
Software Development in Startup Companies: A Systematic Mapping Study

Nicolò Paternostera, Carmine Giardinoa, Michael Unterkalmsteinera, Tony Gorscheka, Pekka Abrahamssonb

a Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
bFree University of Bolzano-Bozen, I-39100 Bolzano-Bozen, Italy

Abstract

Context: Software startups are newly created companies with no operating history and fast in producing cutting-edge technologies. These
companies develop software under highly uncertain conditions, tackling fast-growing markets under severe lack of resources. Therefore, software
startups present an unique combination of characteristics which pose several challenges to software development activities. Objective: This
study aims to structure and analyze the literature on software development in startup companies, determining thereby the potential for technology
transfer and identifying software development work practices reported by practitioners and researchers. Method: We conducted a systematic
mapping study, developing a classification schema, ranking the selected primary studies according their rigor and relevance, and analyzing
reported software development work practices in startups. Results: A total of 43 primary studies were identified and mapped, synthesizing the
available evidence on software development in startups. Only 16 studies are entirely dedicated to software development in startups, of which 10
result in a weak contribution (advice and implications (6); lesson learned (3); tool (1)). Nineteen studies focus on managerial and organizational
factors. Moreover, only 9 studies exhibit high scientific rigor and relevance. From the reviewed primary studies, 213 software engineering work
practices were extracted, categorized and analyzed. Conclusion: This mapping study provides the first systematic exploration of the state-of-art
on software startup research. The existing body of knowledge is limited to a few high quality studies. Furthermore, the results indicate that
software engineering work practices are chosen opportunistically, adapted and configured to provide value under the constrains imposed by the
startup context.

Keywords: Software Development, Startups, Systematic Mapping Study

1. Introduction

A wide body of knowledge has been created in recent years
through several empirical studies, investigating how companies
leverage software engineering (SE) [1, 2]. However, research
on software development activities in newly created compa-
nies is scarce. In the past, very few publications have identi-
fied, characterized and mapped work practices in software star-
tups [3] and no structured investigation of the area has been per-
formed. Indeed, none of the systematic literature reviews [4] or
mapping studies [5] in software engineering (see the tertiary re-
view by Zhang and Babar [6]) address the startup phenomenon.

Understanding how startups take advantage from work prac-
tices is essential to support the number of new businesses
launched everyday1. New software ventures such as Facebook,
Linkedin, Spotify, Pinterest, Instagram, and Dropbox, to name a
few, are examples of startups that evolved into successful busi-
nesses. Startups typically aim to create high-tech and innova-
tive products, and grow by aggressively expanding their busi-
ness in highly scalable markets.

Despite many successful stories, self-destruction rather than
competition drives the majority of startups into failure within
two years from their creation [8]. Software startups face intense
time-pressure from the market and are exposed to tough com-
petition, operating in a chaotic, rapidly evolving and uncertain

1According to a recent study, solely in the US “startups create an average
of 3 million new jobs annually” [7].

context [9, 10]. Choosing the right features to build and adapt-
ing quickly to new requests, while being constrained by limited
resources, is crucial to the success in this environment [3].

From a software engineering perspective startups are unique,
since they develop software in a context where processes can
hardly follow a prescriptive methodology [11]. Startups share
some characteristics with other contexts such as small compa-
nies and web engineering, and present a combination of dif-
ferent factors that make the development environment different
from established companies [12]. Therefore, research is needed
to support startups’ engineering activities, guiding practitioners
in taking decisions and avoiding choices that could easily lead
business failure [13, 14].

The goal of this paper is to identify and understand the main
contributions of the state-of-art towards software engineering in
startups. To this end, we perform a systematic mapping study
(SMS) [5, 15] aimed at:

• characterizing the state-of-art research on startups
• understanding the context that characterizes startups
• determining the potential for technology transfer of the state-

of-art research on startups
• extracting and analyzing software development work prac-

tices used in startups

The systematic map consists of 43 primary studies that were
identified from an initial set of 1053 papers. Practitioners may
take advantage of the 213 identified software engineering work
practices, while considering however the studies’ respective

Preprint submitted to Information and Software Technology July 26, 2023

ar
X

iv
:2

30
7.

13
10

4v
1 

 [
cs

.S
E

] 
 2

4 
Ju

l 2
02

3



rigor and relevance assessments. Furthermore, this first system-
atic exploration on software startups provides researchers with
directions for future work.

The remainder of this paper is structured as follows: Sec-
tion 2 describes background and related work; Section 3 illus-
trates the research methodology and discusses validity threats;
Section 4 introduces the classification schema, developed from
the gathered data; Section 5 presents the results of the mapping
study. The state-of-art of software development in startups is
discussed in Section 6, whereas in Section 7 the reported soft-
ware development work practices are analyzed. Section 8 con-
cludes the paper, answering the posed research questions and
providing an outlook for future work.

2. Background and Related Work

Modern entrepreneurship, born more than thirty years
ago [16], has been boosted by the advent of the consumer Inter-
net markets in the middle of the nineties and culminated with
the notorious dot-com bubble burst of 2000 [17]. Today, with
the omnipresence of the Internet and mobile devices, we are
assisting to an impressive proliferation of software ventures -
metaphorically referred as the startup bubble. In fact, easy ac-
cess to potential markets and low cost of services distribution
are appealing conditions for modern entrepreneurs [18]. In-
spired by success stories, a large number of software businesses
are created every day. However, the great majority of these
companies fail within two years from their creation [8].

2.1. Software Startups
An early account for the term startup in the SE literature

can be found in Carmel [19] who studied in 1994 the time-to-
completion in a young package firm. He noticed how these
companies were particularly innovative and successful, advo-
cating the need for more research on their software develop-
ment practices so as to replicate success and try to transfer it to
other technology sectors.

Sutton [3] provides a characterization of software startups,
defined by the challenges they are faced with:

• little or no operating history - startups have little accumu-
lated experience in development processes and organization
management.
• limited resources - startups typically focus on getting the

product out, promoting the product and building up strategic
alliances.
• multiple influences - pressure from investors, customers,

partners and competitors impact the decision-making in a
company. Although individually important, overall they
might be inconsistent.
• dynamic technologies and markets - newness of software

companies often require to develop or operate with disruptive
technologies2 to enter into a high-potential target market.

2A new technology that unexpectedly displaces an established technology.
It does not rely on incremental improvements to an already established technol-
ogy, but rather tackles radical technical change and innovation [20].

One of the objectives of this SMS is to understand the context
that characterizes startups and to what extent Sutton’s definition
from 2000 has been adopted or broadened.

2.2. Startup Lifecycle

The lifetime of a startup company, from idea conception to
the maturity level, has been identified and reported from dif-
ferent perspectives (e.g. market [21] and innovation [22]). A
prominent contribution, from a SE viewpoint, is the model pre-
sented by Crowne [8], who synthesized the startup lifecycle in
four stages. The startup stage is the time when startups create
and refine the idea conception, up to the first sale. This time
frame is characterized most from the need to assemble a small
executive team with the necessary skills to start to build the
product. The stabilization phase begins from the first sale, and
it lasts until the product is stable enough to be commissioned to
a new customer without causing any overhead on product de-
velopment. The growth phase begins with a stable product de-
velopment process and lasts until market size, share and growth
rate have been established. Finally, the startup evolves to a ma-
ture organization, where the product development becomes ro-
bust and predictable with proven processes for new product in-
ventions.

2.3. Software Development in Startups

The implementation of methodologies to structure and con-
trol the development activities in startups is a major challenge
for engineers [11]. In general, the management of software de-
velopment is achieved through the introduction of software pro-
cesses, which can be defined as “the coherent set of policies, or-
ganizational structures, technologies, procedures, and artifacts
that are needed to conceive, develop, deploy and maintain a
software product” [23]. Several models have been introduced
to drive software development activities in startups, however
without achieving significant benefits [24, 11, 3].

In the startup context, software engineering (SE) faces com-
plex and multifaceted obstacles in understanding how to man-
age development processes. Startups are creative and flexible in
nature and reluctant to introduce process or bureaucratic mea-
sures which may hinder their natural attributes [3, 25]. Further-
more, startups have very limited resources and typically wish to
use them to support product development instead of establish-
ing processes [11, 26]. Some attempts to tailor lightweight pro-
cesses to startups reported basic failure of their application [27].
Rejecting the notion of repeatable and controlled processes,
startups prominently take advantage of unpredictable, reactive
and low-precision engineering practices [3, 28, 29, 30].

Product-oriented practices help startups in having a flexible
team, with workflows that leave them the ability to quickly
change the direction according to the targeted market [26, 3].
Therefore, many startups focus on team productivity, asserting
more control to the employees instead of providing them rigid
guidelines [28, 29, 30].

Startups often develop applications to tackle a high-potential
target market rather than developing software for a specific
client [18, 31]. Issues related to this market type are addressed

2



in literature by market-driven software development [32]. In
this regard, researchers emphasize the importance of time-to-
market as a key strategic objective [33, 34]. In fact, star-
tups usually operate in fast-moving and uncertain markets and
need to cope with shortage of resources. Other peculiar as-
pects influencing software development in the market-driven
context are related to requirements, which are reported to be
often “invented by the software company” [35], “rarely doc-
umented” [36], and can be validated only after the product is
released to market [37, 38]. Under these circumstances, failure
of product launches are largely due to “products not meeting
customer needs” [32].

2.4. Related work

The prospects of evidence-based software engineering [39]
have motivated researchers to conduct systematic literature re-
views and mapping studies. Zhang and Babar [6] report on 148
SLR’s and SMS’s published between 2004 and 2010. How-
ever, none of these reviews nor the reviews conducted up to
February 20143, investigated software engineering in the con-
text of startups. Nevertheless, there exist reviews that studied
software engineering topics pertinent to specific contexts or en-
vironments (as opposed to reviews that investigated individual
software engineering technologies, e.g. feature location [40] or
search-based software testing [41]) that we consider as related
work. Small and medium-sized enterprises (SMEs) and startups
possibly share some characteristics, such as the low number of
employees (fewer than 250 [42]) and limited resources [43, 44].
Hence, reviews that study the literature on SMEs are relevant
related work.

Pino et al. [45] studied the adoption of software process
improvement approaches in SMEs [46]. They point out that
very few of the SMEs that were part of the reviewed studies
did achieve one of the pursued certifications, concluding that
standard-driven, not tailored improvement initiatives are not
suitable for small companies, confirming also Staples’ et al.
findings [47]. Taticchi et al. [48] observe a similar situation
in the area of business performance measures and management
(PMM). Their review identifies a lack of PMM models specif-
ically adapted to SMEs, speculating that non-adoption stems
from fear of costs and benefits incomprehension.

Thorpe et al. [49] reviewed the literature on using knowl-
edge within SMEs. Managers/entrepreneurs are an important
organizational resource in SMEs as they are drivers for creat-
ing knowledge. This knowledge is best encoded in organized
routines that allow widespread sharing within the firm. The
challenge is to provide enough structure, allowing knowledge
creation and sharing to scale, without limiting creativity and
learning.

Rosenbusch et al. [50] studied the innovation-performance
relationship in SMEs by conducting a meta-analysis of 42 em-
pirical studies that cover 21,270 firms. Interesting to our stud-
ied context is their finding that innovation has a stronger impact

3We performed an automatic search with the search string published by
Zhang and Babar [6].

on younger firms than on more established SMEs. Furthermore,
evidence suggests that for small and young firms it is more ben-
eficial to conduct internal innovation projects than seeking in-
novation by collaborating with external partners.

Common to these reviews, looking at different aspects of
SMEs, is the recognition that properties of small firms require
solutions and technologies that are adapted to that specific con-
text. Similarly, we argue that startups, differing from SMEs
in terms of their operating history, outside influences and mar-
ket dynamism, require software development solutions adapted
to their context. This SMS seeks to evaluate, synthesize and
present the empirical findings on software development in star-
tups to date and provide an overview of researched topics, find-
ings, strength of evidence, and implications for research and
practice.

3. Research methodology

We chose to perform a systematic mapping study (SMS),
which is capable of dealing with wide and poorly-defined ar-
eas [15, 4]. A systematic literature review (SLR) [4] would
have been a less viable option due to the breadth of our overall
research question: What is the state-of-art in literature pertain-
ing to software engineering in startups?

