements document for a Course Man-
agement System (CMS) used as a working example in this paper.
The CMS is used in educational institutions and has features such
as notification of students about exam grades and messaging for
communication. The CMS requirements document contains 122
requirements in total. Part of the document is given in Appendix A.

Assume that the requirements and their relations are handled
in a tool like IBM RequisitePro, that is, only very generic relation
types like traceFrom and traceTo can be assigned. Fig. 1 shows the
requirements directly and indirectly related to the requirement
R7 with a distance 2. The distance is the number of relations be-
tween two requirements. The relations have to be assigned by
the requirements engineer.

We will analyze the following change to R7.
re
R7: The system shall provide a messaging facility.
Proposed Change is the following.
Change: Add a constraint to the property messaging

facility

Description of Change: Messaging facility should also

contain sms and e-mail features
For this change, R18 is directly impacted and R74 has an indi-
rect impact (depending on the change in R18). By using the transi-
tive closure of the relations we can obtain all indirectly impacted
requirements for a given change. It is clear that if the graph of
the requirements model is connected then every requirement will
be indirectly impacted by any change in any other requirement. In
general, the distance between software artifacts has been proposed
as a measure for the chance to have an impact [5]. The notion of
distance explains how the number of impacts explodes for require-
ments (see Fig. 2).

Fig. 2 shows some of the requirements directly/indirectly re-
lated to R7 at distances of 1, 2, 3 and 4. The requirements indirectly
related to R7 at distances of 2, 3 and 4 (see Fig. 2(b), (c) and (d)) are
candidates for inspection in RequisitePro. As can be seen, the num-
ber of potentially impacted requirements (or suspects) might rap-
idly grow. The manual inspection may be unfeasible for large
documents. In the following we give the analysis of two require-
ments directly related to R7.
quirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Table 1
Some requirements for the CMS.

R1: The system shall provide static course information
R4: The system shall provide dynamic course information
R7: The system shall provide a messaging facility
R8: The system shall enable students to retrieve contact information of students and lecturers of subscribed courses
R11: The system shall enable students to subscribe/unsubscribe to courses
R16: The system shall allow messages to be sent to individuals, teams, or all course participants at once
R17: The system shall allow students to create teams
R18: Teams are created by students inviting other students in the same course using the messaging system
R24: The system shall notify students about events (new messages posted, team invites, scheduled exams etc.)
R25: The system shall allow students to customize the notification behavior
R72: The system shall allow only lecturers to manage student teams
R74: The system shall allow only lecturers to create new teams
R117: The system shall allow the student office to ask the students to evaluate courses by means of a web-survey

Fig. 1. Requirements related to R7 with distance of 2 in RequisitePro.

Fig. 2. Some of the requirements directly/indirectly related to R7 in RequisitePro.

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 3

Please cite this article in press as: A. Goknil et al., Change impact analysis for requirements: A metamodeling approach, Inform. Softw. Technol. (2014),
http://dx.doi.org/10.1016/j.infsof.2014.03.002

http://dx.doi.org/10.1016/j.infsof.2014.03.002

4 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx

Pl
h

R16: The system shall allow messages to be sent to indi-
viduals, teams, or all course participants at once.

R18: Teams are created by students inviting other stu-

dents in the same course using the messaging system.
Sending messages via either sms or e-mail does not have any im-
pact on the creation of teams. Therefore, R18 is not impacted by the
change in R7. R16 is a refined version of R7. It adds details about
who should receive messages. The new constraint may have an im-
pact on R16. For example, if a mobile phone number is optional in
the system, it may not be possible to send an sms message.

In this example for some cases changes are not propagated via a
given relation. The meaning of the relation between R7 and R18 to-
gether with the type of the change in R7 can determine if there is
any propagation. R18 requires R7 (a need for messaging) and the
change in R7 does not remove the general messaging facility.
Therefore we can conclude that the change in R7 does not lead
to any changes in R18.

The example shows the importance of semantics of relations for
change impact analysis. The impact analysis without semantics re-
sults in false positives. Using semantics, some of the false positives
are removed. The challenge is to capture the semantics, the type of
change and how they combine in order to detect change propagation.

3. Requirements metamodel

Our requirements metamodel contains common entities identi-
fied in the literature for requirements models. In order to con-
struct our metamodel we investigated and benefited from
several approaches which are commonly used to define and repre-
sent requirements: goal-oriented [91,67], aspect-driven [76], vari-
ability management [66], use-case [19], domain-specific [74,50],
and reuse-driven techniques [60]. The main elements in the
requirements metamodel are Requirement and Relationship (see
-name : String
RequirementsModel

-ID : Integer
-name : String
-description : String
-priority : Priority
-status : Status

Requirement

1

*

1

-source

1

-target

1..*

-fromTarget

ReRequires

+proposed
+analyzed
+accepted
+rejected
+replaced

«enumeration»
Status

+neutral
+lowCritical
+critical
+veryCritical

«enumeration»
Priority

Fig. 3. Requiremen

ease cite this article in press as: A. Goknil et al., Change impact analysis for
ttp://dx.doi.org/10.1016/j.infsof.2014.03.002
Fig. 3). The metamodel defines the Requirement entity with its
attributes and relations between requirements. In this paper we
do not show other entities such as goals, stakeholders, and test
cases.

Requirements and their relations are captured in a requirements
model. Based on [85], a requirement is defined as follows:

Definition 1. Requirement: A requirement is a description of a
system property or properties which need to be fulfilled.

We identified five types of relations: requires, refines, contains,
partially refines, and conflicts. These relations are informally defined
as follows.

Definition 2. Requires relation: A requirement R1 requires a
requirement R2 if R1 is fulfilled only when R2 is fulfilled.

The required requirement can be seen as a pre-condition for the
requiring requirement.

Definition 3. Refines relation: A requirement R1 refines a require-
ment R2 if R1 is derived from R2 by adding more details to its
properties.

The refined requirement can be seen as an abstraction of the
refining requirements.

Definition 4. Contains relation: A requirement R1 contains require-
ments R2. . . Rn if R2 . . . Rn are parts of the whole R1 (part-whole
hierarchy).

This relationship enables a complex requirement to be decom-
posed into parts. A composite requirement may state that the sys-
tem shall do A and B and C, which can be decomposed into the
requirements that the system shall do A, the system shall do B,
and the system shall do C. For this relation, all parts are required
in order to fulfill the composing requirement.

Definition 5. Partially refines relation: A requirement R1 partially
refines a requirement R2 if R1 is derived from R2 by adding more details
to properties of R2 and excluding the unrefined properties of R2.
-name : String
Relationship

*-fromSource

fines Conflicts ContainsPartiallyRefines

ts metamodel.

requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 4. Instance of the requirements metamodel for some CMS requirements.

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 5
Our assumption here is that R2 can be decomposed into other
requirements and that R1 refines a subset of these decomposed
requirements. This relation can be described as a combination of
contains and refines relations. It is mainly drawn from the decom-
position of goals (and-decomposition) in goal-oriented require-
ments engineering [91].

Definition 6. Conflicts relation: A requirement R1 conflicts with a
requirement R2 if the fulfillment of R1 excludes the fulfillment of R2

and vice versa.

In this paper, we consider conflicts as a binary relation. Our ap-
proach can be extended to n-ary conflicts relations, that is, conflicts
among multiple requirements, as a whole without excluding pairs
of requirements to be fulfilled.

The definitions given above are informal. Supplementary Mate-
rial A1 presents the formal semantics of requirements and relations.
The reader is also referred to [32,38] for the formalization.

Fig. 4 gives an instance of the requirements metamodel for
some of the CMS requirements.
1

Su

Pl
ht
R7: The system shall provide a messaging facility.
R16: The system shall allow messages to be sent to indi-

viduals, teams, or all course participants at once.

R18: Teams are created by students inviting other stu-

dents in the same course using the messaging system.

R74: The system shall allow only lecturers to create new

teams.
It should be noted that realistic requirements specifications
contain additional elements like definitions, dictionaries, asser-
tions, identity, etc. [95]. The model used here is a simplification
built for the purpose of analyzing requirements which represent
system properties and their relations for change impact analysis.
h t t p : / / w w w - s o p . i n r i a . f r / m e m b e r s / A r d a . G o k n i l / i m p a c t /
pplementaryMaterialA.pdf.

ease cite this article in press as: A. Goknil et al., Change impact analysis for
tp://dx.doi.org/10.1016/j.infsof.2014.03.002
4. Classification of changes in requirements

Our technique for change impact analysis uses a classification of
changes in requirements and the semantics of requirements rela-
tions. Requirements changes are analyzed and classified based on
an assumption about a very general structure of textual require-
ment. The change types are formalized by giving their effects in
terms of changes in the formula that represents a requirement.
For readability in this section we give the classification of changes
with the semantics of only one change type. We discuss the ratio-
nale of changes at the end of the section. The formal semantics of
the change types and their rationale can be found in Supplemen-
tary Material B.2 The reader is also referred to [32] for the
formalization.

4.1. Structure of a textual requirement

We need to consider a general enough structure of a require-
ment to determine the granularity of changes that can be applied.
Our definition of a requirement is ‘‘a textual requirement is a
description of a property or properties which must be exhibited
by the system’’ (see Fig. 5).
2

Su

req
Example: Structure of Requirement based on the definition

R98: The system shall allow only the administration to cre-

ate new courses.
We can identify the following structure of R98 by

following Fig. 5:

Property: The system shall provide the functionality of

creating courses to only the administration

Constraint: Only the administrator users can create

courses
h t t p : / / w w w - s o p . i n r i a . f r / m e m b e r s / A r d a . G o k n i l / i m p a c t /
pplementaryMaterialB.pdf.

uirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialA.pdf
http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialA.pdf
http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialB.pdf
http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialB.pdf
http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 5. Structure of a textual requirement based on the definition of a requirement.

Table 2
Requirements change types.

Change types

� Add a new requirements relation
� Delete requirements relation
� Update requirements relation
� Add a new requirement
� Delete requirement
� Update requirement

– Add property to requirement
– Add constraint to property of requirement
– Change property of requirement
– Change constraint of property of requirement
– Delete property of requirement
– Delete constraint of property of requirement

6 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
4.2. Change types for requirements models

The change types for requirements models are derived from the
structure in Fig. 5 and from the requirements metamodel in Fig. 3
(see Table 2).

The first five change types in Table 2 are obvious manipulations
over the requirements model. The subtypes of ‘Update Require-
ment’ are obtained from the structure of a textual requirement in
Section 4.1.

4.2.1. Update requirement
We use the symbol ´, to denote updates in requirements in the

following way: R ´ Rl denotes a change where R is the requirement
before the change and Rl is the requirement after the change. The
subtypes of ‘Update Requirement’ are denoted by using a notation
over the symbol ´. Update of a requirement R is done:

� By adding the property pt to the requirement R, denoted as

R #
þpt

Rl.
� By deleting the property pt of the requirement R, denoted as

R #
�pt

Rl.
� By changing the property pt of the requirement R with the prop-

erty ptl, denoted as R #
pt#ptl

Rl.
� By adding the constraint ct to the property pt of the requirement

R, denoted as R #
þct

Rl.
� By deleting the constraint ct of the property pt of the require-

ment R, denoted as R #
�ct

Rl.
� By changing the constraint ct of the property pt of the

requirement R with the constraint ctl, denoted as R #
ct#ctl

Rl.

4.3. Semantics of requirements changes

The semantics of the changes is given in first-order logic (FOL).
Requirements are interpreted as formulae in a fragment of FOL
where all the formulae are in a conjunctive normal form (CNF).
In the following we sketch the formalization of requirements and
we give the semantics of the change ‘‘Delete Property of Require-
ment’’. For the complete description of the semantics, the reader
is referred to Supplementary Material B.2
Please cite this article in press as: A. Goknil et al., Change impact analysis for re
http://dx.doi.org/10.1016/j.infsof.2014.03.002
Formalization of Requirements

We assume the general notion of requirement being ‘‘a

property which must be exhibited by a system’’. We

express the property as a formula P in FOL. We assume

that requirements can always be expressed in the univer-

sal fragment of FOL and a requirement is expressed as a

formula "xu with u in conjunctive normal form (CNF). If

the formula u is a closed formula, then the universal

quantifiers can be dropped. It is also possible that the for-

mula contains free variables.