The review in this paper follows the guidelines developed
by Kitchenham and Charters [4] and implements the system-
atic mapping process proposed by Petersen et al. [15]. Fig-
ure 1 illustrates the adopted process, whereas the individual
steps are explained in Subsections 3.1- 3.7. Note that rigor and
relevance assessment is an extension attributed to Ivarsson and
Gorschek [51] and synthesis is based on the constant compari-
son method proposed by Strauss and Corbin [52].

The SMS procedure was led by the first and second authors,
who performed the steps in Figure 1 in a co-located environ-
ment, i.e. working together on a single computer screen. Note-
taking during screening of papers and keywording alleviated
the resolution of conflicts among the reviewers during data ex-
traction and rigor and relevance assessment. If disagreement
persisted, an in-depth review of the paper was performed and,
if necessary, the third and fourth authors were consulted to take
a final decision.

3.1. Definition of Research Questions

The research question driving this mapping study is: What is
the state-of-art in literature pertaining to software engineering
in startups? To answer this question, we state the following
sub-questions:

• RQ1 What is the context that characterizes software develop-
ment in startups?
• RQ2 To what extent does the research on startups provide

reliable and transferable results to industry?
• RQ3 What are the reported work practices in association with

software engineering in startups?

With RQ1 we intend to understand the properties that char-
acterize the nature of software development in startups. Such

3



Figure 1: Systematic mapping process (adapted from Petersen et al. [15])

a characterization illustrates the dimensions by which startups
are defined in the state-of-art. With RQ2 we intend to determine
the scientific evidence of the results reported in the state-of-art,
allowing researchers to identify worthwhile avenues for further
work and providing practitioners a tool to navigate within the
state-of-art. With RQ3 we intend to identify the software engi-
neering practices applied in startups, providing a basis for de-
termining necessary further research.

3.2. Conduct Search

We identified the primary studies by exercising a search
string on scientific databases. The search string is structured
according to population, intervention and comparison, as pro-
posed by Kitchenham and Charters [4]. We omitted however
the outcome and context facet from the search string structure
as our research questions do not warrant a restriction of the re-
sults to a particular outcome (e.g. effective/not effective work
practices) or context (e.g. startups in a specific product do-
main).

Table 1 lists the final used keywords. The core concepts,
representing population, intervention and comparison, are de-
rived from our research questions. Following Rumsey’s guide-
lines [53], we identified synonymous, related/broader/wider
concepts, alternative spelling and part of speech for each core
concept. Note that we did not include specific keywords from
existing startup definitions (e.g. Sutton [3], discussed in Sec-
tion 2.1) to the population set of terms as this could have biased
the search.

The selected scientific databases on which we performed the
search are shown in Table 2, along with the number of publi-
cations retrieved from each database (up to December 2013).
We selected the databases considering their coverage and use in
the domain of software engineering, and their ability to handle
advanced queries, following the example of Barney et al. [54].

To increase publication coverage we also used Google
Scholar, which indexes a large set of data, both peer and non-
peer reviewed. Then, we proceeded to the customization of the
search string, adapting the syntax to the particular database4.

4The individual search strings are available in the supplementary mate-
rial [55].

Table 1: Population, intervention and comparison search string keywords

Core concepts Terms

Software Startups software startup*; software start-up*; early-stage
firm*; early-stage compan*; high-tech venture*;
high-tech start-up*; start-up compan*; startup com-
pan*; lean startup*; lean start-up*; software pack-
age start-up*; software package startup*; IT start-
up*; IT startup*; software product startup*; soft-
ware start up*; internet start-up*; internet startup*;
web startup*; web start-up*; mobile startup*; mo-
bile start-up*;

Development develop*; engineer*; model*; construct*; imple-
ment*; cod*; creat*; build*;

Strategy product*; service*; process*; methodolog*; tool*;
method*; practice*; artifact*; artefact*; qualit*;
ilit*; strateg*; software;

Table 2: Selected databases and retrieved papers

ID Database Papers

A Inspec/Compendex (www.engineeringvillage2.org) 640
B IEEE Xplore (ieeexplore.ieee.org) 132
C Scopus (www.scopus.com) 468
D ISI Web of Science (wokinfo.com) 293
E ACM Digital Library (dl.acm.org/advsearch.cfm) 78
F Google Scholar (scholar.google.com) 158

Total 1769

3.3. Screening of Relevant Papers

The criterion that guided the inclusion of a paper was that
the study presented a contribution to the body of knowledge
on software development in startups. A contribution can be in
the form of an experience report, applied engineering practices,
development models or lessons learned. We excluded search
results that were:

• not peer-reviewed (grey literature, books, presentations, blog
posts, etc.)
• not written in English
• clearly obsolete (more than 20 years old)
• related to non-software companies (biotech, manufacturing,

electronics, etc.)
• related to established companies (VSE, SME, research spin-

offs)

4



• related to technicalities of startups (algorithms, programming
languages, etc.)

For the screening of papers we followed the workflow in Fig-
ure 2.

Figure 2: Screening of papers workflow

With the support of a reference management tool [56] we
merged the six result lists from the search in the scientific
databases. Then, we removed duplicated items in two steps:
first we used the reference management tool to automatically
detect duplicates based on meta-data (author, publication year
and title). Then, we manually deleted instances that were not
detected as duplicates by the tool, resulting in 1053 papers.

Then we analyzed the metadata (title, keywords, publication
year and type) to identify papers that matched the exclusion
criteria, resulting in 722 papers. In a more in-depth review,
we analyzed the abstract of each paper, determining whether it
matched our inclusion criterion, resulting in 64 papers. As indi-
cated in Figure 2, we improved the search strings while reading
the abstracts, adding new keywords identified in retrieved pa-
pers and iteratively conducting a new search.

In case of a disagreement among the reviewers or incomplete
abstracts we read the entire paper, leading eventually to the final
set of 43 primary studies. During the screening process we kept
track of the rationale for each exclusion, as shown in Table 3.

Table 3: Rationale for excluded papers

Rationale Amount

Duplicate 474
Non-software industry 409
Related to software startups but not SE perspective 259
Not software/startup related 122
Related to software but not startups 85
Academic settings 70
Not peer-reviewed 41
Full-text non available 20
Outdated 4
Not in English language 4

Total retrieved 1531
Total excluded 1488
Total included 43

3.4. Keywording

The goal of keywording is to efficiently create a classifica-
tion schema, ensuring that all relevant papers are taken into ac-
count [15]. We followed the process illustrated in Figure 3.

Figure 3: Workflow for classification schema creation (adapted from [15])

The first step consisted in reading the abstracts of the primary
studies, assigning them a set of keywords to identify the main
contribution area of the paper. Then we combined the keywords
forming a high-level set of categories, leading to a rough under-
standing of the research area represented by the primary studies.
By progressively fitting the papers into categories, the schema
underwent a refinement process, being continuously updated to
account for new data. When performing data extraction and
mapping (Subsection 3.5), we annotated the classification with
evidence from the respective paper, further refining the schema
and sorting. The resulting classification schema is discussed in
Section 4 and used in the analysis of the results in Sections 6
and 7.

3.5. Data Extraction and Mapping

After we defined the classification schema, resulting from
the keywording process, we proceeded to systematically ex-
tract data from the primary studies. For each paper, we filled
a spreadsheet, sorting it into the classification schema and
extracting the following data, inspired by other similar stud-
ies [57, 58]:

• Article title
• First author
• Year of publication
• Synthesis of results (one-line)
• Keywords

We took advantage of the data extraction process to iden-
tify an additional relevant aspect which emerged while reading
abstracts and the full text: the recurrent patterns of common
attributes among startup companies resulted in themes that are
reported in Subsection 5.2. Moreover, we screened the bibliog-
raphy of each paper, identifying other possible relevant studies
to our research, adopting the snowballing technique5 [59].

5Note that we didn’t identify any additional papers. In case more relevant
papers would have been retrieved, a re-iteration of the keywording step would
have been necessary (see Subsection 3.4).

5



3.6. Rigor and relevance assessment
A major challenge of SE is to transfer research results and

knowledge to practitioners, showing the findings’ validity and
concrete advantages [51]. To assess how results are presented
in the primary studies, we extended the traditional SMS frame-
work with an additional step, that is, the evaluation of the pa-
pers’ rigor and relevance (see Figure 1). With this extension we
compensate for the SMS’ limitation of not assessing the quality
of the mapped studies by developing and using a simple ranking
function.

We use a systematic and validated model [51] to evaluate
the scientific rigor and the industrial relevance of each primary
study. The model provides a set of rubrics to measure rigor and
relevance, dividing these two factors into different aspects, and
quantifying the extent to which each aspect is considered in the
study (see Ivarson and Gorschek [60] for an application of the
model).

Rigor refers to the precision or exactness of the used research
method and how the study is presented. We considered aspects
relating to:

• Context - description of development mode, speed, company
maturity and any other important aspects where the evalua-
tion is performed.
• Study design - description of the measured variables, treat-

ments, used controls and any other design aspects.
• Validity - description of different types of validity threats.

Relevance refers to the realism of the environment where the
study is performed and the degree to which the chosen research
method contributes to the potential of transferring the results to
practitioners. We considered aspects relating to:

• Subjects - use of subjects who are representative of the in-
tended users of the technology.
• Context - use of settings representative of the intended usage

setting.
• Scale - use of a realistic size of the applications.
• Research method - use of a research method that facilitates

investigating real situations and relevant for practitioners.

Aspects related to the rigor of the study are scored at three
levels: weak (0), medium (0.5) and strong (1). Aspects re-
lated to relevance are scored 1 if contributing, 0 otherwise. The
detailed rubrics, used to evaluate the studies, can be found in
Ivarsson and Gorschek [51]. To obtain the study’s final score,
we sum the individual scores of the rigor and relevance aspects.

In order to rank the papers, we defined a function incorpo-
rating the classification schema, rigor and relevance scores, and
two additional factors that characterize the publication type and
year. The ranking function provides a rough estimation of the
value that a paper provides to practitioners and the research
community, giving a stronger weight to recent rigorous jour-
nal publications entirely devoted to the topic and presenting
empirical results relevant to practitioners. We used tables for
converting each factor into an arbitrary numerical value in the
range between 0 and 10. The conversion tables used to quantify
the internal score of each factor are shown in the supplemen-
tary material [55], while the limitations of this approach are

discussed in Subsection 3.8.3. The final ranking of the 43 pri-
mary studies is discussed in Subsection 6.2.

3.7. Synthesis

In the synthesis we identified the main concepts from each
primary study, using the original author’s terms in a one line
statement. Those main concepts were then organized in tabu-
lar form to enable comparisons across studies and translation
of findings into higher-order working practices and classifica-
tion categories. We used the classification categories from Sec-
tion 4. This process is analogous to the method of constant
comparison used in qualitative data analysis [52].

In Section 7 we present the identified work practices, dis-
cussing their application in the startup context, their benefits
and liabilities, and putting them in perspective with the results
of other studies. In summary, synthesis is achieved by:

• Identification of a set of working practices and relative clas-
sification categories.
• Documentation of advantages and disadvantages of reported

results.
• Elaboration of gaps on the applicability of working practices

in startup contexts.

3.8. Threats to validity

We identified potential threats to the validity of the system-
atic mapping and its results, together with selected mitigation
strategies. The structure of this Section follows Unterkalm-
steiner et al. [61].

3.8.1. Publication bias
Systematic reviews suffer from the common bias that positive

outcomes are more likely to be published than negative ones [4].
This can be observed also in our mapping study which includes
few papers on failed startup endeavors and studies, while the
success rates of startups is generally rather low. It is unlikely
that research is performed only in collaboration with successful
startups. Nevertheless, we do not consider this as a major threat
as this bias is orthogonal to our study aim, mapping the state-
of-art on startup research. Still, this bias takes away some of
the possibilities to analyze reported work practices with regard
to their performance.

3.8.2. Identification of primary studies
The approach we used to construct the search string (see Sub-

section 3.2) aimed to be inclusive with respect to the number of
retrieved papers, related to software development in startups.

However, a limitation of the current search string lies in the
exclusion of the stand-alone terms “startup” and “start-up”.
These individual terms lead to unmanageable search results
(more than 20000 papers) that are mostly irrelevant as they are
related to the English phrasal verb “to start up”, largely used
in many disciplines to indicate the commencing moments of an
engine. Therefore, to mitigate the risk of excluding potential
relevant primary studies, we constructed a search string con-
taining qualifiers to the term “startup”, e.g. “IT startup”, and

6



included synonyms, validating our search strings with the sup-
port of librarians specialized in software engineering.

Still, the precision (ratio of retrieved relevant and all re-
trieved papers [62]) of the used search string is low (43 out of
1053, 4%). However we were not interested in obtaining high
precision as much as we aimed to obtain a high recall (ratio
of existing relevant papers [62]). The risk of excluding rele-
vant primary studies is further mitigated by the use of multiple
databases, which cover the majority of scientific publications in
the field.

We were not able to retrieve 20 papers since they were neither
available in online catalogs, in the three libraries we consulted,
nor on request from the authors. However, this is a minor risk
as we had access to their titles, keywords and abstracts, which
gave us a good degree of confidence that they were not relevant.
Additionally, considering our 4% precision rate, the number of
potentially relevant primary studies would be less than 1.

We noticed high inconsistency in the use of the term “startup”
by different researchers, even in the same area. For example,
Sutton [3] distinguishes startups from established companies
by characterizing startups according to their extreme lack of
resource, newness and immaturity (in a process sense). On the
other hand, Deias et al. [63] define their company as a startup,
with more then 150 employees and resources available to cer-
tify the quality of their development process. Under these con-
ditions, the attempt to identify a body of knowledge and re-
search scope has been highly challenging. Therefore, we had to
identify and analyze multiple and conflicting definitions.

Moreover, several contextual factors, not thoroughly ana-
lyzed in this study, can be identified as important. Factors re-
garding the application domain or the market type could influ-
ence the adoption of working practices and processes. How-
ever, in this study we compromised details regarding specific
context challenges in favor of a general overview of practices
reported by primary studies.

Finally, since startups and entrepreneurship in general are ap-
pealing for many sectors of the economy, an additional threat
lies in the fact that some relevant information can be found in
other research areas, such as business innovation and market-
ing, not considered in this study.

3.8.3. Study selection and data extraction
Threats to study selection and data extraction [57] have been

mitigated with an up-front definition of the inclusion/exclusion
criteria [4]. The selection of relevant primary studies can be
further biased by personal opinions of researchers executing the
process. To mitigate this threat, we defined and documented a
rigid protocol for the study selection and, by conducting the
selection together and dedicating a reasonable amount of time
to review conflicts, mutually adjusting each others’ biases, as
suggested by Kitchenham and Charters [4]. The screening pro-
cess is threatened by a potential predominance of the opinion
of one reviewer over the other, since the first two authors per-
formed the screening process collaboratively at one computer.
This threat was mitigated by explicitly recording the exclusion
rationale for each paper, requiring clear evidence from the paper

Table 4: Classification schema

(a) Research type facet (adapted from Wieringa [64])

Category Description

Evaluation Re-
search

The methodology is implemented in practice and an
evaluation of it is conducted. That means, it is shown
how the research is implemented (solution implementa-
tion) and what are the consequences of the implemen-
tation in terms of benefits and drawbacks (implementa-
tion evaluation). This also includes problems identified
in industry.

Solution Pro-
posal

A solution for a problem is proposed. The solution can
be either novel or a significant extension of an existing
methodology. The potential benefits and the applica-
bility of the solution is shown by a small example or a
good line of argumentation.

Philosophical
Papers

These papers sketch a new way of looking at existing
things by structuring the field in form of a taxonomy or
conceptual framework.

Opinion Papers These papers express the personal opinion of somebody
whether a certain technique is good or bad, or how
things should have been done. They do not rely on re-
lated work and research methodology.

Experience Pa-
pers

Experience papers explain what and how something has
been done in practice. It has to be the personal experi-
ence of the author.

(b) Contribution facet (adapted from Shaw [65])

Category Description

Model Representation of an observed reality by concepts or re-
lated concepts after a conceptualization process.

Theory Construct of cause-effect relationships of determined
results.

Framework /

Methods
Models related to constructing software or managing
development processes.

Guidelines List of advises, synthesis of the obtained research re-
sults.

Lesson learned Set of outcomes, directly analyzed from the obtained
research results.

Advice / Impli-
cations

Discursive and generic recommendation, deemed from
personal opinions.

Tool Technology, program or application used to create, de-
bug, maintain or support development processes.

(c) Focus facet

Category Description

Software devel-
opment

Engineering activities used to write and maintaining the
source code.

Process man-
agement

Engineering methods and techniques used to manage
the development activities.

Tools and tech-
nology

Instruments used to create, debug, maintain and support
development activities.

Managerial /

Organizational
Aspects that are related to software development, by
means of resource management and organizational
structure.

(d) Pertinence facet

Category Description

Full Entirely related (main focus) to engineering activities in software
startups.

Partial Partially related to engineering activities in software startups.
Main research focus related to engineering activities.

Marginal Marginally related to engineering activities in software startups.
Main research focus different from engineering activities.

7



to support the decision, and supporting the consensus creating
process by consulting the history of previously taken decisions.

Another threat is related to researchers’ personal judgments,
which can interfere with the evaluation of rigor and relevance
of selected studies. Even though the rigor and relevance model
provides guidelines and detailed rubric tables to support objec-
tive decisions, the evaluation depends on the reporting quality
and not on the intrinsic quality of the study itself [51]. As such,
we used the scores only to rank but not to exclude studies from
the selection. The ranking itself gives an indication of the study
quality, the individual contribution needs however to be quali-
fied by the reader [51].

The validity of the ranking function (see Subsection 3.6) is
threatened by the arbitrarily chosen scores for each category
and weights for each dimension. To mitigate this threat, we
used an automatic spreadsheet to compute the final scores, al-
lowing us to adjust scores and weights, observing the effect of
the final ranking in real time. For validating our ranking, we
tried to modify scores/weights values several times, and we ob-
served that the final ranking was not significantly altered by
numerical adjustments, as long as we kept the ordering of con-
cepts stable.

4. Classification schema

In this section we present the classification schema that is
adapted from other existing taxonomies or emerged from the
keywording process. The schema consists of four facets:

• Research type: to represent the type of the undertaken study
• Contribution type: to map the different types of the study

outcomes
• Focus: to describe the main focus of the research
• Pertinence: to distinguish between studies entirely devoted

to engineering activities in startups and the ones that have a
broader perspective

The research type facet (Table 4a) is used to distinguish be-
tween different types of studies, abstracting from the specific
underlying research methodology. The research types were
adapted from Wieringa [64].

The contribution facet (Table 4b), similarly to the taxonomy
used by Shaw [65], describes the kind of contribution a study
provides. Contribution types can be divided into weak (advises
and implications, lessons learned, tools and guidelines) and
strong (theory, framework/method and model) contributions.

The categories in the focus facet (Table 4c) were obtained
by clustering the sets of keywords identified in the keyword-
ing process (Subsection 3.4) and abstracting them to four
categories. We separated thereby studies concerning soft-
ware development practices (e.g. writing user stories [13])
from studies focused on higher-level process management (e.g.
use Scrum methodology [66]). Furthermore we distinguish
between studies focused on specific tools and technologies
(e.g. use of post-it notes [67]) and work focused on manage-
rial/organizational aspects in startups (e.g. operate in cross-
functional settings [19]).

Figure 4: Publication distribution-year

The pertinence facet (Table 4d) distinguishes the levels (full,
partial, marginal) on which the study’s research focus is di-
rected towards engineering activities in startups.

The classification schema in Table 4 forms the basis for the
systematic maps presented and discussed in Section 5.

5. Results

This section presents the results of the systematic mapping
study. From an initial sample of 1053 papers, we identified 43
primary studies answering our research questions.

5.1. Startup research categorization

Figure 4 shows the publication years’ frequency distribution,
from 1994 to 2013.

To characterize the main themes covered within the area of
engineering activities in software startups, we used the set of
keywords extracted from the study’s abstract and author-defined
keywords (when available in the metadata). From the 43 pri-
mary studies we extracted a total of 346 keywords (125 unique)
averaging on about 8 keywords per paper. These formed the
basis6 for the focus and pertinence facet of the classification
schema (Section 4). Table 5 applies the classification schema
on the primary studies, providing an overview of the field of
startup research.

In order to illustrate potential gaps in startup research, we
present the systematic map with multi-dimensional bubble
charts (“x-y scatter plots with bubbles in categories intersec-
tions” [15]), where the size of the bubble is determined by the
number of publications corresponding to the x-y coordinates.
Differently from other studies (e.g. [97, 98]), each data point
is represented by four features. Thus, we created three plots
(Figures 5 - 7) to visualize all six possible facets combinations

6The raw data is provided in the supplementary material [55].

8



Table 5: Systematic map overview

1st Author (year) Research Type Contribution Focus Pertinence

Coleman (2008) [11] Evaluation Research Model Process Management Full
Kajko (2008) [13] Evaluation Research Model Process Management Full
Mater (2000) [68] Evaluation Research Model Managerial & Organizational Partial
Häsel (2010) [69] Evaluation Research Model Managerial & Organizational Marginal
Hanna (2010) [70] Evaluation Research Model Managerial & Organizational Marginal
Chorev (2006) [29] Evaluation Research Model Managerial & Organizational Marginal
Kakati (2003) [30] Evaluation Research Model Managerial & Organizational Marginal
Kim (2005) [71] Evaluation Research Model Managerial & Organizational Marginal
Coleman (2007) [72] Evaluation Research Theory Process Management Full
Coleman (2008) [24] Evaluation Research Theory Process Management Full
Bosch (2013) [73] Evaluation Research Framework & Methods Process Management Full
Midler (2008) [74] Evaluation Research Framework & Methods Managerial & Organizational Partial
Yogendra (2002) [75] Evaluation Research Guidelines Managerial & Organizational Partial
Yoffie (1999) [76] Evaluation Research Guidelines Managerial & Organizational Marginal
Camel (1994) [19] Evaluation Research Lesson Learned Software Development Full
Silva (2005) [67] Evaluation Research Lesson Learned Software Development Full
Jansen (2008) [77] Evaluation Research Lesson Learned Software Development Partial
Steenhuis (2008) [78] Evaluation Research Lesson Learned Managerial & Organizational Marginal
Lai (2010) [79] Evaluation Research Lesson Learned Managerial & Organizational Marginal
Tingling (2007) [80] Evaluation Research Advice & Implications Software Development Full
Li (2007) [81] Evaluation Research Advice & Implications Software Development Marginal
Blank (2013) [31] Solution Proposal Framework & Methods Process Management Partial
Zettel (2001) [82] Solution Proposal Framework & Methods Software Development Full
Crowne (2002) [8] Solution Proposal Advice & Implications Software Development Full
Mirel (2000) [83] Solution Proposal Advice & Implications Managerial & Organizational Partial
Stanfill (2007) [84] Solution Proposal Advice & Implications Managerial & Organizational Marginal
Himola (2003) [85] Solution Proposal Advice & Implications Managerial & Organizational Marginal
Heitlager (2007) [26] Solution Proposal Tool Process Management Full
Yoo (2012) [86] Philosophical Paper Model Managerial & Organizational Marginal
Yu (2012) [87] Philosophical Paper Guidelines Managerial & Organizational Marginal
Fayad (1997) [88] Philosophical Paper Advice & Implications Process Management Marginal
Bean (2005) [89] Philosophical Paper Advice & Implications Tools & Technology Marginal
Sutton (2000) [3] Opinion Paper Advice & Implications Process Management Full
Tanabian (2005) [28] Opinion Paper Advice & Implications Managerial & Organizational Marginal
Deakins (2005) [90] Experience Paper Model Managerial & Organizational Partial
Ambler (2002) [91] Experience Paper Lesson Learned Software Development Full
May (2012) [92] Experience Paper Advice & Implications Software Development Full
Taipale (2010) [93] Experience Paper Advice & Implications Software Development Full
Deias (2002) [63] Experience Paper Advice & Implications Software Development Full
Wood (2005) [94] Experience Paper Advice & Implications Software Development Partial
Wall (2001) [95] Experience Paper Advice & Implications Software Development Partial
Kuvinka (2011) [66] Experience Paper Advice & Implications Software Development Partial
Clark (2012) [96] Experience Paper Advice & Implications Process Management Marginal

from the classification schema, giving a complete overview of
the systematic map and providing means to analyze it.