According to the model theoretic semantics of FOL the

truth value of P is determined in a model M by using an

interpretation for the function and predicate symbols in P.

Let F be a set of function symbols and P a set of pred-

icate symbols, each symbol with a fixed arity. A model

M of the pair (F , P) consists of the following items [43]:

� a non-empty set A, the universe of concrete values

� for each 2 F with n arguments, a function M: An ? A
� for each P 2 P with n arguments, a set PM # An.

A satisfaction relation between the model M and the for-

mula P holds:
(1) M j ¼‘P
if P evaluates to True in the model M with respect to the

environment ‘ (i.e., a look-up table for free variables in P).

The model M together with ‘ in which P is true represents

a system s that satisfies the requirement. From now on, all

the formulae P that express properties will be in the form

where ("x = "x1"x2 . . . "xk):

(2) P = "x(p1 ^ � � � ^ pn), where n P 1

pn is a disjunction of literals which are atomic formulae

(atoms) or their negation. An atomic formula is a predicate

symbol applied over terms. In the rest of the paper we use

the notation (p1 . . . pn) for (p1 ^ � � � ^ pn).
quirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 7
In the following we give the semantics of the change ‘‘Delete
Property of Requirement’’.
4.4. Rationale of changes

The change types in Section 4.2 do not address why a change
needs to be performed in the requirements model, that is, what is
the rationale of changes. The impact of changes depends on their
rationale. For instance, the requirements engineer may delete a
property of a requirement because this property is not required
any more from the business/stakeholder point of view. The property
may be in other requirements in the model and it also has to be de-
leted from them. The requirements engineer may delete a property
of a requirement to improve the structure of the model without
modifying the overall system properties. In this situation, the prop-
erty must still hold in the requirements model after the change. The
property has to be kept at least in one of the requirements. There-
fore, we need to know the rationale of requirements changes in or-
der to determine the impact of changes in the whole model. We
classify the rationale of changes as refactoring and domain changes.

Buckley et al. [12] classify changes as semantics-preserving and
semantics-modifying. This classification concerns the semantics of
software components, such as type hierarchy, scoping, visibility,
accessibility, and overriding relationships. We adapt their classifi-
cation for requirements changes.

Van Lamsweerde [54] introduces requirements description
qualities such as good structuring and modifiability. The require-
ments engineer may change the requirements model to improve
the quality of the requirements description. For instance, a require-
ment may be decomposed into multiple requirements. These
changes are semantics-preserving according to [12] and we consider
their rationale as refactoring (see [30] for refactoring).

The evolution of requirements also foster changes to the
requirements model. We name these changes and their rationale
as domain changes. With the term ‘domain’ we mean the prob-
lem/business domain. Consider a requirements model that con-
tains a set of requirements for an online banking system in
Europe. Here, the domain is banking and a change request to adapt
the system to the USA is received. Then, all currency requirements
in the domain of banking are changed and these changes should be
reflected in the requirements model.

Refactoring. Refactoring is a change (changes) in the require-
ments model in order to improve the structure of the model with-
out modifying the overall system properties [30]. Changes to the
model caused by refactoring do not affect the properties in the
whole requirements model.

Domain changes. Domain changes are the changes in the
requirements model in order to modify the overall system proper-
ties. Changes to the model caused by domain changes do affect the
properties in the whole requirements model.

The rationale of changes is important since it is a factor in deter-
mining the change alternatives for the change propagation. The
usage of rationale in change propagation is illustrated in the next
section.
3 h t t p : / / w w w - s o p . i n r i a . f r / m e m b e r s / A r d a . G o k n i l / i m p a c t /
SupplementaryMaterialC.pdf.
5. Change propagation and change consistency checking

Change propagation is a process of deducing new proposed
changes in a requirements model based on an initial set of pro-
posed changes. The requirements relations and the change types
are used to determine if a change in a requirement has an impact
(is propagated) on the directly related requirements. Change consis-
tency checking identifies contradicting proposed changes. In case of
several paths from one requirement to another the propagation of
changes via different paths can possibly result in contradicting pro-
posed changes on a single requirement.
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
The focus in this paper is on domain changes since they have an
impact on other software development artifacts like software
architecture, detailed design and source code. These changes are
fostered by the evolution of the business needs in order to modify
the overall system properties. By using the formal semantics of
requirements, relations and changes, it is possible to derive
whether or not (possible) impacts are caused by a change.

The change propagation mechanism uses a change impact func-
tion. The change impact function takes a change type and a
requirement to which the change is introduced as input, and pro-
duces a set of decision trees as output. A decision tree contains
alternative changes identified during the change propagation by
traversing the requirements model. The following is the definition
of the change impact function:
req
impact: SCT � SR � SSRR ? SSDT

where SCT is the set of change types, SR is the set of require-

ments, SSRR is the set of sets of requirements relations, and

SSDT is the set of sets of decision trees for changes.

A decision tree is expressed as a sentence in a language

with the following grammar.

<DT-C> ::= <Change > | <Change > <And>‘‘(’’ <DT-C> ‘‘)’’ |
u

<DT-C> <Boolean-Operator> <DT-C> | ‘‘(’’ <DT-C> ‘‘)’’

<Change> ::= <Change-Type> ID

<Change-Type> ::= ‘‘No Impact in’’ | ‘‘Delete Requirement’’ |
‘‘Delete Property of Requirement’’ |

‘‘Delete Constraint of Property of Requirement’’ |

‘‘Add Requirement’’ | ‘‘Add Property to Requirement’’ |

‘‘Add Constraint to Property of Requirement’’ |

‘‘Change Property of Requirement’’ |

‘‘Change Constraint of Property of Requirement’’ |

‘‘Add Relation’’ | ‘‘Delete Relation’’

<Boolean-Operator> ::= <Exclusive-or> | <And>

<Exclusive-or> ::= ‘‘|’’

<And> ::= ‘‘&’’

ID denotes identifiers.
3
The reader is referred to Supplementary Material C for the algo-
rithm of the change impact function. In the following we explain the
main steps of the algorithm with a simple model. Fig. 6(a) gives an
example requirements model where the change ‘Delete Property of
Requirement’ is proposed for the requirement R2. Fig. 6(b) shows
four paths created while the change impact algorithm traverses
the model for the change in R2.

Fig. 7 gives the decision trees for the model in Fig. 6(a). The
operator Exclusive-or in the grammar is represented as the
branches of the decision trees in Fig. 7 while the operator And in
the grammar is ‘‘&’’ in the nodes of the decision trees. Each node
contains change(s) with(out) the operator And.

The main steps in the change impact function algorithm are the
following:

� Creating a decision tree for each unvisited requirement related to
the starting requirement. In Fig. 6(b), the change ‘Delete Prop-
erty of Requirement’ is introduced to the R2. The algorithm cre-
ates a decision tree (Decision Tree for Path 1, Decision Tree for
Path 2 and Decision Tree for Path 4 in Fig. 7) for each unvisited
directly related requirement (R1, R3 and R4 in Fig. 6(b)). Decision
trees have a starting node ‘Delete Property of Requirement R2’.
irements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialC.pdf
http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialC.pdf
http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 7. Decision trees for the example model.

Fig. 6. Example requirements model and model traversal for the proposed change.

8 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
� Propagating change for each unvisited related requirement. Change
alternatives are identified for the unvisited requirements (R1, R3
and R4) directly related to R2 in Fig. 6(b). For instance, R1 is
related to R2 via the requires relation. The alternatives for prop-
agating the change ‘Delete Property of Requirement R2’ from R2
to R1 are ‘No impact in R1’, ‘Delete Relation’ and ‘Delete R1 &
Delete Relation’ (the Decision Tree for Path 1 in Fig. 7). These alter-
natives are given in Table 3 where ðRi #

�pt
Rl

iÞ and (Ri requires Rk).
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
� Expanding decision tree for each unvisited related requirement.
Each decision tree created for directly related requirements
(Decision Tree for Path 1 for R2, Decision Tree for Path 2 for
R3 and Decision Tree for Path 4 for R4 in Fig. 7) is expanded
with alternative changes. For instance, the change alternatives
‘No impact in R1’, ‘Delete Relation’ and ‘Delete R1 & Delete
Relation’ for R1 become the nodes of Decision Tree for Path 1
in Fig. 7.
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Table 3
Change impact alternatives for some change types with the domain change rationale.

Change
types

Requirements relation types

Ri contains Rk Ri refines Rk Ri partially refines Rk Ri requires Rk Ri

conflicts
Rk

Add Rx No impact No impact No impact No impact No
impact

Delete Ri Delete Rk & Delete relation Delete Rk & Delete relation Delete property of Rk Delete relation |
(Delete Rk & Delete
relation)

Delete
relation

Ri #
þpt

Rl
i

No impact Add property to Rk | Delete relation Delete relation No impact No
impact

Ri #
�pt

Rl
i

No impact | Delete relation |
(Delete Rk & Delete relation) |
Delete property of Rk

Delete property of Rk | (Delete property of
Rk & Delete relation)

Delete property of Rk No impact | Delete
relation | (Delete Rk

& Delete relation)

No
impact |
Delete
relation

Ri #
pt#ptl

Rl
i

No impact | Change property
of Rk

Change property of Rk | (Change property
of Rk & Delete relation)

Change property of Rk | (Change property
of Rk & Delete relation)

No impact | Delete
relation | (Delete Rk

& Delete relation)

No
impact |
Delete
relation

Ri #
þct

Rl
i

No impact | Add constraint to
property of Rk | Delete
relation

No impact No impact No impact No
impact

Ri #
�ct

Rl
i

No impact | Delete constraint
of property of Rk

No impact | Delete relation | Delete
constraint of property of Rk | (Delete
constraint of property of Rk & Delete
relation)

No impact | Delete relation | Delete
constraint of property of Rk | (Delete
constraint of property of Rk & Delete
relation)

No impact | Delete
relation | (Delete Rk

& Delete relation)

No
impact |
Delete
relation

Ri #
ct#ctl

Rl
i

No impact | Change
constraint of property of Rk

No impact | Change constraint of
property of Rk

No impact | Change constraint of
property of Rk

No impact | Delete
relation | (Delete Rk

& Delete relation)

No
impact |
Delete
relation

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 9
� Iterating. Directly related requirements (R1, R3 and R4 in
Fig. 6(b)) become the starting requirement and the algorithm
is reinitiated for each of them. For R1, there is no unvisited
directly related requirement and Decision Tree for Path 1 in
Fig. 7 is not expanded further. For R3, there are two unvisited
directly related requirements (R4 and R5) and Decision Tree for
Path 2 is copied (see Decision Tree for Path 3). Decision Tree for
Path 2 is expanded with change alternatives for R5 and
Decision Tree for Path 3 is expanded with change alternatives
for R4.

The output of the change impact function is a set of decision
trees that contains all alternatives for a change propagated in the
whole model. For instance, the output of the impact function for
the proposed change in Fig. 6(a) is the set of decision trees in
Fig. 7. Having decision trees is beneficial to generate all alterna-
tives based on all possible propagation paths in the model and to
see the overall impact of any change in the whole model. On the
other hand, the size of the trees and their number can explode.
The requirements engineer can also select among the change alter-
natives to propagate the change from one requirement to another
step-by-step. Therefore, our tool gives an option to propagate the
change step-by-step effectively by cutting branches of the tree.
The tool (see Section 6) supports both decision tree generation
and step-by-step change propagation. In the following we explain
the change alternatives based on the semantics of change types,
rationale of changes and requirements relations.

Change propagation. Change alternatives are determined based
on the semantics of the change types, change rationale and
requirements relations. Domain changes are the requirements
changes fostered by the evolution of the business needs. For the
change propagation in this paper we consider only the changes
with the domain change rationale since they have an impact on
other software development artifacts like software architecture,
detailed design and source code. Table 3 gives the change impact
alternatives for some of the change types with the domain change
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
rationale. Each cell in the table gives change alternatives in order to
propagate the changes in the rows by using the relations in the col-
umns. The reader is referred to [32] for the complete table of the
change impact alternatives.

The following is a change propagation example that illustrates
the usage of alternatives in Table 3.
req
Change Propagation Example

Consider two requirements for the course management

system:

R61: The system shall allow lecturers to specify enrolment

policies based on grade, first-come first-serve (fcfs), and

department.

R62: The system shall allow lecturers to specify enrolment

policies based on grade.

where (R61 contains R62).

The stakeholder poses a change: specifying enrolment poli-

cies based on grade is not needed any more. One of the prop-

erties given in R61 is allowing lecturers to specify enrolment

policies based on grade. Therefore, we propose the change

‘Delete property of Requirement’ for R61.

Proposed Change: Delete the Property of R61

Description of Change: Specifying enrolment policies based

on grade is not needed any more.

The proposed change is propagated from R61 to R62 through

the contains relation as follows:

Propagation from R61 to R62: According to Table 3 the alter-

natives to propagate the change ‘Delete Property of R61’ to

R62 are (No impact | Delete R62 | Delete Property of R62).

The property to be deleted from R61 is specifying

enrolment policies based on grade. It should also be deleted

from R62. Since this property is the only property in R62,

we choose the change ‘Delete R62’ among the change

alternatives.
uirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

ftware Technology xxx (2014) xxx–xxx
The following is the justification of change alternatives for Rk

where Ri #
�pt

Rl
i and Ri contains Rk.
10 A. Goknil et al. / Information and So
4

Su

Pl
h

Change Alternatives:

�pt l
h t t p
pplemen

ease ci
ttp://dx
Change alternatives for Rk where ðRi # RiÞandðRicontainsRkÞ
¼No impact jDeleteRk jDelete Property of Rk

Justification:

Let Ri and Rk be requirements. Pi and Pk are formulae for Ri

and Rk.
¼ fBy using formalization of the contains relationg

Ri contains Rk iff Pi is derived from Pk as follows:
Pi ¼ Pk ^ Pl

where Pi = "x((p1 . . . pn) ^ (q1 . . . qm)); m, n P 1 and Pl denotes

properties that are not captured in Pk
¼ fBy using formalization of the change typeg

Ri #
�pt

Rl
i iff Pi

l is derived from Pi as follows:
Pl
i ¼ 8xðp1 . . . pnÞ; n P 1

where "x(q1 . . . qm) denotes properties that are captured in pt.
¼fBy using the formalization of domain changesg

Properties "x(q1 . . . qm) that are captured in pt should be

deleted from the requirements model RM.
¼ fBy using formalization of the contains relationg

There are three alternatives for Pk and impact on Rk

(i) Pk = "x(z1 . . . zt); z P 1, {z1, . . ., zt} # {p1, . . ., pn} then No
Impact.

(ii) Pk = "x(q1 . . . qm); m P 1 then "x(q1 . . . qm) should also be

deleted. It means Delete Rk & Delete Relation.

(iii) Pk = "x((z1 . . . zt) ^ (q1 . . . qm)); t, m P 1 then "x(q1 . . . qm)

should also be deleted. It means Delete Property of Rk.
All change alternatives given in Table 3 are derived from the
semantics of the change types, the requirements relations and
the rationale of changes. The reader is referred to Supplementary
Material D4 for the explanation of some of the change alternatives.
The change propagation is implemented in a rule-based form in TRIC
(see Section 6).

Proposed changes and propagated proposed changes may cause
a conflict. In the following we explain how conflicts between pro-
posed changes are identified.

Change consistency checking. Stakeholders may require changes
that contradict with each other or the requirements engineer
may propagate multiple changes to the same requirement in which
the propagations cause a contradiction. Table 4 gives the pairs of
contradicting changes based on the semantics of the change types
and the domain change rationale. The rows and columns of the ta-
ble are the change types. Two changes for the same requirement
might cause a contradiction (the cells marked as maybe in Table 4)
and these changes should be inspected, or there is a contradiction
for sure (the cells marked as yes) caused by the changes. The cells
in Table 4 are marked as no if there is no contradiction.
: / / w w w - s o p . i n r i a . f r / m e m b e r s / A r d a . G o k n i l / i m p a c t /
taryMaterialD.pdf.

te this article in press as: A. Goknil et al., Change impact analysis for
.doi.org/10.1016/j.infsof.2014.03.002
The following is an example of an ensured inconsistency.
re
Ensured Inconsistency

R7: The system shall provide a messaging facility.

In the following there are two proposed domain changes

for R7.

Proposed Change 1: Delete R7

Description of Proposed Change 1: There is no need for a

messaging facility any more.

Proposed Change 2: Add Constraint to the Property of R7

Description of Proposed Change 2: An sms messaging facil-

ity should be provided.

The second change states that the sms messaging is a new

constraint for the messaging facility while the first change

states that the messaging facility is not needed at all. There-

fore, there is an inconsistency for sure for the proposed

changes (see Table 4).
The following is an example of a possible inconsistency.
Possible Inconsistency

R61: The system shall allow lecturers to specify enrolment

policies based on grade, first-come first-serve (fcfs), and

department.

The requirement R61 can be interpreted as three distinct

properties: (i) allow lecturers to specify enrolment policies

based on grade, (ii) allow lecturers to specify enrolment pol-

icies based on first-come first-serve (fcfs), and (iii) allow lec-

turers to specify enrolment policies based on department.

In the following there are two proposed domain changes for

R61.

Proposed Change 1: Delete the Property of R61

Description of Proposed Change 1: There is no need of spec-

ifying enrolment policies based on grade any more.

Proposed Change 2: Add Constraint to the Property of R61

Description of Proposed Change 2: Lecturers should be

allowed to specify enrolment policies based on departments

only if they are affiliated with that department.

The first change states specifying enrolment policies based

on grade is not needed any more. The second change states

a constraint about the enrolment policies based on depart-

ment. There is a need of checking if the two changes are

referring to the same property or not. Since they refer to dif-

ferent properties, there is no inconsistency.
The reader is referred to Supplementary Material D4 for the
explanation of some of the contradicting changes. Table 4 is imple-
mented in a rule based form in TRIC. The consistency rules are
checked for the proposed and propagated changes (see Section 6).

6. Tool support

The tool TRIC was extended with features for change impact
analysis in requirements [81]. The tool can be downloaded from
[87]. In this section we describe the most important features of
the tool: proposing changes, propagating changes, displaying
inconsistent proposed changes, implementing proposed changes in
the requirements model, and predicting the impact of proposed
changes.

Proposing changes. TRIC provides a GUI for proposing changes
which lists all the requirements in the model. The requirements
quirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialD.pdf
http://www-sop.inria.fr/members/Arda.Goknil/impact/SupplementaryMaterialD.pdf
http://dx.doi.org/10.1016/j.infsof.2014.03.002

Table 4
Contradicting changes based on the semantics of the change types and the domain change rationale.

Change type Delete R R #
þpt

Rl R #
�pt

Rl
R #

pt#ptl

Rl R #
þct

Rl R #
�ct

Rl
R #

ct#ctl

Rl No impact

Delete R No Yes No Yes Yes No Yes No

R #
þpt

Rl Yes No No No No No No No

R #
�pt

Rl No No No Maybe Maybe No Maybe No

R #
pt#ptl

Rl Yes No Maybe Maybe Maybe Maybe Maybe No

R #
þct

Rl Yes No Maybe Maybe No Maybe Maybe No

R #
�ct

Rl No No No Maybe Maybe No Maybe No

R #
ct#ctl

Rl Yes No Maybe Maybe Maybe Maybe Maybe No

No impact No No No No No No No No

Fig. 8. GUI for propagating proposed changes.

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 11
engineer proposes a change with its type and description for the
requirement selected among the listed requirements.

After proposing the change, the tool lists the candidate require-
ments to which the requirements engineer can propagate the
change.

Propagating changes. Fig. 8 gives the GUI for change propagation.
The Determine Proposed Impact window is opened by clicking on
one of the candidate requirements (R16) for the impact. The
change alternatives are provided to the requirements engineer by
the tool based on the change impact alternatives for each relation
given in Table 3.

TRIC also provides a matrix view in order to represent and prop-
agate changes. Such a view is also available in commercial require-
ments management tools, such as RequisitePro in order to
determine the impacted requirements.

The GUI for propagating proposed changes in Fig. 8 and the
matrix view do not allow analyzing multiple proposed changes
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
simultaneously. To support simultaneous analysis of multiple im-
pact propagations, TRIC provides interactive decision tree builder
(see Fig. 9).

Each arrow indicates a decision captured by the target node
of the arrow. The decision tree can be expanded by making
decisions (the Make Decision button). Once the analysis of the
interactive decision tree is concluded, the requirements engi-
neer can select a node and apply decisions captured by the
path from the tree root to the selected node (the Use Analysis
button).

Displaying inconsistencies in proposed changes. Fig. 10 gives the
GUI for displaying inconsistent proposed changes.

The window in Fig. 10 has a list view including three columns.
The first column gives the requirements that have contradicting
proposed changes. The second column shows if the inconsistency
is certain or possible. The third column lists the proposed changes
that cause any inconsistency for the given requirement. The tool
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 9. Interactive decision tree builder for propagation of changes.

Fig. 10. GUI for displaying inconsistent proposed changes.

12 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
also provides an explanation of the contradicting proposed
changes.

Implementing proposed changes in the requirements model. The
tool allows the requirements engineer to implement the proposed
and propagated changes in their propagation path.

Predicting the impact of proposed changes. In the impact predic-
tion all possible propagation paths in the model are traversed by
using the change impact function algorithm in order to determine
change alternatives for the propagation of any selected proposed
change. Fig. 11 gives the output of the impact prediction for the
change ‘‘Add Constraint to Property of Requirement’’ in R7.

The columns list the requirements in the model, if the require-
ment is impacted, and the impact type respectively. The result of
the impact prediction in Fig. 11 is that only R16 in the whole
requirements model might be impacted with the change ‘‘Add
Constraint to the Property of the Requirement’’ for the proposed
change ‘‘Add Constraint to Property of Requirement’’ to R7. The
tool also provides all possible propagation paths for the change
alternatives listed in Fig. 11. Fig. 12 gives the propagation paths
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
for the alternatives in R16. The first part of the window gives the
alternatives for R16. There are two change alternatives to be prop-
agated for R16: ‘‘Add Constraint to Property of Requirement’’ or
‘‘No Impact’’. The second part of the window shows the require-
ments in the propagation path. TRIC also supports the visualization
of the propagation paths.

The impact prediction allows showing the impact of the pro-
posed changes for the whole model. It is useful for large models
to see which requirements are not impacted at all and which
requirements are (or might be) impacted.
7. Example: course management system

In this section, we illustrate our approach and tool support with
the CMS example. The change impact alternatives, the elimination
of some false positive impacts and the consistency checking of
changes are the benefits of the approach illustrated in this section.
The main limitation is that the approach depends on the require-
ments relations. False requirements relations assigned by the
requirements engineer result in wrong propagation alternatives.
In our previous work [38], we provide an approach for reasoning
about requirements. It supports inferencing new relations and
checking consistency of relations to increase the correctness of
the requirements relations in the model. In [38] we also thoroughly
study how to manually identify and assign the initial relations
among requirements.
7.1. Proposing and propagating requirements changes

Consider the change in R7 (Add a constraint to the property
messaging facility in R7) that we already used in Section 2.

R7 states a messaging facility where the sms and e-mail fea-
tures are introduced as message types for the messaging facility
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 11. Output of the impact prediction for the proposed change in R7.

Fig. 12. All possible propagation paths for the change alternative in R16.

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 13
in the description of the change. Since these features are constrains
for the property ‘messaging facility’, the type of the change is ‘Add
constraint to Property of Requirement’. Then, the proposed change
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
is propagated to the requirements related to R7. Fig. 13 gives the
requirements related to R7 with distance of 2 in TRIC (dotted
arrows are inferred relations).
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 13. Requirements related to R7 with distance of 2.

Fig. 14. Requirements related to R16 with distance of 2.

14 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx

Pl
h

R16: The system shall allow messages to be sent to individu-
als, teams, or all course participants at once.

R18: Teams are created by students inviting other students in

the same course using the messaging system.

R24: The system shall notify students about events (new

messages posted, etc.).

R25: The system shall allow students to customize the notifi-

cation behavior.

R117: The system shall allow the administration to evaluate

courses through students by means of a web-survey.
According to Table 3 in Section 5, there is no impact for R18,
R24, R25 and R117, which require R7, for the proposed change
in R7. Then, we do not have to check some of the indirectly re-
lated requirements. For instance, we do not check R17, R74 and
R72 since the change can be propagated to them via only R18.
Please note that with the impact prediction feature these
requirements are automatically identified as ‘not impacted’ (see
Fig. 11).