For example, Figure 5 indicates that 11 studies (26% of the
total) are focused on managerial and organizational factors,
conducted through an evaluation type research. In the same fig-
ure it is possible to observe that 8 studies with managerial and
organizational focus contributed to the body of knowledge with
a model. However, by looking at Figure 6, one can quickly
notice that 6 out of the total 10 models have only a marginal
pertinence with engineering activities in software startups.

5.2. Context characteristics of startups

To illustrate how authors use the term “software startup”, we
systematically extracted themes which characterize the compa-
nies in the selected primary studies. We were able to identify
15 main themes, reported in Table 6.

When discussing software startups, 18 authors reported a

general lack of human, physical and economical resources (T1).
For this reason, startups deeply depend upon external software
solutions such as third party APIs, COTS and OSS (T7). Other
studies refer to companies which are able to quickly react to
changes in the market and technologies (T2), under remarkably
uncertain conditions (T4). Some authors indicate that these
companies are focused on highly innovative segments of the
market (T3), generally working on a single core-product (T9)
under extremely high time-pressure (T6). Furthermore, 14 au-
thors write about startups as fast growing companies (T5) de-
signed to rapidly scale-up. Other researches mention a very
small founding team (T8), which is often composed by low-
experienced people (T10) with a very flat organization structure
(T12), where the CEO is sometimes a core developer himself.
Finally, other studies agree on the highly risky nature of these
businesses (T13), being newly created (T11) and therefore with
no or little working history (T15).

9



Figure 5: Systematic map - Focus, contribution and research type

Figure 6: Systematic map - Contribution, pertinence and research type

Figure 7: Systematic map - Pertinence, focus and research type

10



Table 6: Mapping Study - Recurrent themes

ID Theme Description Frequency Ref.

T1 Lack of resources Economical, human, and physical resources are extremely limited. 18 [75, 76, 8, 13, 19, 24, 72, 11, 70,
3, 91, 84, 28, 96, 92, 73, 31, 86]

T2 Highly Reactive Startups are able to quickly react to changes of the underlying market,
technologies, and product (compared to more established companies)

17 [82, 13, 19, 24, 11, 80, 3, 88, 91,
66, 63, 67, 96, 86, 31, 73, 92]

T3 Innovation Given the highly competitive ecosystem, startups need to focus on highly
innovative segments of the market.

15 [26, 75, 83, 78, 77, 79, 3, 69, 74,
30, 92, 73, 31, 86, 87]

T4 Uncertainty Startups deal with a highly uncertain ecosystem under different perspec-
tives: market, product features, competition, people and finance.

14 [26, 71, 24, 72, 11, 88, 74, 28, 85,
87, 86, 31, 73, 92]

T5 Rapidly Evolving Successful startups aim to grow and scale rapidly. 14 [75, 76, 19, 11, 81, 3, 91, 66, 90,
96, 86, 31, 73, 92]

T6 Time-pressure The environment often forces startups to release fast and to work under
constant pressure (terms sheets, demo days, investors’ requests)

13 [82, 19, 11, 80, 3, 90, 85, 68, 96,
86, 31, 73, 92]

T7 Third party depen-
dency

Due to lack of resources, to build their product, startups heavily rely on
external solutions: External APIs, Open Source Software, outsourcing,
COTS, etc.

10 [76, 94, 95, 77, 79, 70, 3, 91, 92,
73]

T8 Small Team Startups start with a small numbers of individuals. 9 [82, 76, 8, 13, 3, 29, 28, 92, 96]
T9 One product Company’s activities gravitate around one product/service only. 9 [91, 66, 89, 63, 67, 11, 93, 92, 96]
T10 Low-experienced

team
A good part of the development team is formed by people with less than
5 years of experience and often recently graduated students.

8 [19, 24, 72, 91, 30, 92, 73, 86]

T11 New company The company has been recently created. 7 [8, 76, 19, 29, 96, 31, 73]
T12 Flat organization Startups are usually founders-centric and everyone in the company has

big responsibilities, with no need of high-management.
5 [76, 13, 67, 28, 92]

T13 Higly Risky The failure rate of startups is extremely high. 5 [26, 13, 19, 28, 31]
T14 Not self-sustained Especially in the early stage, startups need external funding to sustain

their activities (Venture Capitalist, Angel Investments, Personal Funds,
etc.).

3 [82, 87, 70]

T15 Little working history The basis of an organizational culture is not present initially. 3 [76, 91, 92]

5.3. Rigor and relevance
Even though the scientific value of a study is not determined

by the publication type, the peer-review process required for
publishing a journal article is generally much more rigorous
and formal than the procedure to get an article published in a
scientific magazine or accepted to a conference [99]. Twenty
(47%) of the selected 43 primary studies are journals, while 16
(37%) are published in conference proceedings and 7 (16%) in
magazines. Although this feature alone is not enough to rep-
resent a direct implication on the quality7, it can be interpreted
as a first indicator of scientific quality. We formally assessed
the quality of the primary studies with the rigor and relevance
process described in Subsection 3.6, resulting in Figure 8 (the
raw data for this figure is available in the supplementary mate-
rial [55]).

Looking at Figure 8, nine studies (21%) lie in the upper right
quadrant, the preferable region, of the chart (rigor ≥ 2, rele-
vance ≥ 3). Twenty-one studies (49%) exhibit moderate indus-
try relevance (relevance ≥ 2), showing however low scientific
rigor (rigor ≤ 1.5). Ten studies (23%) are located in the lower
left quadrant of the chart (rigor ≤ 1.5 and relevance ≤ 2).

6. Analysis of the state-of-art

More than 65% of the 43 identified primary studies have been
published in the last ten years (between 2004 and 2013, see

7The publication criteria are determined by the specific editor of the jour-
nal/magazine or the committee of a conference. There is a vast multitude of
excellent quality studies presented in conference proceedings and magazines,
and many examples of poor-quality journal articles.

Figure 8: Rigor-relevance overview

Figure 4). Fourteen primary studies, dated prior 2004, discuss
software startup related issues. This indicates that the research
on startups is still in its infancy, compared to the long-standing
history of the SE discipline, and gaining interest in the research
community. The yearly distribution of publications attest the
novelty of the startup phenomenon, enabled and amplified by
the potentially large markets and distribution channels offered
by internet and mobile devices [20, 30]. This has opened a set
of new challenges that are difficult to address using traditional
approaches [3].

By analyzing the three bubble charts (Figure 5 - 7), the fol-

11



lowing observations can be made on the state-of-art:

• Looking at the pertinence facet in Figure 7 we can observe
that only 16 studies (37%) are entirely dedicated to software
development in startups; Ten of those produced a weak con-
tribution (advice and implications (6); lesson learned (3);
tool (1)).
• Observing the focus facet (Figure 7), it is easy to see that 19

studies (44%) are focused on managerial and organizational
factors. None of those 19 studies exhibits a full pertinence to
engineering activities in startups.
• The overall studies’ contribution types are for the greater

part weak: advice and implication, lessons learned, tools and
guidelines (27 studies, 63%, Figure 5). Of the 16 remaining
studies (37%) which exhibit a strong contribution type (the-
ory, framework/method, model), only 7 focus on what we
considered fundamental for our research questions (software
development and process management).
• Approximately half of the selected studies were carried out

using an evaluation type research (21 studies, 49%, Figure 5),
being the only research type which involves a field study.
However, we can also observe in the same figure that 11
of these are related to managerial and organizational factors,
and only 8 out of 21 have a full pertinence with engineering
activities in software startups (Figure 7).
• Looking at the studies which focus on process management

and software development (Figure 7), the majority (16 out of
23 studies) has a full pertinence with engineering activities
in software startups.

To summarize the systematic map, we can state that Cole-
man and O’Connor [72, 11, 24], and Kajko-Mattson and
Nikitina [13] represent the strongest contributions to the field
of startup research, considering strength of contribution type,
pertinence to engineering activities and strength of empirical
evidence. However, it must be noted that the three publications
by Coleman and O’Connor are based on the same dataset orig-
inating from 21 companies.

6.1. RQ1 - The context characterizing software development in
startups

The results (Table 6) indicate that there is no agreement on a
standard definition, specifying the characteristics of a “startup”.
Different authors provide varying definitions and use the term
“startup” referring to varying contexts. This renders any at-
tempt to identify a solid and coherent body of knowledge on
startup research very challenging. Looking at Suttons startup
characterization [3] from 2000, we can observe that our under-
standing of the nature of startups expanded to aspects such as
innovation, fast growth, time pressure, third party dependency,
focus on one product and flat organizational structures (see Ta-
ble 6).

Defining what makes a software startup unique is an interest-
ing problem. Apparently, the definition is not strictly related to
the size of the company. For instance, some authors call “star-
tups” companies with 6 employees [83], whilst others refer to

Table 7: Ranking of primary studies considering Pertinence, Rigor and
Relevance, Publication Age and Type, Contribution type, Research type, and
Focus

1st Author (year) Score P Ri Re A T C R F

Coleman (2007) [72] 9.70 2.50 1.75 1.75 1.20 1.00 0.50 0.50 0.50
Coleman (2008) [24] 9.70 2.50 1.75 1.75 1.20 1.00 0.50 0.50 0.50
Coleman (2008) [11] 9.70 2.50 1.75 1.75 1.20 1.00 0.50 0.50 0.50
Kajko (2008) [13] 8.09 2.50 0.88 1.31 1.20 0.70 0.50 0.50 0.50
Häsel (2010) [69] 7.47 0.75 1.17 1.75 1.50 1.00 0.50 0.50 0.30
Hanna (2010) [70] 7.47 0.75 1.17 1.75 1.50 1.00 0.50 0.50 0.30
Deakins(2005) [90] 6.87 1.25 1.46 1.31 0.90 1.00 0.50 0.15 0.30
Camel (1994) [19] 6.61 1.25 1.46 1.75 0.15 0.70 0.30 0.50 0.50
Silva (2005) [67] 6.58 2.50 0.00 0.88 0.90 1.00 0.30 0.50 0.50
Midler (2008) [74] 6.55 1.25 0.58 1.31 1.20 1.00 0.40 0.50 0.30
Taipale (2010) [93] 6.53 2.50 0.00 0.88 1.50 0.70 0.30 0.15 0.50
Chorev (2006) [29] 6.43 0.75 1.17 1.31 0.90 1.00 0.50 0.50 0.30
Zettel (2001) [82] 6.32 2.50 0.58 0.44 0.60 1.00 0.40 0.30 0.50
Jansen (2008) [77] 6.25 1.25 0.58 1.31 1.20 0.60 0.30 0.50 0.50
Sutton (2000) [3] 6.11 2.50 0.58 0.88 0.60 0.60 0.30 0.15 0.50
Heitlager (2007) [26] 6.08 2.50 0.58 0.00 1.20 0.70 0.30 0.30 0.50
Tingling (2007) [80] 5.99 2.50 0.29 0.00 1.20 0.70 0.30 0.50 0.50
Deias (2002) [63] 5.92 2.50 0.29 0.88 0.60 0.70 0.30 0.15 0.50
Stanfill (2007) [84] 5.74 0.75 0.88 1.31 1.20 0.70 0.30 0.30 0.30
Wood (2005) [94] 5.70 1.25 0.29 1.31 0.90 1.00 0.30 0.15 0.50
Steenhuis (2008) [78] 5.65 0.75 0.58 1.31 1.20 0.70 0.30 0.50 0.30
Yogendra (2002) [75] 5.55 1.25 0.58 1.31 0.60 0.70 0.30 0.50 0.30
Ambler (2002) [91] 5.53 2.50 0.00 0.88 0.60 0.60 0.30 0.15 0.50
Crowne (2002) [8] 5.48 2.50 0.58 0.00 0.60 0.70 0.30 0.30 0.50
Mater (2000) [68] 5.45 1.25 0.29 1.31 0.60 0.70 0.50 0.50 0.30
Kakati (2003) [30] 5.41 0.75 0.58 0.88 0.90 1.00 0.50 0.50 0.30
Kuvinka (2011) [66] 5.28 1.25 0.00 0.88 1.50 0.70 0.30 0.15 0.50
Li (2007) [81] 5.26 0.75 0.00 1.31 1.20 0.70 0.30 0.50 0.50
Lai (2010) [79] 5.23 0.75 0.00 0.88 1.50 1.00 0.30 0.50 0.30
Mirel (2000) [83] 4.98 1.25 0.35 0.88 0.60 1.00 0.30 0.30 0.30
Himola (2003) [85] 4.57 0.75 0.58 0.44 0.90 1.00 0.30 0.30 0.30
Kim (2005) [71] 4.53 0.75 0.88 0.00 0.90 0.70 0.50 0.50 0.30
Wall (2001) [95] 4.28 1.25 0.00 0.88 0.60 0.60 0.30 0.15 0.50
Yoffie (1999) [76] 4.22 0.75 0.29 0.88 0.60 0.60 0.30 0.50 0.30
Bean (2005) [89] 3.50 0.75 0.00 0.00 0.90 1.00 0.30 0.15 0.40
Tanabian (2005) [28] 3.10 0.75 0.00 0.00 0.90 0.70 0.30 0.15 0.30
Fayad (1997) [88] 2.45 0.75 0.00 0.00 0.15 0.60 0.30 0.15 0.50