There are two change alternatives to propagate the change
from R7 to R16 via the refines relation: ‘Add Constraint to Prop-
erty of Requirement’ or ‘Delete Relation’. The change type ‘Add
Constraint to Property of Requirement’ is chosen for R16 since
the constraint for R7 is also a constraint for R16.
ease cite this article in press as: A. Goknil et al., Change impact analysis for re
ttp://dx.doi.org/10.1016/j.infsof.2014.03.002
The proposed change for R16 is the following.
Change: Add Constraint to the Property of R16

Description of Change: Messages to be sent to individu-

als, teams, or all course participants at once with both

sms and e-mail.
The next propagation is from R16 to its related requirements.
Fig. 14 gives the requirements related to R16 with distance of 2 (in-
ferred relations are not shown for simplicity).
R4: The system shall provide dynamic course information.
R8: The system shall enable students to retrieve contact infor-

mation of students and lecturers of subscribed courses.
According to Table 3, for the proposed change in R16, there is no
impact for R4 and R8 which are related to R16 via the requires rela-
tion. Then, we do not have to check R5, R6, R9, R11, R12, R20, R29,
R97, R110 and R116 since they are indirectly related to R7 via R4
and R8. Please also note that with the impact prediction feature
these requirements are automatically identified as ‘not impacted’
(see Fig. 11). There is no other requirement related to R16 and
the change propagation is over.
quirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 15. Propagation path of the proposed change for R16 in the inconsistency.

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 15
7.2. Checking consistency

In this section, we discuss the inconsistencies which are de-
tected by our tool. In the following we give R16 with some incon-
sistent proposed changes.
Ta
So

Pl
ht
Change 1: Add Constraint to the Property of R16 (by propa-
gating the change in R7)

Description of Change 1: Messages to be sent to individuals,

teams, or all course participants at once with sms and e-mail.

Change 2: Delete R16 (by directly proposing)

Description of Change 2: Messaging individuals, teams, or all

course participants is not required any more.
According to Table 4, the changes ‘‘Add Constraint to the Prop-
erty of Requirement’’ and ‘‘Delete Requirement’’ cause an inconsis-
tency for sure. Since the change ‘‘Add Constraint to the Property of
Requirement’’ is a propagated change, we also need to analyze its
change propagation path (see Fig. 15).

According to the propagation path, the proposed change in R16
is caused by propagating the change in R7 via the refines relation.
In order to fix the inconsistency, the requirements engineer has
three options. He/she might decide that the proposed change ‘‘De-
lete Requirement’’ in R16 is not valid, or the proposed change ‘‘Add
Constraint to the Property of Requirement’’ in R7 is not valid. The
third option is that the change propagation is reconsidered and
the change alternative ‘‘Delete Relation’’ is chosen instead of the
change ‘‘Add Constraint to the Property of Requirement’’ for R16
(see Section 7.1). This decision has to be made as a result of the
negotiation between the requirements engineer and the stake-
holder who proposes the change request.

7.3. Comparison of the results in our approach and RequisitePro

The goal of the comparison is to show that our approach pro-
duces less false positives and provides better guidance what and
how to be changed in impact analysis. We compare our approach
with one of the industrial requirements management tools IBM
ble 5
me change impact alternatives in TRIC and IBM rational RequisitePro.

Change
types

Requirements relation types

Relation types in our approach

Ri contains Rk Ri refines Rk Ri partia

Ri #
þpt

Rl
i

No impact Add property to Rk |
Delete relation

Delete re

Ri #
�pt

Rl
i

No impact | Delete relation |
(Delete Rk & Delete relation) |
Delete property of Rk

Delete property of Rk |
(Delete property of Rk &
Delete relation)

Delete p

Ri #
pt#ptl

Rl
i

No impact | Change property of
Rk

Change property of Rk |
(Change property of Rk &
Delete relation)

Change p
(Change
Delete re

ease cite this article in press as: A. Goknil et al., Change impact analysis for
tp://dx.doi.org/10.1016/j.infsof.2014.03.002
Rational RequisitePro [44] since it is a good representative of the
tools and approaches which perform impact analysis without
semantic information. By using the semantics we provide a more
precise impact analysis because of the following features:

� elimination of some of the false positive impacts in change
propagation,
� consistency checking of changes.

We compare our approach with RequisitePro based on these
features.

Elimination of some of the false positive impacts in change propa-
gation. Our approach provides a classification of changes in
requirements models (see Table 3). Propagation alternatives are
provided to be chosen by the requirements engineer. Change alter-
natives provide information about what to change in impacted
requirements. Table 5 gives some of the change impact alternatives
in TRIC and IBM RequisitePro.

In Table 5 there are three change types and their propagation
alternatives provided by TRIC and RequisitePro. RequisitePro has
only two relation types (traceFrom and traceTo) with informal
definitions. As shown in Table 5, for each change type, Requisite-
Pro provides two alternatives (No impact or Change Rk) since
there is only one change type (Change requirement). Therefore,
the requirements engineer has to inspect the impacted require-
ment to determine the type of the change without any semantic
information. In our approach, the requirements engineer inspects
the impacted requirement based on the change alternatives de-
rived from the semantics of relations and change types. On the
other hand, the requirements engineer has to spend some effort
to model requirements and determine their relations before per-
forming change impact analysis. Fig. 1 gives the requirements
related to R7 in the CMS requirements model with distance of
2 in RequisitePro (see Fig. 13 for the correspondence model in
TRIC).

Please note that RequisitePro does not provide any visualization
similar to the one in Fig. 1. We converted the part of the matrix
view of the CMS requirements model in RequisitePro to the graph
visualization. Please again consider the following change to R7 in
RequisitePro.
lly

lat

rop

ro
pro
lat

req
R7: The system shall provide a messaging facility.
Description of Change: Messaging facility should also con-

tain sms and e-mail features.
Relation types in
RequisitePro

refines Rk Ri requires Rk Ri conflicts
Rk

Ri trace
from Rk

Ri trace
to Rk

ion No impact No impact No
impact |
Change
Rk

No
impact |
Change
Rk

erty of Rk No impact | Delete
relation | (Delete Rk &
Delete relation)

No impact
| Delete
relation

No
impact |
Change
Rk

No
impact |
Change
Rk

perty of Rk |
perty of Rk &

ion)

No impact | Delete
relation | (Delete Rk &
Delete relation)

No impact
| Delete
relation

No
impact |
Change
Rk

No
impact |
Change
Rk

uirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

Fig. 16. Suspended relations for impacted requirements by the change in R7.

16 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
Since RequisitePro does not support proposing changes, the
change is implemented by updating R7. The requirements relations
for R7 get suspect. Fig. 16 shows the suspended relations in the
matrix view.
Ta
Nu

Pl
h

R16: The system shall allow messages to be sent to individu-
als, teams, or all course participants at once.

R18: Teams are created by students inviting other students in

the same course using the messaging system.

R24: The system shall notify students about events (new

messages posted, etc.).

R25: The system shall allow students to customize the notifi-

cation behavior.

R117: The system shall allow the administration to evaluate

courses through students by means of a web-survey.
All directly related requirements are with the suspended rela-
tions (R16, R18, R24, R25 and R117) and they are candidate in
the impact analysis. For the same change with the change type
‘Add Constraint to Property of Requirement’ in TRIC, ‘No Impact’
is automatically identified for R18, R24, R25 and R117 (see Sec-
tion 7.1). TRIC identifies two alternatives for R16 via the refines
relation: ‘Add Constraint to Property of Requirement’ or ‘Delete
Relation’. The requirements engineer inspects R16 to propose a
change among these two alternatives.

Without employing any semantic information, all requirements
directly related to the changed requirement are identified as can-
didate in the impact analysis. The requirements engineer has to
check all these requirements manually to identify which require-
ments are actually not impacted (false positive impacts). For some
change and relation types, our approach identifies ‘No Impact’ for
ble 6
mber of candidate CMS requirements for change impact in RequisitePro and TRIC.

Changes Number of candidate/impacted requirements

Number of directly related candidate
requirements in RequisitePro

Number of indirectly related
with a distance of 5 in Requi

R7 #
þct

Rl
7

5 72

R8 #
þct

Rl
8

4 73

R22 #
�ct

Rl
22

1 2

R23 #
�ct

Rl
23

1 2

R14 #
þpt

Rl
14

3 79

R55 #
þpt

Rl
55

4 50

R21 #
�pt

Rl
21

1 2

R65 #
�pt

Rl
65

1 2

ease cite this article in press as: A. Goknil et al., Change impact analysis for
ttp://dx.doi.org/10.1016/j.infsof.2014.03.002
the related requirements. For instance, any change in one of the
conflicting requirements does not have any impact in another
conflicting requirement (‘Ri conflicts Rk’ column in Table 3). For
the change types ‘Add Property to Requirement’ and ‘Add Con-
straint to Property of Requirement’, ‘No Impact’ is automatically
detected via some relations (see the rows in Table 3).

As we depicted above for the change ‘Add Constraint to Prop-
erty of Requirement’ in R7, TRIC automatically identifies ‘No Im-
pact’ for R18, R24, R25 and R117 which are actually false positive
impacts in RequisitePro. Apart from directly related requirements,
there might be other candidate indirectly related requirements
(see Fig. 2). The requirements indirectly related to R7 at distances
of 2, 3 and 4 (see Fig. 2(b–d)) are candidate to be inspected in
RequisitePro.

Our approach provides automatic impact prediction for any pro-
posed change (see Section 6). The output of the impact prediction is
the impacted requirements including both directly and indirectly
requirements with change alternatives. For instance, for the change
in R7, the output of the impact prediction is that only R16 might be
impacted with the change type ‘Add Constraint to Property of
Requirement’ (see Fig. 11). All other impacts identified by following
directly and indirectly related requirements in RequisitePro are false
positives. We reduce the number of elements to be inspected. Table 6
gives the number of candidate CMS requirements for some changes
performed in RequisitePro and TRIC.

The first and second columns in Table 6 give the number of directly
and indirectly related requirements to be inspected by the require-
ments engineer in RequisitePro. The third column shows the number
of candidate requirements detected by TRIC (impact prediction fea-
ture) and the fourth column gives the number of actual impacted
requirements determined by our manual investigation in the whole
model. All actual impacted requirements are also detected by TRIC.
With some change types (R7 #

þct
Rl

7;R8 #
þct

Rl
8;R14 #

þpt
Rl

14 and
R55 #

þpt
Rl

55) TRIC significantly reduces the number of false positive
impacts for indirectly related requirements.

As seen in Table 6 (see the row for R55 #
þpt

Rl
55) our approach still

may produce some false positives. On the other hand, TRIC does
not produce any false negatives; we were able to detect all actual
impacted requirements with TRIC. In order to apply the approach,
the requirements engineer needs some effort to model require-
ments and their relations. TRIC provides a reasoning framework
[38] to infer new relations and check the consistency of the given
relations. Also in the beginning of impact analysis he/she needs
to determine the type of the proposed change based on our
classification.

Consistency checking of changes. Our approach provides consis-
tency checking of changes based on the formal semantics of
requirements, relations and changes (see Section 7.2). RequisitePro
does not support any consistency checking activity for require-
ments changes.
candidate requirements
sitePro

Number of candidate
requirements in TRIC

Number of actual
impacted requirements

1 1

0 0

0 0

0 0

0 0

3 2

0 0

0 0

requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 17
8. Discussion of the approach

The applicability of the approach depends on the availability of
an explicit structural information in the requirements models that
gives the relations and their types. Encoding such information of-
ten leads to an additional effort from the requirements engineer.
Fortunately, requirements documents already provide some of this
information. Our metamodel is generic enough to accommodate
most of the requirements structuring strategies used in the today’s
practices. This section elaborates more on different aspects of the
applicability of the approach

Chosen formalization, requirements metamodel and change classi-
fication. We chose a formalization of requirements, their relations
and the change classification in FOL. There are other formalizations
of requirements, for example, in modal logic and deontic logic [61].
The formalization in FOL allows the expression of commonly
occurring requirement descriptions, including for example real-
time or performance requirements. However, there are limitations
of the expressivity of FOL. For instance, imperfect requirements can
be modeled by fuzzy sets [70]. Dealing with imperfection is out of
scope of our formalization. We do not cover modalities in require-
ments like possibility, probability, and necessity or logic operators
like ‘‘in the next state’’ and ‘‘sometime in the future’’ which can be
used to describe the evolution of requirements. Our formalization
should be extended with temporal logic, modal logic or fuzzy sets
in order to cover these types of requirements. Under these limita-
tions, the expressiveness of FOL is sufficient for change impact
analysis.