“startups” with more than 300 employees [76, 11]. Unique-
ness is not defined through the age of the company alone: some
authors studied startups which have been operating for many
years [79], while others are more strict and limit the definition
to only recently founded companies [13]. Other authors treat
“start-up” as a stage of a company [8, 28]. Others claim that
startups work on innovative products, without providing an ex-
act definition of “innovation”, rendering this characterization
less useful (a recent systematic study identified “41 definitions
of innovation in 204 selected primary SE studies” [100]).

The most frequent reported themes concern the general lack
of resources, high reactiveness and flexibility, innovation, un-
certain conditions, time pressure and fast growth. Since the
contextual boundaries of startups resulted to be highly blurred,
it is the researchers’ responsibility who refer to “startups” to
explicitly define the features of the company under study (e.g.
company age, team size, product type, product development
time).

12



6.2. RQ2 - Transferability of results to industry
Figure 8 illustrates a major weakness of the state-of-art in

startup research. Seven primary studies (16% of the total), re-
ceived an average score for industrial relevance (2) but a low
score (0) for scientific rigor. According to the authors of the
rigor-relevance model [51], this represents a major threat to the
transferability of the results to industry. Even though findings
may appear to be somewhat appealing to practitioners (aver-
age relevance), low scientific rigor will render knowledge trans-
fer to industry highly unlikely or even dangerous. One of the
most important factors contributing to academic results being
applied in the industry is the provision of strong scientific evi-
dence [101, 102].

In the remainder of this subsection we extend the analysis of
rigor and relevance by integrating factors such as publication
type and year, but also the classification schema. We follow the
procedure described in Subsection 3.6, computing a score (in
the range [0 − 10]) for each primary study.

The design of the ranking function considers our research
question of identifying software engineering work practices in
startups. Hence, the pertinence dimension from the classifica-
tion schema contributes the most (25%) to the score, followed
by rigor and relevance (17.5% each). Age of the publication
(15%) is factored in as more recent studies are likely to provide
a more relevant context for practitioners. The publication type
accounts for 10%. The contribution type, research type and fo-
cus account each for 5% of the total score which is the sum
of all eight weighed scores. The conversion tables to achieve
a normalized score are available in the supplementary mate-
rial [55].

Table 7 quantifies the body of knowledge on startup research,
provided by 43 primary studies analyzed in this systematic
mapping study. The ranking gives an indication to what ex-
tent we can answer questions targeted at the state-of-art of the
software engineering work practices in startups.

7. RQ3 - Work Practices in startups

We have extracted a total of 213 work practices8 from the 43
primary studies reviewed in this SMS and subsequently divided
them in categories (Table 8), as explained in Subsection 3.7.
The categorization of working practices is defined according to
the focus facet of the classification schema, presented in Fig-
ure 4c. In the remainder of this section, we discuss the identi-
fied work practices, pointing out where gaps exist and further
research is warranted.

Table 8: Categorization of the identified work practices

Software Development (Subsection 7.2) 90
Managerial/organizational (Subsection 7.3) 70
Process management (Subsection 7.1) 47
Tools and technologies (Subsection 7.4) 6

Sum 213

8Note that this number does not reflect unique work practices but the total
number; a detailed table of work practices is available in the supplementary
material [55].

7.1. Process management practices
Process management represents all the engineering activities

used to manage product development in startups. Sutton [3]
recognized the need for flexibility to accommodate frequent
changes in the development environment, and for reactiveness
to obtain timely response in applying methodologies.

Agile methodologies have been considered the most viable
processes for software startups, given that Agile methodologies
embrace changes rather than avoiding them, allowing develop-
ment to follow the business strategy [93]. In this context, fast
releases with an iterative and incremental approach shorten the
lead time from idea conception to production with fast deploy-
ment [93]. The benefits of having weekly releases and frequent
build cycles, addressing the uncertainty of the market, has been
further reported by Blank [31], Tingling [80], Ambler [91] and
Silva [67].

A variant to Agile has been the Lean Startup [103, 31], which
advocates the identification of the most risky parts of a soft-
ware business and provide a minimum viable product (MVP)
to systematically test and plan modification for a next itera-
tion. In this regard, in order to shorten time-to-market, pro-
totyping is essential [90, 19]. To allow better prototyping ac-
tivities, evolutionary workflows are needed to implement ”soft-
coded” solutions in the first phases until the optimal solution is
found [90, 3].

Coleman [72] reports that XP is the most used development
methodology across startup companies, due to its reduced pro-
cess costs and low documentation requirements. Also other ag-
ile practices are explored, such as Scrumban [66], but not rig-
orously researched. In any case, flexible in nature, startups’
processes don’t strictly follow any specific methodology, but
opportunistically select practices (e.g. pair-programming [63],
backlog [80]). In fact, processes are tailored to the specific fea-
tures that characterize each development context [92, 72, 11].
For example, Bosch et al. [73] advocate for adjusting the Lean
startup methodology to accommodate the development of mul-
tiple ideas and integrate them when time for their testing and
validation is too long. This concurs with the practice of al-
locating varying effort for formalizing specifications, design,
documentation and testing in tailored development methodolo-
gies [91, 82, 19], emphasizing the importance of minimal pro-
cess management.

Summarizing, process management practices, reported to be
useful in startups, are:

• Light-weight methodologies to obtain flexibility in choosing
tailored practices, and reactiveness to change the product ac-
cording to business strategies.
• Fast releases to build a prototype in an evolutionary fashion

and quickly learn from the users’ feedback to address the
uncertainty of the market.

Discussion
The Cynefin framework [104] can be used to explain the ori-

entation of startups towards flexible and reactive development
approaches. Within this framework, startups cross the com-
plex and chaotic domains. Those two domains represent the

13



areas where applying rigorous process management to control
development activities is not effective, because no matter how
much time is spent in analysis, it is not possible to identify all
the risks or accurately predict what practices are required to
develop a product. Instead, flexible and reactive methods, de-
signed to stimulate customer feedback, increase the number of
perspectives and solutions available to decision makers. Mov-
ing from complex to chaotic domains, software startups open
up new possibilities for creation, generating the condition for
innovations. Therefore, any process tailored to the startup con-
text needs at least to allow, but optimally even facilitate move-
ments between complex and chaotic domains that are intrinsic
in the innovation generation of startups. In our opinion, this is
the main requirement for future attempts of adapting software
engineering processes to the startup context.

Developers should have the freedom to choose activities
quickly, stop immediately when results are wrong, fix the ap-
proach and learn from previous failures. In this regard, in line
with the Lean Startup movement, we expect methodologies and
techniques tailored from common Agile practices to specific
startups’ culture and needs, where failing is completely accept-
able, even preferred in favor of a faster learning process. How-
ever at some point, in preparation for growth, startups need to
plan for scalable processes. Similarly to SMEs [49], they need
to find a balance between flexibility and repeatability in their
organizations’ knowledge management and processes.

7.2. Software development practices
We have categorized work practices related to software de-

velopment as illustrated in Table 9, discussing them individu-
ally.

Table 9: Software development practices

Requirements Engineering (Subsection 7.2.1) 21
Design and Architecture (Subsection 7.2.2) 32
Implementation, Maintenance and Deployment (Subsection 7.2.3) 14
Quality Assurance (Subsection 7.2.4) 23

Sum 90

7.2.1. Requirements Engineering practices
Establishing an engineering process for collecting, defining

and managing requirements in the startup context is challeng-
ing. RE practices are often reduced to some key basic activi-
ties [82, 8]. Su-Chan et al. [81] report on efforts in defining the
value-proposition that the company aims to achieve at the very
first stage of the project.

Initially, as startups often produce software for a growing tar-
get market [31, 19], customers and final users are usually not
well-known and requirements are therefore market-driven [90]
rather than customer-specific. In such a context Mater and Sub-
ramanian [68] attest severe difficulties in eliciting and detailing
the specifications of both functional and non-functional require-
ments. Moreover, in unexplored and innovative markets, the al-
ready poorly-defined requirements tend to change very rapidly.
This makes it hard for the development team to maintain re-
quirements and keep them consistent over time.

Several authors acknowledge the importance of involving the
customer/user in the process of eliciting and prioritizing re-
quirements according to their primary needs [92, 90, 74, 8, 95].
However, the market-driven nature of the requirements de-
mands for alternatives. For example, startups can use scenarios
in order to be able to identify requirements in the form of user
stories [67] and estimate the effort for each story [82]. In sce-
narios and in similar product-usage simulations, an imaginary
customer can be represented by an internal member of the com-
pany [80]. An example of a more strict customer-development
process [105] that drives the identification of requirements can
be found in an experience report by Taipale [93].

Discussion
Polishing requirements that address an unsolicited need is

waste. To demonstrate problem/solution fit it is required to dis-
cover the real needs of your first customers, testing business
speculations only by defining a minimal set of functional re-
quirements. In the future, developing a deep customer collab-
oration, such as the customer development process [21] will
change the requirements elicitation methods, moving towards
testing the problem and understand if the solution fits to real
needs even before the product goes to the market.

7.2.2. Design and Architecture practices
Deias and Mugheddu [63] observed a general lack of writ-

ten architecture and design specifications in startups. Develop-
ment in startups is usually guided by simple principles, trying
to avoid architectural constraints that are difficult to overcome
as the product and user-base grows. Tinglings [80] results sug-
gest that a not well analyzed architecture causes problems in the
long run. However, a good-enough architecture analysis should
at least identify the decisions that might cause problems before
obtaining product revenue, and which can be fixed at a later
point in time, accounting for increased resources after revenue
cash starts to flow [92].

One common analysis on determining requirements is the
planning game, where developers can arbitrate the cost of de-
sired features and delivered functionalities. However business
people can “steer” the process and impact adopted architec-
tural decisions, which could present obstacles for refactoring
activities, especially if the software complexity grows [91].
Then the use of design patterns [106], e.g. the model-view-
controller [107], can provide advantages to startups which need
flexibility in refactoring the product. Moreover, formulating
initial architectural strategies with high-level models and code-
reuse from industry standards represents a viable trade-off be-
tween big up-front and ad-hoc design [73].

Jansen et al. [77] suggest that startups should take advan-
tage of existing components, reducing thereby time-to-market.
Leveraging on frameworks and code-reuse of third party com-
ponents reinforces the architectural structure of the product and
the ability to scale with the company size. As reported by
Yoffie [76], scalability represents the most important architec-
tural aspect in startups and should be addressed as soon as pos-
sible. Then, startups can benefit from reusing components and

14



shared architectures across projects as well as existing high-
level frameworks and modeling practices.