Since the focus of our approach is on the commonly occurring
requirements relations, we investigated and benefited from sev-
eral approaches which are commonly used to define and repre-
sent requirements: goal-oriented [91,67], aspect-driven [76],
variability management [66], use-case [19], domain-specific
[74,50], and reuse-driven techniques [60]. The main activity for
constructing the metamodel is to choose the most commonly
occurring requirements relations. The selected relation types are
compatible with the results of the industrial case study con-
ducted by Zhang et al. [96] to evaluate the applicability of exist-
ing dependency types in the literature. The change classification
presented in this paper is a result of the chosen formalization
and requirements metamodel. The idea behind the classification
is based on the structure of a textual requirement as system
property and constraints on this system property. The formaliza-
tion of the requirements changes is aligned with the formaliza-
tion of the requirements.

Scalability. TRIC provides an impact prediction feature which
traverses all possible propagation paths in the model by using
the change impact function algorithm. The change impact function
may need more efficient graph traversal algorithms [29] to im-
prove its scalability for large models.

The time for model exploration can be reduced by combining
manual and automatic inspection. For example, some of the paths
can be excluded early by manually detecting lack of change prop-
agation. In this way the propagation algorithm works on a sub-
model instead on the whole model. We already explained how
the elimination of some propagation paths in an early phase signif-
icantly reduces the number of the impacted elements thus avoid-
ing the need to inspect them.

Expressing requirements and their relations. Our approach heavily
depends on the requirements relations initially given by the
requirements engineer. In our previous work we provide a reason-
ing facility in order to enhance the correctness of requirements
models. However, the practicality of our approach has still some
implications in the way to express requirements with their rela-
tions and the ability of the requirements engineer to analyze them.
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
The requirements engineer may spend a substantial effort to ana-
lyze the requirements relations as an initial input. By using TRIC’s
reasoning features (inferencing and consistency checking of rela-
tions) the requirements engineer iterates over the requirements
model. Similarly to our approach, in commercial tools like IBM
RequisitePro and DOORS the requirements engineer has to give ef-
fort to identify requirements relations in order to perform change
impact analysis. Existing relations need further classification
according to our metamodel. Very often, some of the relations that
we support are already present in requirements documents, for
example, in hierarchically structured documents that follow part-
whole decomposition. In order to reduce the effort, natural lan-
guage processing (NLP) techniques can also be applied to automat-
ically identify some of the relations in requirements specifications
which conform to some requirement boilerplates [3].

Integration of the approach with existing requirements engineering
tools. TRIC is a prototype tool that supports our approach. Alterna-
tively, the used algorithms can be implemented as an extension of
an industrial requirements management tool. The extension
should be implemented with the following main features: (1) man-
aging requirements and relation types given in our metamodel, (2)
reasoning over requirements models (inferring new requirements
relations and checking consistency of relations), (3) propagating
changes based on the impact alternatives given in Table 3, and
(4) checking consistency of changes based on the rules given in Ta-
ble 4. Inferencing new relations and checking consistency of rela-
tions are not part of the change impact analysis but they are
important to improve the accuracy of requirements relations
which are the main input of our approach. Since our models are
stored as OWL ontologies for reasoning purposes, in the extension
there is a need to use an existing API such as Jena [47] or to imple-
ment one from scratch to process RDF and OWL ontologies. There
is also a need to transform requirements models in the require-
ments management tool’s own model storage format to OWL/RDF.

Some requirements management tools provide their own APIs
to enable implementing extensions. IBM Rational DOORS provides
its own extension language (the Rational DOORS Extension Lan-
guage – DXL) that can be used to control and extend IBM DOORS
functions. This scripting language allows adding custom options
to DOORS menus and responding to events by triggering custom
programs. Therefore, in IBM DOORS the main features of our ap-
proach can be implemented as custom programs and controlled
from the added options in DOORS menus.

TRIC uses Eclipse platform to manipulate models. The meta-
model is implemented as an Ecore metamodel on top of the Eclipse
Modeling Framework (EMF) API. This facilitates the application of
our approach to existing approaches for requirements modeling
based on EMF. OMG SysML [74,80] is an example language that de-
fines requirements modeling constructs. Requirements relations
defined in SysML are either already present in our metamodel or
can be defined as specializations. Situations like this provide an
opportunity for an easy adaptation and integration of our approach
and tooling. Our work on applying TRIC and the change impact
analysis algorithm on SysML requirements models is described in
[33,86].

Adapting TRIC to industrial environments. Applying research pro-
totype tools in industrial context usually requires significant
investment in tool usability and robustness. TRIC provides a matrix
view and a visual editor for managing requirements relations. The
usability of the tool is already improved for large models with the
visual editor which enables selecting requirements to be shown.
Most of the requirements management tools allows grouping/clus-
tering requirements based on their priority or category. By having
the grouping feature, the usability of the matrix view in TRIC can
be increased for its use in change impact analysis.
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

18 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
TRIC provides an import/export mechanism for IBM Requisite-
Pro in which the requirements engineer can export a RequisitePro
model to a Microsoft Excel file. The exported model can be im-
ported by TRIC and vice versa. The import/export mechanism for
other requirements management tools like IBM DOORS, Borland
Caliber [8] and TopTeam Analyst [88] can be implemented to in-
crease the interoperability of TRIC with industrial tools.

Our approach is mainly based on the requirements relations
and their semantics. The requirements engineer may have to de-
fine his/her own relation types. In TRIC, defining new relation types
requires customization of the requirements metamodel followed
by a formalization of the newly defined types. Therefore, TRIC
needs to provide practical ways to support the reuse of the formal-
ization for the metamodel customization. In [33] we show how our
requirements metamodel can be customized for different require-
ments modeling approaches and notations such as Product-line
and SysML. However, the customization of the metamodel with
the formalization is still a challenge for the practitioners.
9. Related work

We classify the related work in five categories: Requirements
Relations, Requirements Metamodeling, Change Classification, Change
Impact Analysis in Requirements and Change Impact Analysis in UML
models.
9.1. Requirements relations

We studied literature about requirements relation types and
their semantics. Dahlstedt and Persson [21] address requirements
relations (they call a relation an ‘‘interdependency’’) from a trace-
ability perspective. They give an overview of requirements rela-
tions research and present a model of fundamental relation
types. There is a classification (structural, constrain, and cost/value
interdependencies) of fundamental interdependency types which
includes some of the relations (refines, requires, and conflicts) we
also use in our approach. The need to understand the nature of
requirements relations and their influence on software develop-
ment activities such as change management are stated. However,
there is no formal semantics for the relations. Carlshamre et al.
[13] run an industrial survey of requirements in software product
release planning. Their aim is to learn about the nature of interde-
pendencies in general, to be able to classify them, and to assess the
relative frequency of different classes. The results show that
roughly 20% of the requirements are responsible for 75% of the
interdependencies and only a few requirements are singular.
Although the two studies mentioned above motivate the need for
requirements relations, no much attention is paid for how to give
formal semantics of the relations and their use for change impact
analysis.

Lee et al. [55] studies relationships between soft functional
requirements based on fuzzy logic. The types of relations between
soft functional requirements are classified as conflicting, irrelevant,
cooperative, counterbalance and independent. These relation types
are formalized by using fuzzy logic. Contrary to our approach,
the relation types in [55] are specialized for imprecise require-
ments and they are used for trade-off analysis.

The survey in [78] introduces Requirements Interaction Man-
agement (RIM), which is concerned with the analysis and manage-
ment of dependencies among the requirements. One of the
activities in RIM, is reasoning on requirements interactions. Con-
flict detection methods for reasoning are introduced in five catego-
ries: domain model, theorem model, scenario analysis, modeling
checking and executing monitoring methods. The domain model
method is summarized in the survey that a domain model of
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
system requirements interactions is used to identify interactions
at the requirement level. We consider that our requirements meta-
model is our domain model of requirements relations which stand
for requirements interactions to identify relations between
requirements.

Zhang et al. [96] conducted a case study to evaluate the usefull-
ness and applicability of existing dependency types given in Dahl-
stedt’s dependency model (D-model) [21] and Pohl’s dependency
model (P-model) [75] in change propagation with a real-world
industry project. The findings in the conducted case study are (1)
the definitions of some dependency types are confusing; (2) some
dependency types from literature are not common and seldom
found in real projects; and (3) in existing dependency models, five
dependency types propagate changes, but their definitions need to
be clarified [96]. It is also stated that dependency discovery and
change impact analysis are subjective processes and to alleviate
the subjectivity the definitions of dependency types need to be
very specific, explicit and clear. Based upon the empirical evalua-
tion of existing dependency models, Zhang et al. also propose a
new dependency model including dependency types for change
impact analysis (Constrain, Precede, and Be_similar_to). They state
that the description of the new dependency types still needs
improvement in their dependency model. The relation types in
our metamodel covers their dependency types with a concrete
interpretation of their descriptions based on formal semantics.

9.2. Requirements metamodeling

Vicente-Chicote et al. [93] describe a requirements metamodel
and a modeling environment. The environment supports: graphical
requirements models, their validation against the metamodel and
against a set of constraints written in OCL, and automatic genera-
tion of a navigable Software Requirements Specification document
(SRS). In the requirements metamodel, there are three types of
trace links between requirements: DependenceTrace, InfluenceTrace,
and ParentChildTrace. The relations are defined informally.

Monperrus et al. [65] provide a requirements metamodel that
supports the specification and implementation of requirements
metrics in the literature. The metamodel is centered on the notion
of requirement and a requirement can be refined in several types
(CapabilityRequirement, ConstraintRequirement, etc.). It does not
support any type of requirements relations. For the life cycle of
requirements the metamodel encodes types of requirements
changes as Modification, Addition and Deletion. No formalism is pro-
vided for the change types. Baudry et al. [4] introduce a metamodel
for requirements and present how they use it on top of a con-
strained natural language for requirements definitions. The
requirements metamodel captures functional requirements as
use cases with pre-conditions and post-conditions that constrain
the activation of use cases. Operations are added in the metamodel
in order to simulate requirements models. The goal of the simula-
tion is to instantiate the use cases, replacing the formal parameters
with actual values defined in an initial configuration. The meta-
model does not capture the static part of requirements. It does
not have the notion of requirements relations. On the other hand,
our approach covers the static aspects of requirements including
non-functional requirements and change impact analysis. In [11],
a model-driven mechanism is proposed to merge different require-
ment specifications and reveal inconsistencies between them by
using a requirements metamodel. The requirements metamodel
is mainly used to produce a requirements model from a given
requirements document. Requirements relations are not typed
and lack semantics. There is no support for change impact analysis.

Some authors [42,82] use the UML profiling mechanism in a
goal-oriented requirements engineering approach. Heaven et al.
[42] introduce a profile that allows the KAOS model [91] to be
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 19
represented in UML. They also provide an integration of require-
ments models with lower level design models. Supakkul et al.
[82] use the UML profiling mechanism to provide an integrated
modeling language for functional and non-functional requirements
that are mostly specified by using different notations. These two
works aim at a metamodel for goal-oriented requirements engi-
neering rather than reasoning over requirements and change im-
pact analysis.

SysML [74,80] uses the UML profiling mechanism to provide
modeling constructs that represent text-based requirements and
relate them to other modeling elements. The relation types for
requirements in SysML are derive, copy, and contain. SysML also
provides a stereotype mechanism that allows the requirements
engineer to specify their own relation types. Formal semantics of
relation types is not considered. The definitions of the relations
tend to be ambiguous. No reasoning facility for requirements is
provided.

Vogel and Mantell [94] provides a UML profile that allows the
modeling of stakeholders, requirements and test cases. The profile
has two parts: Stakeholders and Requirements. The first part in-
cludes entities for types of stakeholders such as User, Project Stake-
holder, Supplier and Customer. The second part of the profile
contains entities for TestCase and types of requirements such as
Performance Requirement and Functional Requirement. The profile
contains entities similar to entities in our requirements metamod-
el. However, there is no requirements relation in [94].