Summarizing, design and architectural practices reported to
be useful in startups are:

• The use of well-known frameworks able to provide fast
changeability of the product in its refactoring activities.
• The use of existing components, leveraging third party code

reinforcing the product ability to scale.

Discussion
Despite the general lack of written architecture specifica-

tions in startups, the difficulties presented when the user-base
and product complexity grows can be overtaken by a little up-
front effort on framework selection and analyzing decisions
that might cause problems before obtaining product revenue.
When the product evolves, the use of architecture and design to
make features modular and independent are crucial to remove
or change functionalities. Therefore, employing architectural
practices and frameworks that enable easy extension of the de-
sign (e.g. pluggable architecture where features can be added
and removed as plugins [108]) can better align the product to
the uncertainty of the market needs.

7.2.3. Implementation, Maintenance and Deployment prac-
tices

Silva and Kon [67] report on positive results from pairing
up senior and junior developers together in pair-programming
sessions. During these sessions, developers also made use of
coding standards to help cross-team code readability and re-
duce the risks related to the high-rate of developer turnover. In
a different study, Tingling [80] attested an initial high resistance
to the introduction of coding standards and pair-programming.
These practices were then adopted only in later stages, when
the complexity of the project required them. Zettel et al. [82]
report that the practice of tracking traditional code metrics has
been labeled as “obsolete and irrelevant” and that many compa-
nies use their ad-hoc methods of assessing processes and met-
rics. The software team studied by Zettel et al. [82] had a bug-
fix process centered around their issue-tracking tool and relied
on a release system. Several authors reported on advantages
of constant code refactoring: ensuring readability and under-
standability of the code [82], improving modularity [80] and
providing discipline to developers [93]. On the other hand, in-
troducing refactoring may cause problems since developers had
no or little experience [63] and they didn’t see immediate value
in introducing high level abstractions [67]. In the case study
described by Ambler [91], an initial lack of refactoring led to
the need of re-implementing the whole system after the number
of users had grown drastically. Finally some authors reported
work practices related to deployment claiming that some soft-
ware teams deploy manually the code on the infrastructure [67]
while others rely on continuous integration tools [93].

Discussion
Startups tend to start the code implementation with an in-

formal style, introducing standards only when the project size

requires them. This is in line with the observations made by
Thorpe et al. [49] on knowledge management and growth in
SMEs. The process is often driven by lightweight ad-hoc sys-
tems: bug-tracking, simple code metrics and pair-programming
sessions. In this regard, startups in the early stage keep the code
base small and simple to develop only what is currently needed,
maintaining focus on core functionalities to validate with first
customers. As the business goal drives the need of effort in
refactoring and implementation, more studies will be needed
to align business with execution of concrete development prac-
tices in startup contexts (e.g. GQM Strategies [109]).

7.2.4. Quality Assurance practices
Testing software is costly in terms of calendar time and of-

ten compromised in startups [19, 82]. Quality assurance, in the
broader sense, is largely absent because of the weak method-
ological management, discussed in Subsection 7.1. The com-
plex task of implementing test practices is further hindered by
the lack of team experience [67, 68].

However, usability tests are important to achieve prod-
uct/market fit [83]. Ongoing customer acceptance ensures that
features are provided with tests, which can effectively attest the
fitness of the product to the market [80, 92, 31]. Mater and Sub-
ramanian [68] suggest to use a small group of early adopters or
their proxies as quality assurance fit team. Furthermore, users
can be an important means to judge whether the system needs
more tests [82]. Outsourcing quality assurance to external soft-
ware testing experts, handling the independent validation work
if resources are not available [68], can also be an alternative.

Summarizing, quality assurance practices, reported to be use-
ful in startups, are:

• The use of ongoing customer acceptance with the use of a
focus groups of early adopters, which targets to attest the
fitness of the product to the market.
• Outsourcing tests if necessary, to maintain the focus on the

development of core functionalities.

Discussion
Even though testing software is costly, acceptance tests are

the only practice to validate the effectiveness of the product in
uncertain market conditions [31]. Therefore, providing time-
efficient means to develop, execute and maintain acceptance
tests is the key to improve quality assurance in startups [68].
In our opinion, startups will start making use of different au-
tomatic testing strategies, when easily accessible (e.g. create
a test from each fixed bug [110]). Considering startups’ fre-
quent changing activities during the validation of the product
on the market, UI testing remains not a simple but important
task. However, more research is needed to develop practical UI
testing approaches that can be commercialized [111].

7.3. Managerial and organizational practices

Flexibility, more than structure, plays an important role in
startup companies [85, 96]. Time pressure and lack of re-
sources [86, 87] lead to a loose organizational structure and

15



often lack of traditional project management [19]. To ac-
commodate flexibility of managerial and organizational prac-
tices, the empowerment of team members represents the main
viable strategy to enhance performance and chances of suc-
cess [19, 78]. The team needs to be able to absorb and learn
from trial and error quickly enough to adapt to new emergent
practices [74, 3, 78].

Empowerment allows the team to move rapidly and cutting
through the bureaucracy, approval committees and veto cul-
tures [92, 73]. Nevertheless, key performance indicators (e.g.
customer attrition, cycle time) and continuous deployment pro-
cesses can effectively assess the consumers’ demand using the
least amount of resources possible [103]. However, in building
up a startup company, the team needs expertise to counterbal-
ance the lack of resources [29, 24, 92]. Working on innovative
products requires creativity, ability to adapt to new roles and to
face new challenges everyday [3, 69, 86], working overtime if
necessary [19, 28]. Previous experience in similar business do-
mains [76, 87, 86] and a working history in a team, exhibiting
characteristics of an entrepreneur (courage, enthusiasm, com-
mitment, leadership), also play a primary role [29, 30, 96] in
the skill set of a startup employee.

Nevertheless, the absence of structure might hinder impor-
tant activities, such as sharing knowledge and team coordina-
tion, especially when the company grows [91], as also observed
in the context of SMEs [49]. In this case co-location is essen-
tial to facilitate informal communication and close interactions
between development and business concerns [72, 80]. Effective
organization and governance mechanisms need to enable and
maintain alignment between business and technology strate-
gies, avoiding waste of resources [75, 82]. Moreover, Crowne
suggests to plan organizational objectives in the short-medium
term [8], measuring development cycle time to find areas for
improvements [93, 13].

Finally, despite Camel [19] reports lack of documentation in
startup companies, Kuvinka [66] argues that startups, when ap-
proaching the development of long user stories, can take ad-
vantage of documentation and sometimes UI design to facilitate
their management in the long run, especially when interacting
with third parties [93].

Summarizing, managerial and organizational practices re-
ported to be useful in startups are:

• Empowerment of team responsibilities and their ability to in-
fluence the final outcomes.
• The use of key performance indicators to assess the con-

sumers’ demand.
• Plan of short-medium term objectives, measuring develop-

ment cycle time to find areas of improvement.

Discussion
More empowerment allows the team to move rapidly with

less bureaucracy. Then, the development team plays a key fac-
tor to enhance commitment, creativity and ability to adapt to
new roles when necessary. In addition, open communication
remains crucial for startups to handle engineering activities,
understanding the progress, code conflicts and competences.

Therefore, new tools and techniques for focusing, exploring
and making observations, encouraging comparison and seek-
ing clarification and validation could improve effective verbal
communication and lead to less misunderstandings and confu-
sion. Nevertheless, in view of growth, managing transferable
knowledge becomes crucial when hiring new personnel. How-
ever, keeping it informal but still providing enough structure
for knowledge creation is challenging. In this regard, Thorpe
et al. [49] suggest to design a flexible “learning architecture”,
sensitive to entrepreneurial characteristics and specific context
of the company, without limiting creativity.

7.4. Tools and technologies

Startups are often established to develop technologically in-
novative products, which in turn might require cutting-edge de-
velopment tools and techniques. Technological changes in the
IT industry swipe through new network technologies, increas-
ing variety of computing devices, new programming languages,
objects and distribution technologies [3].

However, from a managerial perspective, startups still pre-
fer easy-to-implement tools, such as white-boards and real-time
tools that are easy to use for handling fast-paced changing in-
formation. Sophisticated solutions, such as CASE tools [112],
require training and have high implementation and maintenance
costs [89, 91].

In general, startups take advantage of those technologies that
can quickly change the product and its management [67, 8],
avoiding conflicts with business strategic plans. Examples
include general-purpose infrastructures, such as configuration
management, problem reporting and tracking systems, plan-
ning, scheduling and notification systems. Such technologies
support the needed activities, accommodating changes when re-
quired [3]. To mitigate the lack of resources, startups might take
advantage of open source solutions when possible, which also
gives access to a large pool of evaluators and evolving contri-
butions [95, 94].

Summarizing, tools and technologies practices reported to be
useful in startups are:

• The use of easy-to-implement tools to work with fast-paced
changing information.
• The use of open source solutions.

Discussion
Startups can take advantage of using new technologies and

development tools without having any legacy or being con-
strained by previous working experience. However, lack of
experience can also be a disadvantage which could be com-
pensated by a light-weight process to select technologies; this
selection could be guided by domain-specific or product spe-
cific requirements. For example, if a startup is creating a prod-
uct that is meant to work with a growing amount and diversity
of consumer mobile devices, to create business advantages, the
platform should be easy to extend to support new devices [113].

16



8. Conclusions and future work

Startups are able to produce software products with a strong
impact on the market, significantly contributing to the global
economy. Software development, being at the core of startups’
daily activities, is however not supported by a scientific body of
knowledge. The evidence provided by the 43 primary studies
is, for the most part, inadequate to understand the underlying
phenomenon of software development in startups. To the cur-
rent date, fourteen years after Sutton assessed that startups have
been neglected from process studies [3], the gap has been only
partially filled.

This is remarkable, considering startups’ proliferation and,
at the same time, high failure rate. Hence, to be able to inter-
vene on the software development strategy with scientific and
engineering approaches, it is necessary to better understand and
characterize the state-of-art in the software startup context.

By means of a systematic mapping study, we provide a clas-
sification of the state-of-art, assess rigor and relevance of the
identified primary studies, and analyze software development
work practices discussed in the surveyed literature.

Looking at the 43 primary studies, 19 (44%) are focused
on managerial and organizational factors. Only 16 studies
(37%) are entirely dedicated to software development in star-
tups, whereby 10 studies constitute a weak contribution type.
Overall, only 4 contributions to the field are entirely dedicated
to engineering activities in startups, providing a strong contri-
bution type and conducted through an evidence-based research
approach [11, 24, 72, 13]. However, three of these studies are
based on the same data, leading to the conclusion that there is
a lack of relevant primary studies on software development in
the startup context. In the following subsections we provide
answers to our initially posed research questions.

8.1. RQ1 What is the context that characterizes software devel-
opment in startups?

There is no unique definition in literature on what constitutes
a startup. The inconsistent use of the term “startup” by dif-
ferent authors and lacking descriptions of context restrains the
creation of a coherent body of knowledge on software startups.
This also hinders the adoption of results by practitioners as the
context in which advancements are applicable is lacking.

The most frequently reported contextual features of startups
concern the general lack of resources, high reactiveness and
flexibility, intense time-pressure, uncertain conditions and fast
growth. Since the contextual boundaries of startups resulted
to be highly blurred, we believe it is responsibility of the re-
searchers who refer to the term “startup” to explicitly define the
features of the studied companies. In most of primary studies
an explicit contextualization has been neglected, affecting the
generalizability of their results.

Some of the features characterizing startups are common to
other SE contexts: innovative products development, market-
driven development, small companies, short time-to-market,
web-development. However, the coexistence of all these fea-
tures poses a new, unique series of challenges.

8.2. RQ2 To what extent does the research on startups provide
reliable and transferable results to industry?

The rigor and relevance analysis indicates that only a minor-
ity of the studies (9, 21%) representing the state-of-art provide
transferable and reliable results to practitioners. Even more
concerning is that more than half of the studies (23, 53%) ex-
hibit moderate industry relevance, however at the same time
low scientific rigor. This makes the transfer of results to practi-
tioners highly unlikely or even dangerous [51], calling for more
rigorous studies in the context of software startups.

8.3. RQ3 What are the reported work practices in association
with software engineering in startups?

We extracted and discussed work practices commonly used
in startups as reported in the reviewed literature. In terms of
process management, agile and more traditional methodologies
struggle to get adopted by startups due to an excessive amount
of uncertainty and high time-pressure. Light-weight method-
ologies that allow companies to pick and tailor practices are
preferred as they facilitate reactiveness and allow rapid changes
in the product. In this sense, processes in startups are evolu-
tionary in nature, and the product is obtained by iterating and
updating an early prototype driven by customer feedback.

Software development practices are reported to be adopted
only partially and mostly in a late stage of the startup life-cycle.
Requirements are market-driven and hardly documented. The
architecture and design is often replaced by the use of well-
known frameworks that facilitate maintenance and reduce docu-
mentation efforts. Ad-hoc code metrics, pair programming ses-
sions, and code refactoring sessions are reported to be valuable
practices. Testing is mostly conducted through customer accep-
tance, focus groups, and sometimes by outsourcing the testing
activity.

Managerial and organizational practices are reduced to the
essential. With minimal bureaucracy, developers are largely
empowered and encouraged to adapt to several roles, creatively
impacting on the final products. Given the unpredictability in
the startup context, milestones and objectives are focused on
the short-medium term and basic key performance indicators
are used to track customers’ demands.

Startups mainly make use of simple tools to support and trace
the knowledge-base and manage the workflow, often opting for
open-source solutions that require little or no training and main-
tenance.

8.4. Implications for practitioners, research and future work

Evidence from the reviewed primary studies indicates that
startup companies, struggling to survive and operate in an un-
predictable context, can benefit from adopting certain software
engineering practices. However, low rigor studies and insuffi-
cient context information threaten the adoption of these prac-
tices by practitioners.

Performing research on startups is challenging due to the
rapidly-changing conditions surrounding the studied environ-
ment. Therefore it is crucial to explicitly define the context
when studying startups, describing however also study design

17



and validity threats. This strengthens studies, lifting the poten-
tial of results transfer to industry.

While the characterization of startups through recurrent
themes presented in this paper can serve as a basis, future work
is needed to compile a common startup terminology and a set of
definitions. That would support the generation of a consistent
body of knowledge based on evidence-based research, aiming
at supporting activities and decisions of the growing number of
startup companies. We are currently investigating early-stage
startups that are recently founded and distributed in different
geographic areas and market sectors. Following a grounded
theory approach, we aim at exploring the state-of-practice in
this context, identifying software development strategies engi-
neered by practitioners.

References

[1] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering –
A systematic literature review, Information and Software Technology
51 (1) (2009) 7–15.

[2] F. Q. B. da Silva, A. L. M. Santos, S. Soares, A. C. C. França, C. V. F.
Monteiro, F. F. Maciel, Six years of systematic literature reviews in soft-
ware engineering: An updated tertiary study, Information and Software
Technology 53 (9) (2011) 899–913.

[3] S. M. Sutton, The role of process in software start-up, IEEE Software
17 (4) (2000) 33–39.

[4] B. Kitchenham, S. Charters, Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering, Tech. Rep. EBSE 2007-001,
Keele University and Durham University Joint Report (2007).

[5] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using Mapping
Studies in Software Engineering, in: Proceedings of the 20th Annual
Meeting of the Psychology of Programming Interest Group (PPIG),
2008, pp. 195–204.

[6] H. Zhang, M. A. Babar, Systematic reviews in software engineering:
An empirical investigation, Information and Software Technology 55 (7)
(2013) 1341–1354.

[7] T. Kane, The Importance of Startups in Job Creation and Job Destruc-
tion, Tech. rep., Kauffman Foundation (July 2010).

[8] M. Crowne, Why software product startups fail and what to do about it,
in: Proceedings of the International Engineering Management Confer-
ence (IEMC), 2002, pp. 338–343.

[9] A. Maccormack, How Internet Companies Build Software, MIT Sloan
Management Review 42 (2) (2001) 75–84.

[10] K. M. Eisenhardt, S. L. Brown, Time pacing: competing in markets that
won’t stand still., Harvard Business Review 76 (2) (1998) 59–69.

[11] G. Coleman, R. O’Connor, An investigation into software development
process formation in software start-ups, Journal of Enterprise Informa-
tion Management 21 (6) (2008) 633–648.

[12] S. Blank, The four steps to the epiphany, Cafepress, 2005.
[13] M. Kajko-Mattsson, N. Nikitina, From Knowing Nothing to Knowing

a Little: Experiences Gained from Process Improvement in a Start-Up
Company, in: Proceedings of the International Conference on Computer
Science and Software Engineering (CSSE), 2008, pp. 617–621.

[14] G. Coleman, An empirical study of software process in practice, in: Pro-
ceedings of the 38th Annual Hawaii International Conference on System
Sciences (HICSS), 2005, p. 315c.

[15] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic Mapping
Studies in Software Engineering, in: Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing (EASE), 2007, pp. 1–10.

[16] D. Storey, Entrepreneurship and the New Firm, Croom Helm, 1982.
[17] A. B. Perkins, M. C. Perkins, The Internet Bubble: Inside the Over-

valued World of High-Tech Stocks – And What You Need to Know to
Avoid the Coming Catastrophe, HarperInformation, 1999.

[18] M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley,

S. Blank, Startup Genome Report Extra: Premature Scaling, Tech. rep.,
Startup Genome (2011).

[19] E. Carmel, Time-to-completion in software package startups, Proceed-
ings of the 27th Hawaii International Conference on System Sciences
(HICSS) (1994) 498–507.

[20] C. M. Christensen, The Innovator’s Dilemma, Harvard Business School
Press, 1997.

[21] S. Blank, Embrace failure to start up success., Nature 477 (7363) (2011)
133.

[22] I. Heitlager, S. Jansen, R. Helms, S. Brinkkemper, Understanding the
dynamics of product software development using the concept of coevo-
lution, in: Proceedings of the 2nd International Workshop on Software
Evolvability, IEEE Computer Society, Washington, DC, USA, 2006, pp.
16–22.

[23] A. Fuggetta, Software process: A roadmap, in: Proceedings of the Con-
ference on The Future of Software Engineering (ICSE), ACM, 2000, pp.
25–34.

[24] G. Coleman, R. O’Connor, Investigating software process in practice:
A grounded theory perspective, Journal of Systems and Software 81 (5)
(2008) 772–784.

[25] J. Bach, Microdynamics of process evolution, Computer 31 (1998) 111–
113.

[26] I. Heitlager, R. Helms, S. Brinkkemper, A tentative technique for the
study and planning of co-evolution in product software startups, in: Pro-
ceedings of the 3rd International Workshop on Software Evolvability,
2007, pp. 42–47.

[27] K. Martin, B. Hoffman, An open source approach to developing software
in a small organization, IEEE Software 24 (1) (2007) 46–53.

[28] M. Tanabian, Building high-performance team through effective job de-
sign for an early stage software start-up, in: Proceedings of the Inter-
national Engineering Management Conference (IEMC), 2005, pp. 789–
792.

[29] S. Chorev, A. R. Anderson, Success in Israeli high-tech start-ups; Criti-
cal factors and process, Technovation 26 (2) (2006) 162–174.

[30] M. Kakati, Success criteria in high-tech new ventures, Technovation
23 (5) (2003) 447–457.

[31] S. Blank, Why the Lean Start-Up Changes Everything, Harvard Busi-
ness Review 91 (5) (2013) 64+.

[32] C. Alves, S. Pereira, J. Castro, A Study in Market-Driven Requirements
Engineering, Tech. rep., Universidade Federal de Pernambuco (2006).

[33] J. Natt Och Dag, Elicitation and management of user requirements in
market-driven software development, Ph.D. thesis, Department of Com-
munication Systems Lund Institute of Technology (2002).

[34] P. Sawyer, I. Sommerville, G. Kotonya, Improving market-driven re
processes, in: Proceedings of the International Conference on Product-
Focused Software Process Improvement (PROFES), 1999.

[35] C. Potts, Invented requirements and imagined customers: requirements
engineering for off-the-shelf software, in: Proceedings of the 2nd In-
ternational Symposium on Requirements Engineering (RE), 1995, pp.
128–130.

[36] L. Karlsson, Å. G. Dahlstedt, J. Natt Och Dag, B. Regnell, A. Persson,
Challenges in market-driven requirements engineering - an industrial
interview study, in: Proceedings of the 8th International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ),
2002.

[37] A. Dahlstedt, Study of current practices in marketdriven requirements
engineering, in: Proceedings of the 3rd Conference for the Promotion of
Research in IT, 2003.

[38] M. Keil, E. Carmel, Customer-developer links in software development,
Communications of the ACM 38 (5) (1995) 33–44.

[39] B. A. Kitchenham, T. Dybå, M. Jørgensen, Evidence-based software en-
gineering, in: Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE), IEEE Computer Society, Los Alamitos, CA,
USA, 2004, pp. 273–281.

[40] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature location in
source code: a taxonomy and survey, Journal of Software Maintenance
and Evolution: Research and Practice 25 (1) (2011) 53–95.

[41] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based
testing for non-functional system properties, Information and Software
Technology 51 (6) (2009) 957–976.

[42] Enterprise - SME definition (Feb. 2014).

18

http://www.ec.europa.eu/enterprise/enterprise_policy/sme_definition/sme_user_gui de.pdf


URL http://www.ec.europa.eu/enterprise/enterprise_

policy/sme_definition/sme_user_guide.pdf

[43] E. Kamsties, K. Hörmann, M. Schlich, Requirements engineering in
small and medium enterprises, Requirements Engineering 3 (2) (1998)
84–90.

[44] C. Laporte, S. Alexandre, R. O’Connor, A software engineering life-
cycle standard for very small enterprises, in: R. O’Connor, N. Bad-
doo, K. Smolander, R. Messnarz (Eds.), Software Process Improve-
ment, Vol. 16 of Communications in Computer and Information Science,
Springer Berlin Heidelberg, 2008, pp. 129–141.

[45] F. J. Pino, F. Garcı́a, M. Piattini, Software process improvement in small
and medium software enterprises: a systematic review, Software Quality
Journal 16 (2) (2008) 237–261.

[46] I. Richardson, C. G. von Wangenheim, Guest editors’ introduction: Why
are small software organizations different?, IEEE Softw. 24 (1) (2007)
18–22.

[47] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, R. Murphy, An
exploratory study of why organizations do not adopt {CMMI}, Journal
of Systems and Software 80 (6) (2007) 883 – 895.

[48] P. Taticchi, F. Tonelli, L. Cagnazzo, Performance measurement and man-
agement: a literature review and a research agenda, Measuring Business
Excellence 14 (1) (2010) 4–18.

[49] R. Thorpe, R. Holt, A. Macpherson, L. Pittaway, Using knowledge
within small and medium-sized firms: A systematic review of the ev-
idence, International Journal of Management Reviews 7 (4) (2005) 257–
281.

[50] N. Rosenbusch, J. Brinckmann, A. Bausch, Is innovation always bene-
ficial? a meta-analysis of the relationship between innovation and per-
formance in {SMEs}, Journal of Business Venturing 26 (4) (2011) 441 –
457.

[51] M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Empirical Software Engineering
16 (3) (2010) 365–395.

[52] A. Strauss, J. Corbin, Basics of Qualitative Research, 2nd Edition,
SAGE Publications, 1998.

[53] S. Rumsey, How to find information: a guide for researchers, McGraw-
Hill, 2008.

[54] S. Barney, K. Petersen, M. Svahnberg, A. Aurum, H. Barney, Software
quality trade-offs: A systematic map, Information and Software Tech-
nology 54 (7) (2012) 651–662.

[55] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, Sup-
plementary material to ”Software development in startup companies: A
systematic mapping study” (2013).
URL http://www.bth.se/com/mun.nsf/pages/

startup-sysmap

[56] BibDesk. [Online]. Available: http://bibdesk.sourceforge.net/
(Accessed : Nov. 25, 2013).