COMET [20], a requirements modeling method, provides a
requirements metamodel which is an extension to the use case
concept of UML. COMET considers the UML use cases as the only
requirements specification method. The requirements metamodel
includes a use case entity with interacting roles, scenario which
is the detailed description of the use case, goal entity, and the
requirement entity represented by the use case. Requirements
relations are not represented in the requirements metamodel of
COMET.

Navarro et al. [68] propose a customization approach for
requirements metamodels. They propose a core requirements
metamodel which is generic and considers only Artifact and Depen-
dency as core entities. The metamodel does not contain concrete
types for requirements relations. This disallows the application of
any change impact decision table for the core relations to custom-
ized entities. The Requirements Interchange Format (RIF) [77]
structures requirements and their attributes, types, access permis-
sions, and relationships. It is defined as an XML schema. Its data
model has generic entities and relations like Information Type, Asso-
ciation, and Generalization. These entities can be formalized to per-
form change impact analysis.

Some papers address domain-specific requirements models.
Koch et al. [50] propose a requirements metamodel specialized
for Web systems. They identify the general structure of Web sys-
tems in order to define the requirements metamodel. The require-
ments metamodel for web requirements, presented by Escalona
and Aragon [28], is divided into two packages: the Behavior and
the Structure. In the behavior package, concepts such as WebActor
and WebUseCase related to the behavior of the system presented.
In the structure package, any information storage for the system
is represented. Molina et al. [63,64] propose another web engineer-
ing requirements metamodel as an extension that can be inte-
grated with existing web engineering methodologies. A tool is
provided as an eclipse plug-in that accompanies the metamodel
presented in [63,64]. The metamodel is extended with general
security concepts in [79] in order to define a domain specific lan-
guage for security requirements. In [62], Molina presents a mea-
surable requirements metamodel which extends the
requirements metamodel in [63,64]. The measurable requirements
metamodel supports the elicitation of measurable requirements
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
based on the explicit connection of goals, requirements, and mea-
sures. Moon et al. [66] propose a methodology for producing
requirements that can be considered as a core asset in the product
line. Ceron et al. [14] discuss requirements modeling in the context
of product lines. They propose a metamodel for requirements that
contains both the common and variable parts. Lopez et al. [60] pro-
pose yet another metamodel for requirements reuse as a concep-
tual schema to integrate semiformal requirement diagrams into a
reuse strategy. The requirements metamodel is used to integrate
different abstraction levels for requirements definitions. All these
domain-specific approaches aim at providing a structure for repre-
senting requirements and their relations. Some of them do not con-
tain types of requirements relations and most of them only provide
informal definitions of their relations.
9.3. Change classification

Buckley et al. [12] classify change types in software systems as
structural and semantic changes. Another distinction is semantics-
preserving and semantics-modifying changes. Our classification for
the change rationale is based on [12] and adapted to requirements.

Kitchenham et al. [49] propose an ontology to identify a number
of factors that influence maintenance. The ontology has Modifica-
tion Activity as an entity, specialized by Enhancement and Correction
entities. In Corrections, a defect such a discrepancy between the re-
quired behavior of a product/application and the observed behav-
ior is corrected [49]. Enhancements might be changes in the
implementation or they might be requirements changes which
are adding new requirements or changing existing requirements.
According to Kitchenham, ‘‘Add a new Requirement’’ and ‘‘Update
an Existing Requirement’’ can be aquated to Swanson’s adaptive
and perfective maintenance change types [83,84] in turn. However,
the requirements change types in [49] have no formal semantics.

Aizenbud-Reshef et al. [2] present an approach for defining
operational semantics for a trace in UML. The semantic property
of a trace is a triplet (event, condition and actions). An event indi-
cates a change. Conditions help to differentiate among events. Ac-
tions describe what should and should not be done when a specific
event has occurred. There are event types (delete events, update
events, and create events) which can be considered as change types.
The main goal is to achieve automated consistency management of
UML class diagrams. We use a similar approach but derive our
change classification from the structure of requirements whereas
the change types (event types) in [2] are for UML models.

Lee et al. [56] provide a change impact analysis approach using
a goal-driven traceability-based technique. There is no explicit
change classification in the approach although change types such
as modify an existing requirement and add a new requirement are
introduced in the example section of [56]. Instead of providing a
change classification, Nurmuliani et al. [71] focus on establishing
how practitioners classify change requests. The Card Sorting, a
knowledge elicitation method, is used to identify categories of
change requests in practice. For instance, requirements changes
are categorized as high effort, medium effort, low effort and no effort
changes based on the magnitude of effort involved criterion by the
practitioners. Harker et al. [40] describe a classification of changing
requirements where each changing requirement type could be
reformulated as a change type. Lam et al. [53] propose a change
maturity model that reflects an organization’s capability at manag-
ing change. In this maturity model, a change classification is pro-
vided with three types of change: screen change, report change
and data change. The change classification in [53] is specialized
for Customer Complaints Systems (CCCs). Ackermann and Lindvall
[1] classify change requests as data flow change, program flow
change and application domain change. Contrary to our approach,
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

20 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
none of the change classifications given above except the work in
[2] has formal semantics.

9.4. Change impact analysis in requirements

A number of approaches in the literature address change impact
analysis in requirements. Jonsson and Lindvall [48] present com-
mon impact analysis strategies from a requirements engineering
perspective. They categorize strategies as automatable (traceabil-
ity/dependency analysis and slicing techniques) and manual (de-
sign documentation and interviews). Automatable impact
analysis strategies often employ algorithmic methods for change
propagation [48]. Traceability analysis is an automatable strategy
that examines relations among all types of software development
artifacts. We consider our approach as traceability analysis.

Event-Based Traceability (EBT) [17] supports change impact
analysis by automating trace generation and maintenance. In
EBT, requirements and other traceable artifacts, such as design
models, are linked through publish-subscribe relationship based
on the Observer design pattern [31]. The main purpose of EBT is to
determine candidate elements and maintain traces for these ele-
ments. Contrary to our approach, in EBT all elements directly/indi-
rectly related to the changed element are candidate. EBT does not
support any change impact alternatives, identification of false pos-
itives or consistency checking of changes.

A goal-driven requirements traceability approach is proposed
by Lee et al. [56] to analyze requirements change impacts through
goals and use cases. Traces among goals and use cases are estab-
lished and evaluated. Lee et al. provide trace types without formal
semantics. Contrary to our approach, this approach does not pro-
vide change alternatives. Cleland-Huang et al. [18] introduce an-
other goal-centric approach for managing impact of a change in
non-functional requirements. Non-functional requirements and
their dependencies are modeled with a Softgoal Interdependency
Graph (SIG). The impact detection is limited to identifying a set
of directly impacted SIG elements without any change type.

Ibrahim et al. [46] present an approach for change impact anal-
ysis of object oriented software. Change impact analysis is per-
formed from requirements to design, test case or source code.
Ibrahim et al., however, do not explain how to propagate a change
from one requirement to another requirement. Turver et al. [89]
describe a technique dealing with the ripple effects of a change
based on a graph-theoretic model. This technique can be applied
not only for source code but also for design and requirements doc-
uments. The technique, however, calculates the ripple effects by
using relations without any semantic information and it does not
provide any change alternative.

O’Neal [72,73] proposes a change impact analysis method to
evaluate requirement changes. Complementary to our approach,
O’Neal addresses the identification of the consequences of a
change, such as how much change should be done. Hassine et al.
[41] provide change impact analysis approach for requirements de-
scribed as detailed scenarios. Dependencies between scenarios are
used to identify the impacted scenarios. However, the approach
does not provide any change alternative.

Cheng et al. [16] propose a method of requirements change
management based on keyword mapping. Each requirement is de-
fined as a keyword and a keyword sentence is used to arrange all
the keywords according to a certain kind of order. When a change
request is received for a keyword, the relations of keywords are
analyzed as part of the impact analysis. However, the requirements
engineer is not supported for how the change is propagated.

Chen et al. [15] introduce a holistic approach to change impact
analysis in handling not only software contents but also other
items such as requirements, documents and data. The approach re-
lates heterogeneous items by using attributes and linkages. The
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
linkages relate items classified as design document, software doc-
ument, external data, and requirement. The linkages are between
different types of items such as requirements-to-component but
there is no mention of any linkage between two requirements.

Lock et al. [57–59] provide an approach that integrates different
traceability extraction methods (pre-recorded traceability, depen-
dency, plain experience, etc.) to determine impacted requirements.
Impact propagation structure, similar to propagation path in our
approach, is used with propagation probability to propagate a pro-
posed change from one requirement to another. The only output is
the candidate requirements. Lai et al. [51,52] provide a model-
based approach for propagating changes between requirements
and design models (particularly activity and sequence diagrams).
None of the approaches given above supports consistency checking
of requirements changes.

Our approach is based on our first attempt [34] for change im-
pact analysis. The work in [34] does not support a detailed change
classification. It does not consider the change rationale, in particu-
lar the difference between refactoring and domain changes. There-
fore, the decision table in [34] has some subtle difference
compared to the output of RequisitePro. Our previous work in
[86] provides a formal semantics of SysML requirements relations
for change impact analysis. Since the descriptions of SysML rela-
tions are highly ambiguous, we had to take our own very specific
interpretation for the relations. Also, the SysML relations are lim-
ited and a subset of our own relations given in our metamodel.

9.5. Change impact analysis in UML models

In the literature there are numerous works on checking consis-
tency of changes for UML diagrams/models. Egyed [25] presents an
approach for automatically deciding what consistency rules to
evaluate when a UML model changes. The approach is an adapta-
tion to incremental consistency checking. Egyed shows it is possi-
ble to detect inconsistencies quickly by building a model profiler
for observing which model elements a consistency checker ac-
cessed during the evaluation of consistency rules. In [25] the pro-
filing data forms the basis for deciding when to re-evaluate what
consistency rule. In [24] Egyed shows the use of an expanded ver-
sion of this profiling in understanding where to fix inconsistencies,
that is, identifying all the model elements that potentially fix an
inconsistency. The approach relies on the model profiler to deter-
mine the location of the fix in the model. Nentwich et al. [69] intro-
duces the Xlinkit framework which does the inconsistency location
determination via white-box analysis of consistency rules. The
Xlinkit framework is not able to identify dependencies among
inconsistencies that can be detected in [24]. In [26] Egyed intro-
duces another approach based on his previous works [25,24] which
is for deciding how to fix inconsistencies. The approach explored
all fix choices in a trial-and-error exploration. As a continuum of
the inconsistency checking work by Egyed [26,25,24], Groher and
Egyed [39] uses the incremental consistency checking approach
for selective undoing of model changes where the designer decides
which model elements to undo.

Briand et al. [9,10] propose another approach to detect which
model elements to modify as a result of a change in UML design
models. They identify change propagation rules for each change
type to compute change actions. There is no guarantee that the
set of these rules is complete. Dam and Winikoff [22] shows how
the approach [23] they developed for change propagation within
design models of intelligent systems is applied to UML design
models. Different from the work by Egyed [26,25,24], this approach
provides the designer not only just single change actions, but a ser-
ies of repair actions to make the system consistent.

Our approach determines the impact on other requirements
when a change occurs in a requirement. Here, the requirements
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://dx.doi.org/10.1016/j.infsof.2014.03.002

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 21
changes are fostered by the evolution of the business needs. There-
fore, with our approach the requirements engineer mainly tries to
make the requirements model consistent with the business needs
reflected by the requirements in the model. In all these UML based
approaches the main aim is to keep the UML diagrams consistent
with each other regardless of the change rationale.
10. Conclusion

In this paper, we presented a change impact analysis approach
for requirements captured in requirements models with require-
ments relations. We provided a classification of requirements
changes with formal semantics. The formal semantics of relations
and change types enables new proposed changes to be deduced
and contradicting proposed changes to be determined. Most of
the approaches and tools do not focus on the formal semantics of
requirements relations and change types. The formal semantics
in our approach provides a more precise change impact analysis
with a support of change alternative identification, elimination of
false positive impacts and change consistency checking. None of
the industrial requirements management tools support change im-
pact alternatives and consistency checking of changes. The main
advantage of our approach is that propagation alternatives are pro-
vided to be chosen by the requirements engineer. By providing
change alternatives with impact prediction we determine some
of the false positive impacts that usually occur in the industrial
tools. Once the requirements engineer analyzes the impact of a
change in the requirements model with our approach, by using
traces between requirements and architecture [35,37] the require-
ments engineer/the software architect can identify the impact of
this change in the software architecture.