[57] T. Dybå, T. Dingsøyr, Empirical studies of agile software development:
A systematic review, Information and Software Technology 50 (9-10)
(2008) 833–859.

[58] M. Jorgensen, M. Shepperd, A systematic review of software devel-
opment cost estimation studies, Transactions on Software Engineering
33 (1) (2007) 33–53.

[59] A. Sayers, Tips and tricks in performing a systematic review, The British
Journal of General Practice 1 (57) (2007) 542–759.

[60] M. Ivarsson, T. Gorschek, Technology transfer decision support in re-
quirements engineering research: a systematic review of rej, Require-
ments Engineering 14 (3) (2009) 155–175.

[61] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. K. Cheng, R. Permadi,
R. Feldt, Evaluation and measurement of software process improvement
– a systematic literature review, Transactions on Software Engineering
38 (2) (2012) 398–424.

[62] T. Saracevic, Evaluation of evaluation in information retrieval, in: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1995, pp. 138–146.

[63] R. Deias, G. Mugheddu, O. Murru, Introducing xp in a start-up, in: Pro-
ceedings 3rd International Conference on eXtreme Programming and
Agile Processes in Software Engineering (XP), 2002, pp. 62–65.

[64] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineer-
ing paper classification and evaluation criteria: a proposal and a discus-
sion, Requirements Engineering 11 (1) (2005) 102–107.

[65] M. Shaw, Writing good software engineering research papers, in: Pro-
ceedings of the 25th International Conference on Software Engineering
(ICSE), 2003, pp. 726–736.

[66] K. Kuvinka, Scrum and the Single Writer, in: Proceedings of Technical
Communication Summit, 2011, pp. 18–19.

[67] A. da Silva, F. Kon, Xp south of the equator: An experience implement-
ing XP in Brazil, Extreme Programming and Agile Processes (2005)
10–18.

[68] J. Mater, B. Subramanian, Solving the software quality management
problem in Internet startups, in: Proceedings of the 18th Annual Pacific
Northwest Software Quality Conference, 2000, pp. 297–306.

[69] M. Häsel, N. Breugst, T. Kollmann, IT Competence in Internet Founder
Teams An Analysis of Preferences and Product Innovativity, Business
& Information System Engineering 52 (4) (2010) 210–217.

[70] R. Hanna, T. U. Daim, Information technology acquisition in the service
sector, International Journal of Services Sciences 3 (1) (2010) 21–39.

[71] E. Kim, S. Tadisina, Factors impacting customers’ initial trust in e-
businesses: an empirical study, in: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS), 2005,
pp. 1–10.

[72] G. Coleman, R. O’Connor, Using grounded theory to understand soft-
ware process improvement: A study of Irish software product compa-
nies, Information and Software Technology 49 (6) (2007) 654–667.

[73] J. Bosch, H. H. Olsson, J. Björk, J. Ljungblad, The early stage software
startup development model: A framework for operationalizing lean prin-
ciples in software startups, in: Lean Enterprise Software and Systems,
Springer, 2013, pp. 1–15.

[74] C. Midler, P. Silberzahn, Managing robust development process for
high-tech startups through multi-project learning: The case of two Eu-
ropean start-ups, International Journal of Project Management 26 (5)
(2008) 479–486.

[75] S. Yogendra, Aligning business and technology strategies: a compari-
son of established and start-up business contexts, in: Proceedings of the
Internal Engineering Management Conference (IEMC), 2002, pp. 2–7.

[76] D. Yoffie, Building a company on Internet time: Lessons from Netscape,
California Management Review 4 (3) (1999).

[77] S. Jansen, S. Brinkkemper, I. Hunink, Pragmatic and Opportunistic
Reuse in Innovative Start-up Companies, IEEE Software (2008) 42–49.

[78] H.-J. Steenhuis, E. de Bruijn, Innovation and technology based eco-
nomic development: Are there short-cuts?, in: Proceedings of the In-
ternational Conference on Management of Innovation and Technology
(ICMIT), 2008, pp. 837–841.

[79] S.-l. Lai, Chinese Entrepreneurship in the Internet Age: Lessons from
Alibaba.com, World Academy of Science, Engineering and Technology
72 (2010) 405–411.

[80] P. Tingling, Extreme programming in action: a longitudinal case study,
in: Proceedings of the 12th International Conference on Human-
computer Interaction: Interaction Design and Usability (HCI), 2007, pp.
242–251.

[81] S.-C. Li, The role of value proposition and value co-production in new
internet startups: How new venture e-businesses achieve competitive ad-
vantage, in: Portland International Center for Management of Engineer-
ing and Technology (PICMET), 2007, pp. 1126 –1132.

[82] J. Zettel, F. Maurer, J. Münch, L. Wong, LIPE: a lightweight process
for e-business startup companies based on extreme programming, in:
Proceedings 3rd International Conference on Product Focused Software
Process Improvement (PROFES), Springer, 2001, pp. 255–270.

[83] B. Mirel, Product, process, and profit: the politics of usability in a soft-
ware venture, ACM Journal of Computer Documentation (JCD) 24 (4)
(2000) 185–203.

[84] R. Stanfill, T. Astleford, Improving Entrepreneurship Team Performance
through Market Feasibility Analysis, Early Identification of Technical
Requirements, and Intellectual Property Support, in: Proceedings of the
American Society for Engineering Education Annual Conference & Ex-
position, 2007.

[85] O.-P. Hilmola, P. Helo, L. Ojala, The value of product development lead
time in software startup, System Dynamics Review 19 (1) (2003) 75–82.

[86] C. Yoo, D. Yang, H. Kim, E. Heo, Key Value Drivers of Startup Com-
panies in the New Media Industry-The Case of Online Games in Korea,
Journal of Media Economics 25 (4) (2012) 244–260.

[87] Y.-W. Yu, Y.-S. Chang, Y.-F. Chen, L.-S. Chu, Entrepreneurial suc-

19

http://www.ec.europa.eu/enterprise/enterprise_policy/sme_definition/sme_user_gui de.pdf
http://www.ec.europa.eu/enterprise/enterprise_policy/sme_definition/sme_user_gui de.pdf
http://www.bth.se/com/mun.nsf/pages/startup-sysmap
http://www.bth.se/com/mun.nsf/pages/startup-sysmap
http://www.bth.se/com/mun.nsf/pages/startup-sysmap
http://www.bth.se/com/mun.nsf/pages/startup-sysmap
http://www.bth.se/com/mun.nsf/pages/startup-sysmap
http://bibdesk.sourceforge.net/


cess for high-tech start-ups - case study of taiwan high-tech companies,
Palermo, Italy, 2012, pp. 933 – 937.

[88] M. Fayad, Process assessment considered wasteful, Communications of
the ACM 40 (11) (1997) 125–128.

[89] L. Bean, D. D. Hott, Wiki: A speedy new tool to manage projects, Jour-
nal of Corporate Accounting & Finance 16 (5) (2005) 3–8.

[90] E. Deakins, S. Dillon, A helical model for managing innovative prod-
uct and service initiatives in volatile commercial environments, Interna-
tional Journal of Project Management 23 (1) (2005) 65–74.

[91] S. Ambler, Lessons in agility from Internet-based development, IEEE
Software (April) (2002) 66–73.

[92] B. May, Applying lean startup: An experience report – lean and lean ux
by a ux veteran: Lessons learned in creating and launching a complex
consumer app, in: Agile Conference (AGILE), 2012, 2012, pp. 141–147.

[93] M. Taipale, Huitale - A story of a Finnish lean startup, in: Lean En-
terprise Software and Systems, Vol. 65 of Lecture Notes in Business
Information Processing, 2010, pp. 111–114.

[94] D. Wood, Open Source Software Strategies for Venture-Funded Star-
tups, Tech. Rep. TR-MS1287, MIND Laboratory, University of Mary-
land (2005).

[95] D. Wall, Using open source for a profitable startup, Computer 34 (12)
(2001) 158–160.

[96] T. Clark, P.-A. Muller, Exploiting model driven technology: A tale of
two startups, Software and Systems Modeling 11 (4) (2012) 481 – 493.

[97] D. Šmite, C. Wohlin, T. Gorschek, R. Feldt, Empirical evidence in global
software engineering: a systematic review, Empirical Software Engi-
neering 15 (1) (2009) 91–118.

[98] T. Dybå, V. B. Kampenes, D. I. Sjøberg, A systematic review of statis-
tical power in software engineering experiments, Information and Soft-
ware Technology 48 (8) (2006) 745–755.

[99] Colin Robson, Real World Research: A Resource for Social Scientists
and Practitioner-Researchers, John Wiley and Sons, 2009.

[100] N. Ali, H. Edison, Towards innovation measurement in software indus-
try, Master’s thesis, Blekinge Institute of Technology (May 2010).

[101] T. Dybå, B. Kitchenham, M. Jorgensen, Evidence-based software engi-
neering for practitioners, IEEE Software 22 (1) (2005) 58 – 65.

[102] B. Kitchenham, T. Dybå, M. Jorgensen, Evidence-based software engi-
neering, in: Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE), 2004, pp. 273–281.

[103] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses, Crown Business,
2011.

[104] C. F. Kurtz, D. J. Snowden, The new dynamics of strategy: Sense-
making in a complex and complicated world, IBM Systems Journal
42 (3) (2003) 462 –483.

[105] D. Adebanjo, Challenges and approaches to customer development in
co-located high-tech start-ups, in: Proceedings of the International
Conference on Industrial Engineering and Engineering Management
(IEEM), 2010, pp. 163–167.

[106] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: el-
ements of reusable object-oriented software, 1st Edition, Addison-
Wesley, Boston, 1994.

[107] E. Gamma, R. Helm, R. E. Johnson, J. M. Vlissides, Design patterns:
Abstraction and reuse of object-oriented design, in: Proceedings of the
7th European Conference on Object-Oriented Programming (ECOOP),
1993, pp. 406–431.

[108] N. Paspallis, R. Rouvoy, P. Barone, G. Papadopoulos, F. Eliassen,
A. Mamelli, A pluggable and reconfigurable architecture for a context-
aware enabling middleware system, in: Proceedings of the OTM 2008
Confederated International Conferences, 2008, pp. 553–570.

[109] V. R. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich,
J. Munch, D. Rombach, A. Trendowicz, Linking software development
and business strategy through measurement, Computer 43 (4) (2010)
57–65.

[110] C. Liu, J. Yang, L. Tan, M. Hafiz, R2fix: Automatically generating bug
fixes from bug reports, in: Sixth International Conference on Software
Testing, Verification and Validation (ICST), 2013, pp. 282–291.

[111] I. Banerjee, B. Nguyen, V. Garousi, A. Memon, Graphical user inter-
face (gui) testing: Systematic mapping and repository, Information and
Software Technology 55 (10) (2013) 1679 – 1694.

[112] D. Kuhn, Selecting and effectively using a computer aided software en-

gineering tool, in: Annual Westinghouse Computer Symposium, 1989.
[113] P. Smutny, Mobile development tools and cross-platform solutions, in:

13th International Carpathian Control Conference (ICCC), 2012, pp.
653–656.

20


	Introduction
	Background and Related Work
	Software Startups
	Startup Lifecycle
	Software Development in Startups
	Related work

	Research methodology
	Definition of Research Questions
	Conduct Search
	Screening of Relevant Papers
	Keywording
	Data Extraction and Mapping
	Rigor and relevance assessment
	Synthesis
	Threats to validity
	Publication bias
	Identification of primary studies
	Study selection and data extraction


	Classification schema
	Results
	Startup research categorization
	Context characteristics of startups
	Rigor and relevance

	Analysis of the state-of-art
	RQ1 - The context characterizing software development in startups
	RQ2 - Transferability of results to industry

	RQ3 - Work Practices in startups
	Process management practices
	Software development practices
	Requirements Engineering practices
	Design and Architecture practices
	Implementation, Maintenance and Deployment practices
	Quality Assurance practices

	Managerial and organizational practices
	Tools and technologies

	Conclusions and future work
	RQ1 What is the context that characterizes software development in startups?
	RQ2 To what extent does the research on startups provide reliable and transferable results to industry?
	RQ3 What are the reported work practices in association with software engineering in startups?
	Implications for practitioners, research and future work