The task of identifying and classifying relations during require-
ments modeling is vital to our approach. Actually whatever impact
analysis we might do with or without semantic information on the
potentially incorrect relations is not going to give correct results. In
our previous work [38,36] we thoroughly studied how to manually
identify and assign the initial relations among requirements. The
requirements reasoning framework given in [38] also provides a
semi-automatic tool support (the reasoning features of TRIC) to in-
fer new relations from the initial set of relations and check the con-
sistency of the given and inferred relations. Especially, the
consistency checking feature improves the correctness of the
requirements relations in the model [38].

Our approach has limitations for some change types and rela-
tion types. Change alternatives in Table 3 are used only if there is
any requirement related to the changed requirement. For instance,
adding a new requirement (Add Rx) has no impact on other
requirements in the requirements models according to Table 3.
The requirements engineer has to determine relations for the
added requirement and find if there is any impact on other
requirements.

There might be multiple relations between two requirements.
The priority is given to the intensionally defined relations for prop-
agation of changes through multiple relations. For instance, in the
formal semantics of the relations [38,36] we stated that the refines
and contains relations imply the requires relation. Therefore, our
approach uses refines and contains to determine the change
alternatives.

In the implementation of change propagation and change con-
sistency checking, change impact alternatives in Table 3 and con-
tradicting changes in Table 4 are hard-coded. When there is a
new relation and/or change type, additional manual proofs have
to be implemented in the current tool support.

Our current support is for textual requirements only. There is a
variety of other forms of requirements that is used in practice, e.g.
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
Product-line, SysML requirements diagrams, use cases, user tasks
and goals. Some of these forms can be mapped to our requirements
metamodel and formalization. In [33] we show how our require-
ments metamodel can be specialized for different requirements
modeling approaches and notations such as Product-line and
SysML. Mainly, the requirements relations in the metamodel are
specialized to support relations in different forms of requirements.
The specialization allows using the same semantics and reasoning
mechanism of our requirements metamodel for multiple forms of
requirements.

The empirical evaluation of the approach and tool is an impor-
tant issue. In an earlier stage of the research, we conducted a con-
trolled experiment (described in a master thesis [90]). Although
the results were generally positive we did not achieve statistical
significance due to low number of participants and low experience
of the subjects. Because our research has evolved and the tool has
been improved, the empirical validation is pending as a future
work.

Acknowledgments

This work has been carried out when the first author was carry-
ing his PhD work at the University of Twente. The work has been
supported by NWO (www.nwo.nl) in the Jacquard Programme
and by the National Research Fund, Luxembourg (FNR/P10/03).

Appendix A. Part of the CMS requirements document

In this appendix, we give an overview of the requirements of
the Course Management System (CMS) as used in this paper. The
full requirements document is available at http://www-sop.in-
ria.fr/members/Arda.Goknil/cms/.

Requirements (partial)

Stakeholder general
R4: The system shall provide dynamic course information.
R5: The system shall be able to store dynamic course

information.
R6: The system shall be able to represent dynamic course

information.
R7: The system shall provide a messaging facility.
Stakeholder students
R8: The system shall enable students to retrieve contact

information of students and lecturers of subscribed courses.
R11: The system shall enable students to subscribe to and

unsubscribe from courses.
R16: The system shall allow messages to be sent to

individuals, teams, or all course participants at once.
R24: The system shall notify students about events (new

messages posted, team invites, scheduled exams, etc.).
R26: The system shall allow students to view course grade

statistics per semester.
R29: The system shall provide a user-customizable visibility

policy for the personal information.

Stakeholder lecturers
R48: The system shall allow lecturers to create courses.
R49: The system shall allow lecturers to create entirely new

courses.
R59: The system shall allow lecturers to manage static course

information.
R60: The system shall allow lecturers to limit the number of

students subscribing to a course.
R61: The system shall allow lecturers to specify enrolment

(continued on next page)
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://www.nwo.nl
http://www-sop.inria.fr/members/Arda.Goknil/cms/
http://www-sop.inria.fr/members/Arda.Goknil/cms/
http://dx.doi.org/10.1016/j.infsof.2014.03.002

22 A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx
Part of the CMS requirements document (continued)

Requirements (partial)

policies based on grade, first-come first-serve (fcfs), and
department.

R62: The system shall allow lecturers to specify enrolment
policies based on grade.

R74: The system shall allow only lecturers to create new
teams.

Stakeholder administration
R97: The system shall allow only the administration to

manage courses.
R98: The system shall allow only the administration to create

new courses.
R100: The system shall allow only the administration to

update static course information.
R102: The system shall allow only the administration to

specify the minimum number of students for a course. If
there are too few subscriptions in a semester, that course
will not be given during that semester.

R103: The system shall have no maximum limit on the
number of course participants ever.
Glossary (partial)

Static Course Information: Information about a course which
does not change while a course is given but does change
between semesters. This includes the lecturer, number of
ECTS credits, and study material.

Dynamic Course Information: Information about a course
which changes while a course is given. This includes news
messages, archived files, and roster.

Manage Courses: Managing courses involves the creation,
reading, updating, and deleting of courses.
References

[1] C Ackermann, M. Lindvall, Understanding change requests to predict software
impact, in: 30th Annual IEEE/NASA Software Engineering Workshop, 2006, pp.
66–75.

[2] N. Aizenbud-Reshef, R.F. Paige, J. Rubin, Y. Shaham-Gafni, D.S. Kolovos,
operational semantics for traceability, ECMDA-TW 2005, pp. 7–14.

[3] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, R. Gnaga, Automatic checking of
conformance to requirement boilerplates via text chunking: an industrial case
study, in: 7th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2013), 2013, pp. 35–44.

[4] B. Baudry, C. Nebut, Y. Le Traon, Model-driven engineering for requirements
analysis, EDOC 2007, pp. 459–466.

[5] S.A. Bohner, Extending software change impact analysis into COTS
components, in: 27th Annual NASA Goddard Software Engineering
Workshop, 2002, pp. 175–182.

[6] S.A. Bohner, Software change impacts – an evolving, perspective, ICSM’02,
2002, pp. 263–271.

[7] S.A. Bohner, D. Gracanin, Software impact analysis in a virtual environment. in:
28th Annual NASA Goddard Software Engineering Workshop, 2003, pp. 143–
151.

[8] Borland Caliber Analyst. <http://www.borland.com/us/products/caliber/
index.html>.

[9] L.C. Briand, Y. Labiche, L. O’Sullivan, Impact analysis and change management
of UML models, in: International Conference on Software Maintenance, 2003,
pp. 256–265.

[10] L.C. Briand, Y. Labiche, L. O’Sullivan, M. Sowka, Automated impact analysis of
UML models, J. Syst. Softw. 79 (3) (2006) 339–352.

[11] E. Brottier, B. Baudry, Y. Le Traon, D. Touzet, B. Nicolas, Producing a global
requirement model from multiple requirement specifications, EDOC 2007,
2007, pp. 390–404.

[12] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxonomy of
software change, J. Softw. Mainten. Evol.: Res. Pract. 17 (5) (2005) 309–332.

[13] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, J. Natt och Dag, An industrial
survey of requirements interdependencies in software product release
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
planning, in: Proceedings of the 5th International Symposium on
Requirements Engineering, 2001, pp. 84–91.

[14] R. Ceron, J.C. Duenas, E. Serrano, R. Capilla, A meta-model for requirements
engineering in system family context for software process improvement using
CMMI, PROFES 2005, 3547, 2005, pp. 173–178.

[15] C.Y. Chen, P.C. Chen, A holistic approach to managing software change impact,
J. Syst. Softw. 82 (12) (2009) 2051–2067.

[16] H. Cheng, Y. Xia, X. Hu, Requirements change management of information
system based on the keyword mapping, in: The Sixth Wuhan International
Conference on E-Business, 2007, pp. 135–140.

[17] J. Cleland-Huang, C.K. Chang, M. Christensen, Event-based traceability for
managing evolutionary change, IEEE Trans. Softw. Eng. 29 (9) (2003) 796–810.

[18] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, S. Christina,
Goal-centric traceability for managing non-functional requirements, in:
Proceedings of the 27th International Conference on Software Engineering
(ICSE’05), 2005, pp. 362–371.

[19] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000.
[20] COMET (Component and Model Based Development Methodology). <http://

modelbased.net/methods/comet/>.
[21] A.G. Dahlstedt, A. Persson, Requirements Interdependencies: state of the art

and future challenges, in: A. Aurum, C. Wohlin (Eds.), Engineering and
Managing Software Requirements, Springer, Berlin, 2005, pp. 95–116.

[22] H.K. Dam, M. Winikoff, Supporting change propagation in UML models, in:
IEEE International Conference on Software Maintenance (ICSM), 2010, pp. 1–
10.

[23] H.K. Dam, M. Winikoff, L. Padgham, An agent-oriented approach to change
propagation in software evolution, in: Proceedings of the Australian Software
Engineering Conference (ASWEC), 2006, pp. 309–318.

[24] A. Egyed, Fixing inconsistencies in UML design models, in: 29th International
Conference on Software Engineering (ICSE’07), 2007, pp. 292–301.

[25] A. Egyed, Instant consistency checking for the UML, in: 28th International
Conference on Software Engineering (ICSE’06), 2006, pp. 381–390.

[26] A. Egyed, E. Letier, A. Finkelstein, Generating and evaluating choices for fixing
inconsistencies in UML design models, in: 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008), 2008, pp. 99–108.

[27] E. Erlikh, Leveraging legacy system dollars for E-business, IT Profess. 2 (3)
(2000) 17–23.

[28] M.J. Escalona, G. Aragon, NDT. A model-driven approach for web requirements,
IEEE Trans. Soft. Eng. 34 (3) (2008) 377–390.

[29] R. Fleischer, G. Trippen, Experimental studies of graph traversal algorithms,
WEA 2003, LNCS(2647), 2003, pp. 120–133.

[30] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, 1995.

[32] A. Goknil, Traceability of Requirements and Software Architecture for Change
Management, PhD Thesis, University of Twente, Enschede, 2011.

[33] A. Goknil, I. Kurtev, J. V. Millo, A metamodeling approach for reasoning on
multiple requirements models, EDOC’13, 2013, pp. 159–166.

[34] A. Goknil, I. Kurtev, K. van den Berg, change impact analysis based on
formalizations of trace relations for requirements, ECMDA-TW’08, SINTEF
Report, 2008, pp. 59–75.

[35] A. Goknil, I. Kurtev, K. van den Berg, Generation and validation of traces
between requirements and architecture based on formal trace semantics, J.
Syst. Softw. 88 (2014) 112–137.

[36] A. Goknil, I. Kurtev, K. van den Berg, A metamodeling approach for reasoning
about requirements, in: European Conference on Model Driven Architecture
Foundations and Applications (ECMDA-FA’08), LNCS(5095), 2008, pp. 311–
326.

[37] A. Goknil, I. Kurtev, K. van den Berg, Tool support for generation and validation
of traces between requirements and architecture, ECMFA-TW 2010, 2010, pp.
39–46.

[38] A. Goknil, I. Kurtev, K. van den Berg, J.W. Veldhuis, Semantics of trace relations
in requirements models for consistency checking and inferencing, Softw. Syst.
Model. 10 (1) (2011) 31–54.

[39] I. Groher, A. Egyed, Selective and consistent undoing of model changes,
MODELS 2010, LNCS (6395), 2010, pp. 123–137.

[40] S.D.P. Harker, K.D. Eason, J.E. Dobson, The change and evolution of
requirements as a challenge to the practice of software engineering, in:
Proceedings of IEEE International Symposium on Requirements Engineering
1993, 1993, pp. 266–272.

[41] J. Hassine, J. Rilling, J. Hewitt, Change impact analysis for requirement
evolution using use case maps, in: Eighth International Workshop on
Principles of Software Evolution, 2005, pp. 81–90.

[42] W. Heaven, A. Finkelstein, UML profile to support requirements engineering
with KAOS, IEE Proc. Softw. 151 (1) (2004) 10–27.

[43] M.R.A. Huth, M.D. Ryan, Logic in Computer Science: Modeling and Reasoning
about Systems, Cambridge University Press, Cambridge, 2000.

[44] IBM Rational RequisitePro. <http://www-01.ibm.com/software/awdtools/
reqpro/>.

[45] IBM Telelogic Doors. <http://www.telelogic.com/Products/doors/doors/
index.cfm>.

[46] S. Ibrahim, M. Munro, A. Deraman, A requirements traceability to support
change impact analysis, Asian J. Inf. Technol. 4 (4) (2005) 329–338.

[47] Jena. A Semantic Web Framework for JAVA. <http://jena.sourceforge.net/>.
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://www.borland.com/us/products/caliber/index.html
http://www.borland.com/us/products/caliber/index.html
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0050
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0050
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0060
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0060
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0075
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0075
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0085
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0085
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0095
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0095
http://www.modelbased.net/methods/comet/
http://www.modelbased.net/methods/comet/
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0105
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0135
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0135
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0140
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0140
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0150
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0150
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0150
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0155
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0155
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0155
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0175
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0175
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0175
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0190
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0190
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0190
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0210
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0210
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0215
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0215
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0215
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www.telelogic.com/Products/doors/doors/index.cfm
http://www.telelogic.com/Products/doors/doors/index.cfm
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0230
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0230
http://www.jena.sourceforge.net/
http://dx.doi.org/10.1016/j.infsof.2014.03.002

A. Goknil et al. / Information and Software Technology xxx (2014) xxx–xxx 23
[48] P. Jonsson, M. Lindvall, Impact analysis, in: A. Aurum, C. Wohlin (Eds.), Engineering
and Managing Software Requirements, Springer, Berlin, 2005, pp. 117–142.

[49] B.A. Kitchenham, G.H. Travassos, A. von Mayrhauser, F. Niessink, N.F.
Schneidewind, J. Singer, et al., Towards an ontology of software
maintenance, J. Softw. Mainten.: Res. Pract. 11 (6) (1999) 365–389.

[50] N. Koch, A. Kraus, Towards a common metamodel for the development of web
applications, ICWE 2003, 2003, pp. 497–506.

[51] W. Lai, Relationship-Based Change Propagation: A Case Study. M.Sc. Thesis,
University of Toronto, Toronto, 2009.

[52] W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook, M. Sabetzadeh et al.,
Relationship-based change propagation: a case study, in: Proceedings of
ICSE’09 Workshop on Modeling in, Software Engineering (MiSE’09), 2009.

[53] W. Lam, V. Shankararaman, Managing change in software development using a
process improvement approach, in: Proceedings of 24th Euromicro Conference
1998, 1998, pp. 779–786.

[54] A.v. Lamsweerde, Requirements Engineering: From System Goals to UML
Models to Software Specifications, John Wiley & Sons, 2009.

[55] J. Lee, J.Y. Kuo, New approach to requirements trade-off analysis for complex
systems, IEEE Trans. Knowl. Data Eng. 10 (4) (1998) 551–562.

[56] W.T. Lee, W.Y. Deng, J. Lee, S.J. Lee, Change impact analysis with a goal-driven
traceability-based approach, Int. J. Intell. Syst. 25 (8) (2010) 878–908.

[57] S. Lock, A Hybrid Approach to Requirement Level Impact Analysis, PhD Thesis,
Lancaster University, 2001.

[58] S. Lock, G. Kotonya, An integrated framework for requirement change impact
analysis, in: Proceedings of the 4th Australian Conference on Requirements
Engineering, 1999, pp. 29–42.

[59] S. Lock, G. Kotonya, An integrated, probabilistic framework for requirement
change impact analysis, Aust. J. Inf. Syst. 6 (2) (1999) 38–63.

[60] O. Lopez, M.A. Laguna, F.J. Garcia, Metamodeling for requirements reuse, in:
Anaisdo WER02—Workshop em Engenharia de Requisitos, 2002, pp. 76–90.

[61] J.J.C. Meyer, R. Wieringa, F. Dignum, The Role of Deontic Logic in the
Specification of Information Systems. Logics for Databases and Information
Systems, 1998, pp. 71–115.

[62] F. Molina, J. Pardillo, C. Cachero, A. Toval, An MDE modeling framework for
measurable goal-oriented requirements, Int. J. Intell. Syst. 25 (8) (2010) 757–
783.

[63] F. Molina, J. Pardillo, A. Toval, Modelling web-based systems requirements
using WRM, in: Web Information Systems Engineering – WISE 2008
Workshops, LNCS(5176), 2008, pp. 122–131.

[64] F. Molina, A. Toval, Integrating usability requirements that can be evaluated in
design time into model driven engineering of web information systems, Adv.
Eng. Softw. 40 (12) (2009) 1306–1317.

[65] M. Monperrus, B. Baudry, J. Champeau, B. Hoeltzener, J.M. Jezequel, Automated
measurement of models of requirements, Softw. Qual. J. 21 (1) (2013) 3–22.

[66] M. Moon, K. Yeom, H.S. Chae, An approach to developing domain requirements
reuse as a core asset based on commonality and variability analysis in a
product line, IEEE Trans. Softw. Eng. 31 (7) (2005) 551–569.

[67] J. Mylopoulos, L. Chung, E. Yu, From object-oriented to goal oriented
requirements analysis, ACM Commun. 42 (1) (1999) 31–37.

[68] E. Navarro, J.A. Mocholi, P. Letelier, I. Ramos, A metamodeling approach for
requirements specification, J. Comput. Inf. Syst. 46 (5) (2006) 67–77.

[69] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency management with
repair actions, ICSE’03, 2003, pp. 455–464.

[70] J. Noppen, P. van den Broek, M. Aksit, Imperfect requirements in software
development, REFSQ 2007, 4542, 2007, pp. 247–261.

[71] N. Nurmuliani, D. Zowghi, S.P. Williams, Using card sorting technique to
classify requirements change, in: Proceedings of 12th IEEE International
Requirements, Engineering Conference 2004, 2004, pp. 240–248.
Please cite this article in press as: A. Goknil et al., Change impact analysis for
http://dx.doi.org/10.1016/j.infsof.2014.03.002
[72] J.S. O’Neal, Analyzing the Impact of Changing Software Requirements: A
Traceability-based Methodology, Ph.D. Dissertation, Louisiana State
University, 2003.

[73] J.S. O’Neal, D.L. Carver, Analyzing the impact of changing requirements, in:
International Conference on Software Maintenance, 2001, pp. 190–195.

[74] OMG. SysML Specification. <http://www.sysml.org/specs.htm> (retrieved
05.01.10).

[75] K. Pohl, Process-Centered Requirements Engineering, John Wiley & Sons, 1996.
[76] A. Rashid, A. Moreira, J. Araujo, Modularization and composition of aspectual

requirements, AOSD 2003, 2003, pp. 11–20.
[77] RIF. Requirements Interchange Format. <http://www.automative-his.de/rif/

doku.php>.
[78] W.N. Robinson, S.D. Pawlowski, V. Volkov, Requirements interaction

management, ACM Comput. Surv. 35 (2) (2003) 132–190.
[79] O. Sanchez, F. Molina, J. Garcia-Molina, A. Toval, ModelSec: a generative

architecture for model-driven security, J. Univ. Comput. Sci. 15 (15) (2009)
2957–2980.

[80] M.S. Soares, J. Vrancken, Model-driven user requirements specification using
SysML, J. Softw. 3 (6) (2008) 57–68.

[81] W. Spijkerman, Tool Support for Change Impact Analysis in Requirement
Models, MSc Thesis, University of Twente, Enschede, 2010.

[82] S. Supakkul, L. Chung, A UML profile for goal-oriented and use case driven
representation of NFRs and FRs, SERA 2005, 2005, pp. 112–119.

[83] E.B. Swanson, The dimensions of maintenance, in: Proceedings of the 2nd
International Conference on Software Engineering, 1976, pp. 492–497.

[84] E.B. Swanson, N. Chapin, Interview with E. Burton Swanson, J. Softw. Mainten.:
Res. Pract. 7 (5) (1995) 303–315.

[85] SWEBOOK, Guide to Software Engineering Body of Knowledge, IEEE Computer
Society.

[86] D. ten Hove, A. Goknil, I. Kurtev, K. van den Berg, K. de Goede, Change impact
analysis for SysML requirements models based on semantics of trace relations,
ECMDA-TW 2009, 2009, pp. 17–28.

[87] Tool for Requirements Inferencing and Consistency Checking (TRIC). <http://
trese.cs.utwente.nl/tric/>.

[88] TopTeam Analyst. <http://www.technosolutions.com/topteam_requirements_
management.html>.

[89] R.J. Turver, M. Munro, An early impact analysis technique for software
maintenance, J. Softw. Mainten. Res. Pract. 6 (1) (1994) 35–52.

[90] R.S.A. van Domburg, Empirical Validation of Representation and Interpretation
of Software Requirements in Requirements Models Master Thesis, University
of Twente, Enschede, 2009.

[91] A. van Lamswerdee, Goal-oriented requirements engineering: a roundtrip
from research to practice, in: Invited Minitutorial, Proceedings RE’01—5th
International Symposium Requirements Engineering, 2001, pp. 249–
263.

[92] J.W. Veldhuis, Tool Support for a Metamodeling Approach for Reasoning about
Requirements, MSc Thesis, University of Twente, Enschede, 2009.

[93] C. Vicente-Chicote, B. Moros, A. Toval, REMM-Studio: an integrated model-
driven environment for requirements specification, validation and formatting,
J. Object Technol. 6 (9) (2007) 437–454.

[94] R. Vogel, K. Mantell, MDA Adoption for a SME: Evolution, not Revolution –
Phase II. 2nd Workshop on From Code Centric to Model Centric Software
Engineering: Practices, Implications and ROI, 2006.

[95] P. Zave, M. Jackson, Four dark corners of requirements engineering, ACM Trans.
Softw. Eng. Methodol. (TOSEM) 6 (1) (1997) 1–30.

[96] H. Zhang, J. Li, L. Zhu, R. Jeffery, Y. Liu, Q. Wang, et al., Investigating
dependencies in software requirements for change propagation analysis, Inf.
Softw. Technol. 56 (1) (2014) 40–53.
requirements: A metamodeling approach, Inform. Softw. Technol. (2014),

http://refhub.elsevier.com/S0950-5849(14)00061-5/h0240
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0240
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0240
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0240
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0240
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0245
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0245
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0245
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0270
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0270
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0270
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0275
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0275
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0280
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0280
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0295
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0295
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0310
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0310
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0310
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0320
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0320
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0320
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0325
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0325
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0330
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0330
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0330
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0335
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0335
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0340
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0340
http://www.sysml.org/specs.htm
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0375
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0375
http://www.automative-his.de/rif/doku.php
http://www.automative-his.de/rif/doku.php
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0390
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0390
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0395
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0395
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0395
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0400
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0400
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0420
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0420
http://www.trese.cs.utwente.nl/tric/
http://www.trese.cs.utwente.nl/tric/
http://www.technosolutions.com/topteam_requirements_management.html
http://www.technosolutions.com/topteam_requirements_management.html
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0445
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0445
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0465
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0465
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0465
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0475
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0475
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0480
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0480
http://refhub.elsevier.com/S0950-5849(14)00061-5/h0480
http://dx.doi.org/10.1016/j.infsof.2014.03.002

	Change impact analysis for requirements: A metamodeling approach
	1 Introduction
	2 The importance of semantics for change impact analysis
	3 Requirements metamodel
	4 Classification of changes in requirements
	4.1 Structure of a textual requirement
	4.2 Change types for requirements models
	4.2.1 Update requirement

	4.3 Semantics of requirements changes
	4.4 Rationale of changes

	5 Change propagation and change consistency checking
	6 Tool support
	7 Example: course management system
	7.1 Proposing and propagating requirements changes
	7.2 Checking consistency
	7.3 Comparison of the results in our approach and RequisitePro

	8 Discussion of the approach
	9 Related work
	9.1 Requirements relations
	9.2 Requirements metamodeling
	9.3 Change classification
	9.4 Change impact analysis in requirements
	9.5 Change impact analysis in UML models

	10 Conclusion
	Acknowledgments
	Appendix A Part of the CMS requirements document
	References

